Disappearing day-of-week ozone patterns in US nonattainment areas

Heather Simon1, Christian Hogrefe2, Andrew Whitchill2, Kristen M. Foley2, Jennifer Liljegren3, Norm Possiel1, Benjamin Wells1, Barron H. Henderson1, Lukas C. Valin2, Gail Tonnesen5, K. Wyat Appel2, Shannon Koplitz1

1US Environmental Protection Agency, Office of Air and Radiation, Research Triangle Park, NC
2US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC
3US Environmental Protection Agency, Region 5, Chicago, IL
4US Environmental Protection Agency, Region 8, Denver, CO
Correspondence to: Heather Simon (Simon.Heather@epa.gov)

Abstract. Past work has shown that traffic patterns in the US and resulting NOx emissions vary by day of week, with NOx emissions typically higher on weekdays than weekends. This pattern of emissions leads to different levels of ozone on weekends versus weekdays and can be leveraged to understand how local ozone formation changes in response to NOx emissions perturbations in different urban areas. Specifically, areas with lower NOx but higher ozone on the weekends (the weekend effect) can be characterized as NOx -saturated and areas with both lower NOx and ozone on weekends (the weekday effect) can be characterized as NOx-limited. In this analysis we assess ozone weekend-weekday differences across US nonattainment areas using 18 years of observed and modeled data from 2002-2019 using two metrics: mean ozone and percentage of days > 70 ppb. In addition, we quantify the modeled and observed trends in these weekend-weekday differences across this period of substantial NOx emissions reductions in the US. The model assessment is carried out using EPA’s Air QUAlity TimE Series Project (EQUATES) CMAQ dataset. We identify 3 types of ozone trends occurring across the US: disappearing weekend effect, disappearing weekday effect, and no trend. The disappearing weekend effect occurs in a subset of large urban areas that were NOx -saturated (i.e., VOC-limited) at the beginning of the analysis period but transitioned to mixed chemical regimes or NOx-limited conditions by the end of the analysis period. Nine areas have disappearing weekend effect trends in both datasets and with both metrics indicating strong agreement that they are shifting to more NOx-limited conditions: Milwaukee, Houston, Phoenix, Denver, Northern Wasatch Front, Southern Wasatch Front, Las Vegas, Los Angeles – San Bernardino County, Los Angeles – South Coast, and San Diego. The disappearing weekday effect was identified for multiple rural and agricultural areas of California which were NOx-limited for the entire analysis period but appear to become less influenced by local day of week emission patterns in more recent years. Finally, we discuss a variety of reasons why there are no statistically significant trends in certain areas including complex impacts of heterogeneous source mixes and stochastic impacts of meteorology. Overall, this assessment finds that the EQUATES modeling simulations indicate more NOx-saturated conditions than the observations but do a good job of capturing year-to-year changes in weekend-weekday ozone patterns.

1 Introduction

Ground-level ozone (O3), a key component of photochemical smog, has adverse impacts on human health and ecosystems (U.S. Environmental Protection Agency, 2019). In the United States (US), the Clean Air Act Amendments of 1970 instruct the Environmental Protection Agency (EPA) to set National Ambient Air Quality Standards for multiple pollutants with ozone (O3) being the most important among them.
(NAAQS) for criteria pollutants. Since 1979, O$_3$ has served as the indicator species for the criteria pollutant of photochemical oxidants (44 FR 8202) and since 1997, the form of the standard has been determined by the 3-year average of the annual 4th-highest daily maximum 8-hour concentration (MDA8) (62 FR 38856). In 2015, the O$_3$ NAAQS were revised to the current level of 0.070 ppm or 70 ppb (80 FR 65291). As of 2018, 52 areas in the US had been designated as nonattainment of the 2015 O$_3$ NAAQS (83 FR 25776; 83 FR 35136; 83 FR 52157).

O$_3$ is predominantly a secondary pollutant formed from photochemical reactions of nitrogen oxides (NO$_x$) and volatile organic compounds (VOCs). Ground-level O$_3$ concentrations are a complex nonlinear function of the chemistry of natural and anthropogenic precursor emissions, as well as meteorology, transport, and deposition (Seinfeld and Pandis, 2016). O$_3$ formation rates depend on the concentrations and speciation of NO$_x$ and VOCs. To reduce ambient O$_3$ concentrations, control strategies have been enacted in the US over the last 50 years to control the emissions of both NO$_x$ and VOCs (Simon et al., 2015).

The effectiveness of different control strategies on O$_3$ production rates depends on the photochemical environment under which ozone is formed. Ozone formation environments are typically categorized as either NO$_x$-limited or NO$_x$-saturated, with a mixed or transitional regime between the two (Sillman, 1995, 1999; Sillman et al., 1990). In the NO$_x$-limited regime, ambient ozone concentrations will respond more strongly to changes in NO$_x$ emissions than VOC emissions. In contrast, in a NO$_x$-saturated (or VOC-limited) regime ozone will increase with NO$_x$ emission controls but will decrease with VOC emissions controls. Understanding the photochemical regimes of different ozone nonattainment areas and how they have changed over time is important for understanding the impacts of previous control strategies and guiding future control strategies to have the maximum health benefit with the least economic burden.

Different methods have been proposed to determine ozone formation regimes and their changes over time. One common method used to evaluate ozone formation chemistry is through day-of-week (DOW) differences in the concentration of ozone and its precursors. The DOW effects leverage NO$_x$ emissions differences between weekdays and weekends (Marr and Harley, 2002a, b). In the US, onroad vehicles are a dominant source of NO$_x$ emissions (Toro et al., 2021). Diesel vehicle traffic tends to be higher on weekdays (Monday through Friday) than on weekends (Saturday and Sunday). This results in higher NO$_x$ emissions on weekdays than weekends (Marr and Harley, 2002a, b). Daily varying emissions sources such as diesel vehicles are not a major source of VOC emissions. In addition, VOC emissions in some areas are dominated by biogenic emissions that do not vary by day of week. Consequently, VOC emissions are generally similar on weekends and weekdays in most areas. The result of DOW NO$_x$ patterns is that ozone concentrations tend to be higher on weekends than weekdays in NO$_x$-saturated areas and lower on weekends than weekdays in NO$_x$-limited areas (Koplitz et al., 2022). DOW differences in ozone were first reported in the 1970s (Bruntz et al., 1974; Cleveland et al., 1974). In 2002 the DOW ozone differences in California were explicitly tied to DOW patterns in diesel vehicle traffic (Marr and Harley, 2002a, b). Since that time, multiple studies have used DOW ozone patterns to assess ozone chemical formation regimes in individual US cities including Los
Previous work has shown a substantial decrease in NO\textsubscript{2} emissions in the US over the past 20 years as a result of national, state, and local regulations (Krotkov et al., 2016; Lamsal et al., 2015; Russell et al., 2012; Toro et al., 2021). Concurrent with the US NO\textsubscript{2} decreases, multiple studies have found that ozone chemical formation regimes have also changed in the US (Jin et al., 2020; Jin et al., 2017; Koplitz et al., 2022). In this paper, we focus on 51 areas in the US which were designated in 2018 as nonattainment (https://www.epa.gov/green-book/green-book-8-hour-ozone-2015-area-information) under the 2015 O\textsubscript{3} NAAQS (some of these areas have since been redesignated to attainment based on clean monitoring data). We look at changes in DOW patterns in the US over 18 years from 2002 to 2019 using both measured and modeled data to provide insights into how ozone formation chemistry has changed in the US as a result of emissions reductions, and to assess how well modeling is able to capture the observed changes. This 18-year dataset, which is part of EPA’s Air QUALity TimE Series Project (EQUATES), is unique in its application of consistent emissions and modeling methodologies across the entire analysis period providing an opportunity to assess multi-year trends.

2 Methods

For this assessment we use MDA\textsubscript{8} ozone monitoring data obtained from EPA’s Air Quality System (AQS) (https://www.epa.gov/aqs) and MDA\textsubscript{8} ozone modeling data from simulations of the Community Multiscale Air Quality model version 5.3.2 (CMAQv5.3.2). The CMAQ model data are part of EQUATES which provides an 18-year set of modeled meteorology, emissions, air quality and pollutant deposition spanning the years 2002 through 2019 using consistent modeling methods across years. The CMAQv5.3.2 model configuration, including input data, boundary conditions, and science options are available from US EPA (Epa, 2021). The emissions inventories developed for the EQUATES CMAQ modeling are described in (Foley et al., 2023).
We extract CMAQ modeling data only for days and grid-cells with monitoring data such that both datasets are paired in time and location. Both datasets are subset to ozone monitors located within 51 of the 52 areas that were designated in 2018 as nonattainment for the 2015 O₃ NAAQS (a list of areas is available in Tables S1 and S2) (83 FR 25776; 83 FR 35136; 83 FR 52157). Because this analysis focuses on May-September data, we do not include data from the Uintah Basin nonattainment area for which violations of the NAAQS predominantly occur in winter months. Data are analyzed for the 18-year period of the EQUATES modeling dataset.

We start by analyzing changes in ozone between weekends and weekdays pooled across all monitoring locations for each nonattainment area for 5-year rolling periods (i.e., 14 different periods covering the 18-year timeseries). We pool data into 5-year periods for several reasons. First, it dampens impacts of interannual meteorology that can contribute to large year-to-year changes in ozone for a given location. Previous work has shown that differential meteorological patterns on weekends versus weekdays impacts ozone DOW patterns in a single year and that pooling data across multiple years can reduce this effect (Pierce et al., 2010). Second, it provides a larger sample size for calculating ozone differences between weekends and weekdays. The use of 5-year periods does, however, limit this analysis’ ability to parse out changes in weekend-weekday differences that have occurred due to emissions changes in the most recent individual years analyzed. For example, any changes occurring only in 2018 and/or 2019 would be dampened in the 2015-2019 pooled data.

For the purpose of quantifying differences in weekend versus weekday O₃ concentrations, we use Sundays to represent weekends (WE) and Tuesdays, Wednesdays and Thursdays to represent weekdays (WD). We do not include ozone on Monday and Saturday to minimize any carryover impacts on concentrations from the previous day and we exclude Friday as it may exhibit somewhat different emissions patterns than the other weekdays.

We use two metrics to quantify differences in ozone between weekends and weekdays. First, we quantify mean differences in ozone across the entire distribution of days in each season (Winter = Dec, Jan, Feb; Spring = Mar, Apr, May, Summer = Jun, Jul, Aug, Fall = Sep, Oct, Nov, ozone season = May-Sep) using Eq. (1), where \(O_{3,WE}\) represents MDA8 O₃ on Sundays and \(O_{3,WD}\) represents MDA8 O₃ on Tuesdays, Wednesdays, and Thursdays.

\[
\Delta O_{3,DOW} = O_{3,WE} - O_{3,WD}
\]

In this study we mainly focus on differences during the May-Sep ozone season. The Welch’s t-test (Welch, 1947) is used to denote whether the mean WE-WD difference is statistically different from zero (p < 0.05). All available ozone monitoring data and model output from all monitoring locations within each nonattainment area are included in the calculation, providing a measure of average behavior across each area. We also examine 24-hour average modeled formaldehyde and NOₓ concentrations at each of the ozone monitor locations to verify whether the model shows expected patterns of higher NOₓ on weekdays than on weekends and trends in these ozone precursors. Formaldehyde is used as an indicator of first-generation VOC reaction products for this purpose. We note that monitoring data for
VOCs and NOx are much sparser in terms of sampling frequency and spatial density than ozone measurements, so we rely on the model alone to verify underlying day-of-week patterns in precursor compounds.

Second, similar to (Jaffe et al., 2022), we look at the percent of days with MDA8 ozone values above the NAAQS level of 70 ppb. We calculate the percent of total weekends and weekdays in May-Sep for which MDA8 ozone concentrations exceeded 70 ppb as shown in Eq. (2).

\[\Delta O_{3,DOW,\%>70} = O_{3,WE,\%>70} - O_{3,WD,\%>70} \]

For this calculation, a day is characterized as exceeding the NAAQS in an area if measured and/or modeled ozone is above 70 ppb at the location of any ozone monitor within the area. In this way we are tracking days where some portion of the area has observed or modeled ozone above 70 ppb, but the analysis does not distinguish whether the high ozone concentrations are localized over a small portion of the area or widespread across multiple monitoring locations. This analysis also does not consider whether days with modeled ozone above 70 ppb occur simultaneously with observed ozone above 70 ppb. We use the Fisher’s exact test (Fisher, 1935; Mehta and Patel, 1983) to determine whether the proportion of days above 70 ppb differs significantly \(p < 0.05 \) between weekends and weekdays.

Next, we use the Theil-Sen estimator (Sen, 1968; Theil, 1992) to determine the multi-year trends in \(\Delta \overline{O_{3,DOW}} \) and \(\Delta O_{3,DOW,\%>70} \) for each area. This nonparametric approach was chosen due to the small sample size \(n=14 \) 5-year windows) and the fact that the Thiel-Sen estimator does not require any assumptions on the distribution of the residuals. The Mann-Kendall test (Kendall, 1975; Mann, 1945) is used to determine the statistical significance of the derived trends in WE-WD \(O_3 \) differences. For each derived trend, we also document the 95% confidence interval.

Finally, investigation of relationships between WE-WD \(O_3 \) and meteorological parameters used the meteorological dataset developed by and described in (Wells et al., 2021).

3 Results

3.1 NOx and formaldehyde day-of-week patterns

For all but one of the 51 areas, the model shows clear patterns of higher NOx concentrations on weekdays than weekends and relatively constant formaldehyde concentrations across May-Sep days for the entire 2002-2019 analysis period. This is consistent with the underlying assumption in the ozone day-of-week analyses discussed above. Here we describe examples of the NOx and formaldehyde day of week patterns using the data for Denver, CO and Los Angeles, CA to show typical patterns in large urban areas and Butte County, CA to show a typical pattern in a more rural area in Figures 1, 2, and 3, respectively. The modeled WE-WD differences in NOx concentrations are more pronounced in large urban areas such as Los Angeles and Denver than in rural or agricultural areas such as Butte.
County. The only area that does not demonstrate higher modeled NO\textsubscript{X} concentrations on weekdays than weekends is Door County, WI (Figure S-1). Higher NO\textsubscript{X} emissions on weekdays are typically associated with commuting patterns and greater vehicular activity from commercial truck traffic. The nonattainment portion of Door County, which was fully redesignated to attainment in 2022 (87 FR 25410), is located at the tip of a peninsula on Lake Michigan and a rural recreation and tourist destination (i.e., likely to see more weekend activity). Consequently, the area does not follow typical weekday-weekend emission patterns and therefore modeled NO\textsubscript{X} concentration patterns are unlike those of other areas. While the model does not predict substantial day-of-week formaldehyde differences in most areas, there are small modeled weekday formaldehyde enhancements in some areas such as Chicago (Figure S-2).

Theil-Sen trends show that differences in WE versus WD NO\textsubscript{X} have diminished significantly over time in most areas (e.g. Figures 1, 2 and 3). The WE versus WD differences in formaldehyde are also diminishing over time but to a much lesser extent. As total emissions have decreased, absolute concentrations of NO\textsubscript{X} have also decreased. Figures S-5 and S-6 show that the WE versus WD NO\textsubscript{X} trends remain significant whether tracking absolute or normalized NO\textsubscript{X} differences in Denver and Los Angeles, which is consistent with WE-WD NO\textsubscript{X} trends seen in all but ten of the nonattainment areas. In nine areas (Houston, TX; Las Vegas, NV; Muskegon, MI; New York, NY; Phoenix, AZ; San Diego, CA; St. Louis, MO-IL; Tuolumne County, CA; and Yuma, AZ) while absolute WE-WD NO\textsubscript{X} differences have diminished significantly there is no significant trend in relative WE-WD differences. In Mariposa County, CA neither absolute nor relative WE-WD NO\textsubscript{X} differences have significant trends from 2002-2019.
Figure 1. Denver area 2002-2019 May-Sep: observed (top left) and modeled (top center) MDA8 ozone distribution by day of week; modeled NOx (bottom left) and modeled formaldehyde (bottom center) distribution by day of week; observed and modeled trends in ∆O₃ (top right); modeled trends in WE-WD NOx and formaldehyde differences (bottom right). The distributions by day of the week are for the entire 18 years with each box representing the 25th to 75th percentile for that day of the week across all 18 years, the whiskers representing the 1.5 times the interquartile range, and the bold line inside the box representing the median. WE-WD differences (top and bottom right) are based on 5-year rolling periods.

Figure 2. Los Angeles area 2002-2019 May-Sep: observed (top left) and modeled (top center) MDA8 ozone distribution by day of week; modeled NOx (bottom left) and modeled formaldehyde (bottom center) distribution by day of week; observed and modeled trends in ∆O₃ (top right); modeled trends in WE-WD NOx and formaldehyde differences (bottom right). The distributions by day of the week are for the entire 18 years with each box representing the 25th to 75th percentile for that day of the week across all 18 years, the whiskers representing the 1.5 times the interquartile range, and the bold line inside the box representing the median. WE-WD differences (top and bottom right) are based on 5-year rolling periods.
Figure 3. Butte County, CA area 2002-2019 May-Sep: observed (top left) and modeled (top center) MDA8 ozone distribution by day of week; modeled NOx (bottom left) and modeled formaldehyde (bottom center) distribution by day of week; observed and modeled trends in ΔO_3 (top right); modeled trends in WE-WD NOx and formaldehyde differences (bottom right). The distributions by day of the week are for the entire 18 years with each box representing the 25th to 75th percentile for that day of the week across all 18 years, the whiskers representing the 1.5 times the interquartile range, and the bold line inside the box representing the median. WE-WD differences (top and bottom right) are based on 5-year rolling periods.

3.2 Trend types of ozone day-of-week patterns

Within any 5-year window, NOx-saturated areas display a “weekend effect” meaning that ozone concentrations were statistically higher on weekends than on weekdays and NOx-limited areas display a “weekday effect” meaning that ozone concentrations were statistically higher on weekdays than on weekends. We categorize the trends in ozone DOW patterns into 3 discrete categories: 1) disappearing weekend effect (i.e. areas that went from NOx-saturated to NOx-limited), 2) disappearing weekday effect (i.e. areas that went from NOx-limited to approaching zero in terms of DOW differences), and 3) areas with no significant change over the 18-year time period. Disappearing weekend effect areas are characterized by a negative Thiel-Sen slope (e.g. Denver and Los Angeles in Figures 1 and 2 respectively). Disappearing weekday effect areas are characterized by a positive Thiel-Sen slope (e.g. Butte County in Figure 3). Areas with no trend are characterized by a lack of significance, as determined by the Mann-Kendall test. Trend types for all 51 areas based on observed and modeled datasets are shown in Figure 4 and 5.
Figure 4. Map of ozone nonattainment areas color coded by trends in mean ozone day of week differences ($\Delta O_3,\overline{DOW}$) using observed data (left) and modeled data (right) over an 18-year period from 2002-2019. Ozone nonattainment areas less than 3000 km2 in area are shown as dots on the map for visibility.

Figure 5. Map of ozone nonattainment areas color coded by trends in ozone day of week differences based on the percentage of days >70 ppb MDA8 ($\Delta O_3,\overline{DOW},%>70$) using observed data (left) and modeled data (right) over an 18-year period from 2002-2019. Ozone nonattainment areas less than 3000 km2 in area are shown as dots on the map for visibility.

3.2.1 “Disappearing weekend effect” case studies

The disappearing weekend effect trend is typical of areas that initially had strongly positive ozone WE-WD differences (i.e., mean MDA8 ozone is higher on weekends than on weekdays), suggesting NO$_x$-saturated conditions, at the beginning of the analysis period. These areas typically transition into significant negative WE-WD MDA8 O_3 differences by the most recent 5-year window, suggesting a shift to NO$_x$-limited conditions by the end of the analysis period. Of the 51 nonattainment areas analyzed, 15 exhibit this type of trend based on observed data and 23 based on modeled data for $\Delta O_3,\overline{DOW}$. Two areas that exhibit this trend for $\Delta O_3,\overline{DOW}$ are Denver and Los Angeles shown in...
Figures 1 and 2 respectively. In Denver, the modeled and observed $\Delta \bar{O}_3$ are statistically significant and in the range of +3 to +4 ppb at the beginning of the analysis period. Both the model and observed data have statistically significant decreasing Thiel-Sen slopes for $\Delta \bar{O}_3$, -0.29 ppb/yr and -0.23 ppb/yr for Denver and Los Angeles respectively. In the most recent 2015-2019 5-year window, both modeled and observed $\Delta \bar{O}_3$ are negative and statistically different from zero, suggesting a shift to NOX-limited conditions. While the results shown in Figure 1 represent aggregated measured ozone data across all Denver nonattainment area monitors, Figure 6 shows behavior at three specific monitors in Denver with monitoring records covering the majority of the analysis period. All three sites were located to the south and southwest of the Denver urban area. The Welch monitor is located closer to the Denver urban area in proximity to two major highways. While the monitored and modeled negative Thiel-Sen slopes for $\Delta \bar{O}_3$ hold at all 3 sites, there are differences in the magnitude of the slopes and the sign of $\Delta \bar{O}_3$. For instance, the Welch and Highland Reservoir sites both have statistically significant positive $\Delta \bar{O}_3$ at the beginning of the analysis period suggesting both sites were NOX-saturated in the early 2000s. While the Chatfield site had positive $\Delta \bar{O}_3$ at the beginning of the analysis period, the differences were not statistically different from zero, suggesting that this location may have already been transitioning to NOX-limited conditions in the early-to-mid 2000s. The model predicts that all three sites have non-significant negative $\Delta \bar{O}_3$ at the end of the analysis period while observations show the negative $\Delta \bar{O}_3$ to be statistically significant at Chatfield and Highland Reservoir. This suggests that the model may understate the NOX-limited conditions in recent years at these locations. Los Angeles provides another example of an area where both the model and the observations had strongly positive $\Delta \bar{O}_3$ at the beginning of the analysis period and disappearing weekend effect trends (Figure 2). Similar to Denver, site to site differences in the magnitude of $\Delta \bar{O}_3$ are evident in Los Angeles (Figure S-7) but the disappearing weekend effect trend is fairly consistent across sites. Similar types of trends in Chicago and Houston are shown in supplemental figures S-2 and S-3.

In general, similar disappearing weekend effect trends in $\Delta \bar{O}_3$, %>70 are evident, however this metric appears to be noisier perhaps because it is capturing the frequency of extreme events which have a more stochastic nature than mean ozone differences. Specifically, since there are a low number of exceedance days for most nonattainment areas in any given year, a metric based on the percentage of those days falling on a Sunday versus a Tuesday, Wednesday or Thursday will be inherently more noisy than a metric based on mean values. Figures 7 and 8 show $\Delta \bar{O}_3$, %>70 Thiel-Sen trends for Denver and Los Angeles. In both cases, the model underpredicts both the percentage of days with MDA8 O_3 > 70 ppb and the Thiel-Sen slope. Additional examples of results for $\Delta \bar{O}_3$, %>70 are provided for Chicago, Houston and New York City in Figure S-9, S-10 and S-11 respectively.
Figure 6. Observed and modeled May-Sep trends in mean ozone day of week differences ($\Delta O_3, DOW$) at three Denver area monitoring locations for 2002-2019 plotted as 5-year rolling periods.

Figure 7. Modeled (left) and observed (center) percent of days with MDA8 ozone exceeding 70 ppb at any monitor within the Denver nonattainment area during May-Sep on weekends and weekdays for 5-year rolling periods between 2002-2019; Observed and modeled trends in May-Sep $\Delta O_3, DOW, % > 70$ at Denver area monitors for 5-year rolling periods between 2002-2019 (right).

Figure 8. Modeled (left) and observed (center) percent of days with MDA8 ozone exceeding 70 ppb at any monitor within the Los Angeles nonattainment area during May-Sep on weekends and weekdays for 5-year rolling periods between 2002-2019; Observed and modeled trends in May-Sep $\Delta O_3, DOW, % > 70$ at Los Angeles area monitors for 5-year rolling periods between 2002-2019 (right).
3.2.2 “Disappearing weekday effect” case study

The disappearing weekday effect trend type in $\Delta \bar{O}_{3,\text{DOW}}$ is evident in 12 out of the 51 nonattainment areas using observed data and 11 out of the 51 nonattainment areas using modeled data (Figure 4). This trend type is characterized by negative $\Delta \bar{O}_{3,\text{DOW}}$ values (i.e., weekday ozone higher than weekend ozone) throughout the analysis period indicating NOX-limited conditions trending upwards toward zero which appears primarily in rural/agricultural areas in California. The Butte County nonattainment area in California is one example of an area exhibiting this type of day-of-week trend pattern as is evident using both $\Delta \bar{O}_{3,\text{DOW}}$ and $\Delta \bar{O}_{3,\text{DOW},%>70}$ (Figures 3 and 9 respectively). The disappearing weekday effect could indicate that sources without day-of-week activity patterns are becoming more dominant contributors to local NOX emissions. In that case, the day-of-week patterns for ambient NOX concentrations are becoming less pronounced which would result in reductions in day-of-week ozone patterns. An alternate explanation is that local NOX emissions in general have decreased substantially enough that local ozone formation has become less important in such areas and a larger fraction of total ozone is being transported from upwind sources. In that case, the origin of the transported ozone could be a mixture of multiple source areas that are at varying distances upwind which could lead to a loss in the day-of-week ozone signal. More analysis would be needed to investigate this idea with respect to nonattainment areas of interest.

![Butte County, CA graph](image)

Figure 9. Modeled (left) and observed (center) percent of days with MDA8 ozone exceeding 70 ppb at any monitor within the Butte County, CA nonattainment area during May-Sep on weekends and weekdays for 5-year rolling periods between 2002-2019: Observed and modeled trends in May-Sep $\Delta \bar{O}_{3,\text{DOW},%>70}$ at Butte County, CA area monitors for 5-year rolling periods between 2002-2019 (right).

3.2.3 “No trend” case studies

Out of the 51 nonattainment areas analyzed, 25 do not have a statistically significant $\Delta \bar{O}_{3,\text{DOW}}$ trend based on a p-value cut-off of 0.05 using observed data and 18 do not have a statistically significant trend using modeled data. The reason for the lack of trends may vary by area. Plots for several areas are provided in the supplemental information. Figures S-4, S-8 and S-11 provide the analysis for New York City which shows no trend for the $\Delta \bar{O}_{3,\text{DOW}}$ using observations but a statistically significant disappearing weekend effect trend for this metric using modeled data. Neither the model nor the observations show a significant trend in $\Delta \bar{O}_{3,\text{DOW},%>70}$. One possible explanation for the lack of trends in New...
York is the complex nature of the emissions sources and the meteorology impacting ozone formation in this area. Figure S-8 shows $\Delta \bar{O}_{3,DOW}$ trends at three monitors in the New York City nonattainment area occurring in very different locations. The Bronx IS 52 monitor, which is located in an urbanized part of the nonattainment area, shows significant disappearing weekend effect in both modeled and observed $\Delta \bar{O}_{3,DOW}$. In contrast the Long Island – Riverhead monitor and the Bridgeport CT monitor are both located in portions of the nonattainment area that are typically downwind of the urban core on high ozone days and are impacted by complex meteorology associated with the land-water interface near the Long Island sound. The modeled and observed data do not show significant $\Delta \bar{O}_{3,DOW}$ trends at the Long Island site and only the model shows disappearing weekend effects trends at the CT site.

Due to the complex nature of this large urban area, some sites may not show trends at all and trends at other sites may be masked when aggregating data across a large number of sites.

Several nonattainment areas appear to have negative slopes in $\Delta \bar{O}_{3,DOW}$ at the beginning of the analysis period and positive slopes at the end of the analysis period resulting in no overall trend taken over the entire period. Cincinnati, OH-KY exemplifies this pattern and on closer inspection the patterns appear to mirror annual changes in WE-WD patterns in multiple meteorological parameters (Figure S-12). For Cincinnati the correlation coefficients between WE-WD MDA8 O_3 differences and WE-WD meteorological parameter differences were 0.77, -0.83, 0.79, 0.89, -0.94, and -0.73 for daily maximum temperature, daily average relative humidity, daily maximum planetary boundary layer height, solar radiation, percent cloud cover and 24-hour transport direction respectively. Other areas exhibiting this behavior are all located in relatively close proximity to Cincinnati, including Louisville, KY-IN and St. Louis, MO-IL and to a lesser extent Columbus, OH and Atlanta, GA. These findings suggest that for these areas even five-year processing blocks may not be sufficient to remove the effects of spurious weekly meteorological variations on ozone.

Figure S-13 shows that the correlation between WE-WD differences in seven meteorological variables and observed $\Delta \bar{O}_{3,DOW}$ do not appear to be a driving factor in significant $\Delta \bar{O}_{3,DOW}$ trends in other areas but it is possible that some additional areas which do not have statistically significant trends in $\Delta \bar{O}_{3,DOW}$ may also be impacted by meteorological variations.

3.3 Comparison of modeled and observed trends in ozone day-of-week patterns

The modeled and observed trends in WE-WD differences for each of the 51 nonattainment areas are provided in supplemental tables S1 ($\Delta \bar{O}_{3,DOW}$) and S2 ($\Delta \bar{O}_{3,DOW,6>70}$). Figure 10 provides a comparison of modeled to observed WE-WD differences across the 51 nonattainment areas at the beginning of the analysis period (2002-2006) and at the end of the analysis period (2015-2019). Each point represents the WE-WD MDA8 ozone difference for a single nonattainment area, with the left-hand panel showing $\Delta \bar{O}_{3,DOW}$ and the right-hand panel showing $\Delta \bar{O}_{3,DOW,6>70}$. Data points falling in the upper right quadrant of each panel represent areas for which both the observations and the modeled DOW patterns suggest NOX-saturated conditions. Data points in the lower left quadrant of each panel represent areas for which both the observations and the model DOW patterns suggest NOX-limited conditions. In the earlier 2002-2006 time period, there are a large number of areas falling in both the upper right and lower left quadrants for both
metrics. In the 2015-2019 time period, almost all areas are located in the lower left quadrant for both metrics suggesting that most US nonattainment areas have transitioned into NOx-limited conditions. The correlation of modeled and observed WE-WD differences is quite high ($r = 0.94$ and 0.82 for $\Delta \bar{O}_{3}\%$ in the earliest and most recent time periods, respectively, and $r = 0.7$ and 0.62 for $\Delta \bar{O}_{3}\% > 70$ in the earliest and most recent time periods, respectively). For both metrics, the majority of points fall above the 1:1 line indicating that, in general, the model overestimated the degree of NOx-saturated conditions and underestimated the degree of NOx-limited conditions.

Maps in Figures 4 and 5 show the locations of areas predicted to have disappearing weekend effect trends, disappearing weekday effect trends and no trends for $\Delta \bar{O}_{3}\%$ and $\Delta \bar{O}_{3}\% > 70$ respectively. The maps show general consistency among which areas are predicted to have each trend type between observations and the model, although some areas predicted to have significant trends with one dataset or with one metric do not have significant trends with the other dataset or metric. Nine areas are predicted to have disappearing weekend effect trends in both datasets and with both metrics indicating strong agreement that they are shifting to more NOx-limited conditions: Milwaukee, WI; Houston, TX; Phoenix, AZ; Denver, CO; Northern Wasatch Front, UT; Southern Wasatch Front, UT; Las Vegas, NV; Los Angeles – San Bernardino County, CA; Los Angeles – South Coast, CA; and San Diego, CA.

Figure 11 compares modeled and observed Thiel-Sen slopes in WE-WD MDA8 O_3 differences across all areas. Each point represents a single nonattainment area color-coded by median $\Delta \bar{O}_{3}\%$ or $\Delta \bar{O}_{3}\% > 70$. The correlation of modeled versus observed Thiel-Sen slopes using $\Delta \bar{O}_{3}\%$ is stronger ($r = 0.8$) than the correlation using $\Delta \bar{O}_{3}\% > 70$ ($r = 0.47$). While the model does not always correctly predict the Thiel-Sen slope, the data falls close to the 1:1 line for the $\Delta \bar{O}_{3}\%$, suggesting that the model does not systematically over or under predict the trends in WE-WD.
differences from 2002-2019. The trend types described above for $\Delta \text{O}_3, \overline{D\text{O} \text{W}}$ metric are visible in the left-panel of Figure 11. Most NO$_X$-saturated areas (yellow and brown symbols) and some NO$_X$-limited areas (blue symbols) have negative Thiel-Sen slopes towards NO$_X$-limited conditions similar to those described above for Denver and Los Angeles (shown as the dark brown symbol at the bottom-left of the plot). Areas with positive Thiel-Sen slopes tend to be the most NO$_X$-limited areas (darker blue symbols) and represent the disappearing weekday trends demonstrated by Butte County. The model is not as accurate at predicting $\Delta \text{O}_3, \overline{D\text{O} \text{W}}$ Thiel-Sen slopes as $\Delta \text{O}_3, \overline{D\text{O} \text{W}} > 70$ Thiel-Sen slopes, as evidenced by the increased scatter in the right-hand panel of Figure 11 compared to the left-hand panel. Some areas have few exceedances of the NAAQS in the later years of the trends period and this small sample size could explain the difference between the monitored and modeled slopes, given that the model predicted fewer exceedance days than were observed in many areas.

Figure 11. Comparison of modeled and observed Thiel-Sen slopes in May-Sep WE-WD MDA8 O$_3$ differences across all nonattainment areas for $\Delta \text{O}_3, \overline{D\text{O} \text{W}}$ (left panel) and $\Delta \text{O}_3, \overline{D\text{O} \text{W}} > 70$ (right panel). Whether or not the trend is significant with observed and/or modeled data is indicated by the shape of the symbol. Median WE-WD differences across all years are indicated by the color scale with positive differences (NO$_X$-saturated areas) shown in shades of yellow and brown and negative differences (NO$_X$-limited areas) shown in shades of blue. Note that the brown symbol on both figures represents the Los Angeles nonattainment area.

Figure 12 shows the comparison of $\Delta \text{O}_3, \overline{D\text{O} \text{W}}$ Thiel-Sen slopes by season. The summer plot looks similar to the May-September plot shown in Figure 11. Winter, spring, and fall data show median $\Delta \text{O}_3, \overline{D\text{O} \text{W}}$ near zero or greater than zero in most nonattainment areas suggesting transitional or NO$_X$-saturated conditions in these seasons. Both observations and model predictions suggest $\Delta \text{O}_3, \overline{D\text{O} \text{W}}$ negative Thiel-Sen slopes in these seasons suggesting that nonattainment areas in the US may be transitioning towards NO$_X$-limited conditions even outside of the summer ozone season.
Figure 12. Comparison of modeled and observed ∆𝒪₃,𝒟𝑶𝑪̅̅̅̅̅̅̅̅̅̅ Thiel-Sen slopes across all nonattainment areas in winter (top left), spring (top right), summer (bottom left) and fall (bottom right). Whether or not the trend is significant with observed and/or modeled data is indicated by the shape of the symbol. Median WE-WD differences across all years are indicated by the color scale with positive differences (NOₓ-saturated areas) shown in shades of yellow and brown and negative differences (NOₓ-limited areas) shown in shades of blue. Note that year-round ozone monitoring is not required in some parts of the US and therefore monitoring data may not be available outside the May-September period in some areas.

4 Conclusions

While this assessment has provided insight into the ozone formation regimes across high-ozone locations in the US, some key questions remain about the important drivers for year-to-year changes in DOW ozone patterns and which of those drivers are well captured by the EQUATES dataset. First, while NOₓ and VOC emissions have been steadily decreasing across most areas of the US, exceptions to that pattern include increasing wildfire emissions especially in
the Western US and increasing emissions from oil and gas activities near US nonattainment areas in Texas, Colorado, New Mexico and Utah. Future work could focus on areas impacted by these two emissions sources to assess both the impact of these increasing emissions on ozone formation regimes and the ability of the EQUATES dataset to capture those impacts. Second, this assessment predominantly focuses on ozone values across the May-Sep ozone season, however, past work has identified some seasonally varying ozone biases within the CMAQ model (Appel et al., 2021).

Specifically, EQUATES has a tendency to underpredict ozone during the spring and overpredict ozone later in the summer (Figures S-14 and S-15). Given that ozone formation tends to be more NOX-saturated in the springtime than in the summer (Jin et al., 2020; Jin et al., 2017), a more in-depth assessment would be needed to fully characterize the extent that differences in observed and modeled WE-WD ozone differences are impacted by this seasonally varying model performance. Third, we assessed DOW ozone patterns across multiple complex urban areas that encompassed spatially heterogeneous emissions sources and meteorology. For some of these areas (e.g. Los Angeles, CA and Denver, CO) the sign of the Thiel-Sen slopes in WE-WD ozone appeared consistent across monitoring locations while in others (e.g. New York City, NY) different monitoring locations across the area appeared to show different types of trends. Further local scale investigation into each of these areas would be necessary to fully characterize the nuances of DOW and year-to-year variations in emission and meteorology that obscure the ozone DOW trends in some areas but not others when aggregating across monitor locations in those areas. Finally, an intriguing trend in ozone DOW patterns was identified in multiple rural and agricultural areas of California. Recent literature has suggested that soil NO emissions, which are unlikely to have a DOW emissions pattern, are an important NOX emissions source in agricultural locations of California (Almaraz et al., 2018; Zhu et al., 2023). Could the ozone DOW trends observed in these areas be reflective of the increasing relative importance of NOX sources other than mobile sources in those locations? More assessment is needed to definitively determine whether the trend in a decreasing weekday effect is a reliable indicator of areas that are becoming more dominated by local NOX sources that do not vary by DOW, more dominated by transported ozone, or some other factor. It is important to note that transported ozone may come from nearby regional sources or from longer range sources provided the transport times are sufficient to mask any DOW patterns that would be evident in the source region.

In this analysis we found that trends in ozone formation chemistry may not always be clearly shown by trends in DOW patterns which are impacted by a complex set of local factors including meteorology, the mix of local emissions sources and monitor locations in relationship to land-water interfaces. Lack of trends appear more often using observed data than modeled data (Figures 4 and 5) meaning that, while the model accurately captures Thiel-Sen slopes for \(\Delta O_{3,DOW} \) and \(\Delta O_{3,DOW,\%>70} \) (Figure 11), p-values below 0.05 are less common using observational data. This suggests that there may be some stochastic processes making observed year-to-year WE-WD ozone differences noisy which are not fully captured by the model. Even with these limitations, this analysis has shown that DOW patterns in ambient NOX concentrations persist in US urban areas but have become less prominent over the 18-year period analyzed. These DOW NOX differences have resulted in distinctive DOW ozone patterns in many of the nonattainment areas assessed. The EQUATES modeling simulations appear to show larger and more positive WE-WD ozone differences than observational data suggesting that ozone formation in this modeling dataset is less NOX-limited than in the
observations. Despite this discrepancy, the EQUATES dataset captures year-to-year changes in WE- WD ozone patterns as demonstrated by high correlation of the Thiel-Sen slopes for WE- WD ozone differences. Both the WE- WD ozone trends and agreement between the modeled and observation datasets are more apparent when assessing summertime mean MDA8 ozone than when analyzing extreme values using the percentage of exceedance days metric. Assessing frequencies or magnitudes of extreme values is challenging using a dataset with a limited number of weekend and weekday days due to the stochastic and infrequent nature of high ozone events in many areas.

While there are multiple types of measurements and modeling assessments that can be applied to characterize local ozone formation regimes, many of these require specialized measurements or datasets that are not readily available in all areas. In contrast, assessing DOW ozone patterns requires only routine daily ozone measurements that are widely available across urban areas in the US and in other countries. Consequently, this type of assessment is a useful tool and may be applied in many areas using routine measurements. In locations with long-term measurements, DOW patterns offer a method to look at trends in ozone formation chemistry over time. While DOW patterns in ozone are especially useful given the wide availability of data required for this type of assessment, we anticipate that in the near future additional datasets for assessing ozone chemical formation regimes will become more widely available. Specifically, O₃, NOₓ and HCHO data from the recently launched TEMPO satellite may provide the ability to better understand the relationships between WE- WD ozone patterns and precursor concentrations.

Author contributions
All authors contributed to conceptualization of the project. HS, CH, KF, BW, and WA contributed to data curation. HS conducted formal analysis. HS, CH, AW, KF, BW, BH, and SK contributed to developing the methodology. HS and BW developed software for performing the analysis. HS, CH, AW, JL, NP, BW, and GT contributed to validation. HS, BW, and BH helped visualize the data. All authors contributed to the writing and editing of the manuscript.

Competing interests
The authors declare that they have no conflict of interest.

Disclaimer: The views expressed in this manuscript are those of the authors and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency.

Acknowledgements
The authors would like to acknowledge Chris Nolte and Golam Sarwar for helpful comments on this manuscript.

References
Mathur, R., Murphy, B. N., Napelenok, S. L., Nolte, C. G., Pleim, J. E., Poulbot, G. A., Pye, H. O. T., Ran, L.,
Multiscale Air Quality (CMAQ) model versions 5.3 and 5.3.1: system updates and evaluation, Geosci.
Atkinson-Palombo, C. M., Miller, J. A., and Balling, R. C.: Quantifying the ozone “weekend effect” at
Blanchard, C. L. and Tanenbaum, S.: Weekday/Weekend Differences in Ambient Air Pollutant
Concentrations in Atlanta and the Southeastern United States, Journal of the Air & Waste Management
Blanchard, C. L., Tanenbaum, S., and Lawson, D. R.: Differences between Weekday and Weekend Air
Pollutant Levels in Atlanta; Baltimore; Chicago; Dallas–Fort Worth; Denver; Houston; New York; Phoenix;
Bruntz, S. M., Cleveland, W. S., Graedel, T. E., Kleiner, B., and Warner, J. L.: OZONE CONCENTRATIONS IN
versus Weekend Activity Patterns for Ozone Precursor Emissions in California’s South Coast Air Basin,
Cleveland, W. S., Graedel, T. E., Kleiner, B., and Warner, J. L.: SUNDAY AND WORKDAY VARIATIONS IN
EPA, U.: EQUATESv1.0: Emissions, WRF/MCIP, CMAQv5.3.2 Data -- 2002-2019 US_12km and
Beidler, J., Choi, D., Farkas, C., Gilliam, R. C., Godfrey, J., Henderson, B. H., Hogrefe, C., Kiplitz, S. N.,
Mason, R., Mathur, R., Misener, C., Possiel, N., Pye, H. O. T., Reynolds, L., Roark, M., Roberts, S.,
Magnitude and Spatial Extent of the Weekend Ozone Effect in California’s South Coast Air Basin, 1981–
Lawson, D. R.: Diurnal and Weekday Variations in the Source Contributions of Ozone Precursors in

