Supplemental Information for

Disappearing Day-of-Week Ozone Patterns in US Nonattainment areas

Heather Simon¹, Christian Hogrefe², Andrew Whitehill², Kristen Foley², Jennifer Liljegren³, Norm Possiel¹, Benjamin Wells¹, Barron Henderson¹, Luke Valin², Gail Tonnesen⁴, Wyat Appel², Shannon Koplitz¹

¹US Environmental Protection Agency, Office of Air and Radiation, Research Triangle Park, NC ²US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC ³US Environmental Protection Agency, Region 5, Chicago, IL ⁴US Environmental Protection Agency Pagion 8, Denver CO

⁴US Environmental Protection Agency, Region 8, Denver, CO

Contents

Extra figures showing area-specific observed and modeled ozone distributions, modeled NO _X distributions, modeled formaldehyde distributions and trends in $\Delta 03$, <i>DOW</i>	2
Extra figures showing absolute and relative trends in WE-WD differences for modeled NO _x and formaldhyde	6
Extra figures showing monitor-level trends in $\Delta O3$, DOW	7
Extra figures showing area-specific percentage of days exceeding the NAAQS on weekends and weekdays and trends in $\Delta O3$, DOW , $\% > 70$	8
Extra figures showing relationships between WE-WD patterns in meteorology and $\Delta 03$, $D0W$	9
Extra figures showing CMAQ MDA8 O3 Normalized Mean Bias by season, region, and year	11
Tables of results for each nonattainment area included in this analysis	12

Extra figures showing area-specific observed and modeled ozone distributions, modeled NO_X distributions, modeled formaldehyde distributions and trends in $\Delta \overline{O_{3,DOW}}$

Door County, WI

Figure S-1. Door County, WI nonattianment area 2002-2019 May-Sep: observed (top left) and modeled (top center) MDA8 ozone distribution by day of week; modeled NO_x (bottom left) and modeled formaldehyde (bottom center) distribution by day of week; observed and modeled trends in $\Delta \overline{O}_{3,DOW}$ (top right); modeled trends in WE-WD NO_x and formaldehyde differences (bottom right). The distributions by day of the week are for the entire 18 years with each box representing the 25th to 75th percentile for that day of the week across all 18 years, the whiskers representing the 1.5 times the interquartile range, and the bold line inside the box representing the median. WE-WD differences (top and bottom right) are based on 5-year rolling periods.

Figure S-2. Chicago area 2002-2019 May-Sep: observed (top left) and modeled (top center) MDA8 ozone distribution by day of week; modeled NO_X (bottom left) and modeled formaldehyde (bottom center) distribution by day of week; observed and modeled trends in $\Delta \overline{O}_{3,DOW}$ (top right); modeled trends in WE-WD NO_X and formaldehyde differences (bottom right). The distributions by day of the week are for the entire 18 years with each box representing the 25th to 75th percentile for that day of the week across all 18 years, the whiskers representing the 1.5 times the interquartile range, and the bold line inside the box representing the median. WE-WD differences (top and bottom right) are based on 5-year rolling periods.

Figure S-3. Houston area 2002-2019 May-Sep: observed (top left) and modeled (top center) MDA8 ozone distribution by day of week; modeled NO_X (bottom left) and modeled formaldehyde (bottom center) distribution by day of week; observed and modeled trends in $\Delta \overline{O}_{3,DOW}$ (top right); modeled trends in WE-WD NO_X and formaldehyde differences (bottom right). The distributions by day of the week are for the entire 18 years with each box representing the 25th to 75th percentile for that day of the week across all 18 years, the whiskers representing the 1.5 times the interquartile range, and the bold line inside the box representing the median. WE-WD differences (top and bottom right) are based on 5-year rolling periods.

New York-Northern New Jersey-Long Island, NY-NJ-CT

Figure S-4. New York City nonattainment area 2002-2019 May-Sep: observed (top left) and modeled (top center) MDA8 ozone distribution by day of week; modeled NO_X (bottom left) and modeled formaldehyde (bottom center) distribution by day of week; observed and modeled trends in $\Delta \overline{O}_{3,DOW}$ (top right); modeled trends in WE-WD NO_X and formaldehyde differences (bottom right). The distributions by day of the week are for the entire 18 years with each box representing the 25th to 75th percentile for that day of the week across all 18 years, the whiskers representing the 1.5 times the interquartile range, and the bold line inside the box representing the median. WE-WD differences (top and bottom right) are based on 5-year rolling periods.

Extra figures showing absolute and relative trends in WE-WD differences for modeled NO_X and formaldhyde

Figures S-5. Denver area May-Sep 2002-2019 modeled absolute trends in WE-WD NO_X and formaldehyde differences (left) and modeled relative trends in WE-WD NO_X and formaldehyde differences (right)

Figure S-6. Los Angeles area May-Sep 2002-2019 modeled absolute trends in WE-WD NO_X and formaldehyde differences (left) and modeled relative trends in WE-WD NO_X and formaldehyde differences (right)

Extra figures showing monitor-level trends in $\Delta \overline{O_{3,DOW}}$

Figures S-7. Observed and modeled May-Sep trends in $\Delta \overline{O}_{3,DOW}$ at 3 Los Angeles area monitoring locations for 2002-2019.

Figure S-8. Observed and modeled May-Sep trends in $\Delta \overline{O}_{3,DOW}$ at 3 New York City area monitoring locations for 2002-2019.

Extra figures showing area-specific percentage of days exceeding the NAAQS on weekends and weekdays and trends in $\Delta O_{3,DOW,\%>70}$

Figure S-9. Modeled (left) and observed (center) percent of days with MDA8 ozone exceeding 70 ppb at any monitor within the Chicago nonattainment area during May-Sep on weekends and weekdays for 5-year rolling periods between 2002-2019; Observed and modeled trends in May-Sep $\Delta O_{3,DOW,\%>70}$ at Chicago area monitors for 5-year rolling periods between 2002-2019 (right).

Figure S-10. Modeled (left) and observed (center) percent of days with MDA8 ozone exceeding 70 ppb at any monitor within the Houston nonattainment area during May-Sep on weekends and weekdays for 5-year rolling periods between 2002-2019; Observed and modeled trends in May-Sep $\Delta O_{3,DOW,\%>70}$ at Houston area monitors for 5-year rolling periods between 2002-2019 (right).

New York-Northern New Jersey-Long Island, NY-NJ-CT

Figure S-11. Modeled (left) and observed (center) percent of days with MDA8 ozone exceeding 70 ppb at any monitor within the New York City nonattainment area during May-Sep on weekends and weekdays for 5-year rolling periods between 2002-2019; Observed and modeled trends in May-Sep $\Delta O_{3,DOW,\%>70}$ at New York City area monitors for 5-year rolling periods between 2002-2019 (right).

Extra figures showing relationships between WE-WD patterns in meteorology and $\Delta \overline{O}_{3,DOW}$

Figure S-12. Cincinnati $\Delta \overline{O}_{3,DOW}$ shown in blue and WE-WD patterns in seven meteorological variables shown in gray (daily maximum temperature, daily average relative humidity, maximum planetary boundary layer height, solar radiation, cloud cover percentage, 24-hr transport direction, 24-hour transport distance).

S-13. Nonattainment areas plotted by correlation coefficient between $\Delta \overline{O}_{3,DOW}$ and WE-WD differences in daily meteorology variables (y-axis) and trends in WE-WD mean ozone differences. Cincinnati, Louisville, Columbus, St. Louis, and Atlanta nonattainment areas shown in orange. All other nonattainment areas shown in gray. Solid circles indicate areas with statistically significant $\Delta \overline{O}_{3,DOW}$ trends and open circles indicate areas with non-significant trends. Top and bottom dashed lines show correlation coefficients of ± 0.7 ($r^2 = 0.49$) such that points falling above and below these lines indicate areas for which the variation in WE-WD meteorology differences could explain 49% or more of the variations in WE-WD ozone differences.

Extra figures showing CMAQ MDA8 O3 Normalized Mean Bias by season, region, and year

AQS_Daily_O3 O3_8hrmax for March to May 2002

Figure S-14. EQUATES Mar-May MDA8 O3 Normalized Mean Bias (%) by year and NOAA climate region.

AQS_Daily_O3 O3_8hrmax for June to August 2002

Figure S-15. EQUATES Jun-Aug MDA8 O3 Normalized Mean Bias (%) by year and NOAA climate region.

Tables of results for each nonattainment area included in this analysis

Table S-1. Mean WE-WD MDA8 O₃ difference ($\Delta \overline{O_{3,D0W}}$) and trends in each US nonattainment area

region		Observed trends	Modeled trends (95% CI) Observed $\Delta \overline{O}_{3,DOW}$ 2002- 2006 2015- 2019	$\Delta \overline{O_{3,DOW}}$	Modeled $\Delta \overline{O}_{3,DOW}$		
	Nonattainment area	(95% CI)		2002- 2006	2015- 2019	2002- 2006	2015- 2019
Northeast	Greater Connecticut, CT	0.179 (0.052,0.197) p-val = 0.101	-0.155 (-0.175,- 0.034) p-val = 0.08	-2.44	-3.11	0.54	-1.71
	Washington, DC-MD-VA	-0.016 (-0.109,0.12) p-val = 0.743	0.029 (-0.035,0.066) p-val = 0.381	-2.18	-2.34	-2.36	-1.12
	Baltimore, MD	0.129 (0.073,0.159) p-val = 0.006	0.085 (0.023,0.134) p-val = 0.125	-3.00	-2.79	-2.59	-1.29
	New York-Northern New Jersey- Long Island, NY-NJ-CT	0.04 (-0.029,0.079) p-val = 1	-0.15 (-0.16,-0.057) p-val = 0.021	-0.58	-1.95	1.31	-0.46
	Philadelphia-Wilmington-Atlantic City, PA-NJ-MD-DE	0.185 (0.128,0.225) p-val = 0.001	-0.009 (-0.067,0.064) p-val = 0.743	-2.35	-2.02	-1.64	-1.01
Upper Midwest	Allegan County, MI	0.066 (-0.089,0.191) p-val = 0.743	-0.178 (-0.292,- 0.143) p-val = 0.006	2.59	-2.89	3.67	-2.00
	Berrien County, MI	-0.007 (-0.162,0.084) p-val = 0.381	-0.156 (-0.232,- 0.091) p-val = 0.004	2.27	-3.35	3.11	-1.79

-		0.105 (0.050 0.050)	0.055 (0.000	I	1		
	Detroit, MI	0.137 (-0.072, 0.252) p-val = 0.913	-0.257 (-0.339, -0.125) p-val = 0.006	3.81	-1.48	5.64	-1.41
	Muskegon County, MI	0.123 (-0.092,0.212)	-0.17 (-0.29,-0.092)	3.67	-2.11	5.31	-1.32
	Muskegon County, Mi	p-val = 1	p-val = 0.009	5.07	2.11	5.51	1.52
	Door County, WI	0.071 (-0.116, 0.214) p-val = 0.913	-0.017 (-0.271, 0.047) p-val = 0.228	4.57	-0.67	8.31	1.41
	Manitowoc County, WI	-0.099 (-0.253,- 0.017) p-val = 0.08	-0.387 (-0.597,- 0.233) p-val = 0.002	5.73	-0.56	8.96	0.69
	Milwaukee, WI	-0.302 (-0.435,-0.212) p-val = 0.001	-0.416 (-0.486,- 0.345) p-val < 0.001	6.08	-0.90	6.84	0.20
	Sheboygan County, WI	$\begin{array}{c} 0.016 \ (-0.205, 0.105) \\ p \ vol = 0.443 \end{array}$	-0.179 (-0.325, -0.000)	6.71	-0.65	5.38	-0.52
	Chicago, IL-IN-WI	-0.112 (-0.239, -0.101)	-0.341 (-0.446,-	4.69	-1.39	6.45	-1.16
	Louisville, KY-IN	-0.31 (-0.469, -0.118)	0.284) p-val < 0.001	0.45	-0.44	1.03	-0.92
	St Louis MO-IL	-0.633 (-0.811, 0.02)	-0.18 (-0.296, -0.075)	2.13	-1 68	2.18	-0.49
Ohio Valley		p-val = 0.274 0.077 (-0.064,0.126)	p-val = 0.049 0 (-0.117,0.044) p-	2.15	1.00	2.10	0.71
	Cleveland, OH	p-val = 0.511	val = 0.324	2.09	-1.44	2.81	-0.71
	Columbus, OH	p-val = 0.443	p-val = 0.274	0.89	-0.32	0.99	-0.44
	Cincinnati, OH-KY	-0.218 (-0.283,0.057) p-val = 0.913	-0.163 (-0.288,- 0.015) p-val = 0.189	0.60	0.84	1.83	-0.80
	Atlanta, GA	0.047 (-0.063,0.149) p-val = 0.274	-0.186 (-0.261,- 0.063) p-val = 0.155	-5.06	-2.74	-3.02	-3.66
South and	Dallas-Fort Worth, TX	-0.086 (-0.116,- 0.015) p-val = 0.155	-0.142 (-0.207,- 0.092) p-val = 0.001	-1.64	-2.48	0.91	-1.28
Southeast	Houston-Galveston-Brazoria, TX	-0.262 (-0.316,- 0.213) p-val = 0.016	-0.348 (-0.412,- 0.288) p-val = 0.001	0.75	-1.50	2.77	-0.30
	San Antonio, TX	-0.155 (-0.196,- 0.116) p-val = 0.101	-0.159 (-0.186,- 0.121) p-val = 0.001	-1.60	-1.87	0.09	-1.82
	Phoenix-Mesa, AZ	-0.147 (-0.173,-0.1) p-val < 0.001	-0.223 (-0.358,- 0.152) p-val < 0.001	0.80	-1.81	1.76	-1.87
	Yuma, AZ	0.025 (-0.059,0.06) p-val = 1	0.006 (-0.073,0.028) p-val = 0.902	NA	-1.00	NA	-0.84
	Denver Metro/North Front Range, CO	-0.226 (-0.306,- 0.173) p-val < 0.001	-0.286 (-0.297,- 0.268) p-val < 0.001	3.59	-1.22	2.96	-0.51
Southwest	Dona Ana County (Sunland Park), NM	0.128 (0.083, 0.152) p-val = 0.029	0.138 (0.079, 0.196) p-val = 0.08	0.19	1.48	-0.53	0.26
	Northern Wasatch Front, UT	-0.158 (-0.185, -0.145)	-0.131 (-0.173, -0.125) p yel < 0.001	2.48	-0.12	2.87	0.21
	Southern Wasatch Front, UT	-0.154 (-0.189, -0.154 (-0.189, -0.131) p-val < 0.001	-0.125) p-val < $0.001-0.187 (-0.202,-0.145$) p-val < 0.001	2.45	-0.44	2.40	0.05
	Uinta Basin, UT	0.067 (0.005,0.104)	-0.008 (-0.029,0.021)	NA	-0.50	NA	-0.76
	Amador County, CA	$\begin{array}{c} p-val = 0.466\\ 0.354 \ (0.214, 0.415)\\ 1 \ 0.002 \end{array}$	p-val = 0.348 0.286 (0.24,0.319)	-4.48	-2.13	-5.00	-2.66
	Butte County, CA	p-var = 0.003 0.145 (0.097,0.165) p. val = 0.004	p-val < 0.001 0.134 (0.122,0.152) p. val = 0.001	-3.24	-2.74	-4.68	-3.29
	Calaveras County, CA	p = val = 0.004 0.302 (0.217,0.337) p = val < 0.001	0.256 (0.206, 0.283) p-val < 0.001	-5.69	-2.31	-4.27	-2.44
	Imperial County, CA	-0.167 (-0.224, -0.124) p-val < 0.001	-0.054 (-0.089,0) p- val = 0.274	0.33	-3.06	-0.94	-2.81
West	Kern County (Eastern Kern), CA	0.059 (0.037, 0.072) p-val = 0.003	0.176 (0.127, 0.216) p-val = 0.001	-3.20	-2.76	-3.16	-2.24
	Los Angeles-San Bernardino Counties (West Mojave Desert), CA	-0.284 (-0.341,- 0.276) p-val < 0.001	-0.36 (-0.422,-0.322) p-val < 0.001	1.62	-3.26	3.02	-3.14
	Los Angeles-South Coast Air Basin, CA	-0.928 (-0.976,- 0.856) p-val < 0.001	-0.83 (-1.005,-0.775) p-val < 0.001	13.07	0.41	15.23	2.07
	Mariposa County, CA	$0.\overline{185} (0.152, 0.227)$ p-val = 0.001	0.221 (0.198,0.25) p-val < 0.001	-3.85	-0.50	-3.55	-0.38
	Morongo Band of Mission Indians, CA	-0.127 (-0.374, -0.04) p-val = 0.107	-0.396 (-0.433, -0.302) p-val < 0.001	NA	-4.57	NA	-4.64
	Nevada County (Western part), CA	0.31 (0.254,0.352) p-val < 0.001	0.249 (0.21,0.256) p-val < 0.001	-5.02	-1.91	-5.17	-2.53

Pechanga Band of Luiseno Mission	-0.251 (-0.315,0.215)	-0.136 (-0.387,0.088)	NIA	NIA	NIA	NA
Indians, CA	p-val = 0.902	p-val = 0.266	NA	NA	NA	NA
Riverside County (Coachella	-0.247 (-0.384,-	0.018 (-0.122,0.041)	2.21	2.52	0.25	2.00
Valley), CA	0.218) p-val < 0.001	p-val = 0.913	2.51	-5.55	-0.55	-3.00
Secremento Matro, CA	0.082 (-0.06,0.124)	-0.038 (-0.056,-	1.56	2.42	1 75	2.42
Sacramento Metro, CA	p-val = 0.743	0.013) p-val = 0.08	-1.50	-2.43	-1.75	-2.43
San Diago County, CA	-0.361 (-0.407,-	-0.44 (-0.503,-0.356)	5.07	0.22	0.20	1.04
San Diego County, CA	0.324) p-val < 0.001	p-val < 0.001	3.27	-0.32	9.39	1.64
San Francisco Bay Area CA	-0.067 (-0.172,-0.05)	-0.08 (-0.103,-0.029)	2.95	1.05	2.00	1.21
San Francisco Bay Alea, CA	p-val = 0.016	p-val = 0.063	5.65	-3.53 -2.43 -0.32 1.05 -1.81 -0.79 -2.81 -0.96 -2.68 -1.62	2.09	
San Jaaguin Vallay, CA	0.185 (0.037,0.241)	0.102 (0.029,0.143)	2.26	1 01	1.44	2.10
San Joaquin Vaney, CA	p-val = 0.189	p-val = 0.381	-2.20	-1.61	-1.44	-2.10
San Luis Obieno (Eastern part) CA	0.433 (0.363,0.483)	0.327 (0.228,0.367)	NA	-0.79	NA	-0.44
San Luis Obispo (Eastern part), CA	p-val = 0.001	p-val = 0.001	INA			
Sutton Dutton CA	0.261 (0.157,0.312)	0.109 (0.076,0.153)	2.12	-3.53 -2.43 -0.32 1.05 -1.81 -0.79 -2.81 -0.96 -2.68 -1.62 -1.21	4.02	2.01
Suller Bulles, CA	p-val = 0.009	p-val = 0.009	-3.15		-4.02	-2.91
Tuolumna County, CA	0.356 (0.269,0.394)	0.353 (0.319,0.381)	4.07	0.06	5.14	1.52
Tuolullille County, CA	p-val < 0.001	p-val < 0.001	-4.07	-3.53 -2.43 -0.32 1.05 -1.81 -0.79 -2.81 -0.96 -2.68 -1.62 -1.21	-3.14	-1.55
Tussen Buttos CA	0.14 (0.051,0.164) p-	0.14 (0.067,0.23) p-	2 47	2.69	1 99	2.56
Tuscali Buttes, CA	val = 0.063	val = 0.016	-2.47	-2.08	-4.88	-2.30
Venture County, CA	-0.137 (-0.19,-0.119)	0.008 (-0.035,0.083)	0.71	1.62	0.28	0.81
Ventura County, CA	p-val < 0.001	p-val = 1	0.71	-1.02	0.28	-0.81
Las Vegas NV	-0.284 (-0.456,-	-0.106 (-0.138,-	4.44	1.21	1.58	-0.95
Las vegas, ivv	0.222) p-val < 0.001	0.076) p-val = 0.001	4.44 -1.2	-1.21		

Table S-2. WE-WD differences percent of days with MDA8 ozone exceeding 70 ppb ($\Delta O_{3,DOW,\%>70}$) and trends in each US nonattainment area

region	Nonattainment area	Observed trends Modeled trends		Observed $\Delta O_{3,DOW,\%>70}$		Modeled $\Delta O_{3,DOW,\%>70}$	
			Modeled trends				
		(95% CI)	(95% CI)	2002- 2006	2002- 2006 2015- 2019	2002- 2006	2015- 2019
	Greater Connecticut, CT	0.009 (-0.172,0.203) p-val = 1	-0.373 (-0.442,-0.236) p-val = 0.029	-5.13	-6.39	5.27	0.63
	Washington, DC-MD-VA	1.14 (0.637,1.303) p- val = 0.004	1.119 (0.945,1.242) p- val < 0.001	-12.12	-10.36	-13.01	-3.64
Northeast	Baltimore, MD	0.615 (0.442,0.922) p- val = 0.004	1.505 (1.351,1.683) p- val < 0.001	-11.83	-10.36	-16.69	-0.59
	New York-Northern New Jersey- Long Island, NY-NJ-CT	0.562 (0.4,0.764) p-val = 0.08	0.212 (-0.058,0.749) p-val = 0.274	-5.40	-6.96	-3.57	-1.17
	Philadelphia-Wilmington-Atlantic City, PA-NJ-MD-DE	1.018 (0.535,1.237) p- val = 0.004	0.796 (0.525,1.058) p- val = 0.009	-9.06	-6.98	-8.75	2.77
	Allegan County, MI	0.797 (0.5,0.97) p-val = 0.012	-0.044 (-0.076,0.068) p-val = 0.351	0.15	0.63	3.47	0.00
	Berrien County, MI	0.644 (0.397,0.701) p- val = 0.016	-0.233 (-0.441,-0.066) p-val = 0.063	0.48	0.28	2.98	-0.62
	Detroit, MI	0.642 (0.28,0.774) p- val = 0.155	-0.061 (-0.419,0.259) p-val = 0.411	5.20	0.94	9.79	-1.83
Upper	Muskegon County, MI	0.081 (-0.235,0.291) p-val = 1	-0.652 (-0.858,-0.519) p-val = 0.001	7.27	3.43	7.90	1.26
Midwest	Door County, WI	0.014 (-0.072,0.153) p-val = 1	-0.461 (-0.609,-0.328) p-val = 0.001	4.15	0.68	16.10	1.61
	Manitowoc County, WI	-0.203 (-0.431,-0.107) p-val = 0.037	-0.232 (-0.288,-0.094) p-val = 0.037	7.67	1.28	12.74	1.28
	Milwaukee, WI	0.04 (-0.233,0.197) p- val = 0.661	-0.205 (-0.348,-0.018) p-val = 0.125	7.68	0.32	9.81	1.23
	Sheboygan County, WI	0.114 (-0.177,0.251) p-val = 0.913	-0.146 (-0.401,-0.034) p-val = 0.101	9.21	1.02	4.90	-0.31
	Chicago, IL-IN-WI	0.466 (0.038,0.747) p- val = 0.443	-0.153 (-0.443,0.066) p-val = 0.189	3.12	-3.94	7.38	-2.12
Ohio Valley	Louisville, KY-IN	0.198 (-0.65,0.621) p- val = 0.324	-0.104 (-0.551,0.031) p-val = 0.124	2.52	-2.74	6.82	-1.82
	St. Louis, MO-IL	-0.61 (-1.416,0.066) p- val = 0.155	0.105 (-0.189,0.299) p-val = 0.913	3.15	-7.92	3.74	-1.52
	Cleveland, OH	0.687 (0.325,0.951) p- val = 0.063	0.7 (0.497,0.797) p-val = 0.002	4.67	0.02	0.39	4.90

	Columbus, OH	0.006 (-0.157, 0.215)	0.544 (0.508,0.668) p-	3.44	-2.74	-1.47	0.92
	Cincinnati OH-KY	p-var = 0.936 0.074 (-0.207, 0.216)	-0.013 (-0.154, 0.107)	1.92	-4.86	1.01	-2.43
		p-val = 0.913 -0.411 (-0.53.0.14) p-	p-val = 0.913 -1 689 (-1 992 -0 564)	1.92		1.01	2.43
	Atlanta, GA	val = 0.743	p-val = 0.08	-8.76	-6.76	-3.22	-11.38
South and	Dallas-Fort Worth, TX	-1.025 (-1.235,-0.302) p-val = 0.08	-1.396 (-1.497,-0.61) p-val = 0.009	-5.38	-10.34	7.14	-3.95
Southeast	Houston-Galveston-Brazoria, TX	-1.222 (-1.613, -0.719) p-val = 0.006	-0.505 (-0.904, -0.146) p-val = 0.101	2.63	-8.82	3.08	-1.21
	San Antonio, TX	0.402 (0.241, 0.545) p-	0.307 (0.134, 0.346) p-	-8.81	-0.88	-1.80	0.01
	Phoenix-Mesa AZ	-0.227 (-0.308, -0.011)	-0.334 (-0.49, -0.115)	-9.65	-10.92	1.31	-2.44
	Vume A7	p-val = 0.155 1.554 (1.246,1.593) p-	p-val = 0.08 0.108 (0.098,0.133) p-	NA	1.96	NA	0.00
	I uilla, AZ	val = 0.002	val = 0.003	INA	1.80	INA	0.00
	CO	p-val < 0.001	p-val = 0.002	0.41	-10.62	3.44	-3.34
Southwest	Dona Ana County (Sunland Park), NM	-0.187 (-0.229, -0.062) p-val = 0.032	0.304 (0.183,0.377) p- val = 0.005	0.96	-0.89	-0.59	0.00
	Northern Wasatch Front, UT	-0.825 (-1.034,-0.685) p-val < 0.001	0.072 (-0.136,0.147) p-val = 1	7.71	-6.06	2.46	-0.61
	Southern Wasatch Front, UT	-0.207 (-0.365, 0.077) p-val = 0.443	-0.161 (-0.202, -0.006) p-val = 0.048	0.34	-4.56	0.93	-0.61
	Uinta Basin. UT	0.047 (0.035,0.094) p-	0.091 (-0.04,0.136) p-	NA	-0.91	NA	-0.30
		val = 0.02 0.768 (0.583,1.27) p-	val = 0.529 0.925 (0.732,0.959) p-	0.01	2.10	10.14	0.00
	Amador County, CA	val = 0.016	val < 0.001	-8.01	-3.18	-10.14	-0.96
	Butte County, CA	0.923 (0.79, 1.013) p- val = 0.001	1.132 (0.903,1.193) p- val < 0.001	-14.88	-5.54	-13.40	-3.07
	Calaveras County, CA	0.972 (0.633,1.251) p- val = 0.029	0.653 (0.524,0.729) p- val < 0.001	-17.60	-11.20	-8.74	-1.56
	Imperial County, CA	-0.364 (-0.5,-0.276) p- val = 0.012	0.438 (0.267, 0.463) p-	-3.89	-10.66	-2.73	-0.61
	Kern County (Eastern Kern), CA	0.288 (-0.234, 0.454)	0.969 (0.915, 1.138) p-	-5.35	-6.62	-11.35	-0.94
	Los Angeles-San Bernardino Counties (West Mojave Desert),	-1.251 (-1.336,-1.023) p-val < 0.001	-0.79 (-2.023,-0.33) p- val = 0.016	0.85	-16.63	16.03	-9.12
	Los Angeles-South Coast Air Basin, CA	-0.743 (-1.033,-0.54) p-val = 0.001	-0.457 (-2.067,0.043) p-val = 0.08	10.34	-4.06	24.90	0.11
	Mariposa County, CA	1.536 (1.207, 1.713) p-	0.025 (-0.031, 0.093) p-val = 0.615	-18.96	-2.10	-1.83	-1.21
	Morongo Band of Mission Indians,	-1.007 (-1.216,-0.591)	-1.605 (-1.916,-1.258)	NA	-12.00	NA	-9.03
	CA Nevada County (Western part) CA	p-val = 0.007 0.621 (0.373,0.731) p-	p-val = 0.005 0.778 (0.654,0.874)p-	-14 21	-7 89	-12 18	-2 17
West	Pechanga Band of Luiseno Mission	val = 0.002 1.003 (0.291,1.176) p-	val < 0.001 0.116 (-0.198.0.403)		0.00	12.10	2.17
	Indians, CA	val = 0.108	p-val = 0.902	NA	0.00	NA	-0.82
	Riverside County (Coachella Valley), CA	-1.846 (-2.041, -1.68) p-val = p-val < 0.001	0.663 (-0.152, 0.754) p-val = 0.274	6.89	-14.86	-0.23	-3.05
	Sacramento Metro, CA	0.033 (-0.524, 0.337) p-val = 1	0.167 (0.009, 0.259) p- val = 0.063	-8.39	-13.67	-10.31	-6.09
	San Diego County, CA	-1.213(-1.922,-0.665) p-val = 0.009	-2.214 (-2.521, -2.075)	20.26	-10.95	24.82	-3.96
	San Francisco Bay Area, CA	-0.317 (-0.626, -0.138)	0.02 (-0.463, 0.149) p-	5.53	-2.43	6.74	1.23
	San Joaquin Valley, CA	-0.34 (-0.436, -0.144)	1.052 (0.458,1.288) p-	-5.85	-5.31	-9.94	-5.16
	San Luis Obispo (Eastern part). CA	p-val = 0.155 0.936 (0.539,1.474) p-	val = 0.018 0.006 (-0.024,0.199)	NA	-2.13	NA	-0.61
		val = 0.02 0.633 (0.214,0.701) p-	p-val = 0.105 0.095 (0.068,0.197) p-	4.05	5.72	0.02	0.40
	Sutter Buttes, CA	val = 0.189	val = 0.025	-4.95	-5.73	-0.93	-0.40
	Tuolumne County, CA	1.22 (1.046,1.374) p- val = p-val < 0.001	0.292 (0.23,0.46) p-val = 0.005	-12.43	-0.62	-2.79	-0.31
	Tuscan Buttes, CA	0.466 (0.287,0.592) p- val = 0.063	0.745 (0.725,0.829) p- val < 0.001	-5.81	-6.84	-9.48	-1.36

	Ventura County, CA	-1.067 (-1.358,-0.94) p-val = p-val < 0.001	0.554 (0.388,0.661) p- val < 0.001	12.05	-6.09	-3.29	-0.61
	Las Vegas, NV	-1.931 (-2.467,-1.462) p-val = p-val < 0.001	-0.213 (-0.293,-0.03) p-val = 0.443	17.82	-10.34	0.66	-3.96