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Abstract. Terrestrial microwave links are increasingly being used to estimate path-averaged precipitation by determining the

attenuation caused by rainfall along the link path, mostly with commercial microwave links from cellular telecommunication

networks. However, the temporal resolution of and method to derive these rainfall estimates is often determined by the tem-

poral sampling strategy that is employed by the mobile network operators. Currently, the links are most often sampled at a

temporal resolution of 15 minutes with a recording of the minimum and maximum values, while more recently also a form of5

instantaneous sampling with possible intervals up to 1 s has been set up. For rainfall research purposes, often high temporal

resolutions in combination with averaged values are preferred. However, it is uncertain how these various temporal sampling

strategies affect the estimated rainfall intensity. Here we aim to understand how temporal sampling strategies affect the mea-

sured rainfall intensities using microwave links. To do so, we use data from three collocated microwave links, two 38 GHz and

one 26 GHz, sampled at 20 Hz and covering a 2.2 km path over the city of Wageningen, the Netherlands. We aggregate the10

microwave link power levels to multiple time intervals (1 s to 60 min) and use a mean, instantaneous, and minimum and maxi-

mum value to characterize the signal. Based on the aggregated data, we compute rainfall intensities and compare these with 20

Hz rainfall estimates, such that we isolate errors and uncertainties caused by the sampling strategies from instrumental effects,

such as different biases between instruments and representativeness errors. In general, our results show that for all sampling

strategies an increase in sampling time interval reduces the performance of the rainfall estimates, which especially holds for the15

instantaneous sampling strategy. Even the mean sampling strategy, which generally performs best of all strategies, is sensitive

to this reduction in temporal resolution and could lead to significant underestimations. This sensitivity of the mean sampling to

the temporal resolution seems to be largely affected by the non-linear relation between attenuation and rainfall. The min-max

sampling strategy is mostly prone to minor underestimations or large overestimations of the path-averaged rainfall intensities.

Moreover, our results, including a comparison with theoretical events, show that the attenuation due to wet antennas not only20

affects the comparison between the rainfall estimates obtained with a microwave link and another reference instrument, but

also has a significant influence on the performance of the rainfall retrieval algorithm, especially for devices with relatively long

duration of the wet-antenna attenuation combined with the longer sampling time intervals. Overall, this study demonstrates the

effect a selected sampling strategy can have on rainfall intensity estimates using (commercial) microwave links.
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1 Introduction25

Accurate rainfall measurements are essential in many fields of application. For example, water resources management uses

rainfall measurements for flood forecasting (e.g., Maggioni et al., 2018), a major part of global agriculture is dependent on

rain (Molden, 2013) and urban runoff estimates are highly dependent on rainfall estimates (e.g., Berne et al., 2004; Cristiano

et al., 2017; Niemczynowicz, 1988). Overall, these practices would benefit from increasing the spatial and temporal resolution

of rainfall measurements.30

Currently, dedicated rainfall measurement techniques have some important drawbacks. Ground-based point measurement

devices, such as rain gauges or disdrometers, are often able to capture the temporal dynamics of precipitation, but do not rep-

resent the spatial character of precipitation (e.g., Berne et al., 2004; Sun et al., 2018). Moreover, the placement of the devices

can decrease the measurement performance, for example through the wind causing an undercatch (e.g., Pollock et al., 2018;

Raupach and Berne, 2015). Weather radars do provide the desired spatial rainfall information combined with a sufficient tem-35

poral resolution. However, radars measure higher up in the atmosphere and indirectly retrieves rainfall introducing uncertainty

about the actual amount of precipitation near the surface (Berne and Krajewski, 2013). Additionally, both methods are not

available on a global scale, due to costs and maintenance. On a global scale, including the oceans, satellites provide rainfall

information, but for hydrometeorological applications these can come at a too low spatial and temporal resolution combined

with too high uncertainty and bias, partly dependent on, for example, terrain complexity, aridity and season (Maggioni et al.,40

2018; Rios Gaona et al., 2017). Additionally, satellite rainfall products, and especially merged products, have a relatively long

latency (e.g., IMERG has about a 4 hour latency for the earliest run; NASA, 2024).

Another source of spatial rainfall estimates could come from telecommunication networks, a so-called opportunistic sensing

technique. These networks consist of commercial microwave links (CMLs), the rain-induced attenuation of the electromagnetic

signal of which can be used to compute rainfall intensities (e.g., Chwala and Kunstmann, 2019; Messer et al., 2006; Leijnse45

et al., 2007a; Uijlenhoet et al., 2018). These CMLs are near-surface radio connections used in cellular telecommunication

networks. Thus, as a major advantage, the infrastructure required to spatially measure rainfall with these CMLs already exists.

Furthermore, the rainfall estimates obtained with a single link are representative for the entire path, overcoming the drawbacks

of point measurements. As shown by de Vos et al. (2018), CMLs are especially useful when considering spatial aggregation

scales that are too large to cover entirely with point measurements. Also, for many applications spatial rainfall estimates on50

scales in the order of a couple kilometres are more relevant than point measurements.

Moreover, rainfall measurements by a CML network can be beneficial in combination with other rainfall measurements

and are increasingly being used in hydrometeorological applications. For example, Brauer et al. (2016) used CML rainfall

estimates as input in a rainfall-runoff model for lowland catchments and showed, in general, that these rainfall estimates are

very suitable as input for hydrological applications. van het Schip et al. (2017) showed the complementary potential of CML55

and satellite data by determining wet and dry periods using the satellite data, while Hoedjes et al. (2014) proposed to use

this for a conceptual flash flood early warning system in Kenya. Fencl et al. (2013) and Pastorek et al. (2023) used CMLs

as input data for an urban drainage model and demonstrated the benefits of the relatively high spatial resolution on these
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models. Also, Imhoff et al. (2020) showed that nowcasting rainfall events could be performed using CML networks, with good

results when compared to weather radar precipitation estimates and nowcasts. This is especially promising for regions without60

weather radars. Moreover, the number of CMLs operating worldwide in the 6-56 GHz range, which are most useful for rainfall

estimation, is expected to grow from 4.6 million in 2021 to 6 million in 2027 (ABI research, 2021). Overall, this shows the

potential of using CML networks for rainfall measurements in many societally relevant hydrometeorological applications.

In general, the attenuation of a microwave link signal can be converted to rainfall intensity using (Atlas and Ulbrich, 1977;

Olsen et al., 1978):65

R= akb, (1)

where R is the rainfall intensity (mm h-1), k the specific attenuation (dB km-1) and a and b are coefficients depending on both

signal characteristics (e.g., frequency and polarization) and precipitation characteristics (e.g., drop size distribution) (Jameson,

1991). For frequencies typically applied in CML networks, b is close to 1, so that signal attenuation and rainfall intensity are

nearly proportional. Messer et al. (2006) and Leijnse et al. (2007a) showed that the commercially-employed microwave links70

could also be used to measure rainfall intensities, in Israel and the Netherlands, respectively. Since then, studies have been

performed in Europe (Czech Republic, France, Germany, Italy, Luxembourg, Sweden and Switzerland), Africa (Burkina Faso,

Kenya and Nigeria), South America (Brazil), Asia (Lebanon, Pakistan and Sri Lanka) and Oceania (Australia and Papua New

Guinea) (see Chwala and Kunstmann, 2019, for a partial overview). Several open-source packages exist for rainfall retrieval

(and mapping) from CML data. One of these is RAINLINK (Overeem et al., 2016b). Chwala et al. (2016) have developed an75

algorithm to extract real-time data from CML networks and based on this data determined spatial rainfall estimates (Graf et al.,

2020). Habi and Messer (2021) used a recurrent neural network to determine rainfall intensities using CML network data.

However, using these CML networks to estimate precipitation, the temporal resolution of these estimates is often bound to

the temporal sampling strategy employed by the mobile network operator, which solely uses the information on the link signal

to assure the functioning of the network. Moreover, not all mobile network operators store the same variables describing the80

link signal in their network management system. Minimum and maximum values (and occasionally mean and/or instantaneous

values) are most commonly measured with a temporal resolution of 15 minutes. Additionally, the method developed by Chwala

et al. (2016) allows to actively select any instantaneous sampling method up to 1 s intervals for these networks and is specifically

designed to estimate rainfall intensities, in contrast to using the data with the sampling strategy chosen by the network operators.

For research purposes, data with a high temporal resolution is often preferred, so that the temporal sampling resolution is higher85

than the dominant timescales of rainfall. Previously, Leijnse et al. (2008) showed that different sampling strategies together

with nonlinearities in the R−k relationship are the dominating errors when estimating rainfall. For this analysis, Leijnse et al.

(2008) used microwave link simulations based on radar data with a 16 s interval and only studied the effect for 15 minute

sampling strategies. Yet, it is uncertain how larger variations in sampling strategies affect the computed amount and intensity

of rainfall together with the use of actual microwave link data.90
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Here, we aim to understand how temporal sampling strategies affect the measured rainfall intensities. To do so, we compare

20 Hz rainfall estimates obtained with 38 and 26 GHz microwave links with rainfall estimates computed with various temporal

sampling strategies. One of these links has formerly been employed in an operational CML network. Ultimately, this allows us

to isolate errors and uncertainties caused by the sampling strategy from instrumental effects. As a consequence of only having

one sampling strategy set by the mobile network operators, these errors and uncertainties usually cannot be separated due to the95

comparison of different instruments, which represent different measurement volumes combined with different measurement

uncertainties. Thus, using this method, we are able to estimate the actual errors and uncertainties due to the sampling strategy.

We do so for commonly selected sampling strategies (e.g., a minimum and maximum intensity per 15 minutes) as well as

less or never selected sampling strategies, which allows to systematically illustrate the sensitivity of the measured rainfall

intensities to the various sampling strategies. Overall, this could help to estimate the effects of the strategies set by mobile100

network operators or help to choose an optimal strategy when estimating rainfall intensities using CMLs.

2 Methods

2.1 Instrumentation

In this study, we use data published online from van Leth et al. (2018a), who reported on a measurement campaign (see van

Leth et al., 2018b) using three microwave links along a 2.2 km path over the city Wageningen, the Netherlands (Fig. 1). In this105

section, we describe the essential information required for understanding our analysis. For a more elaborate description, we

refer the reader to van Leth et al. (2018a).
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Figure 1. Map of Wageningen with the path of the links in red. The receiving antennas are at the end labelled “Forum”; the transmitting

antennas are positioned at the end labelled “Biotechnion”. The yellow stars indicate the position of disdrometers along the path. At each

disdrometer location, one disdrometer is located, except at "Forum", which has two disdrometers placed next to eachother. Figure redrawn

after van Leth et al. (2018a) (with Google Maps).

We use data from a Nokia Flexihopper transmitting at 38.2 GHz with a bandwidth of 0.9 MHz, which was formerly part

of the cellular communication network operated by T-Mobile NL, and two links built by Rutherford Appleton Laboratories

(RAL) transmitting at 26.0 and 38.0 GHz, with a receiving bandwidth of 4 KHz and transmitting bandwidth of much less than110

1 KHz. All the microwave link signals are sampled at 20 Hz using logarithmic detectors. The employed frequencies for the

Nokia and RAL 38 GHz links are close, hence exhibit similar electromagnetic characteristics, but do not interfere with each

other. However, these devices were found to give a different response, likely due to the internal hardware in the Nokia link

being designed differently, reducing the high-frequency fluctuations in the signal, while the RAL link has a different antenna

cover than the Nokia link, which affects the distribution of water remnants on the cover (see van Leth et al., 2018a). On the115

RAL cover water droplets form once it gets wet, which induces a more significant attenuation of signal intensity than the water

film that forms on the Nokia cover after getting wet. Eventually, these wet antennas cause an additional attenuation of the

signal, which causes an overestimation of rainfall intensities following the R− k relation if not accounted for. The RAL 26

GHz link is less prone to wet-antenna attenuation than the RAL 38 GHz link.

In this paper we only consider horizontal polarization, since for both the Nokia and the RAL 26 GHz links only this po-120

larization is available. For the RAL 38 GHz link, both horizontal and vertical polarized data are available, but we only show

results for horizontal polarization, due to the insignificant differences between these polarizations in our results and to make a

fair comparison with the other devices. Results for the vertically polarized signal are included in the Supplementary materials.
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In this study, we use the disdrometer data to distinguish wet and dry periods and filter out snow, hail, graupel and mixed

precipitation events when comparing the rainfall intensities between the 20 Hz data and other temporal sampling steps. Note125

that it is not our aim to compare the rainfall intensities from the disdrometers with the rainfall estimates from the microwave

links, because we aim to understand the influence of the temporal sampling strategies on estimated rainfall intensities. Along

the 2.2 km path, five OTT Parsivel laser disdrometers were installed in order to compute path-averaged rainfall estimates, of

which we also obtained the post-processed rainfall intensities and precipitation types, i.e., to remove non-liquid precipitation,

from van Leth et al. (2018a). The disdrometers measured raindrop size distributions every 30 s and were post-processed using130

the method of Raupach and Berne (2015), which corrects for instrumental biases. van Leth et al. (2018a) compared rainfall

estimates of the microwave links and the disdrometers and show large additive and multiplicative biases for all instruments.

The RAL links exhibit an additive bias around 2.2 mm h-1, while the Nokia link has an additive bias of 0.6 mm h-1. The

multiplicative bias for all instruments ranges between 1.5 and 1.7.

The microwave links were operational over a period from 22 August 2014 to 8 January 2016, but not all disdrometers were135

operational during the entire period. Therefore, we use the data from the start of April 2015 to the end of December 2015, so

that we have fully operational instruments except for a power outage from 7 to 25 August 2015. By using all the disdrometers

along the path (instead of a single disdrometer), we decrease the uncertainty in the wet-dry classification and incorrect removal

of other precipitation types, such that errors and uncertainties arising in our results are most likely to originate from the

microwave link rainfall estimates.140

To identify relevant precipitation climatologies for our study area, we examine the disdrometer data. Note that the data

presented pertains to a 2.2 km path and not necessarily reflects exactly the same climatology as for the whole country or region.

This reveals that the average duration of a precipitation event longer than 5 minutes in our dataset is roughly 30 minutes, with

a median duration of 12 minutes (Fig. 2), demonstrating a positively skewed distribution with many short rainfall events and

relatively few longer rainfall events. In this figure two contiguous rainy periods, which are separated by a single 30-second145

dry time interval, are counted as separate events and not combined into a single event. To refrain ourselves from making any

assumptions about when a rainfall event is continuous or not, we decided to use a single timestep in the available disdrometer

data as threshold. The rainfall intensities show in general higher peak intensities during summer than winter. Due to the power

outage between 7 and 25 August, the data for that month can be less reliable.
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Figure 2. Boxplots describing the duration of rainfall events per month in 2015 (a) and all rainfall intensities per month in 2015 (b). In the

boxplots, orange is the median and green is the mean duration or intensity. The box edges represent the first and third quartiles, and the

whiskers are the 10th and 90th percentiles. The values are computed using disdrometers installed along the 2.2 km microwave link path. In

the duration statistics, events shorter than 5 minutes are excluded. For the rainfall intensities, all rainfall intensities larger than 0.1 mm h-1 are

used.

2.2 Rainfall retrieval from microwave links150

To identify the influence of temporal sampling on rainfall estimates, we compare rainfall intensities obtained by using various

sampling strategies with high-resolution rainfall estimates. We do this for the three devices sampling a mean, instantaneous,

and minimum and maximum (“min-max strategy”) value per time interval, which mimic various temporal sampling strategies

by network operators. As sampling time interval we use 1 s, 30 s, 1 min, 5 min, 15 min, 30 min and 60 min. As reference

data, we use rainfall intensities obtained using the 20 Hz sampling of the same device, in order to be able to solely study the155

influence of the sampling strategies on the measured rainfall intensities.

We use a relatively straight-forward method to compute the rainfall intensities, to limit the effect of many parameters in the

algorithm. The rainfall measurements are done in a similar fashion as van Leth et al. (2018a) combined with the method of

Overeem et al. (2016b) for the min-max sampling strategy. This means no corrections on the rainfall estimates, for example

for wet-antenna attenuation. The retrieval algorithm is as follows:160

1. Aggregate microwave link power levels to the mean, minimum, maximum and instantaneous value of time intervals: 1

s, 30 s, 1 min, 5 min, 15 min, 30 min and 60 min. For instantaneous sampling strategies, we chose to use the last value

per time interval to estimate the rainfall intensity for the entire time interval, similar to data provided by mobile network

operators.

2. For each sampling strategy, including the original 20 Hz data, determine the baseline signal power level for each interval165

by selecting the median power level during all dry periods in the preceding 24 h (Overeem et al., 2016b). In the next
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step, this baseline power level is used to determine the rain-induced attenuation. For the min-max sampling strategy, the

baseline power level is obtained by averaging the maximum and minimum received power levels, assuming a symmetrical

distribution of these values, and subsequently computing the median of the preceding 24 h. Of the previous 24 h, at least

1 h should be dry in order to determine a baseline. If all of these time intervals indicate rain, a baseline cannot be170

determined, and as such rain intensities cannot be determined. The selection of dry periods is based on disdrometer data.

This method of baseline determination is based on Overeem et al. (2011).

3. Based on the power and baseline levels, compute the specific attenuation of the signal k (dB km-1),

k =
Pref −P

L
, (2)

in which Pref is the baseline power level, P the received power levels (both in dBm) and L is the path length (km). For175

the min-max sampling, the specific attenuation is calculated for both the minimum and maximum attenuation using the

same baseline for both.

4. Convert the specific attenuation to rainfall intensity, using Equation 1. The values for the parameters a and b are the

same as applied by van Leth et al. (2018a) (Table 1). They obtained these values from non-linear least-squares fits of

disdrometer-derived rainfall intensities and specific attenuations at the frequencies employed by the microwave links180

combined with scattering computations. For the min-max sampling, the rainfall intensities using the minimum and max-

imum attenuation are calculated separately and are combined into one rainfall intensity in step 6. These values differ

from the recommendations by ITU-R (2005).

Table 1. Values for the a (mm h−1 dB−b kmb) and b (–) parameters in Eq. 1 specifically derived for the dataset from van Leth et al. (2018a)

and general recommendations by the ITU-R (2005) for 38 and 26 GHz horizontally polarized signals.

a38GHz b38GHz a26GHz b26GHz

van Leth et al. (2018a) 3.83 1.05 7.70 0.93

ITU-R (2005) 2.82 1.13 5.92 1.01

5. Set the computed rainfall intensities during dry periods (based on disdrometer data) to zero. Since we treat the data as if

they originate from a CML network, this implies that if it rains part of a time interval, the whole interval is seen as wet.185

Also, for the comparison of all rainfall intensities, we remove snow, hail, graupel and mixed rain events from the data

based on the disdrometer data, since these have a different effect on the signal in comparison to rain.

6. For the min-max sampling strategy, combine the rainfall intensities obtained using the minimum attenuation and maxi-

mum attenuation following

R= αRmax +(1−α)Rmin, (3)190
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in which R is the estimated mean (based on the minimum and maximum rainfall intensities) rainfall intensity, Rmax and

Rmin the rainfall intensities derived from the maximum and minimum attenuations (mm h-1), and α is the parameter

determining the contribution of the minimum and maximum received power levels. In this study, we use an optimized α

and a non-optimized α of 0.33, as determined for an operational microwave link network in the Netherlands by Overeem

et al. (2011). The optimization of α is done for each device and sampling strategy by comparing the rainfall intensities195

obtained through min-max sampling per time interval with the 20 Hz rainfall intensities and selecting the α for which

the root mean square error (RMSE) is lowest in combination with an absolute mean bias error (MBE) smaller than 0.02

mm h-1. Overeem et al. (2011) used the residual standard deviation for this, which is the same as the RMSE if the MBE

is equal to zero. For this computation, values of α ranging between 0 and 1 with intervals of 0.001 are used. The 20 Hz

intensities are averaged to the same time interval as the min-max sampled intensity. The RMSE is computed as200

RMSE =

√∑
(Robs −R20Hz)2

n
, (4)

in which Robs is the observed rainfall intensity [mm h-1] with the sampling strategy, R20Hz the reference rainfall intensity

with the 20 Hz sampling strategy and n the number of observations. MBE is computed as

MBE =

∑
(Robs −R20Hz)

n
. (5)

Note that, unless specifically mentioned, when we refer to min-max sampling strategies in the text and figures, we refer205

to the optimized version of this sampling strategy. This way, we prevent introducing an additional source of error and

uncertainty into the study.

7. To compare the obtained rainfall intensities for the 20 Hz sampling with the other time intervals, we apply a linear

regression in which the 20 Hz estimates are the independent variable and the estimates from the other sampling strategies

are the dependent variable. To do so, we use again the 20 Hz rainfall intensities averaged to the various time intervals. We210

compute the MBE, RMSE, r2, representing the fraction of explained variance, and the slope of the fit (without intercept).

r2 is computed as

r2 = 1−
∑

(Robs −R20Hz)
2∑

(Robs −Robs)2
, (6)

in which Robs the average observed rainfall intensity.

Note that averaging the 20 Hz rainfall estimates is not the same as the mean sampling, since the averaging occurs in215

a different step during the rainfall intensity computation and the R− k relation is nonlinear (Eq. 1). This causes the

rain intensities obtained by using averaged attenuation to be different compared to the averaged rainfall intensities. For

example, if a rain event takes place exactly for 30 seconds in an hour with an attenuation of 10 dB km-1 (i.e. on average
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0.083 dB km-1 for an hour), this would result in a decrease of the rainfall for the 60-minute estimate in comparison to

the estimate based on the 30-second time interval:220

R̂

R
=

akb60min

akb30s/120
=

(10/120)1.05

101.05/120
= 0.79, (7)

in which R is the reference averaged rainfall intensity, R̂ the estimated averaged rainfall intensity and the b value is used

for a 38 GHz horizontally polarized device (Table 1). At 26 GHz link, for which b is 0.93, this equation would result in

1.40. Other differences could for example exist between baseline power levels, due to not setting the exact same part of

the time series to dry as a consequence of time intervals during which it rains only partially (step 5).225

2.3 Comparison with theoretical events

To examine the influence of precipitation climatology on our results, we compare the obtained relationships between device and

sampling strategies to theoretical rain events. We prescribe three types of rain events: 1) a rain event with a constant intensity

of 5 mm h-1, 2) a high-intensity event with a maximum intensity of 40 mm h-1 and declining following an exponential function

and 3) a low-intensity event, which we compute using three sinusoidal functions (Fig. 3). All events take two hours. The latter230

two events resemble the two real rain events that are studied in Sect. 3.1. First, we recalculate these events to 20 Hz power

levels using Eqs. 1 and 2, subsequently we add normally distributed noise with a device-specific standard deviation to these

power levels. This device-specific standard deviation is computed by averaging hourly standard deviations for all dry hours

in the dataset. For the Nokia link, this results in a standard deviation of 0.15 dB and for both RAL links in 0.20 dB. Using

this method, we obtain a similar dataset as van Leth et al. (2018a), so that we can apply the algorithm as described above. We235

apply the normally distributed noise for 100 different random states to remove the influence of a single random state on the

comparison. After averaging the statistical metrics of these states, we compare these metrics for the theoretical events with the

dataset from van Leth et al. (2018a) in order to attribute which part of the uncertainties originates from the algorithm and which

part from the actual rainfall variations. Additionally, we study the influence of the starting times of the theoretical rain events

on the statistical metrics. To do so, we create 30 theoretical events each with a shift in starting time compared to the original240

theoretical events. These shifts are uniformly distributed between 2 and 60 minutes (i.e., a 2-min interval). This allows us to

estimate the robustness of the sampling strategies against (possibly unfavourable) starting times of rain events.
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Figure 3. Three theoretical rainfall events for estimating the sole influence of the sampling strategies. The constant intensity is 5 mm h-1.

The low-intensity event consists of three sinusoidal waves: R= 1−0.5cos( 2π·t
2

)−0.25cos( 2π·t
0.25

)+0.1sin( 2π·t
0.1

). The high-intensity event

follows the function: R= 40exp(−3t). In these t is the time (h) since the start of the event.

3 Results

3.1 Influence of temporal sampling on rainfall estimates for two individual events

We consider two individual precipitation events to illustrate the influence of temporal sampling on estimating rainfall. Figure245

4, a low-intensity event, and Fig. 5, a high-intensity event, include the 1 s, 5 min and 60 min time intervals, to demonstrate the

influence of the sampling methods on individual events. The analysis in Sect. 3.3 also includes the other time intervals.

When comparing the signals of all devices during the two precipitation events, the largest differences between the Nokia

(a-h) and the RAL links (i-p and q-x) are the reduced wet-antenna attenuation and fluctuations in the signal for the Nokia link.

For example, considering the wet-antenna attenuation, the tail after the high-intensity event, around 11:00, shows 1-2 dB larger250

attenuation for the RAL links compared to the Nokia link (Fig. 5a & i). These differences in wet-antenna attenuation for the

Nokia and RAL 38 GHz links are caused by different behaviour of rain remnants on the antenna covers, in the form of a water

film and droplets, respectively (Fig. 14 in van Leth et al. (2018a)). In general, this causes the wet-antenna attenuation for the

RAL link to be roughly 2 dB higher than for the Nokia link shortly after a rain event. For this specific setup, this would result

in roughly a 4 mm h-1 increased rainfall intensity. The differences in the fluctuations are clearest in the 20 Hz signal for all255

devices (e.g., Figs. 4a, i and q). These high-frequency fluctuations in the signal are roughly reduced by 0.5 dB, which is likely

caused by the different internal electronics in the Nokia link. Yet, this only seems to affect the difference between minimum

and maximum intensity values (Figs. 4d, l and t), but not the computed rainfall intensity using this sampling strategy (Figs. 4h,

p and x). Compared to the RAL 38 GHz link, the RAL 26 GHz link shows slightly more fluctuations in the estimated rainfall

intensities for the min-max sampling strategies, which could possibly be caused by the different exponent in the R-k relation.260
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During the event on 24 November 2015, the baseline changes slightly during the precipitation event. In the preceding 24

hours to this event, the signal intensity fluctuates combined with precipitation events. As a result, during the 12 hours of the

event the baseline algorithm computes slight changes in power level, as the initial baseline power levels are not based on the

same power levels as the final baseline power levels. We expect that this occurs throughout the entire dataset and not only for

this specific event.265

When comparing the sampling strategies, the instantaneous sampling strategy shows the largest sensitivity of the estimated

rainfall intensities to the sampling time interval. Especially for the longest time intervals with the RAL 26 GHz and 38 GHz

links, the intensities derived with instantaneous sampling show major fluctuations, which are not necessarily fully representative

for the entire interval. This mostly holds for the event on 24 November, as the signal-to-noise ratio of the event on 21 June is

relatively large. The min-max sampling strategy shows a large sensitivity to the extreme values, either caused by a rainfall event270

or an outlier in signal intensity. This especially holds for the maximum attenuation, as the minimum attenuation is bounded at

zero (i.e., no attenuation), while the maximum attenuation could theoretically attain very large values (e.g., more than 20 dB in

Fig. 5d and l around 10:00). Overall, this seems to cause that the min-max sampling strategy is mostly prone to overestimations,

especially for the higher rainfall intensity event on 21 June. In general, the mean sampling seems to represent the 20 Hz rainfall

intensities best, though with some minor differences between the sampled time intervals.275

Generally, the instantaneous and min-max sampling strategies seem to be more prone to errors in retrieving high rainfall

intensities. For the event on 21 June, the mean sampling strategy results, as expected, in decent estimates of the evolution of

the rainfall event on average, both in timing and intensities (though the peak rainfall intensities are obviously averaged out).

The instantaneous sampling strategy seems to be most sensitive to an increase in the length of the time interval, because its

performance depends on the representativeness of a single measurement for the whole time interval. The timing and intensity280

of the estimated peak rainfall intensity for short time intervals are often relatively good, due to the large signal-to-noise ratio,

while for larger time intervals the sensitivity heavily increases. For the min-max sampling strategy, the timing of the peak

intensity is generally well-captured, but the estimated peak rainfall intensity can be inaccurate. Additionally, for this specific

case, this method strongly overestimates the rainfall sum for the 60-minute interval, due to the peak taking place around the

full hour, so that two subsequent intervals cover this peak.285
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Figure 4. Comparison of received (solid) and baseline (dashed) power levels (a-d, i-l, q-t) and retrieved rainfall intensities (e-h, m-p, u-x)

during a low-intensity precipitation event on 24 November 2015 obtained with the Nokia (a-h), RAL 38 GHz (i-p) and RAL 26 GHz (q-x)

microwave links for all sampled variables and the 1-second, 5-minute and 60-minute time intervals. Grey areas indicate dry periods based on

disdrometer data.
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Figure 5. Comparison of received (solid) and baseline (dashed) power levels (a-d, i-l, q-t) and retrieved rainfall intensities (e-h, m-p, u-

x) during a high-intensity precipitation event on 21 June 2015 obtained with the Nokia (a-h), RAL 38 GHz (i-p) and RAL 26 GHz (q-x)

microwave links for all sampled variables and the 1-second, 5-minute and 60-minute time intervals. Grey areas indicate dry periods based on

disdrometer data.
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3.2 Theoretical events

Before analysing all rain events in the whole Wageningen dataset, we examine the theoretical events. This allows us to de-

termine which part of the uncertainties originates from the rainfall retrieval algorithm and which from the instruments. We

compare the statistical metrics of three theoretical rain events to which we added three levels of noise, so that these resemble

the microwave link signals of the three devices (Fig. 6). Additionally, we compare these with the statistical metrics of the same290

theoretical events, but without the added noise, which resemble a 38 and a 26 GHz horizontally polarized link, in order to

estimate the influence noise has on our comparison (Fig. 7).

The theoretical events demonstrate the sensitivity of instantaneous sampling to individual events, for both the noisy and

noiseless signals, especially for longer time intervals. This sampling shows an erratic behaviour for these intervals, reflecting

the strong influence of temporal variability on this sampling strategy. For the high-intensity event, the MBE and slope strongly295

decrease for 1-minute intervals and longer, while the RMSE strongly increases. At these timescales the signal changes sig-

nificantly, due to the decrease in rainfall intensity being relatively large compared to the noise. The peak attenuation in this

case is roughly 21 dB, while the standard deviation of the noise ranges roughly between 0.15 and 0.20 dB. This illustrates the

sensitivity of instantaneous sampling to signal fluctuations as a consequence of rainfall variability.

The RMSE for the theoretical events with and without noise barely increases for longer time intervals, except for instanta-300

neous sampling with the high-intensity event. Similarly, r2 is close to 1 and independent of interval length for the theoretical

events. The same also holds for MBE and slope. Sampling a mean value or min and max values per time interval also seems to

have a minor influence on the theoretical events, since the noiseless events, show no difference between the mean and min-max

sampling strategy. Generally, this shows that each of the sampling strategies is capable of producing correct rainfall estimates,

especially for the shortest time intervals. For longer time intervals, in particular the instantaneous sampling strategy does not305

perform as well as the other two sampling strategies. Additionally, the influence of noise on rainfall intensities cannot be

neglected when using CMLs to measure rainfall.

The instantaneous sampling strategy for the 26 GHz link with noise added performs significantly worse than the other

strategies and links in terms of RMSE and the r2 for the low-intensity event. This is caused by the relatively low signal-to-noise

ratio for the 26 GHz link in comparison to the 38 GHz link. Following from the R-k relationship, the attenuation of a 26310

GHz device is lower than the attenuation of a 38 GHz device for the same rainfall intensities (e.g., for our setup a 2 mm h-1

rainfall intensity results in an attenuation of 1.2 dB for a 38 GHz device and an attenuation of 0.5 dB for a 26 GHz device).

Especially for low rainfall intensities, this causes that the added noise occasionally compensates for the rainfall attenuation, so

that some of the attenuations are negative. In the rainfall retrieval algorithm these negative attenuations are corrected to 0 dB,

also affecting the overall statistics.315

It should be noted that in Section 3.1, differences in baseline power levels between sampling strategies and wet-antenna

attenuation clearly affected the rainfall intensity estimates. These mechanisms are not included in these theoretical events.

Differences in baseline power levels are only slightly reflected in the theoretical events as caused by the added noise, which

might slightly affect the median signal intensity for the computation of the baseline power levels.
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Moreover, a comparison between the rainfall estimates for the noiseless signals starting at the fixed full hour (Fig. 7) and320

the shifted starting times (Fig. 8), shows that mean sampling strategy is most robust against different starting times of rainfall

events. The instantaneous sampling strategy is most sensitive to different starting times of the events, as the spread of all the

statistical metrics is large, especially for the longer time intervals and the high-intensity event. For the min-max sampling

strategy, the shifting of starting times also introduces additional uncertainties in the rainfall estimates, but still outperforms the

instantaneous sampling strategy.325
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Figure 6. Statistical metrics as function of time interval for three theoretical rain events (Fig. 3) for all sampling methods (line style) and

added noise levels that resemble the three devices (line colour). The markers indicate the values for the 15-minute min-max and 1-minute

instantaneous sampling strategies.
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Figure 7. Statistical metrics as function of time interval for for a theoretical low intensity and high intensity rain event (Fig. 3) for all sampling

methods (line style) for 38 GHz and 26 GHz horizontally polarized noiseless devices (line colour). The markers indicate the values for the

15-minute min-max and 1-minute instantaneous sampling strategies.
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Figure 8. Statistical metrics as function of time interval for theoretical low intensity and high intensity rain events (Fig. 3) with a sliding

2-min start time window for all sampling methods (colour) for a 38 GHz horizontally polarized noiseless device. In the boxplot, the coloured

bar is the median value, the box edges represent the first and third quartiles, and the whiskers are the 10th and 90th percentiles. The statistical

metrics for a 26 GHz noiseless device reveal the same overall patterns, though with a reduced performance and increased spread for most of

the metrics for the high-intensity event (not shown).

3.3 Influence of temporal sampling on rainfall estimates for all events

In this section, we examine how the rainfall estimates are affected by all sampling methods considered for all combinations

of methods and time intervals. Figure 9 shows an example scatter plot and corresponding statistics for a time interval of 15

minutes. We present the statistical metrics (MBE, RMSE, r2 and the slope of the linear regression line through the origin) for

all considered time intervals in Figure 10. The corresponding scatter plots (Figs. S1 to S4) are provided in the Supplementary330
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materials. In these scatter plots, we compare the rainfall estimates for a specific device, method and time interval with the 20

Hz rainfall estimates obtained using the same device.
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Figure 9. Comparison of rainfall intensities derived with mean sampling and 15 min time interval (y-axis) versus time-averaged rainfall

intensities computed with the 20 Hz data (x-axis) for the Nokia Flexihopper microwave link. The red dashed line is the 1:1 line and the black

line represents the best linear fit through the origin of which the slope is reported in the statistics box.
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Figure 10. Statistical metrics as function of time interval for all devices (line colour) and sampling methods (line style). The markers indicate

the values for the 15-minute min-max and 1-minute instantaneous sampling strategies. The values for the metrics are obtained from Figs. S1

to S4.

When examining the statistical metrics for all sampling methods, it is clear that the mean sampling strategy generally out-

performs the other sampling methods in terms of RMSE and r2. The instantaneous sampling strategy is generally outperformed

by the min-max sampling strategy. Regarding MBE, the min-max sampling outperforms mean sampling, though it should be335

noted that part of the optimization of α was based on the MBE (next to the RMSE) for the entire dataset (Sect. 2). This also

causes all the min-max lines in Figure 10a to be close to zero. The non-optimized min-max sampling strategy performs slightly

worse than the optimized strategy, but no major differences between both occur, except for the longest time intervals (see

supplementary materials).

20



For the shortest time intervals, absolute differences in RMSE and r2 between mean and min-max sampling are insignificant340

(smaller than 0.1 mm h-1 in terms of RMSE), but an increase in time interval length causes the performance of mean sampling

to decrease less than for the min-max sampling, resulting in an absolute difference between the mean and min-max sampling

in the order of 0.5 - 1.5 mm h-1 for the RMSE for the Nokia and RAL links.

3.3.1 Mean sampling strategy

The mean sampling shows a decrease in the slope of the regression line, as the length of the time interval increases, especially345

for the Nokia link, culminating in a value of 0.86 for a 60-minute time interval, while we would have expected it to stay

equal to 1, as roughly occurs for the RAL links. We attribute this to two opposing causes for error at large time intervals

with mean sampling. The first is the reduced impact of the non-linearity of the power law, which decreases as a consequence

of longer averaging time intervals resulting in lower average attenuation values (step 7 in Sect. 2.2). The second is the wet

antenna attenuation, which reduces significantly on hourly timescales due to the drying of the antenna cover. In the 20 Hz350

data, any erroneously estimated rainfall due to wet antennas has been filtered out (i.e., set to 0 mm m-1) based on the path-

weighted disdrometer data indicating dry weather, while for long time intervals the wet-antenna attenuation is included in

the computation of the rainfall intensity for the mean sampling, because of the antennas still being wet during dry weather,

causing an overestimation of the rainfall intensities. For the Nokia link, the influence of wet-antenna attenuation is reduced,

which results in an increased underestimation for longer time intervals, in contrast to the RAL 38 GHz link. The RAL 26355

GHz link exhibits less wet-antenna attenuation than the RAL 38 GHz link, but somewhat more than the Nokia link. Moreover,

at this frequency the exponent of the R− k relation is below 1, so that this would cause an overestimation instead of the

underestimation for the 38 GHz links (step 7 in Sect. 2.2). Still, also the mean sampling at this frequency results in an overall

slope of the linear regression line through the origin below 1, though minor, which suggests that the mean sampling has a

slight tendency to underestimate the rainfall intensity. Overall, this shows the potential influence that even mean sampling can360

have on rainfall estimates, although it is relatively small in comparison to the other sampling methods. We attribute a large part

of these differences to wet-antenna attenuation and differences in estimated baseline power levels, as the behaviour of these

statistics is not reflected in the theoretical events (Fig. 6 versus 10).

3.3.2 Instantaneous sampling strategy

For instantaneous sampling with short time intervals, the RMSE is larger than for the mean sampling method, being 0.69 mm365

h-1 versus 0.17 mm h-1, respectively, for the RAL 38 GHz link at a 30 s time interval. Yet, this spread results in a relatively low

MBE of 0.01 mm h-1 and relatively high r2 of 0.99, suggesting a symmetric distribution of the residuals around the reference

(Fig. 10). For both RAL links, this distribution appears to be even present at the longest time interval (Fig. 11b). We would

have expected that the rainfall intensity measured at the end of a long interval does not provide any information on the other

rainfall intensities during that interval, given the 30 min average duration of rainfall events in our data. The Nokia link behaves370

more as expected (Fig. 11a), as the spread is larger, also resulting in a lower r2, i.e., 0.17 versus 0.37, at a 60-min time interval

for instantaneous sampling.
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Based on the individual events, it seems that the majority of the differences in performance between the devices for the

instantaneous sampling strategies are related to the variations in rainfall intensity, i.e., 30 min average duration (Fig. 2), in

combination with wet-antenna attenuation. This is supported by the absence of any similar differences in the theoretical events.375

For the shortest time intervals, the rainfall intensities, and thus measured attenuations, do not vary much in these few seconds,

which results in relatively good scores. For the longer time intervals, the RAL devices are still wet, as these were found to have

an average drying time of the order of 20 minutes (van Leth et al., 2018a), resulting in higher estimated rainfall intensities for

both the averaged 20 Hz measurements and the instantaneous sampling. The Nokia antenna covers are already mostly dry after

a few minutes (van Leth et al., 2018a), such that the estimated rainfall intensity gives very little information on the preceding380

rainfall intensities, resulting in the lowest MBE for the Nokia link. We suspect that this role of wet-antenna attenuation also

causes the MBE to be positive for all devices compared to the other sampling strategies.
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Figure 11. Comparison of rainfall intensities derived for the instantaneous 60-min time intervals for the Nokia Flexihopper and the RAL 38

GHz microwave links versus time-averaged rainfall intensities computed with the 20 Hz data of these devices. The red dashed line is the 1:1

line and the black line represents the linear regression line through the origin of which the slope is reported in the statistics box.

3.3.3 Min-max sampling strategy

For the min-max sampling with an optimized α, the role of the minimum attenuation increases with time interval, i.e., α

decreases from just below 0.5 to around 0.2 (Fig. 12). For the shortest time intervals, this points to a roughly symmetrical385

distribution of the minimum and maximum attenuations around the mean. For the longer time intervals, this suggests a posi-

tively skewed distribution of the attenuations with relatively many outliers to the maximum attenuation. For the non-optimized

min-max sampling, where with increasing time intervals the maximum attenuation becomes increasingly dominant, this results

in an increasing slope of the fit (Figs. S1 to S4).
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Figure 12. Optimized fractional contribution of the maximum and minimum attenuation, α, as function of time interval for each device for

the optimized min-max sampling method. The dashed black line represents the default RAINLINK value, being 0.33. The data is based on

Figures S1 to S4.

For the 15-minute min-max sampling strategy, the optimized values of α for the links range between 0.30 and 0.35. This is390

close to the default RAINLINK value (Overeem et al., 2016b), which uses 0.33 for the contribution of minimum attenuation

and maximum attenuation. This is also reflected in the RMSE, MBE, r2 and slope of the fit (Figs. S1 - S4). This shows that

for microwave links in similar frequency domains and precipitation climatologies, this default value is a good estimate when

using 15-minute minimum and maximum signal intensities.

Moreover, for low rainfall intensities, especially below 2 mm h-1, the rainfall retrieval algorithm for the min-max sampling395

strategy overestimates rainfall intensities (Fig. 13). Reasons for this seem to be twofold. Firstly, the minimum attenuation is set

to 0 dB km-1, due to the maximum received power (resulting in minimum attenuation) being higher than the baseline power

level. Part of this is caused by the assumption that the median of the average of the minimum and maximum received power

levels represents the baseline is not always valid, due to a skewness towards minimum power levels. For example, between

9:00 and 11:00 in Fig. 4t for the hourly time intervals, the maximum attenuations are constant, while the minimum attenuation400

changes between the intervals 9:00-10:00 and 10:00-11:00. Still this results in a constant rainfall intensity (Fig. 4x). Secondly,

the minimum received power level (resulting in the maximum attenuation) is nearly always significantly lower than the baseline

power level. This means that for low rainfall intensities, especially around and below 1 mm h-1, the minimum attenuation is

corrected (i.e., set to 0 dB km-1), while the maximum attenuation is treated as is, preventing the min-max retrieval algorithm

to work the way it has been designed. In the rainfall intensity computation, both attenuations are treated in a similar manner,405

giving too much weight to the maximum attenuation, causing an overestimation of the rainfall intensity. For slightly higher

precipitation intensities (1-2 mm h-1), the maximum power levels are still close to the baseline, so that barely any increase in

rainfall intensity in the min-max sampling is computed, while the 20 Hz rainfall intensity estimates do increase, causing the
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bend seen in Fig 13. For even higher rainfall intensities (>2 mm h-1), both the minimum and maximum received power levels

are lower than the baseline, so that the min-max sampling method can be used the way it was designed.410
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Figure 13. Comparison of rainfall intensities derived for min-max sampling at a 5-minute time interval (using an optimized weight) versus

time-averaged rainfall intensities computed with the 20 Hz data for the RAL 26 GHz microwave link. The red dashed line is the 1:1 line and

the black line represents the linear regression line through the origin of which the slope is reported in the statistics box.

3.3.4 Influence of signal frequency

When focusing on the influence of the signal frequency on the rainfall estimates, the RAL 26 GHz link shows a larger RMSE

and lower r2 for the instantaneous and min-max sampling in comparison to the RAL 38 GHz link (Fig. 10). For both sampled

variables, the RMSE is roughly constantly 0.1 to 0.3 mm h-1 higher, while the r2 only differs at the longest time intervals around

0.1 to 0.2. These differences can predominantly be attributed to the difference in frequency, which causes different exponents415

in the R− k relation and minor differences in wet-antenna attenuation, as the devices do not contain any other significant

differences. However, these differences in behaviour are of a smaller magnitude than the differences between the Nokia and

the RAL 38 GHz links. Overall, this indicates that a reduced duration of wet-antenna attenuation and hardware reducing the

signal fluctuations can significantly reduce the influence of the selected temporal sampling strategy.

3.3.5 Comparison with theoretical events420

Also, a general comparison between the theoretical events and all rain events in the dataset reveals the influence of wet-antenna

attenuation on the performance of the rainfall retrieval algorithm. The increase of RMSE with longer time intervals found for

all rain events is not reflected in the theoretical events (only minor for the min-max sampling). As discussed, we expect this

difference to be caused by the influence of wet-antenna attenuation on the RMSE. Moreover, the wet-antenna attenuation seems

to have a major influence on the estimated rainfall intensities for the individual events in Sect. 3.1. Additionally, differences in425
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baseline power levels between sampling strategies could play a role here. These differences in the baseline in the dataset vary

due to the differences in wet and dry periods between sampled intervals and strategies, and also due to longer term changes in

power levels (e.g., as a consequence of temperature). This shows that the wet-antenna attenuation and differences in baseline

power levels can play a relatively important role in the performance of the sampling strategy, next to the general sensitivity to

sampling interval and method. This will be more elaborately discussed and put into context with previous studies in Sect. 4.430

4 Discussion

This study aimed to determine the influence of temporal sampling strategies on measuring rainfall using microwave links. To

do so, we resampled a 20 Hz signal to various temporal sampling strategies, partly mimicking sampling strategies employed

by mobile network operators, and compared the resulting rainfall intensities with averaged 20 Hz rainfall intensities. This way,

we were able to exclude the instrumental bias and uncertainty from the total bias and uncertainty, and focus on comparing the435

influence of the temporal sampling strategies.

4.1 Influence of sampling strategies on rainfall estimates

Our results allow to estimate the source of error for estimated rainfall intensities originating from the applied sampling strategy

and puts rainfall estimates of previous and future studies in perspective in relation to their reference data. When examining the

influence of time interval on estimating rainfall intensity, as expected, an increase in sampled time interval reduces the perfor-440

mance of the resampled rainfall estimates compared to the 20 Hz estimates. For the shortest intervals, the performance, 1 s to 1

min, often does not vary largely with respect to the reference, especially when compared to the longest intervals. An increase in

resolution does not necessarily add much more information on the rainfall intensity for these short intervals, due the generally

limited variability in rainfall intensity for these intervals. As described by de Vos et al. (2018), the performance of the rainfall

retrieval algorithm is strongly dependent on the employed temporal sampling strategy. Moreover, Leijnse et al. (2008) stress445

the importance of sufficient sampling, which allows to cover the temporal behaviour of a rain event. For example, considering

that a precipitation event in our dataset takes on average 30 minutes, the commonly used 15-minute sampling interval would

undersample an average precipitation event, which is also reflected in our analyses, showing that the performance for almost

all sampling methods decreases significantly from around 1 to 5 minutes and onwards.

As expected, a comparison between the considered sampling methods demonstrates that mean sampling generally outper-450

forms the other methods. For the shortest time intervals, min-max sampling, especially the optimized version, performs roughly

equal to mean sampling. For longer time intervals, the performance decreases, as the minimum and maximum attenuation are

no longer representative for the average precipitation during the interval. When comparing the different starting times of the

theoretical events, the mean sampling strategy is also most robust to potentially unfavourable starting times, while the min-max

sampling strategy is more sensitive, especially for longer time intervals. Generally, the non-optimized min-max sampling strat-455

egy also performs relatively well, but a bit less than the optimized version. This decay in performance is also partly reflected

in the statistical metrics of the high-intensity theoretical event, but not for the constant and low intensity event, partly caused
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by the still fairly constant intensity of the low intensity event. Additionally, the min-max sampling contains a change in slope

at low rainfall intensities at longer time intervals, which we expect to be caused by the baseline level selection (i.e., the median

of the average of the minimum and maximum received power levels during the dry hours preceding a rain event). This method460

for baseline determination causes the minimum attenuation (i.e., maximum power levels) during the interval to be higher than

the baseline at low rainfall intensities and be set to zero, which interferes with the algorithm as it was designed. This causes an

offset when using min-max sampling for low rainfall intensities.

Moreover, the minimum and maximum sampling strategy is mostly prone to overestimations of the rainfall intensity, es-

pecially for longer time intervals. For both the optimized and non-optimized sampling strategy, the residuals around the 1:1465

line are asymmetrically distributed, especially for longer time intervals. In general, underestimations of rainfall intensity are

frequently present but relatively minor, while overestimations happen less frequently but often have a relatively large magni-

tude. We hypothesize that this is either caused by short high-intensity rainfall intensities during a time interval or a short and

severe reduction in signal intensity due to other causes (e.g., refraction, obstacles), which causes a relatively large maximum

attenuation, so that the estimated rainfall intensities during the entire time interval overestimate the 20 Hz rainfall estimates.470

The timing of the peak intensities is often estimated well when using this sampling strategy, especially in comparison to the

instantaneous sampling strategy.

The instantaneous sampling strategy performed well for the shortest time intervals. For longer time intervals, especially 30

and 60 minutes, and high-intensity events, this strategy shows the largest sensitivity to different starting times of the theoretical

events. Also for these longer time intervals, the performance is mostly related to the amount and duration of wet-antenna475

attenuation combined with the average duration of a precipitation event in our dataset. For a device with a relatively short

duration of the wet-antenna attenuation, the Nokia link, the r2 was significantly less than for a device with relatively long-

lasting wet-antenna attenuation, the RAL 38 GHz link. However, it is important to note that the high r2 in that case is not caused

by the measurement of rainfall, but solely due to the fact that for long time intervals wet-antenna attenuation is interpreted as

rainfall in the algorithm. Potentially, an improvement in performance of the instantaneous sampling strategy could be found in480

adapting the timing of the time intervals, so that the values of the received power levels represent the middle of the intervals.

Intuitively, especially for relatively large changes in rainfall intensity during a time interval, it seems that these values could be

more representative for rainfall intensities than the last value of the interval. Additionally, for high peak rainfall intensities, the

performance of the instantaneous sampling strategy, both in timing and maximum rainfall intensity, seems to be dependent on

how well single instantaneous measurements represent the entire time interval.485

Previous studies demonstrated the performance of various sampling strategies for measuring rainfall with CML networks.

Our results are not fully in line with Pudashine et al. (2021), who show that the min-max sampling strategy slightly outper-

forms the mean sampling strategy, though it should be noted that their study uses gauge-adjusted radar data as reference,

which makes an objective comparison difficult. At a 15-minute sampling time interval, de Vos et al. (2019) demonstrate that

min-max sampling generally outperforms instantaneous sampling in the Netherlands. Leijnse et al. (2008) compared 18 Hz490

sampling, averaged 15-minute sampling and instantaneous 15-minute sampling methods with each other (together with simu-

lated microwave link data based on 15-second radar data) and showed the limitations of the instantaneous sampling compared
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to the other two methods. These findings are in line with our results and confirm that the differences are not solely caused by

instrumental biases between the microwave links and the used reference instrument (e.g., rain gauge or radar).

4.2 Additional sources of uncertainties and errors495

Our study shows the significant influence of wet-antenna attenuation on the performance of sampling strategies, especially

with increasing sampling intervals. The rainfall intensities measured with the Nokia link, which is affected only during a

relatively short period by wet-antenna attenuation, were less affected by the temporal sampling strategy than the RAL 38 GHz

link, a device transmitting in the same frequency domain but with an increased wet-antenna attenuation effect. An additional

difference between these devices is the reduced signal fluctuation in the Nokia link, likely caused by the different hardware500

employed in the Nokia link. However, these differences do not have an influence of the same order of magnitude on the raw

signal. Where the hardware causes the fluctuations to reduce roughly by 0.5 dB, the additional wet-antenna attenuation for the

RAL link is roughly 2 dB higher. Therefore, we attribute the largest differences between the Nokia and RAL 38 GHz links to

the difference in wet-antenna attenuation.

This is confirmed when studying the statistical metrics of the theoretical rain events and comparing these with the actual rain505

events. The simulated Nokia and RAL links do not show significant differences for the theoretical rain events. The implemented

differences in noise between the theoretical links do not result in differences between the statistical metrics similar to the actual

events for the two devices in any of the theoretical rainfall events. A comparison between theoretical events with and without

noise shows that the addition of noise has a significant contribution to the rainfall estimates, especially for the instantaneous

sampling strategy at longer time intervals. The most significant differences between the theoretical events and the actual events510

can be found in wet-antenna attenuation and differences in baseline power levels between sampling strategies, which shows the

importance of these two mechanisms on rainfall estimates. Additionally, it should be noted that the duration of the theoretical

events is not equal to the average duration of a rainfall event in the Wageningen data (2 h and roughly 30 min, respectively), but

was chosen to resemble the two individual events studied in Sect. 3.1. However, we do not expect this mismatch in timescales

to have a major effect on the differences between the theoretical and actual data, i.e., the influence of wet-antenna attenuation515

and different baseline power levels. Overall, this shows that knowing the attenuation caused by a wet antenna and the total

drying duration would be beneficial when estimating rainfall using microwave links. Additionally, it would create more need

to adjust for the instrumental bias of microwave links, for example as a consequence of different antenna covers or temperature

dependence (e.g., van Leth et al., 2018a).

Different algorithms to correct for wet-antenna attenuation exist. Kharadly and Ross (2001) developed a model allowing to520

correct for wet-antenna attenuation, which was extended by Minda and Nakamura (2005) to be able to cope with the drying

of antennas. Schleiss et al. (2013) first experimentally studied the role of wet-antenna attenuation on a 38 GHz microwave

link signal during and after a precipitation event and showed that the attenuation increases exponentially during the first part

of a rain event towards a maximum of 2.3 dB and also decreases exponentially afterwards. Subsequently, they proposed a

model applicable without the need for additional measurements. In parallel, Overeem et al. (2013) also found a value of 2.3525

dB for the wet-antenna attenuation as an average for a complete telecom network in the Netherlands. Subsequently, Overeem
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et al. (2016a) applied this value as a constant for correcting attenuation due to wet antennas for each microwave link. Leijnse

et al. (2008) propose to use a more physics-based model to compute the wet-antenna attenuation, which uses signal frequency,

antenna cover properties and rainfall intensities and seems especially useful for shorter time intervals. Graf et al. (2020) found

that for a telecom network in Germany a correction based on rainfall intensity (based on Leijnse et al., 2008) outperformed a530

method based on the time (based on Schleiss et al., 2013) during and after a precipitation event. Similarly, Pastorek et al. (2022)

compared multiple wet-antenna attenuation corrections and also concluded that corrections based on rainfall intensity outper-

formed other methods. Additionally, they found that these corrections can be applied to intensities obtained from sub-links with

various frequencies and path lengths, and thus can also be applicable to other networks with similar antenna characteristics.

Note that algorithms are applied irrespective of the number of wet antennas (0, 1 or 2). It may even be raining along the CML535

path, whereas antennas remain dry.

Using 20 Hz data as reference data to compare the estimated rainfall intensities has as advantage that the direct instrumental

bias is excluded in our analysis. These instrumental biases are included in the comparisons done by van Leth et al. (2018a) and

similar to our comparison between the 20 Hz estimates and the disdrometer (Sect. 2). Zinevich et al. (2010) describe various

errors and uncertainties that arise when comparing rainfall estimates from commercial microwave links with rain gauges, for540

example uncertainty in the drop size distribution, wet antennas or baseline variations. Also, Leijnse et al. (2008) describe

similar influences of these uncertainties and stress the need to include all potential error sources in an analysis. Our results and

those from van Leth et al. (2018a) suggest that these uncertainties, especially wet-antenna attenuation, baseline variation and

the non-linear effect of the power law, affect the performance of the rainfall estimates, even when using the same microwave

link as reference.545

Additionally, we illustrate that the magnitude of these additional biases could depend on the selected sampling method. These

biases can be separated into a directly affected part and an indirect part. Rainfall intensities are most often directly affected

when choosing an instantaneous sampling method, especially for longer time intervals. Moreover, wet-antenna attenuation

and the role of the exponent in the R− k relation also seem to play a direct role in the performance of the selected sampling

strategy, especially when considering the individual rain events and compare the theoretical events with the whole dataset.550

Indirectly, we suspect that observed biases, especially between sampling strategies, can occur mostly due to variations in

baseline power levels between selected sampling methods. The latter group is hard to consider beforehand and will most often

be an unavoidable source of uncertainty for other studies. In general, our efforts allow future studies to estimate the uncertainty

of their observed rainfall intensities as a consequence of the chosen sampling strategy and potentially uncover the instrumental

bias of these links.555

4.3 Extrapolation to CML networks

When extrapolating our results to CML networks, first of all it should be noted that not all CML networks contain similar

frequencies and link lengths. Next to a change in the parameters for the R−k relationship, our results show a slightly increased

RMSE and reduced r2 for the RAL 26 GHz link compared to the RAL 38 GHz link. These devices operate similarly, except

at a different frequency, which results in different a and b parameter values in the R− k relationship. For 38 GHz, b is larger560
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than 1, while for 26 GHz, b is smaller than 1. Also, between the devices a minor difference in wet-antenna attenuation can

be observed, which could be a consequence of differences in frequency. Therefore, we attribute the observed differences to

differences in frequency and wet-antenna attenuation (possibly as a consequence of frequency). For an increase in link length,

we expect a reduced sensitivity of the sampling strategies to increasing time intervals, while also the differences between

sampling strategies decrease. As suggested by Leijnse et al. (2008), this is caused by the increase in characteristic timescales of565

the path-averaged rainfall intensities when increasing link lengths. Similarly, Berne and Uijlenhoet (2007) showed for longer

link lengths a decrease in uncertainty in rainfall estimates and, moreover, a reduction in sensitivity to sampling effects.

The International Telecommunication Union (ITU-R, 2005) reports values for the a and b parameters, though several studies

found location dependent parameter values. Leijnse et al. (2007b) showed differences up to 10% in the b parameter compared

to the ITU recommendations, when deriving these parameters using raindrop size distributions measured in the Netherlands570

by Wessels (1972). In this study, we used the a and b parameter values as reported by van Leth et al. (2018a), who determined

these based on the five disdrometers along the path. Yet overall, Chwala and Kunstmann (2019) illustrated that the a and b

parameters are relatively independent of the drop size distribution at low frequencies, especially below 40 GHz. Additionally,

Berne and Uijlenhoet (2007), Overeem et al. (2011) and Overeem et al. (2021) demonstrate that using a and b parameter values

which are not specifically calibrated to the area of application only results in minor errors in the rainfall estimates. This is likely575

a consequence of the near-linear relation between attenuation and rainfall intensity.

Other differences between our results and actual CML networks can be found in the difference in polarization. Most mi-

crowave links in CML networks are vertically polarized, instead of the horizontal polarization that we study. For this specific

study, however, there are no significant differences between the vertical and horizontal polarization of the RAL 38 GHz link,

probably due to the fact that our reference data, i.e., the 20 Hz estimates, have the same polarization, and thus attenuation at580

the same frequencies. Network operators choose for the vertical polarization, due to the oblate raindrop shape which induces

an increased attenuation for horizontal polarization compared to the vertical polarization. For other purposes than this study, it

can be important to consider the polarization of the device.

Furthermore, CML networks often employ a signal power quantization (i.e., the discretization of the signal intensity) of 1 dB,

while the data we use in this experiment has been designed to prevent the power quantization effect on the rainfall estimates.585

Leijnse et al. (2008) demonstrate that power quantization can have a significant effect on the estimated rainfall intensities when

using CML networks, especially for low rainfall intensities. Ostrometzky et al. (2017) show that min-max sampling combined

with the quantization effect can lead to significant biases for rainfall retrieval. Chwala and Kunstmann (2019) show that the

quantization effect limits the minimal detectable rainfall intensity. Future studies could complement our study by focussing on

the influence of power quantization on the rainfall estimates using the same dataset. Additional uncertainties arise from the590

wet-dry classification. We used disdrometer observations to classify the weather as dry or wet, while these nearby in-situ data

are usually not available in a CML network, which could for example result in baseline variation uncertainties. For example,

Messer and Sendik (2015) provide an overview of various wet-dry classifications and how this affects the baseline power

levels.
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5 Conclusions595

In this study, we examined the influence of temporal sampling strategies on estimating rainfall using microwave links based on

a dataset containing three different microwave links obtained by van Leth et al. (2018a). We compared the mean, instantaneous

and min-max sampling strategies and various time intervals ranging from 1 s to 60 min with 20 Hz rainfall estimates of the

same device, allowing us to exclude the direct instrumental bias in this comparison. Some of the applied sampling methods

are also employed in current CML networks. Moreover, we used disdrometer data for a wet-dry classification to determine the600

baseline power levels.

In general, our results show that an increase in the duration of the sampled time interval reduces the performance of the

resampled rainfall estimates. The instantaneous sampling method is most sensitive to this dependency on sampling interval,

while the mean sampling is most robust. This is also in line with expectations, as the instantaneously sampled power levels at

longer time intervals do not contain any information on the rainfall during the preceding time interval, so only describe what605

occurs exactly at the moment of sampling. However, for the mean sampling still differences with respect to the reference can

occur due to the exponent in the R−k relationship being different from one. For the shortest time intervals, both instantaneous

and mean sampling perform roughly equal, except that instantaneous sampling shows a larger RMSE than mean sampling.

Similarly, for the shortest time intervals, min-max sampling performs roughly the same as mean sampling, but with an in-

crease in time interval the performance of min-max sampling shows a slightly larger decay than mean sampling (but smaller610

than instantaneous). For the common 15-minute sampling strategy and the former Nokia CML, mean and min-max sampling

strategies clearly outperform instantaneous sampling. To a lesser extent, the mean sampling strategy outperforms the min-max

sampling strategy, except for the MBE value, due to the optimization based on the MBE.

The partitioning between the minimum and maximum attenuation, represented by α in the rainfall retrieval algorithm, shows

a decrease (i.e., more influence of the minimum attenuation) with an increase in time interval when optimizing this parameter,615

as for longer time intervals the maximum attenuation is less representative for that entire interval. For all min-max sampling

time intervals, a change in slope occurs roughly below 2 mm h-1, which induces a positive offset for these low intensities when

employing a min-max sampling method. Generally, this sampling strategy is mostly prone to slightly underestimate or largely

overestimate individual rainfall intensities, which on average results in a relatively good fit. The large overestimations are

caused by the sensitivity of the maximum attenuation to incidental high attenuations, either as a result of short high-intensity620

rainfall episodes or due to an outlier in maximum attenuation.

When comparing devices, the Nokia Flexihopper link, which was formerly part of a CML network, transmitting at 38.2 GHz,

outperforms the other devices. This device mostly differs from the other two devices, the RAL 38 and 26 GHz links, in terms

of reduced magnitude and duration of wet-antenna attenuation and is designed with hardware that reduces signal fluctuations.

Of these, the wet-antenna attenuation seems to dominate over the reduced noise, so that we attribute a significant part of the625

differences between the Nokia Flexihopper and RAL 38 GHz links to the wet-antenna attenuation. The RAL 38 GHz device

is specially sensitive to wet-antenna attenuation, which makes that even for long time intervals the RAL 38 GHz link still has

a relatively high r2 compared to the Nokia link. If we compare the RAL 38 GHz link to the 26 GHz link, the RMSE and r2
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are higher and lower, respectively, for the 26 GHz link. This is mostly caused by the somewhat increased uncertainty for the

RAL 26 GHz link, which we attribute to the difference in frequency. Also, the difference in exponent of the R−k relationship630

between 26 GHz (b= 0.95) and 38 GHz (b= 1.05) could contribute to the found differences.

Additionally, a comparison of the results with theoretical events reveals the influence of wet-antenna attenuation and possibly

variations in baseline power levels between sampling strategies. In these theoretical events, the minor differences in statistical

metrics between the signal mimicking the Nokia link and that mimicking the RAL 38 GHz link can be attributed to noise levels.

In general, even between all the sampling strategies, minor differences occur for the theoretical events, except when shifting635

starting times, to which the instantaneous sampling strategy shows a large sensitivity, especially for longer time intervals and

high-intensity events. Other processes, of which wet-antenna attenuation being the most significant, are excluded in these

theoretical events. This illustrates the significant influence wet-antenna attenuation during rain events can have on the rainfall

estimates, for all sampling strategies. On individual rainfall event levels, additional differences in rainfall estimates can arise

due to variations in baseline power levels between devices and sampling methods. Overall, our study illustrates the influence640

a selected sampling strategy and related effects can have on the estimated rainfall intensity using microwave links, but does

leave the instrumental bias to consider for future studies.
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