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Abstract. In a context of accelerated soil erosion and sediment supply to water bodies, sediment fingerprinting techniques have

received an increasing interest in the last two decades. The selection of tracers is a particularly critical step for the subsequent

accurate prediction of sediment source contributions. To select tracers, the most conventional approach is the so-called three-

step method, although, more recently, the consensus method has also been proposed as an alternative. The outputs of these

two approaches were compared in terms of identification of conservative properties, tracer selection, contribution modelling5

tendency and performance on a single dataset. As for the tree-step method, several range test criteria were compared, along

with the impact of the discriminant function analysis (DFA).

The dataset was composed of tracing properties analysed in soil (through the consideration of three potential sources; n =

56) and sediment core samples (n = 32). Soil and sediment samples were sieved to 63 µm and analysed for organic matter,

elemental geochemistry and diffuse visible spectrometry. Virtual mixtures (n = 138) with known source proportions were10

generated in order to assess model accuracy of each tracer selection method. The Bayesian un-mixing model MixSIAR was

used to predict source contributions on virtual mixtures and actual sediments.

The different methods tested in the current research can be distributed into three groups according to their more or less

restrictive identification of conservative properties, which were found to be associated with different sediment source contribu-

tion tendencies. The less restrictive selections of tracers were associated with a dominant and constant contribution of forests15

to sediment, whereas the most restrictive selections were associated with dominant and constant contributions of cropland

to sediment. In contrast, intermediately restrictive selection of tracers led to more balanced contributions of both cropland

and forest to sediment production. Virtual mixtures allowed to compute several evaluation metrics, which supported a better

understanding of each tracer selection modelling accuracy. However, strong divergences were observed between the predicted

contributions of virtual mixtures and the predicted sediment source contributions. These divergences may likely be attributed to20

the occurrence of a non-(fully) conservative behaviour of potential tracing properties during erosion, transport and deposition

processes, which could not be reproduced when generated the virtual mixtures.
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Among the compared tracer selection methods, the three-step method using the mean ± SD and hinge range test criteria

provided the most reliable tracer selection methods. In the future, it would be fundamental to generate more reliable metrics to

assess conservativeness, to support more reliable modelling and more realistic virtual mixture generation to correctly evaluate25

modelling accuracy. These improvements may contribute to trustworthy sediment fingerprinting techniques for supporting

efficient soil conservation and watershed management.

1 Introduction

During the last several decades, an acceleration of soil erosion has been observed in response to land use changes or farming-30

practice modifications in several regions around the world (Poesen, 2018; FAO, 2019). Moreover, global warming will likely

further increase the frequency of erosive storms and the associated soil losses (OCC, 2015; Li and Fang, 2016). This accel-

eration of soil erosion leads to an increase of on-site and off-site negative socio-environmental impacts (Lal, 1998, 2001),

including the deterioration of soil agronomic properties (Pimentel, 2006; Montgomery, 2007), the transfer of pollutants asso-

ciated with soil particles (e.g. pesticides, herbicides, chemical fertilizers, heavy metals, radionuclides) (Lal, 1998; Bing et al.,35

2013; Debnath et al., 2021), the alteration of soil organic carbon stocks (Olson et al., 2016; Lal, 2019), the degradation of

aquatic ecosystems (e.g. eutrophication, increased turbidity) (Kemp et al., 2011; Issaka and Ashraf, 2017) and an increased

sediment supply to waterbodies (e.g. reservoir and bay siltation) (Collins et al., 2020). The identification of soil erosion sources

is therefore essential to prevent water-erosion-induced land degradation and its associated effects.

The sediment source fingerprinting technique was initially developed to determine the origin of sediment (Wall and Wilding,40

1976; Peart and Walling, 1986; Loughran et al., 1987). After initial qualitative studies (Wall and Wilding, 1976; Loughran et al.,

1987), the subsequent development of quantitative un-mixing models (Peart and Walling, 1986; Walling and Woodward, 1992;

Collins et al., 1997a) made it possible to estimate the contributions of different sources to target sediment samples. Since then,

the technique has received increasing attention (Collins et al., 2020; Batista et al., 2022). Overall, the goal of sediment tracing

studies has been to improve our understanding of sediment transfer processes and to guide landscape management (Laceby45

et al., 2015; Owens et al., 2016). However, in practice, the technique has mainly been used by scientists as a research tool and

few direct applications by landscape managers have been reported (Minella et al., 2008; Collins et al., 2020; Xu et al., 2022).

This likely demonstrates that, despite some homogenisation and simplification efforts (Mukundan et al., 2012; Collins et al.,

2017; Evrard et al., 2022), the technique remains too complex and the development of simpler and more robust procedures

would allow for its wider application (Xu et al., 2022).50

In the last few years, there has been a renewed interest among the sediment fingerprinting community in methodological

issues associated with the technique, such as the tracer selection methods (i.e., the identification of fingerprint properties

suitable for source discrimination and apportionment) (Collins and Walling, 2004; Laceby et al., 2017; Collins et al., 2020;
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Evrard et al., 2022). This might stem from the large diversity of properties that are currently used in sediment fingerprinting

studies, for example radionuclides (Collins et al., 1997b; Evrard et al., 2020a), elemental geochemistry (Collins et al., 1997b;55

Blake et al., 2006; Laceby and Olley, 2015), magnetic susceptibility (Lizaga et al., 2019), organic matter and stable isotopes

(δ13C, δ15N ) (Laceby et al., 2016b; Huon et al., 2018). Collins et al. (2020) listed properties that have recently gained attention,

such as compound-specific stable isotopes (CSSIs) (Gibbs, 2008), environmental DNA (eDNA) (Evrard et al., 2019), the stable

oxygen isotope ratio with the oxygen isotopic composition of phosphate (δ18Op) (Mingus et al., 2019), and diffuse reflectance

spectroscopy in the visible (Martínez-Carreras et al., 2010; Summers et al., 2011; Tiecher et al., 2015), near-infrared (Summers60

et al., 2011) or mid-infrared domains (Brosinsky et al., 2014; Farias Amorim et al., 2021). Theoretically, a larger number of

measured properties should raise the probability of identifying robust tracers (Laceby et al., 2017; Collins et al., 2020; Evrard

et al., 2022). Indeed, tracer selection has a fundamental impact on model predictions and their interpretation (Laceby and Olley,

2015; Laceby et al., 2015; Gaspar et al., 2019), as the inclusion of non-conservative properties in these models was shown to

strongly decrease the overall model quality (Sherriff et al., 2015; Smith et al., 2018; Vale et al., 2022).65

The most conventional approach of tracer selection is a three-step method (TSM) (Collins et al., 2010; Wilkinson et al., 2013;

Laceby et al., 2015; Sherriff et al., 2015). The first step assesses the conservative behaviour, and the second step determines

the capacity of discrimination between sources. The results of both tests allow to select tracers from a potentially wide suite of

measured properties. The third step of this approach consists in the selection of optimal tracers for modelling.

Conservativeness refers to the absence of changes in the property between sources and targets. Sources correspond to ma-70

terials that may have contributed to the formation of the target sediments (e.g. soils under different usages, lag sediment, or

suspended matter). The nature of the target sediments can vary, as it may include material as different as lag sediment, lake sed-

iments, suspended matter, etc. The non-conservativeness of a tracer can be attributed to two phenomena. The first is that particle

size sorting may occur along the transport pathway (Walling et al., 2000). Sediment transport is a physical mechanism which,

depending on runoff magnitude and rainfall intensity, will transport specific particle size fractions, weights and natures (i.e.75

mineral or organic fractions) (Viparelli et al., 2013; Gateuille et al., 2019). In general, the average size of particles decreases

with the distance travelled (Laceby et al., 2017). Fine particles with a higher specific surface area are generally associated

with higher tracer concentrations than coarser material fractions (Horowitz, 1991; Collins et al., 1997a). In order to reduce the

impact of particle size sorting on tracing properties, the < 63 µm fraction is commonly analysed after sieving both source and

target material to this threshold (Laceby et al., 2017). The second phenomena is related to tracer concentration changes due to80

biogeochemical processes occurring during particle transport (Koiter et al., 2013). The changes depend on the tracer tendency

to react to biogeochemical processes, such as dissolution, sorption, oxidation and reduction. Highly reactive elements, such as

Na, Ca and Mg, show a high water-solubility and tend to dissolve when the sediment is immersed. Other elements, such as Ti,

Al, and Si are, in contrast, less susceptible to react in changing conditions, which makes them more suitable tracers (Meybeck

and Helmer, 1989; Phillips and Greenway, 1998).85

To assess property conservativeness, the conventional tracer selection approach compares the range of property values in

source and in target samples. The objective of the range test is to assess whether the range of source values includes all target

sediment sample values (Wilkinson et al., 2013). Various range tests based on different statistics are commonly used in the
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literature: minimum-maximum (Smith and Blake, 2014; Sellier et al., 2021), minimum-maximum ± 10 % (as measurement

error) (Gellis and Noe, 2013; Gellis and Gorman Sanisaca, 2018; Dabrin et al., 2021), box-plot examination (whiskers and90

hinge box) (Sellier, 2020; Batista et al., 2022), mean (Wilkinson et al., 2013; Nosrati et al., 2021), mean plus/minus standard

deviation (sd) (Evrard et al., 2020b; Laceby et al., 2021a), and median (Collins et al., 2013; Batista et al., 2022). In these

range tests, the source property range is defined as the highest and lowest values of the chosen statistics among the source

class. However, range tests do not quantify or confirm the complete absence of any non-conservativeness (Collins et al., 2017;

Sherriff et al., 2015).95

The property’s ability to differentiate between sources, originally proposed by Collins et al. (1997b), determines whether

a property is a discriminant tracer or not. This step allows the selection of tracers that maximise the characterisation of a

specific source. To assess the discrimination power of a given property, the conventional tracer selection approach relies on the

non-parametric Kruskal-Wallis H-test (Hollander, 1973).

Conventionally, after assessing the tracer’s conservativeness and discrimination capacity, a discriminant function analysis100

(DFA) is carried out. Within the DFA, a subset of tracers is selected using a forward stepwise selection procedure based on

Wilk’s Lambda criterion (Collins et al., 1997b). This step aims at selecting the lowest number of tracers that maximises sample

source discrimination, in order to avoid selecting too redundant tracers (Small et al., 2004). However, this practice is currently

debated, as some authors argue that a higher number of tracers can reduce prediction uncertainties (Martínez-Carreras et al.,

2008; Sherriff et al., 2015).105

Another tracer selection method was developed by Lizaga et al. (2020a): the consensus method, which is a procedure based

on the information provided by single tracers in an unmixing context. The consensus method selects tracers combining the

identification of non-conservative behaviour and conflicting tracers. It consists of two tests: the Conservativeness Index (CI)

and the Consensus Ranking (CR). The Conservativeness Index is based on the results of the predictions from single-tracer

models to identify non-conservative and dissenting tracers. The Consensus Ranking is a scoring function based on debates110

aimed at discarding the properties that prevent consensus. Whereas the Conservativeness Index is applied to all target sediment

samples and provide unique results for the entire study, the Consensus Ranking is applied to each individual target sediment

sample, which may result in the selection of different lists of tracers for different target samples.

Selected tracers are then used in un-mixing models to assess the contribution of sources to the target samples. After the use

of simple (Peart and Walling, 1986) and un-optimised quantitative un-mixing models (Collins et al., 1997a), earlier modelling115

approaches were based on deterministic optimisation procedures (Walden et al., 1997) and, more recently, more advanced

approaches have moved towards stochastic procedures using Bayesian or/and Monte Carlo methods (Nosrati et al., 2014;

Laceby and Olley, 2015). In order to assess the overall reliability of the study, it is important to assess the predictive accuracy

of the un-mixing models. Stochastic models produce a distribution of source contributions for which a prediction interval

can be determined, which provides an indicator of modelling accuracy (Batista et al., 2022). The use of artificial mixtures120

allows prediction accuracy to be assessed in more diverse ways by using them as target mixtures with known contributions (i.e.

labelled data). It is then possible to calculate various statistics to describe and evaluate the prediction uncertainty. Although

these mixtures were initially prepared in the laboratory (Martínez-Carreras et al., 2010; Haddadchi et al., 2014; Huangfu et al.,
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2020), the development of virtually generated mixtures (Laceby et al., 2015; Palazón et al., 2015; Sherriff et al., 2015) appears

as a relevant alternative (Batista et al., 2022). However, when artificial mixtures are produced, their properties are not affected125

by erosive processes and are therefore perfectly conservative. The selection of tracers is therefore crucial when assessing the

accuracy of modelling using artificial mixtures to truly reflect reality.

The objectives of the current study are therefore to: (1.a) compare the tracers selection given by two tracer selection ap-

proaches (i.e. three-step method and consensus method), (1.b) assess the impact of the stepwise selection on the three-step

method, (2) evaluate the impact of these different tracer selections on sediment source apportionment prediction accuracy130

using virtual mixtures and (3) draw general recommendations from this evaluation for future sediment fingerprinting studies.

2 Materials and Methods

2.1 Catchment description

The Hayama lake catchment (84 km2), located in the upper part of the Mano River in Northeastern Japan (Fukushima Prefec-

ture, Tohoku Region), is a typical mountainous agricultural catchment of the eastern edge of the Fukushima prefecture. Due135

to the steep topography, cropland is located at the bottom of valleys and in the vicinity of rivers, and it is bordered by forest

on steep mountainous hillslopes. Forestry is the main land use, which covers 91% of the catchment, while cropland and urban

settlements represent respectively 7% and less than 1% (Fig. 1 data from JAXA (2016, 2018, 2021)). However, cropland is

located in places with a high hydro-sedimentary connectivity (Chartin et al., 2013).

Catchment altitude ranges from 170 m to 700 m above sea level. The climate is continental (Dfa), with no dry season and140

hot summer, and bordered to the east by a Cfa temperate climate with no dry season and hot summer according Köppen’s

climatic classification (Beck et al., 2018). The regional hydrological year runs from November to October (Laceby et al.,

2016a; Whitaker et al., 2022). Over the 2006 to 2021 period, the mean annual temperature was 13.6 ± 0.4 ◦C y−1 (standard

deviation), with mean monthly values ranging from −1.5 ◦C in January to 31.1 ◦C in August. The mean annual precipitation

was 1220 ± 189 mm y−1 (sd). The majority of precipitation occurs between June and October, representing 60% of the annual145

rainfall and 86% of the rainfall erosivity (Laceby et al., 2016a). This period corresponds to the Japanese typhoon season with

a peak of intensity in September in the Fukushima Prefecture. Major typhoons were shown to be the main drivers of sediment

production, (Chartin et al., 2017) as they can generate 40% of the annual rainfall erosivity within a very short period (Laceby

et al., 2016a).

The Hayama lake catchment is mainly underlied by non-alkaline mafic volcanic rocks (42%), granite (31%) granodiorite150

(17%) and sedimentary rocks (7%) (supplementary materials S1). Main soil groups, according to the Comprehensive Soil Clas-

sification System of Japan (Obara et al., 2011, 2015, and equivalent soil types according to the World Reference Base for Soil

Resources (WRB) were provided) are: Brown Forest soils (37%; WRB: Cambisols/Stagnosols), Allophanic Andosols (36%;

Silandic Andosols), Cambic Red-Yellow soils (9%; WRB: Cambisols) and Lithosols (9%; WRB: Leptosols) (Supplementary

Materials S2) (data from NARO (2011)).155

All maps and geographical processing were performed using the QGIS software (QGIS Development Team, 2022).

5

https://doi.org/10.5194/egusphere-2023-1970
Preprint. Discussion started: 8 September 2023
c© Author(s) 2023. CC BY 4.0 License.



Figure 1. Map of the main land uses in the study area over the 2014-2016 period with location of source samples and the sediment core

(cartographic data: GSI and JAXA). FDNPP: Fukushima Dai-ichi Nuclear power plant.

2.2 Soil and sediment sampling and processing

All sediment targets were taken from one sediment core sampled on June 8th, 2021 in the downstream part of Hayama lake

(Mano dam lake) at 42 m depth (Fig. 1) by the National Institute of Environmental Studies (NIES) (Japan). The core was

38 cm long with a diameter of 11 cm. It was sectioned into 38 increments of 1 cm. A group of 32 layers was selected for this160

study, from 6 cm to 38 cm depths, which corresponds to a stable land use period. Sediment samples were dried at 40 ◦C for

96 hours.

Soil samples (n = 56) were collected in areas representative of the main potential sediment sources to Hayama lake, including

24 cropland, 22 forest and 10 subsoil (i.e. channel bank or land slide) samples. Some source soils were sampled in the adjacent

Niida River catchment, which is similar to the Hayama lake catchment. A particular care was taken to ensure that these165

samples were representative of the Hayama lake catchment characteristics, in terms of land use, geology and pedology (see in

Supplementary Materials S1, S2 and S3). Soils were sampled with a plastic trowel and consisted of 10 composited sub-samples

of topsoil (1-2-cm uppermost layer). All soil samples were dried at 40 ◦C for about 48 hours and then successively sieved to

2000 µm and 63 µm.

2.3 Laboratory analysis170

Various analyses were conducted to characterise sediment and soil properties: organic matter composition determined by the

combustion method (i.e. total organic carbon (TOC) and total nitrogen (TN)), elemental geochemistry analysed by X-ray

fluorescence (XRF) for 17 elements (i.e. Al, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Rb, Si, Sr, Ti, Zn, and Zr), and visible
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colour indices by diffuse reflectance (i.e. CIE Lab, CIE LCh, geothite peaks intensity (445 and 525 nm (Tiecher et al., 2021))),

the ratio between the % reflectance at 700 nm and 400 nm (Q7/4 (Debret et al., 2011)) and iron oxide-associated parameters175

(A1, A2, A3, Gt (Tiecher et al., 2015)). All analysis methods and calculations are described in the supplementary materials.

Only properties for which the measurement uncertainty is too large were removed from further analysis. The following

criterion has been set: if when considering the measurement uncertainty a majority or the totality of the samples values were

virtually impossible, then the corresponding property was discarded.

2.4 Virtual mixtures180

Virtual mixtures were generated in order to assess model prediction accuracy (Palazón et al., 2015; Smith et al., 2018; Gaspar

et al., 2019; Farias Amorim et al., 2021; Batista et al., 2022). They were shown to provide a reliable alternative to laboratory

mixtures (Batista et al., 2022). Their ease of generation allows the model to be evaluated under a wide range of source contri-

butions. For a given source, virtual mixture contributions were designed to range from 0 to 100%, with 5-percent increments.

The contributions of the other sources to the mixtures were then determined as fractions of the remaining contribution (i.e.185

1−source A contribution), the fractions being in turn determined by the number of sources. The denominators were defined

as: (number of sources−1)∗2, and the numerators were set to 3 and 1 as three groups were considered in the current research

(i.e. 3/4 and 1/4). Permutations were then determined following this contribution scale, which generated a total of 138 virtual

mixtures for the three source groups. For every source group, the mean and standard deviation (sd) of each property were cal-

culated. For each virtual mixture, each source group mean value was multiplied by the corresponding group contribution (e.g.190

cropland 0.40, forest 0.45, subsoil 0.15). Then, all source group values were summed to provide the virtual mixture property

value.

2.5 Tracer selection

2.5.1 Three-Step Method

The three-step method (Mukundan et al., 2010; Sellier, 2020; Batista et al., 2022) is based on three steps: (1) a range test195

to identify conservative properties (Martínez-Carreras et al., 2010; Wilkinson et al., 2013; Gellis and Walling, 2013), (2) a

Kruskal-Wallis H-test to identify discriminant properties (Collins et al., 1997b). Then, (3) a discriminant function analysis

(DFA) forward stepwise selection based on Wilk’s Lambda criterion to identify the best subset of predictors among the identi-

fied tracers (i.e. conservative and discriminant properties) is run (Collins and Walling, 2002).

200

Conservativity.

The conservative behaviour of properties is assessed using a range test. Within a range test, the range of sources is defined

as the highest and lowest values of a criterion of the property among source groups. To be conservative, all the sample property

values should lie within the source range.
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conservative if { sources lower bound ≤ target value ≤ sources upper bound} (1)205

Several range test criteria are found in the literature, these were all applied to identify conservative properties as an alternative

to the three-step method. The most common range test criteria were: minimum-maximum (Smith and Blake, 2014; Sellier

et al., 2021), minimum-maximum ± 10 % (as measurement error) (Gellis and Noe, 2013; Gellis and Gorman Sanisaca, 2018;

Dabrin et al., 2021), boxplot whiskers interpretation (i.e. outlier thresholds) (Sellier, 2020) and boxplot hinge interpretation

(i.e. also referred to as interquartile range (IQR)) (Batista et al., 2022), mean (Wilkinson et al., 2013; Nosrati et al., 2021),210

mean plus/minus one standard deviation (Mean ± SD) (Evrard et al., 2020b; Laceby et al., 2021a), and median (Collins et al.,

2013; Batista et al., 2022) are detailed in Table 1.

Table 1. Equations of the common range test criteria used in the literature to test the conservativity in the three-step method. With si the

source group i from 1 to n the number of source groups, tj the target sample j value with j from 1 to m the number of samples, and µ the

mean and σ the standard deviation (SD). ∗ indicates statistics calculated on log transformed values.

Criterion Range test equation

Minimum-Maximum min(minsi) ≤ tj ≤ max(maxsi)

Minimum-Maximum ± 10% min(minsi ∗ 0.9) ≤ tj ≤ max(maxsi ∗ 1.1)

Hinge min(Qsi(0.25)) ≤ tj ≤ max(Qsi(0.75))

Whiskers min(max(minsi ,Qsi(0.25)− 1.5 IQRsi
)) ≤ tj ≤ max(min(maxsi ,Qsi(0.75)+1.5 IQRsi

))

Mean min(µ∗si
) ≤ tj ≤ max(µ∗si

)

Mean ± SD min(µ∗si
−σ∗si

) ≤ tj ≤ max(µ∗si + σ∗si
)

Median min(mediansi) ≤ tj ≤ max(mediansi)

Discriminant power.

The ability of the property to discriminate between source groups is assessed using a Kruskal-Wallis H-test (Hollander,

1973). This is a non-parametric test that checks whether two or more samples originate from the same distribution, and it215

represents an extension of the Mann-Whitney U-test that compares two samples. Test hypotheses are:

- The null hypothesis (H0): the median across the three groups are equal.

- The alternative hypothesis (H1): At least one of the group median is different from the others.

The test statistic is given by:

H = (N − 1)
∑g

i=1 ni (ri− r)2∑g
i=1

∑ni

j=1(rij − r)2
(2)220

with N the total number of observations across all groups, g the number of groups, ni the number of observations in group

i, rij the rank of observation j from group i, ri the mean rank of all observations for group i and r the mean of all rij .
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Kruskal-Wallis H-tests were performed using the function kruskal.test from the stats package (R Core Team, 2022). For

properties with a p-value below α = 0.5, the null hypothesis is rejected, which means that at least one of the source groups is

different from the others and that the property is therefore discriminant.225

Discriminant Function Analysis.

A discriminant function analysis (DFA) stepwise selection is carried out to identify a subset of predictors among the iden-

tified tracers (Collins and Walling, 2002; Collins et al., 2010). A forward stepwise variable selection based on Wilk’s Lambda

criterion was performed using the function greedy.wilks from the klaR package (Weihs et al., 2005). The function first initiates230

a model with the variable that discriminates groups. Then, the model is extended by including other variables based on Wilk’s

Lambda criterion: the one variable that minimises the Wilk’s Lambda is only included if the model’s p-value remains statis-

tically significant after its inclusion. Wilk’s Lambda statistic tends to zero when the variability between groups is higher than

the variability within each group, then this criterion maximizes the difference between groups. As the use of the DFA stepwise

selection has been criticised because some studies showed that the use of a higher number of tracers decreases the sensitivity235

of the results to non-conservative tracers (Martínez-Carreras et al., 2008; Sherriff et al., 2015), we used the list of identified

tracers before (“no DFA") and after the stepwise selection procedure (“DFA") in order to assess its potential impact on the

calculation of source contributions.

2.5.2 Consensus Method

Lizaga et al. (2020a)’s approach to select properties, referred to as the Consensus Method (CM), is based on two tests: the240

Conservativeness Index (CI) and the Consensus Ranking (CR). In the CM, tracers are selected by identifying non-conservative

behaviour (using the CI test) and dissenting tracers (CR test). The CI of each property is calculated for all target samples

simultaneously, while the CR is calculated for each target sample independently. As a result, a set of tracers is selected for

each target sample. Tests were performed using the 1.3 version of FingerPro (Lizaga et al., 2020b) under R ver. 4.1.2 (R Core

Team, 2021) environment.245

Conservativeness-Index.

The Conservativeness-Index (CI) quantifies how conservative a property is based on the result of a single-tracer model. A

single-tracer model is a standard linear un-mixing model with only one true analysed property and n-2 (n the number of source

groups) virtual tracers. The model is solved to obtain the source contributions. This process is repeated 2000 times, which250

creates a distribution of predictions. The prediction couples (i.e. w1,w2...wn) are sorted according to the Euclidean distance to

a perfectly balanced mixture (i.e. 1
n ). A percentile of the sorted prediction couple is chosen to compute the CI as the root mean

square error (RMSE) of the non-conservative part (nc) of the contribution, as follows:
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CI =−

√√√√
n∑

j=1

(
nc(wj)−

1
n

)2

; with nc(w) =





−w if w < 0

0 if 0 ⩽ w ⩽ 1

w− 1 if w > 1

(3)

with wj of the jth source group predicted contribution of the selected percentile, and n the number of source groups.255

A property is considered as conservative if the CI values is strictly equal to zero.

Consensus Ranking.

Consensus ranking (CR) is an index that quantifies the relevance of each property for the prediction based on a debate

agreement for a single target sample. In each debate, a subset of n+1 randomly selected properties is built and several rounds260

of debates are performed excluding one property each time. The consensus of each debate is measured through the quality of

the mass balance equations. When the exclusion of a property leads to an increase of the subset consensus score (i.e. higher

RMSE of the mass balance equations), the property is considered as dissenting and “lost a debate". The CR of a property is the

ratio between the number of attended debates (set at 2000) and the number of lost debates, and it is calculated as follows:

CR = 100
(

1− lost debates
attended debates

)
(4)265

Properties with a CR score above a certain threshold are considered relevant and are selected. Lizaga et al. (2020a) recom-

mended to select properties with a CR score above 70.

2.6 Source contribution modelling

2.6.1 Un-mixing model

An un-mixing model was run on actual sediment samples and virtual mixtures using the tracers selected by the three-step270

method (TSM) without and with DFA, and the consensus method (CM). To do so, the widely used Bayesian un-mixing model,

MixSIAR, was employed using the R package MixSIAR (Stock et al., 2020, ver. 3.1.12) with JAGS (Stock et al., 2022, ver.

4.3.1) (Collins et al., 2020; Evrard et al., 2022; Lizaga et al., 2020a; Batista et al., 2022). As source and mixture (i.e. sediment

samples or virtual mixtures) tracer data are assumed to be normally-distributed in MiXSIAR, tracers were log-transformed to

enforce a higher degree of normality prior to modelling (Laceby et al., 2021b). The model was run with a “long" Markov Chain275

Monte Carlo sampling algorithm (i.e. Chain length = 300,000, Burn-in = 200,000, Thin = 100 and Chains = 3) with a process

error structure. Model convergence was determined by the Gelman-Rubin diagnostic using the output_JAGS function from

the MixSIAR package, and none of the tracer selection approaches tested had a value greater than 1.05. The median value of

the distribution predicted by MixSIAR was reported as the source contribution for each sediment target and virtual mixture.
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2.6.2 Accuracy assessment280

For each tracer selection approach, MixSIAR prediction accuracy was assessed using virtual mixtures contribution predictions,

for which theoretical source contributions were known a priori. Model’s prediction accuracy was evaluated based on different

criteria: uncertainty (prediction interval width (W50)), residual error or bias (Mean error (ME)), performance (Squared Pear-

son correlation coefficient (r2), root-mean-square error (RMSE), Nash-Sutcliffe modelling efficiency coefficient (NSE) and

continuous ranked probability score (CRPS)). A summary of the metrics, with their formula, unit, range and ideal values is285

provided in Table 2 (Matheson and Winkler, 1976; Bennett et al., 2013; Batista et al., 2022).

Table 2. Formula of model prediction accuracy metrics. With zi and ẑi, respectively, the measured and predicted contributions for the sample

i, z̄ and ¯̂z the measured and predicted mean contribution of all samples, and n the number of samples.

Name Unit Formula Range
Ideal

value

Prediction Interval width (W50) % W50 = Q(0.75)−Q(0.25) (0, 100) 0

Mean Error (ME) % ME = 1
n

∑n
i=1 (zi− ẑi) (−∞, +∞) 0

Root Mean Square Error (RMSE) % RMSE =
√

1
n

∑n
i=1 (zi− ẑi)2 (0, +∞) 0

Squared Pearson’s correlation coefficient (r2) r2 =

( ∑n
i=1(zi−z̄)−(ẑi−¯̂z)√∑n

i=1(zi−z̄)2
√∑n

i=1(ẑi−¯̂z)2

)2

(0, 1) 1

Nash-Sutcliffe modelling efficiency coefficient (NSE) NSE = 1−
∑

(zi−ẑi)
2∑

(zi−z̄i)2
(−∞, 1) 1

Continuous ranked probability score (CRPS) (Fi,zi) =
∫ +∞
−∞ (Fi(zi)−H

{
zi ≤ ẑi

}
)2 (0, +∞) 0

Higher values of W50 indicate a wider distribution, which is related to a higher uncertainty. The sign of the ME indicates

the direction of the bias, i.e. an over- or underestimation (positive or negative value, respectively). As ME is affected by

cancellation, a ME of zero can also reflect a balanced distribution of predictions around the 1:1 line. Although this is not a290

bias, it does not mean that the model outputs are devoid of errors. The RMSE is a measure of the accuracy and allows to

calculate prediction errors of different models for a particular dataset. RMSE is always positive and its ideal value is zero,

which indicates a perfect fit to the data. As RMSE depends on the squared error, it is sensitive to outliers. The r2 describes how

linear the prediction is. The NSE indicates the magnitude of variance explained by the model, i.e. how well the predictions

match with the observations. A negative RMSE indicates than then mean of the measured values provides a better predictor295

than the model. The joint use of r2 and NSE allows a better appreciation of the distribution shape of predictions and thus

facilitates the understanding of the nature of model prediction errors. The CRPS evaluates both the accuracy and sharpness

(i.e. precision) of a distribution of predicted continuous values from a probabilistic model for each sample (Matheson and

Winkler, 1976). The CRPS is minimised when the observed value corresponds to a high probability value in the distribution

of model outputs. The formulae and the full description of this score are available in Jordan et al. (2017) and Laio and Tamea300

(2007). The calculation of the CRPS was performed using the crps_sample function from the scoringRules package (Jordan

11

https://doi.org/10.5194/egusphere-2023-1970
Preprint. Discussion started: 8 September 2023
c© Author(s) 2023. CC BY 4.0 License.



et al., 2019). Model global CRPS value is calculated as the mean of individual CRPS values. In addition to the metric values,

a graphical evaluation of model predictions was performed through plotting observed versus predicted, CRPS sample values

and W50 sample values for each source group.

All data analyses were performed using R (R Core Team, 2022, ver. 4.2.2) within RStudio (RStudio Team, 2022). An R305

package (fingR) implementing the approach followed in this study was developed and is freely available (Chalaux-Clergue and

Bizeul, 2023).

3 Results

According to the measurement uncertainty criterion (s.2.3), the following properties were removed from subsequent analysis:

the elemental concentrations in Co, Cr, Cu, Ni and Rb; the visible colorimetric index A3, and the goethite peak at 445 nm310

(G445), as their measurement uncertainties were too high.

3.1 Tracer selection

3.1.1 Selection of tracers

Three-step method.

The different range tests resulted in unique sets of conservative properties, with only TN and Q7/4 passing all tests (Fig. 2).315

Nevertheless, the majority of tests identified TOC, G525 b*, Al, Ti, L* and C*. The minimum-maximum ± 10 % is the range

test criterion that identified the highest number of properties (19), followed by the minimum-maximum (16) and whiskers

(12). The minimum-maximum ± 10 % range test criterion was the only one that identified Fe, Pb, h, A1 and GT. As the

minimum-maximum criterion, this test identified Ca, K, Mg and Sr as conservative. The mean and median criteria identi-

fied only three (TN, b*, Q7/4) and four properties (TOC, TN, Q7/4, G525), respectively. Among the properties identified as320

conservative, Fe, Mg, Pb and Ti were identified as non-discriminant by the Kruskal-Wallis H-test (p-value = 0.08) and were

therefore removed from the list of potential tracers. Although a majority of tests only identified Ti as conservative, only the

minimum-maximum ± 10 % criterion identified Fe, Mg and Pb. The stepwise selection procedure mostly resulted in the sys-

tematic exclusion of A2, and in the frequent exclusion of TN and G525 while TOC, Al, Si, L*, and Q7/4 were retained by most

of the range test criteria. Among the 16 tracers selected by the minimum-maximum criterion, the stepwise selection discarded325

seven of them (TN, Ca, Sr, b*, C*, A2 and G525). In contrast, the minimum-maximum± 10 % criterion selected 19 tracers and

discarded only five tracers: TOC, TN, Ca, A2 and G525. The outputs of the mean and median criteria were not modified by the

stepwise selection.
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Three-steps Method

TOC TN Al FeCa K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt Q7/4G525

OM Geochemistry Visible colourimetry

TOC TN Al FeCa K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt Q7/4G525

Kruskal-Wallis H-test

Selected tracers - conservative and discriminant properties;      tracers retained by the DFA

Conservativity

Discriminant Power

Properties

Min-Max
Min-Max ± 10%
Whiskers
Hinge
Mean
Mean ± SD
Median

Range test
criterion

Min-Max
Min-Max ± 10%
Whiskers
Hinge
Mean
Mean ± SD
Median

Range test
criterion

*** *** ** *** ** . *** ** . ****** * *** *** *** *** *** ** ** *** *** ***

Figure 2. Tracer selection using the Three-Step Method according to different range test criteria. Green filled circles indicate a property

that passed the conservativity (i.e. range test) or the discriminant power (Kruskal-Wallis H-test) tests. Blue filled diamonds indicate selected

tracers (i.e. properties that passed both conservativity and discriminant power tests) and blue diamonds with white points indicate tracers

retained by the discriminant function analysis (DFA) forward stepwise selection based on Wilk’s lambda criterion. Kruskal-Wallis H-test’s

p-value significance: “∗∗∗" p-value < 0.001; “∗∗" p-value < 0.01; “∗" p-value < 0.05; “." p-value < 0.1; “ " p-value < 1. OM: organic

matter; Min-Max: minimum-maximum; SD: standard deviation.

Consensus method.330

The CI values indicate that TOC, TN, b* and C* were identified as conservative properties (Fig. 3). For these four properties,

all sediment samples (n = 32) obtained a CR score above the threshold (i.e. 70), and were therefore considered relevant and

kept in the list of tracers for further analysis.
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Consensus Method

TOC TN Al FeCa K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt Q7/4G525

OM Geochemistry Visible colourimetry

TOC TN Al FeCa K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt Q7/4G525

Conservativeness Index

Consensus Ranking

Selected tracers

Properties

0.0 0.0 -0.1 -0.5 -4.9 -1.0 -5.7 -3.7 -2.6 -0.1 -0.8 -0.1 -0.2 -1.8 -0.2 -0.4 0.0 0.0 -1.1 -1.3 -0.2 -0.8 -0.1 -0.1

32 32 25 9 1 1 1 0 0 22 5 30 24 1 16 3 32 32 1 0 20 6 25 32

Figure 3. Tracer selection using the Consensus Method. Green filled circles indicate properties selected by the Conservativeness Index (i.e.

CI = 0.0). The value in the circle refers to the number of sediment samples (out of 32) that obtained a Consensus Raking score above the

threshold (i.e. CR ≥ 70). Blue filled diamonds indicate selected tracers. OM: organic matter.

Table 3 summarises the list of tracers selected by each approach.335

Table 3. Tracers selected by the three-step method according to the range test criteria and the consensus method. Tracers underlined and

written in bold were retained by the discriminant function analysis (DFA) forward stepwise selection based on Wilk’s lambda criterion.

Min-Max = minimum-maximum

Tracer selection method
Selected tracers

Range test

Min-Max TOC, TN, Al, Ca, K, Si, Sr, Zn, Zr, L*, a*, b*, C*, A2, Q7/4, G525

Min-Max ± 10% TOC, TN, Al, Ca, K, Si, Sr, Zn, Zr, L*, a*, b*, C*, h, A1, A2, Gt, Q7/4, G525

Whiskers TOC, TN, Al, Si, Zr, L*, a*, b*, C*, A2, Q7/4, G525

Three-step method Hinge TOC, TN, Al, Si, L*, b*, C*, Q7/4, G525

Mean TN, b*, Q7/4

Mean ± SD TOC, TN, Al, L*, b*, C*, A2, Q7/4, G525

Median TOC, TN, Q7/4, G525

Consensus method TOC, TN, b*, C*

3.2 Prediction accuracy of tracer selection methods

The prediction accuracy of the mean range test criterion and consensus method tracer selections were lower for each source

compared to that obtained with the other three-step method range test criteria (Fig. 4). However, the difference in prediction

accuracy was greater between sources within each tracer selection method than between methods. The effect of DFA stepwise

selection was moderate, mainly modifying the prediction accuracy of cropland and forest. On average, W50* values (+ 20%),340

14

https://doi.org/10.5194/egusphere-2023-1970
Preprint. Discussion started: 8 September 2023
c© Author(s) 2023. CC BY 4.0 License.



r2 (+ 0.01) and NSE (+ 0.04) increased, while ME (- 37%), RMSE (- 8%) and CRPS (- 1) decreased. In short, uncertainty

increased (W50*), bias decreased (ME) and performance slightly increased (r2, NSE, CRPS*).

Figure 4. Summary of MixSIAR prediction statistics calculated on virtual mixtures (n = 138) for each tracer selection method: Three-Step

Method range test criteria and Consensus Method for each individual soil source and average of all three sources for each method. Tracers

selected by each method are listed in Table 3. ME: mean error; RMSE: root mean square error; NSE: Nash-Sutcliffe modelling efficiency

coefficient; CRPS: continuous ranked probability score. Note: *Mean values per source.

Regardless of the tracer selection method, the W50* values indicate a higher uncertainty for cropland, followed by forest

and subsoil (Fig. 4). The consensus method, mean and median range test criteria showed higher W50* for each source (21-25,
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13-18 and 11-12% for cropland, forest and subsoil, respectively) among the tracer selection methods. The lowest W50* values345

were obtained by minimum-maximum ± 10 % and minimum-maximum with and without DFA stepwise selection. Overall,

minimum-maximum and minimum-maximum ± 10 % showed homogeneous values over the 0-100% contribution range for

all sources (Fig. 5). The subsoil W50 curves showed no trend over the contribution range for most of the range test criteria,

while there was a slight reduction in W50 values for the median criterion and the consensus method. However, the W50 value

for cropland and forest tended to increase for most of the range test criteria (i.e. whiskers, hinge, mean, mean ± SD, median)350

and the consensus method. This increase was more pronounced for the forest and also for the consensus method, the mean and

median criteria. In addition, the W50 values were more scattered for these tree tracer selections, especially for the contributions

below 60-70%. As observed for the W50* (Fig. 4), the DFA stepwise selection was associated with an increase in W50 values

for all range test criteria.

Figure 5. Relationship between virtual mixture source contributions and prediction interval width (W50) across sources: cropland, forest,

subsoil, according to each tracer selection approach: three-step method range test criteria: minimum-maximum (red circle), minimum-

maximum ± 10% (brown crossed circle) , whiskers (yellow/orange diamond), hinge (green square), mean (blue triangle), mean ± SD (blue

triangle point down), median (blue crossed square), filled and empty symbols correspond to the selection before DFA (no DFA) and after

DFA respectively, and consensus method (CM; purple circle plus).

Regarding the model residuals for all tracer selections except that obtained with the mean criteria, the error for subsoil was355

low (RMSE = 6-8%) with a small bias (ME = -3 - 5%). In contrast, forest and cropland errors were about twice higher (RMSE

= 10-20%), with a negative bias for forest (ME = -19 - -2%) and a positive bias for cropland (ME = 2-11%). Accordingly,

forest and cropland contributions were under- and over-predicted, respectively.
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Then, in terms of model performance, the subsoil predictions were highly linear (r2 = 0.97-0.99) and well predicted (NSE

= 0.92-0.95). For the three-step method criteria, linearity and prediction quality were slightly improved in most cases. Never-360

theless, a slight decrease in precision and accuracy was observed for contributions below 10% and above 80% (Fig. 6). Forest

predictions were highly linear for most tracer selections (r2 = 0.92-0.98), although their prediction quality was lower (NSE =

0.58-0.86) due to an under-estimation (i.e. ME values, Fig 6). This under-estimation was also confirmed by the CRPS values,

which increased strongly and linearly above 20% of forest contribution (Fig. 6). Cropland predictions were relatively linear

(r2 = 0.71-0.89) but not well predicted (NSE = 0.52-0.80), representing the lowest performance among the sources. The CRPS365

curves were U-shaped, with a decrease in accuracy and precision for contributions below 60% and above 70% (Fig. 6). This

pattern was also observed on the observed versus predicted plots in Fig. 7, with a tipping point at around 40 to 60% of the

contribution. In addition, for a contribution below 60%, two types of behaviour were observed regardless of the tracer selection

method considered (Fig. 6). One group of virtual mixtures was well predicted with a small bias and low CRPS values (≤ 0.05),

while another group was significantly less well predicted with a strong positive bias and higher CRPS values (Fig. 7). These370

two groups correspond to virtual mixtures with a dominant proportion of subsoil and forest, respectively. For contributions

above 60%, these two groups converge and no difference can be observed. This suggests that selected tracers were able to

successfully discriminate between subsoil and forest sources, while cropland was confused with one of the other two sources.

Figure 6. Relationship between predicted and observed source contributions: cropland, forest, subsoil, according to each tracer selection ap-

proach: three-step method range test criteria: minimum-maximum (red circle), minimum-maximum± 10% (brown crossed circle) , whiskers

(yellow/orange diamond), hinge (green square), mean (blue triangle), mean ± SD (blue triangle point down), median (blue crossed square),

filled and empty symbols correspond to the selection before DFA (no DFA) and after DFA respectively, and consensus method (CM; purple

circle plus).
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Figure 7. Relationship between virtual mixture source contributions and continuous ranked probability score (CRPS) across sources: three-

step method range test criteria: minimum-maximum (red circle), minimum-maximum ± 10% (brown crossed circle) , whiskers (yellow/o-

range diamond), hinge (green square), mean (blue triangle), mean ± SD (blue triangle point down), median (blue crossed square), filled

and empty symbols correspond to the selection before DFA (no DFA) and after DFA respectively, and consensus method (CM; purple circle

plus).

Among the selection of tracers, the mean range test criterion was the one that resulted in the lower prediction quality. Despite

the fact that subsoil had a prediction quality close to that of the other methods, cropland and forest were poorly predicted (NSE375

= -0.17 and 0.00 respectively), modelled contributions being quite far from the theoretical values (Fig 6; 7)).

In addition, when looking at the predicted source contributions for the sediment core samples (i.e. 32 samples), according

to the tracer selection method and the source, some sample predicted contributions were outside of the range of predicted

contributions on the virtual mixtures. Among the sources, subsoil contributions were most frequently predicted outside of this

range, with only 0 to 44% of the samples being within the respective virtual mixture contribution range. Only for the mean and380

mean± SD without DFA stepwise criteria, 81% of the sediment samples remained within their respective range. For the hinge,

mean, mean ± SD and median, the totality of sample cropland contributions corresponded to the respective virtual mixture

contribution range and, for forest, the number of samples within correspond range was from 84 to 91%. The numbers of sample

with predicted contributions for forest and subsoil remaining within similar ranges were much lower for minimum-maximum,

minimum-maximum ± 10% and whiskers without DFA (0-41%) while they were higher for cropland (84-97%). However, for385

the minimum-maximum and minimum-maximum ± 10% with DFA, no sediment sample predicted contributions were within

the range of virtual mixture predicted contributions for all sources. Overall, the DFA stepwise selection tended to reduce the

number of matching sediment sample predicted contributions, regardless of the range test criteria. Regarding the consensus
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method, 100% of forest, 31% of cropland and 19% of subsoil predicted contributions remained within the respective virtual

mixture predicted contribution range.390

3.3 Source contribution predictions

The tracer selection methods resulted in three types of source contribution trends: strong dominance of forest, strong dominance

of cropland, and equivalent contribution of forest and cropland (Fig. 8).

For all approaches, subsoil contributions were low and stable, for most methods from 0 ± 1 to 8 ± 3 %. The mean and

mean ± SD criteria without DFA led to higher and more variable subsoil contributions than other methods, 12 ± 5 % versus395

about 4 ± 2 %. The relationship between cropland and forest was different depending on the tracer selection method. For

the consensus method, the mean and median criteria led to model outputs showing that cropland was dominant compared to

forest along the sediment core. In contrast, according to the mean ± SD and hinge criteria, the contributions of cropland and

forest were modelled to be similar or with only a slight dominance of forest. Finally, for the minimum-maximum, minimum-

maximum ± 10% and whiskers criteria, the model calculated a strong dominance of forest over cropland. The DFA did not400

really affect the trends in the contributions of cropland and forest for the mean ± SD and hinge criteria, although it resulted

in a significant smoothing of the contribution values for the minimum-maximum, minimum-maximum ± 10% and whiskers

criteria. The contribution of cropland was greatly reduced from 16-27% to 2-8%, and the dominance of forest increased from

67-80% to 89-97%, resulting in an almost unique and stable contribution from forests along the entire core. However, the

contributions of cropland and forest showed similar variations and tendencies along the sediment core for all tracer selection405

methods, although their values were significantly different. Samples taken at 9/10-10/11, 11/12-13/14, 19/20-20/21 and 24/25-

07/28 cm depths were associated with higher contributions from forest and lower contributions from cropland compared to

upper/lower samples.

The selected tracers did not provide the same intrinsic information and therefore did not provide the same ability to discrim-

inate between the sources (Fig. 9). For most of the tracers, the following relationship between source group signatures (i.e.410

mean and sd of log transformed values) was observed: cropland showed intermediate values, with either forest (TOC, TN) or

subsoil (Al, Si, L*, a*, b*, C*, A2, Q7/4, G525) being the highest values. For most of them, cropland had similar values as those

of forest (TOC, TN, Si, a*, b*, C*, A2, Q7/4) or subsoil (G525). For a few tracers, cropland had the higher values with either

subsoil (Zn, Gt) or forest (h) corresponding to the the lower values. However, for h, the signatures of cropland and subsoil were

similar, and this similarity was also observed for Zn in cropland and forest, and for Gt in forest and subsoil sources. In addition,415

for some selected tracers (Ca, K, Sr, Zr, A1), all source signatures were all very close and hardly distinguishable, making the

information derived from the relationships between sources less clear.

Depending on the tracer, sediment sample values did not show the same position in relation to the source signatures (Fig. 9.

For some tracers, sample values were close to those of cropland (i.e. Zn, b*, A1, Q7/4), forest (Al, K, Zr, L*) or subsoil (a*,

C*, h). However, for most of the tracers (i.e. TOC, TN, Ca, Si, Sr, A2, Gt, G525) samples values were intermediate between420

those of cropland and forest.
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Figure 8. Predicted source contributions for the sediment core samples according to each tracer selection approach: the different range tests

criteria of the three-step method: minimum-maximum (red circle), minimum-maximum ± 10% (brown crossed circle), whiskers (yellow/o-

range diamond), hinge (green square), mean (blue triangle), mean ± SD (light blue triangle point down), median (purple crossed square),

empty and filled symbols correspond to the use of DFA or not, and consensus method (CM; light purple circle plus). The error buffer ribbons

around the plotted values correspond to the respective RMSE values calculated on virtual mixtures.
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Figure 9. Log transformed tracer values in sediment core samples (black dot, and measurement uncertainty = grey buffer) and potential

source signatures (vertical line = mean value; buffer zone = standard deviation).

4 Discussion

4.1 Conservativity assessment

The different tests used to assess conservativeness, the three-step method range test using different criteria and the consen-

sus method conservativeness index, resulted in a more or less restrictive selection of properties. These tests can be divided425

into three groups according to the number of properties selected, from the least restrictive (minimum-maximum, minimum-

maximum ± 10%, whiskers), the moderately restrictive (hinge, mean ± SD), to the more restrictive (conservativeness index,

mean, median). Overall, the conservativity tests tended to mainly identify the same properties as being conservative: TOC, TN,

b*, C*, and Q7/4.

In this study, all the tests identified organic matter properties as conservative (i.e. TOC and TN), except for the mean430

criterion, which did not select TOC. To assess the composition of organic matter, whether from terrestrial and/or freshwater-

originating material, the distribution of δ13C versus C/N ratio can be compared to thresholds (Lamb et al., 2006). In a previous

study conducted on a sediment core sampled from the same site in Hayama Lake in 2014, Huon et al. (2018) concluded to the

absence of an autochtonous input of freshwater-originating organic matter, which was confirmed in our data (see Supplementary

material fig. S1). Organic matter, and especially carbon are expected to provide a conservative property (García-Comendador435

et al., 2023) and this is supported by their widespread selection.
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Among the geochemical properties, Al, Ti and Si were frequently selected by range tests. This can be explained by their well-

known low solubility (Meybeck and Helmer, 1989; Phillips and Greenway, 1998; Koiter et al., 2013), and more specifically for

Al and Si, which are constituents of clay sheets, and given the granitic geological context of the study area (see Supplementary

Material Fig. S2). However, these geochemical properties are sensitive to grain size sorting occurring along the transport440

pathway as they are clays sheets constituents. Other geochemical properties that were rarely selected (i.e. Fe, Pb, Ca, K) or

systematically rejected, such as Mn, are associated with higher solubility or higher desorption susceptibility (Koiter et al.,

2013; García-Comendador et al., 2023; Meybeck and Helmer, 1989; Phillips and Greenway, 1998).

Among the visible colour indices, all conservativity tests selected Q7/4, while other indices such as G525, b*, C*, and L* were

widely selected. The colour indices L*, b* and C* were highly correlated (Pearson r2 from -0.61 to -0.77, see Supplementary445

Materials Table. II) with organic matter properties (i.e. TOC and TN) that were also identified as conservative. This is consistent

with the fact that organic matter and iron oxides are the main soil colouring elements. The existence of different visible colour

spaces allows to selected the most appropriate space and indices according to the local context (Viscarra Rossel et al., 2006).

These colour spaces are interconnected and transformation of indices can be achieved with simple mathematical formula.

However, care must be taken to avoid multicolinerarity when using multiple indices from different colour spaces together, as450

redundancy of information tends to degrade modelling accuracy (Cox et al., 2023). However, the visible colour parameters are

quite sensitive to spatial and temporal variations (García-Comendador et al., 2023). The acquisition of other spectral regions

such as Vis-NIR, NIR and MIR appears to be more robust (Chen et al., 2023), especially as these regions are a powerful and

reliable way to obtain extensive range of properties and information on the sample with the advantages of being rapid, cost-

effective and non-destructive measurement (Soriano-Disla et al., 2014). Of note, in order to ensure the exchange of spectra455

within the community, the adoption of a common protocol and/or the provision of calibration spectra using inter-calibration

samples should be discussed, as spectra tend to be instrument-dependent (Pimstein et al., 2011).

Regarding the conservativeness index, it was a restrictive method compared to most range test criteria, selecting only four

properties, which is in the same order of magnitude as the number of properties selected by the mean and median range

test criteria. Nevertheless, some properties selected by other range test criteria, which were a priori conservative properties,460

showed a score close to the threshold of 0.00 defined by Lizaga et al. (2020a). Thus, Al, Si, Ti, Q7/4 and G525 obtained a

conservativeness index equal to -0.1, while it was equal to -0.2 for Zn, L* and A2. This could indicate that properties that

yielded a conservativeness index score close to the threshold (i.e. 0.00) were not strictly conservative (e.g. size sorting for Al,

Si and Ti). We suggest that either the conservativeness index can be used to identify less conservative properties in a selection

resulting from different tests.465

Of all the different tests compared to assess conservativeness, the mean ± SD and hinge range test criteria selected the most

relevant sets of properties. The mean and median range test criteria and the conservativeness index also provided relevant sets

of properties, but they selected too few tracers, which could be a limitation for fingerprinting modelling.

As this study shows, a priori and field knowledge are essential to assess the relevance of conservativeness assessments

(Laceby et al., 2015; Koiter et al., 2018; Batista et al., 2019). However, this knowledge is not sufficient and not usable for470

all measured properties, especially for relatively new properties as colour parameters, due to their complex relationship with
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environmental processes. Other studies developed particle size and organic matter corrections, which were shown to be effective

(Laceby et al., 2017; Koiter et al., 2018). However, they require additional measurements and are site-specific (Koiter et al.,

2018), which is not in line with the desired simplification of the technique. Therefore, it is essential to develop cost-, time-

effective and generalised methods (Koiter et al., 2018).475

4.2 Tracer selection and contribution modelling

The consensus ranking index was designed to select properties based on their relevance to prediction, as they maximise con-

vergence. Of the 24 properties considered in the current research, only the TOC, TN, b*, L*, and G525 reached a consensus

ranking score above 70 (Fig. 3). These properties were redundant, as they showed very similar trends along the sediment core

(Fig. 9). By maximising the consensual aspect of the properties, consensus raking favours redundant properties and discards480

descendant properties that could nevertheless be relevant, and this may lead to an information gap. Descendant properties can

provide complementary information, as properties do not discriminate between sources in the same way.

Indeed, the selection of consistent properties can result in the prediction of the dominant source while ignoring other sources.

In this study, the consensus ranking selected properties for which sediment values were close to cropland signature or were

intermediate between cropland and forest values (Fig. 9), which explains the dominance of cropland contribution calculated by485

CM (Fig. 8).

Conversely, the Discriminant Function Analysis (DFA) stepwise procedure of the three-step method aims to maximise the

difference between properties to minimise redundant information, which could reduce the prediction quality of MixSIAR (Cox

et al., 2023). In this study, the use of the DFA improved model accuracy for all the range test criteria (Fig. 4), but it also

decreased the concordance between results obtained for virtual mixtures and sediment sample contributions. In each case, the490

number of sediment for which predicted contributions fell outside of the range of the virtual mixture predicted contributions

increased. In addition, DFA application tended to reduce source contribution variations (Fig. 8), which is not in line with the

sediment fingerprinting objectives. In the case of a reliable tracer selection, as offered by the mean ± SD and hinge range,

DFA application is less relevant. Overall, the impact of the DFA on tracer selection modelling outputs needs to be clarified. It

is therefore preferable to run the model with both selections, and keep the most relevant one.495

From the different tracer selections, which were all distinct, three main tendencies were observed in terms of modelled

contributions (Fig. 8). On the one hand, extensive tracer selections, such as minimum-maximum, minimum-maximum ± 10%

and whiskers criteria, resulted in a modelled dominance of the forest contribution over cropland and subsoil. On the other hand,

restrictive selections of tracers, such as the consensus method, mean and median criteria, resulted in a modelled dominant

contribution of cropland. Finally, methods that selected an intermediate number of tracers, i.e. mean± SD and median criteria,500

led to the prediction of a balanced contribution between forest and cropland. This major impact of the tracer selection methods

on the source contribution modelling was demonstrated by multiple studies (Laceby et al., 2015; Palazón et al., 2015; Smith

et al., 2018; Gaspar et al., 2019).

However, in the current research, all methods agreed on a low subsoil contribution associated with high modelling accuracy

statistics (Fig. 4). It can be assumed that since all tracer selection methods selected TN, b* and C*, they allowed to predict505

23

https://doi.org/10.5194/egusphere-2023-1970
Preprint. Discussion started: 8 September 2023
c© Author(s) 2023. CC BY 4.0 License.



the general trend of the subsoil contribution behaviour. Thus, methods that selected additional tracers, such as mean ± SD and

median criteria, did not result in significant modifications of the trend. However, the methods that selected a large number of

tracers (i.e. minimum-maximum, minimum-maximum ± 10%, whiskers) resulted in a large reduction or even disappearance

of the subsoil contribution. The need for few tracers to predict subsoil with a good prediction accuracy can be explained by

its significantly different signature compared to forest and cropland (Fig. 9). Most of the modelling limitations were related510

to the prediction quality for cropland and forest, as their respective signatures were very close to each other for many tracers

(Fig. 9). However, the same variations, i.e. higher forest and lower cropland contributions, were observed for most methods.

These variations could be explained by the information provided through the incorporation of TN and TOC contents, which

were the most frequently selected tracers. That is consistent with the results of Huon et al. (2018), which associated a higher

TOC content with a high forest contribution. Furthermore, for the methods that selected Al, these variations were sharper and515

more detailed, especially for samples collected from the upper part of the sediment core (i.e. depth of 7 to 17 cm).

Of note, additional metrics, such as sensitivity analysis or variable importance approach, could provide a more detailed

understanding of the role of each tracer in contribution predictions (Russi et al., 2008; Bennett et al., 2013; Wei et al., 2015).

4.3 Assessing modelling prediction accuracy

The generation of virtual mixtures allowed the evaluation of model prediction accuracy for a wide range of source contributions.520

The use of several metrics allowed to describe different aspects of the modelling (i.e. residuals, accuracy and precision) and to

better interpret the prediction on real sediment samples (Latorre et al., 2021; Batista et al., 2022). The graphical representation

of the metrics (Figs. 5, 6, and 7) allowed to identify ranges of source contributions with different prediction accuracies. This

understanding of the model supports a better appreciation and interpretation of predictions on sediment samples.

However, for most of the tracer selections studied here, some or all of the predicted contributions of sediment samples525

fell outside of the range of the virtual mixture predicted contributions (Fig. 6 and 8). It should be noted that the range of

virtual mixture predicted contributions defines the minimum and maximum possible predictions for a mixture, virtual or real,

that may be obtained with a given set of tracers. Therefore, the occurrence of sediment samples with predicted contributions

outside of this range implies that tracer values were different from those expected when generating virtual mixtures. In fact,

when generated as a simple proportional mixture of source tracer properties, virtual mixtures are based on the assumption530

of a strict conservativity of properties (Palazón et al., 2015; Smith et al., 2018; Batista et al., 2022). Therefore, the use of

non-conservative tracers will result into the generation of virtual mixture property values that differ from those observed in

reality. As a result, the evaluation of model prediction accuracy with these biased virtual mixtures provides an unrealistic

evaluation of the model (Batista et al., 2022). This was observed here with extensive tracer selections, such as minimum-

maximum, minimum-maximum ± 10% and whiskers, that led to better prediction accuracy metrics than more restrictive ones535

(i.e. hinge, mean, mean± SD, median, consensus method) (Fig. 4). Nevertheless, these extensive selections resulted in a much

lower number, and sometimes the absence of sediment sample predicted contributions matching those of virtual mixtures.

This reduces confidence in the significance of the calculated metrics. It is therefore essential to correctly identify conservative

properties in order to generate realistic virtual mixtures and thus allow a correct evaluation of the model prediction accuracy.
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We recommend to assess the number of sample predicted contributions which are within the virtual mixtures range of predicted540

contributions (i.e. minimum and maximum) to assess possible divergence of properties and therefore the reliability of evaluation

metrics calculated with virtual mixtures.

In addition, all potential tracing properties are likely not modified in the same way by erosion processes (Koiter et al., 2013),

and assessing quantitatively the extent to which a property is affected (i.e. depletion or enrichment) (García-Comendador et al.,

2023) could support the generation of more realistic virtual mixtures, and thus bring model evaluation closer to reality.545

5 Conclusions

In this study, we compared two source sediment fingerprinting tracer selection methods, the most conventional three-step

method and the consensus method, on their tracer selections, and their source contribution predictions for the same dataset.

Conservativity tests of both methods were compared, along with several three-steps method range test criteria and the con-

sensus method conservativeness index. The different conservativity tests resulted in a more or less restrictive identification550

of conservative properties. On the one hand, the minimum-maximum, minimum-maximum ± 10% and whiskers range test

criteria were not restrictive enough and selected non-conservative properties. On the other hand, mean and median criteria and

the conservativeness index were too restrictive and selected too few properties, which can lead to limitations when modelling

source contributions in target samples. The mean ± SD and hinge criteria resulted in a moderate and relevant identification of

conservative properties. In addition, within the three-step method, the impact of Discriminant Function Analysis (DFA) step-555

wise selection on tracer selection was evaluated. Although the use of DFA tracer selections showed an improvement of model

accuracy, it was associated with a decrease of concordance between virtual mixtures and sediment sample contributions, and a

smoothing of contribution variations along the sediment core. However, in order to clarify DFA impact on model outputs, we

recommend to run and compare the impact of both selections in other studies.

Although the different methods resulted in different selections of tracers, three main contribution tendencies were observed560

in relation with the number of selected tracers: extensive selections of tracers resulted in a strong dominance of forest, restrictive

selections of tracers in a dominant contribution of cropland, and a balanced contributions of forest and cropland was obtained

when selecting an intermediate number of tracers.

To assess modelling accuracy, 138 virtual mixtures were generated as proportional mixtures of sources. Several modelling

accuracy metrics were computed for each tracer selection. These metrics and their associated representations provided a better565

understanding of each tracer selection impact on modelling uncertainty. However, for most of the tracer selections, a great

or lesser number of sample predicted contributions fell outside of the range of the virtual mixture predicted contributions.

This implies that tracer selections contained non-conservative or not strictly conservative tracers. It is therefore fundamental

to correctly identify conservative properties to avoid the generation of biased virtual mixtures and therefore the calculation of

unrealistic modelling accuracy metrics.570

Among the compared methods, the three-step method using the mean ± SD or hinge range test criteria selected the most

reliable set of tracers. However, the high variability of selected tracers among the three-step method, the consensus method
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and within the three-step method range test criteria, and their strong impact on modelling output results, may raise concerns

regarding the validity of quantitative outputs, which may not meet the ultimate goal sought for by fingerprinting approaches

as they are currently implemented by the scientific community. Consequently, to avoid a potential loss of confidence of stake-575

holders regarding the validity of the outputs of this method in the future, it is essential to take as much care as possible to

conduct an accurate and reliable identification of conservative properties, as the whole methodology and the ultimate results

rely on this initial step. This is fundamental both for improving our understanding of erosion and sedimentation processes and

for guiding the implementation of effective landscape management measures. Accordingly, we encourage our colleagues from

the scientific community to share their tracing datasets obtained in contrasted environmental conditions around the world in580

order to contribution to the further improvement and evaluation of sediment source fingerprinting techniques.
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