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Abstract. In a context of accelerated soil erosion and sediment supply to water bodies, sediment fingerprinting techniques have

received an increasing interest in the last two decades. The selection of tracers is a particularly critical step for the subsequent

accurate prediction of sediment source contributions. To select tracers, the most conventional approach is the three-step method,

although, more recently, the consensus method has also been proposed as an alternative. The outputs of these two approaches

were compared in terms of identification of conservative properties, tracer selection, modelled contributions and performance5

on a single dataset. As for the three-step method, several range test criteria were compared, along with the impact of the

discriminant function analysis (DFA).

The dataset was composed of tracing properties analysed in soil (three potential sources; n = 56) and sediment core samples

(n = 32). Soil and sediment samples were sieved to 63 µm and analysed for organic matter, elemental geochemistry and diffuse

visible spectrometry. Virtual mixtures (n = 138) with known source proportions were generated to assess model accuracy of10

each tracer selection method. The Bayesian un-mixing model MixSIAR was then used to predict source contributions on both

virtual mixtures and actual sediments.

The different methods tested in the current research can be distributed into three groups according to their sensitivity to the

conservative behaviour of properties, which was found to be associated with different predicted source contribution tendencies

along the sediment core. The methods selecting the largest number of tracers were associated with a dominant and constant15

contribution of forests to sediment. In contrast, the methods selecting the lowest number of tracers were associated with a

dominant and constant contribution of cropland to sediment. Furthermore, the intermediate selection of tracers led to more

balanced contributions of both cropland and forest to sediments.

The prediction of the virtual mixtures allowed to compute several evaluation metrics, which are generally used to support

the evaluation of model accuracy for each tracer selection method. However, strong differences or absence of correspondence20

were observed between the range of predicted contributions obtained for virtual mixtures and those values obtained for actual

sediments. These divergences highlight the fact that evaluation metrics obtained for virtual mixtures may not be directly
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transferable to models run for actual samples and must be interpreted with caution, to avoid over- or mis-interpretation. These

divergences may likely be attributed to the occurrence of a non(-fully) conservative behaviour of potential tracing properties

during erosion, transport and deposition processes, which could not be fully reproduced when generating the virtual mixtures25

with currently available methods.

Future research should develop novel metrics to quantify the conservative behaviour of tracing properties during erosion and

transport processes. Furthermore, new methods should be designed to generate virtual mixtures closer to reality and to better

evaluate model accuracy. These improvements would contribute to the development of more reliable sediment fingerprinting

techniques, which are needed to better support the implementation of effective soil and water conservation measures at the30

catchment scale.

Copyright statement. TEXT

1 Introduction

During the last several decades, an acceleration of soil erosion has been observed in response to land use changes or farming-

practice modifications in several regions around the world (Poesen, 2018; FAO, 2019). Moreover, global warming will likely35

further increase the frequency of erosive storms and the associated soil losses (OCC, 2015; Li and Fang, 2016). This accel-

eration of soil erosion leads to an increase of on-site and off-site negative socio-environmental impacts (Lal, 1998, 2001),

including the deterioration of soil agronomic properties (Pimentel, 2006; Montgomery, 2007), the transfer of pollutants asso-

ciated with soil particles (e.g. pesticides, herbicides, chemical fertilizers, heavy metals, radionuclides) (Lal, 1998; Bing et al.,

2013; Debnath et al., 2021), the alteration of soil organic carbon stocks (Olson et al., 2016; Lal, 2019), the degradation of40

aquatic ecosystems (e.g. eutrophication, increased turbidity) (Kemp et al., 2011; Issaka and Ashraf, 2017) and an increased

sediment supply to waterbodies (e.g. reservoir and bay siltation) (Collins et al., 2020). The identification of soil erosion sources

is therefore essential to prevent water-erosion-induced land degradation and its associated effects.

The sediment source fingerprinting technique was initially developed to determine the origin of sediment (Wall and Wilding,

1976; Peart and Walling, 1986; Loughran et al., 1987). After initial qualitative studies (Wall and Wilding, 1976; Loughran et al.,45

1987), the subsequent development of quantitative un-mixing models (Peart and Walling, 1986; Walling and Woodward, 1992;

Collins et al., 1997a) made it possible to estimate the contributions of different sources to target sediment samples. Since then,

the technique has received increasing attention (Collins et al., 2020; Batista et al., 2022). Overall, the goal of sediment tracing

studies has been to improve our understanding of sediment transfer processes and to guide landscape management (Laceby

et al., 2015; Owens et al., 2016). However, in practice, the technique has mainly been used by scientists as a research tool and50

few direct applications by landscape managers have been reported (Minella et al., 2008; Collins et al., 2020; Xu et al., 2022).

This likely demonstrates that, despite some homogenisation and simplification efforts (Mukundan et al., 2012; Collins et al.,
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2017; Evrard et al., 2022), the technique remains too complex and the development of simpler and more robust procedures

would allow for its wider application (Xu et al., 2022).

In the last few years, there has been a renewed interest among the sediment fingerprinting community in methodological55

issues associated with the technique, such as the tracer selection methods (i.e., the identification of fingerprint properties

suitable for source discrimination and apportionment) (Collins and Walling, 2004; Laceby et al., 2017; Collins et al., 2020;

Evrard et al., 2022). This stems from the large diversity of properties that are currently used in sediment fingerprinting studies,

for example radionuclides (Collins et al., 1997b; Evrard et al., 2020a), elemental geochemistry (Collins et al., 1997b; Blake

et al., 2006; Laceby and Olley, 2015), magnetic susceptibility (Lizaga et al., 2019), organic matter and stable isotopes (δ13C,60

δ15N ) (Laceby et al., 2016b; Huon et al., 2018). Collins et al. (2020) listed properties that have recently gained attention, such

as compound-specific stable isotopes (CSSIs) (Gibbs, 2008), environmental DNA (eDNA) (Evrard et al., 2019), the stable

oxygen isotope ratio with the oxygen isotopic composition of phosphate (δ18Op) (Mingus et al., 2019), and diffuse reflectance

spectroscopy in the visible (Martínez-Carreras et al., 2010; Summers et al., 2011; Tiecher et al., 2015), near-infrared (Summers

et al., 2011) or mid-infrared range (Brosinsky et al., 2014; Farias Amorim et al., 2021). Theoretically, a larger number of65

measured properties should raise the probability of identifying robust tracers (Laceby et al., 2017; Collins et al., 2020; Evrard

et al., 2022). Indeed, tracer selection has a fundamental impact on model predictions and their interpretation (Laceby and Olley,

2015; Laceby et al., 2015; Gaspar et al., 2019), as the inclusion of non-conservative properties in models was shown to strongly

decrease the overall model quality (Sherriff et al., 2015; Smith et al., 2018; Vale et al., 2022).

The most conventional approach of tracer selection is a three-step method (TSM) (Collins et al., 2010; Wilkinson et al.,70

2013; Laceby et al., 2015; Sherriff et al., 2015). The first step assesses the conservative behaviour of each property, and the

second step determines their capacity to discriminate between sources. The joint use of both tests allows to select tracers

from a potentially wide suite of measured properties. The third step of this approach consists of selecting optimal tracers for

modelling.

Conservative behaviour refers to the absence of changes in the property between sources and targets. Sources correspond75

to materials that may have contributed to the formation of the target sediments (e.g. land uses, land covers, river banks,

roads, landslides). The nature of the target sediments can vary, as it may include material as different as lag sediment, lake

sediments, suspended matter, etc. The non-conservative behaviour of a tracer can be mainly attributed to two phenomena.

The first is that particle size sorting may occur along the transport pathway (Walling et al., 2000). Sediment transport is a

physical mechanism which, depending on runoff magnitude, rainfall intensity, river discharge, and other hydro-sedimentary80

components, will transport specific particle size fractions, weights and composition (i.e. mineral or organic fractions) (Viparelli

et al., 2013; Gateuille et al., 2019). In general, the average size of particles decreases with the distance travelled (Laceby et al.,

2017). Fine particles with a higher specific surface area are generally associated with higher tracer concentrations than coarser

material fractions (Horowitz, 1991; Collins et al., 1997a). In order to reduce the impact of particle size sorting on sediment

properties, the < 63 µm fraction is commonly analysed after sieving both source and target material to this threshold when85

studying properties preferentially enriched in or sorbed onto fine particles (i.e. clays or silts) (Collins et al., 1997a; Gellis and

Noe, 2013; Laceby et al., 2017) such as radionuclides, heavy metals or pesticides (Collins et al., 2020; Evrard et al., 2022).
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The second phenomena is related to tracer concentration changes due to biogeochemical processes occurring during particle

transport (Koiter et al., 2013). The changes depend on how tracer are affected by biogeochemical processes, such as dissolution,

sorption, oxidation and reduction. Highly reactive elements, such as Na, Ca and Mg, show a high water-solubility and tend to90

dissolve when the sediment is immersed. Other elements, such as Ti, Al, and Si are, in contrast, less susceptible to react in

changing conditions (i.e. redox conditions), which makes them more suitable tracers (Meybeck and Helmer, 1989; Phillips and

Greenway, 1998).

To assess the conservative behaviour of the property, in the first step of the TSM, the range of property values in source

and target samples are compared. The objective of the range test is to assess whether the range of source values includes all95

individual target sediment sample values (Wilkinson et al., 2013). Various range tests based on source group statistics are com-

monly used in the literature: minimum-maximum (Smith and Blake, 2014; Sellier et al., 2021), minimum-maximum ± 10%

(as measurement error) (Gellis and Noe, 2013; Gellis and Gorman Sanisaca, 2018; Dabrin et al., 2021), box-plot examination

(whiskers and hinge box) (Sellier, 2020; Batista et al., 2022), mean (Wilkinson et al., 2013; Nosrati et al., 2021), mean plus/mi-

nus standard deviation (SD) (Evrard et al., 2020b; Laceby et al., 2021), and median (Collins et al., 2013; Batista et al., 2022).100

In these range tests, the source property range is defined as the highest and lowest values of the chosen statistics among the

source groups. However, range tests do not quantify or confirm the complete absence of non-conservative behaviour (Collins

et al., 2017; Sherriff et al., 2015).

The property’s ability to differentiate between sources, originally proposed by Collins et al. (1997b), determines whether

a property is a discriminant tracer or not. This second step of the TSM allows the selection of tracers that maximise source105

discrimination. To assess the discrimination power of a given property, the conventional tracer selection approach relies on the

non-parametric Kruskal-Wallis H-test (Hollander, 1973). The result of the Kruskal-Wallis H-test indicates that at least one of

the groups differs from the other for a given property. Other tests, such as Dunn’s, Mann-Whitney U or Kolmogorov-Smirnov

tests, can be used to determine the discriminatory power of a given property for each individual source (e.g. forest versus

cropland versus subsoil).110

Conventionally, after assessing the tracer’s conservative behaviour and discrimination capacity, the third step of the TSM

is to conduct a discriminant function analysis (DFA) or a principal component analysis (PCA). When applying the DFA, a

subset of tracers is selected using a forward stepwise selection procedure based on Wilk’s Lambda criterion (Collins et al.,

1997b). This step aims at selecting the lowest number of tracers that maximises sample source discrimination, in order to

avoid selecting redundant tracers (Small et al., 2004). However, this practice is currently debated, as some authors argue that a115

higher number of tracers can improve source dimensionality and definition, and alleviate the impact of non-conservative tracers

(Martínez-Carreras et al., 2008; Sherriff et al., 2015).

Another tracer selection method, the consensus method (CM), was developed by Lizaga et al. (2020a). It is based on the

information provided by single tracers in an unmixing context. The CM selects tracers combining the identification of non-

conservative behaviour and conflicting tracers. It consists of two tests: the Conservativeness Index (CI) and the Consensus120

Ranking (CR). The CI is based on the results of the predictions from single-tracer models to identify non-conservative and

dissenting tracers. The CR is a scoring function based on debates aimed at discarding the properties that prevent consensus.
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Whereas the CI is applied to all target sediment samples and provide unique results for the entire study, the CR is applied to

each individual target sediment sample, which may result in the selection of different lists of tracers for different target samples.

Selected tracers are then used in un-mixing models to assess the contribution of sources to the target samples. After the use125

of simple (Peart and Walling, 1986) and quantitative un-mixing models (Collins et al., 1997a), earlier modelling approaches

were based on deterministic optimisation procedures (Walden et al., 1997) and, more recently, more advanced approaches have

moved towards stochastic procedures using Bayesian or/and Monte Carlo methods (Small et al., 2002; Martínez-Carreras et al.,

2008; Nosrati et al., 2014; Laceby and Olley, 2015). In order to assess the overall reliability of the study, it is important to assess

the predictive accuracy of the un-mixing models. Stochastic models produce a distribution of source contributions for which130

a prediction interval can be determined, which provides an indicator of modelling accuracy (Batista et al., 2022). The use of

artificial mixtures allows prediction accuracy to be assessed in more diverse ways by using them as target mixtures with known

contributions. It is then possible to calculate various statistics to describe and evaluate the prediction uncertainty. Although

these mixtures were initially prepared in the laboratory (Martínez-Carreras et al., 2010; Haddadchi et al., 2014; Huangfu et al.,

2020), the development of virtually generated mixtures (Laceby et al., 2015; Palazón et al., 2015; Sherriff et al., 2015) appears135

as a relevant alternative (Batista et al., 2022). However, when artificial mixtures are produced, their properties are not affected

by erosive processes and are therefore perfectly conservative.

The objectives of the current study are therefore to: (1) compare the tracer selections given by two approaches (i.e. three-step

method and consensus method), (2) assess the impact of the stepwise selection on the TSM selections of tracers, (3) evaluate

the impact of these different selections of tracers on sediment source apportionment prediction accuracy using virtual mixtures140

and (4) draw general recommendations from this evaluation for future sediment fingerprinting studies.

2 Materials and Methods

2.1 Catchment description

The Hayama Lake catchment (84 km2), located in the upper part of the Mano River in Northeastern Japan (Fukushima Prefec-

ture, Tohoku Region), is a typical mountainous agricultural catchment of the eastern edge of the Fukushima prefecture. Due145

to the steep topography, cropland is located at the bottom of valleys and in the vicinity of rivers, and it is bordered by forest

on steep mountainous hillslopes. Forestry is the main land use, which covers 91% of the catchment, while cropland represents

7% and, urban settlements and bare soil less than 2% (Fig. 1 and Appendix Fig. B1, data from JAXA (2016, 2018, 2021)).

However, cropland is located in places with a high hydro-sedimentary connectivity (Chartin et al., 2013). The Hayama Lake

catchment area is located within the main inland radioactive contamination plume resulting from the Fukushima Dai-ichi nu-150

clear power plant accident in March 2011 (Kato et al., 2019). Once deposited, 137Cs strongly and quasi-permanently binds to

fine soil particles such as silts and clays (Sawhney, 1972; He and Walling, 1996), which has been confirmed in the soils of

Fukushima Prefecture (Saito et al., 2014; Nakao et al., 2014).

Catchment altitude ranges from 170 m to 700 m above sea level. The climate is continental (Dfa), with no dry season and

hot summer, and bordered to the east by a Cfa temperate climate with no dry season and hot summer according Köppen’s155
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climatic classification (Beck et al., 2018). The regional hydrological year runs from November to October (Laceby et al.,

2016a; Whitaker et al., 2022). Over the 2006 to 2021 period, the mean annual temperature was 13.6 ± 0.4 ◦C y−1 (standard

deviation), with mean monthly values ranging from −1.5 ◦C in January to 31.1 ◦C in August. The mean annual precipitation

was 1220 ± 189 mm y−1 (sd), some of which falls as snow in winter. The majority of precipitation occurs between June

and October, representing 60% of the annual rainfall and 86% of the rainfall erosivity (Laceby et al., 2016a). This period160

corresponds to the Japanese typhoon season with a peak of intensity in September in the Fukushima Prefecture. Major typhoons

were shown to be the main drivers of sediment production (Chartin et al., 2017), as they can generate 40% of the annual rainfall

erosivity within a very short period (Laceby et al., 2016a).

The Hayama Lake catchment is mainly underlied by non-alkaline mafic volcanic rocks (42%), granite (31%) granodiorite

(17%) and sedimentary rocks (7%) (Appendix Fig. B2). Main soil groups, according to the Comprehensive Soil Classification165

System of Japan (Obara et al., 2011, 2015, and equivalent soil types according to the World Reference Base for Soil Resources

(WRB) were provided) are: Brown Forest soils (37%; WRB: Cambisols/Stagnosols), Allophanic Andosols (36%; Silandic

Andosols), Cambic Red-Yellow soils (9%; WRB: Cambisols) and Lithosols (9%; WRB: Leptosols) (Appendix Fig. B3) (data

from NARO (2011)).

All maps and geographical processing were performed using the QGIS software (QGIS Development Team, 2022).170

Figure 1. Map of the main land uses in the Hayama Lake catchment area over the 2014-2016 period with location of source samples and the

sediment core (cartographic data: GSI and JAXA). FDNPP: Fukushima Dai-ichi Nuclear power plant.

2.2 Soil and sediment sampling and processing

All sediment targets were taken from one sediment core sampled on 8 June 2021 in the downstream part of Hayama Lake (Mano

dam lake) at 42 m depth (Fig. 1) by the National Institute of Environmental Studies (NIES) (Japan). The core was 38 cm long
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with a diameter of 11 cm. It was sectioned into 38 increments of 1 cm in order to achieve a high-resolution investigation of

the sediment core. A group of 32 layers was selected for this study, from 6 cm to 38 cm depths, which corresponds to a stable175

land use period (i.e. prior to decontamination work, Chalaux-Clergue et al., in prep). Sediment samples were dried at 40 ◦C

for 96 hours.

Soil samples (n = 56) were collected in areas representative of the main potential sediment sources to Hayama Lake, in-

cluding 24 cropland, 22 forest and 10 subsoil (i.e. channel bank or land slide) samples. Some source soils were sampled in the

adjacent Niida River catchment, which is similar to the Hayama Lake catchment. A particular care was taken to ensure that180

these samples were representative of the Hayama Lake catchment characteristics, in terms of land use, geology and pedology

(see in Appendix B1, B2 and B3) (Williamson et al., 2023). The similarity of soil samples properties from both catchments

was tested using the Kolmogorov-Smirnov test (not shown). Soils were sampled with a plastic trowel and consisted of 10

composited sub-samples of topsoil (1-2-cm uppermost layer). All soil samples were dried at 40 ◦C for about 48 hours and then

sieved to 63 µm to isolate the fraction concentrating 137Cs (i.e. to silt and clay minerals (Sawhney, 1972; He and Walling,185

1996)).

2.3 Laboratory analysis

Various analyses were conducted to characterise sediment and soil properties: organic matter composition determined by the

combustion method (i.e. total organic carbon (TOC) and total nitrogen (TN)), elemental geochemistry analysed by X-ray

fluorescence (XRF) for 17 elements (i.e. Al, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Rb, Si, Sr, Ti, Zn, and Zr), and visible190

colour indices by diffuse reflectance (i.e. CIE Lab, CIE LCh, geothite peaks intensity (445 and 525 nm (Tiecher et al., 2021))),

the ratio between the % reflectance at 700 nm and 400 nm (Q7/4 (Debret et al., 2011)) and iron oxide-associated parameters

(A1, A2, A3, Gt (Tiecher et al., 2015)). All analysis methods and calculations are described in the Appendix C.

Only properties for which the measurement uncertainty is too large were removed from further analysis. The following

criterion has been set: if considering the measurement uncertainty a majority or the totality of the sample values were virtually195

impossible (e.g. when the measurement uncertainty is substracted from the property measurement and results in a negative

value), then the corresponding property was discarded.

2.4 Virtual mixtures

Virtual mixtures were generated in order to assess model prediction accuracy (Palazón et al., 2015; Smith et al., 2018; Gaspar

et al., 2019; Farias Amorim et al., 2021; Batista et al., 2022). They were shown to provide a reliable alternative to laboratory200

mixtures (Batista et al., 2022). Their ease of generation allows the model to be evaluated under a wide range of source contri-

butions. For a given source, virtual mixture contributions were designed to range from 0 to 100%, with 5-percent increments.

The contributions of the other sources to the mixtures were then determined as fractions of the remaining contribution (i.e.

1−source A contribution), the fractions being in turn determined by the number of sources. The denominators were defined

as: (n−1)∗2 with n the number of source. The numerators were set to 3 and 1 as three sources were considered in the current205

research (3/4 and 1/4). Theoretical source contributions for the virtual mixtures were determined as:
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(CA, CB , CC) =


CA ∈ {0,5, ...100}

CB = (1−CA) ∗ 3
(n−1)∗2

CC = (1−CA) ∗ 1
(n−1)∗2

(1)

With CA, CB and CC the contribution of source A, B and C, and n the number of source.

Permutations were then determined following this contribution scale, which generated a total of 138 virtual mixtures for210

the three source groups. For every source group, the mean and SD of each property were calculated. For each virtual mixture,

each source group mean value was multiplied by the corresponding group contribution (e.g. cropland 0.40, forest 0.45, subsoil

0.15). Then, all source group values were summed to provide the virtual mixture property value.

2.5 Tracer selection

2.5.1 Three-Step Method215

The TSM (Mukundan et al., 2010; Sellier, 2020; Batista et al., 2022) is based on three steps: (1) a range test to identify con-

servative properties (Martínez-Carreras et al., 2010; Wilkinson et al., 2013; Gellis and Walling, 2013), (2) a Kruskal-Wallis

H-test to identify discriminant properties (Collins et al., 1997b). Then, (3) a discriminant function analysis (DFA) or a principal

component analysis (PCA) with forward stepwise selection based on Wilk’s Lambda criterion to identify the best subset of

predictors among the identified tracers (i.e. conservative and discriminant properties) is run (Collins and Walling, 2002).220

Conservative behaviour.

The conservative behaviour of properties is assessed using a range test. Within a range test, the range of sources is defined

as the highest and lowest values of a criterion of the property among source groups. To be conservative, all the sample property

values should lie within the source range.225

conservative if { sources lower bound ≤ target value ≤ sources upper bound} (2)

Several range test criteria are found in the literature, and these were all applied to identify conservative properties as an

alternative to the TSM: minimum-maximum (Smith and Blake, 2014; Sellier et al., 2021), minimum-maximum ± 10% (as

measurement error) (Gellis and Noe, 2013; Gellis and Gorman Sanisaca, 2018; Dabrin et al., 2021), boxplot whiskers interpre-

tation (i.e. outlier thresholds) (Sellier, 2020) and boxplot hinge interpretation (i.e. also referred to as interquartile range (IQR))230

(Batista et al., 2022), mean (Wilkinson et al., 2013; Nosrati et al., 2021), mean plus/minus one standard deviation (Mean ± SD)

(Evrard et al., 2020b; Laceby et al., 2021), and median (Collins et al., 2013; Batista et al., 2022) are detailed in Table 1.
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Table 1. Equations of the common range test criteria used in the literature to test the conservative behaviour in the three-step method (TSM).

With si the source group i from 1 to n the number of source groups, tj the target sample j value with j from 1 to m the number of samples,

and µ the mean and σ the standard deviation (SD). ∗ indicates statistics calculated on log transformed values.

Criterion Range test equation

Minimum-Maximum min(minsi) ≤ tj ≤ max(maxsi)

Minimum-Maximum ±10% min(minsi ∗ 0.9) ≤ tj ≤ max(maxsi ∗ 1.1)

Hinge min(Qsi(0.25)) ≤ tj ≤ max(Qsi(0.75))

Whiskers min(max(minsi ,Qsi(0.25)− 1.5 IQRsi
)) ≤ tj ≤ max(min(maxsi ,Qsi(0.75)+ 1.5 IQRsi

))

Mean min(µ∗
si) ≤ tj ≤ max(µ∗

si)

Mean ± SD min(µ∗
si −σ∗

si) ≤ tj ≤ max(µ∗si +σ∗
si)

Median min(mediansi) ≤ tj ≤ max(mediansi)

Discriminant power.

The ability of the property to discriminate between source groups is assessed using a Kruskal-Wallis H-test (Hollander,235

1973). This is a non-parametric test that checks whether two or more samples originate from the same distribution, and it

represents an extension of the Mann-Whitney U-test that compares two samples. The test hypotheses are:

- The null hypothesis (H0): the median across the three groups are equal.

- The alternative hypothesis (H1): At least one of the group median is different from the others.

The test statistic is given by:240

H = (N − 1)

∑g
i=1 ni (ri − r)2∑g

i=1

∑ni

j=1(rij − r)2
(3)

with N the total number of observations across all groups, g the number of groups, ni the number of observations in group

i, rij the rank of observation j from group i, ri the mean rank of all observations for group i and r the mean of all rij .

Kruskal-Wallis H-tests were performed using the function kruskal.test from the stats package (R Core Team, 2022). For

properties with a p-value below α = 0.05, the null hypothesis is rejected, which means that at least one of the source groups is245

different from the others and that the property is therefore discriminant.

Discriminant Function Analysis.

A discriminant function analysis (DFA) stepwise selection is carried out to identify a subset of predictors among the iden-

tified tracers (Collins and Walling, 2002; Collins et al., 2010). A forward stepwise variable selection based on Wilk’s Lambda250

criterion was performed using the function greedy.wilks from the klaR package (Weihs et al., 2005). The function first initiates

a model with the variable that discriminates groups. Then, the model is extended by including other variables based on Wilk’s
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Lambda criterion: the one variable that minimises the Wilk’s Lambda is only included if the model’s p-value remains statisti-

cally significant after its inclusion. Wilk’s Lambda statistic approaches zero when the variability between groups is higher than

the variability within each group, then this criterion maximizes the difference between groups. As the use of the DFA stepwise255

selection has been criticised because some studies showed that the use of a higher number of tracers decreases the sensitivity

of the results to non-conservative tracers (Martínez-Carreras et al., 2008; Sherriff et al., 2015), we used the list of identified

tracers before (“no DFA") and after the stepwise selection procedure (“DFA") in order to assess its potential impact on the

calculation of source contributions.

2.5.2 Consensus Method260

Lizaga et al. (2020a)’s approach to select properties, referred to as the consensus method (CM), is based on two tests: the

Conservativeness Index (CI) and the Consensus Ranking (CR). In the CM, tracers are selected by identifying non-conservative

behaviour (using the CI test) and dissenting tracers (CR test). The CI of each property is calculated for all target samples

simultaneously, while the CR is calculated for each target sample independently. As a result, a set of tracers is selected for

each target sample. Tests were performed using the 1.3 version of FingerPro (Lizaga et al., 2020b) under R ver. 4.1.2 (R Core265

Team, 2021) environment.

Conservativeness-Index.

The CI quantifies how conservative a property is based on the result of a single-tracer model. To be considered as conserva-

tive, the CI should be strictly equal to 0. A single-tracer model is a standard linear un-mixing model with only one true analysed270

property and n-2 virtual properties (n the number of source groups). The model is solved to obtain the source contributions.

This process is repeated 2000 times, which creates a distribution of predictions. The prediction couples (i.e. w1,w2...wn) are

sorted according to the Euclidean distance to a perfectly balanced mixture (i.e. 1
n ). A percentile of the sorted prediction couple

is chosen to compute the CI as the root mean square error (RMSE) of the non-conservative part (nc) of the contribution, as

follows:275

CI =−

√√√√ n∑
j=1

(
nc(wj)−

1

n

)2

; with nc(w) =


−w if w < 0

0 if 0⩽ w ⩽ 1

w− 1 if w > 1

(4)

with wj of the jth source group predicted contribution of the selected percentile, and n the number of source groups.

A property is considered as conservative if the CI values is strictly equal to zero.

Consensus Ranking.280

CR is an index that quantifies the relevance of each property for the prediction based on a debate agreement for a single target

sample. In each debate, a subset of n+1 randomly selected properties is built and several rounds of debates are performed
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excluding one property each time. The consensus of each debate is measured through the quality of the mass balance equations.

When the exclusion of a property leads to an increase of the subset consensus score (i.e. higher RMSE of the mass balance

equations), the property is considered as dissenting and “lost a debate". The CR of a property is the ratio between the number285

of attended debates (set at 2000) and the number of lost debates, and it is calculated as follows:

CR = 100

(
1− lost debates

attended debates

)
(5)

Properties with a CR score above a certain threshold are considered relevant and are selected. Lizaga et al. (2020a) recom-

mended to select properties with a CR score above 70.

2.6 Source contribution modelling290

2.6.1 Un-mixing model

An un-mixing model was run on actual sediment samples and virtual mixtures using the tracers selected by the TSM without

and with DFA, and the CM. To do so, the widely used Bayesian un-mixing model, MixSIAR, was employed using the R

package MixSIAR (Stock et al., 2020, ver. 3.1.12) with JAGS (Stock et al., 2022, ver. 4.3.1) (Collins et al., 2020; Evrard et al.,

2022; Lizaga et al., 2020a; Batista et al., 2022). To quantify the contributions of n sources, the model requires n-1 tracers.295

The model was run with a “long" Markov Chain Monte Carlo sampling algorithm (i.e. Chain length = 300,000, Burn-in =

200,000, Thin = 100 and Chains = 3) with a process error structure. Model convergence was determined by the Gelman-Rubin

diagnostic using the output_JAGS function from the MixSIAR package, and none of the tracer selection approaches tested had

a value greater than 1.05. The median value of the distribution predicted by MixSIAR was reported as the source contribution

for each sediment target and virtual mixture.300

2.6.2 Accuracy assessment

For each tracer selection approach, MixSIAR prediction accuracy was assessed using virtual mixtures contribution predictions,

for which theoretical source contributions were known a priori. Each model’s prediction accuracy was evaluated based on dif-

ferent criteria: uncertainty (prediction interval width (W50)), residual error or bias (Mean error (ME)), performance (Squared

Pearson correlation coefficient (r2), root-mean-square error (RMSE), Nash-Sutcliffe modelling efficiency coefficient (NSE)305

and continuous ranked probability score (CRPS)). A summary of the metrics, with their formula, unit, range and ideal values

is provided in Table 2 (Matheson and Winkler, 1976; Bennett et al., 2013; Batista et al., 2022).

Higher values of W50 indicate a wider distribution, which is related to a higher uncertainty. The sign of the ME indicates

the direction of the bias, i.e. an over- or underestimation (positive or negative value, respectively). As ME is affected by310

cancellation, a ME of zero can also reflect a balanced distribution of predictions around the 1:1 line. Although this is not a

bias, it does not mean that the model outputs are devoid of errors. The RMSE is a measure of the accuracy and allows to
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Table 2. Formula of model prediction accuracy metrics. With zi and ẑi, respectively, the measured and predicted contributions for the sample

i, z̄ and ¯̂z the measured and predicted mean contribution of all samples, and n the number of samples.

Name Unit Formula Range
Ideal

value

Prediction Interval width (W50) % W50 =Q(0.75)−Q(0.25) (0, 100) 0

Mean Error (ME) % ME= 1
n

∑n
i=1 (zi − ẑi) (−∞, +∞) 0

Root Mean Square Error (RMSE) % RMSE =
√

1
n

∑n
i=1 (zi − ẑi)2 (0, +∞) 0

Squared Pearson’s correlation coefficient (r2) r2 =

( ∑n
i=1(zi−z̄)−(ẑi−¯̂z)√∑n

i=1(zi−z̄)2
√∑n

i=1(ẑi−¯̂z)2

)2

(0, 1) 1

Nash-Sutcliffe modelling efficiency coefficient (NSE) NSE = 1−
∑

(zi−ẑi)
2∑

(zi−z̄i)2
(−∞, 1) 1

Continuous ranked probability score (CRPS) (Fi,zi) =
∫ +∞
−∞ (Fi(zi)−H

{
zi ≤ ẑi

}
)2 (0, +∞) 0

calculate prediction errors of different models for a particular dataset. RMSE is always positive and its ideal value is zero,

which indicates a perfect fit to the data. As RMSE depends on the squared error, it is sensitive to outliers. The r2 describes how

linear the prediction is. The NSE indicates the magnitude of variance explained by the model, i.e. how well the predictions315

match with the observations. A negative RMSE indicates that the mean of the measured values provides a better predictor than

the model. The joint use of r2 and NSE allows a better appreciation of the distribution shape of predictions and thus facilitates

the understanding of the nature of model prediction errors. The CRPS evaluates both the accuracy and sharpness (i.e. precision)

of a distribution of predicted continuous values from a probabilistic model for each sample (Matheson and Winkler, 1976). The

CRPS is minimised when the observed value corresponds to a high probability value in the distribution of model outputs. The320

formulae and the full description of this score are available in Jordan et al. (2017) and Laio and Tamea (2007). The calculation

of the CRPS was performed using the crps_sample function from the scoringRules package (Jordan et al., 2019). Model

global CRPS* and W50* value are calculated as the mean of individual CRPS and W50 values, respectively. In addition to the

metric values, a graphical evaluation of model predictions was performed through plotting observed versus predicted, CRPS

sample values and W50 sample values for each source group.325

All data analyses were performed using R (R Core Team, 2022, ver. 4.2.2) within RStudio (RStudio Team, 2022). An R

package (fingR) implementing the approach followed in this study was developed and is freely available (Chalaux-Clergue and

Bizeul, 2023).

3 Results

According to the measurement uncertainty criterion (s.2.3), the following properties were removed from subsequent analysis:330

the elemental concentrations in Co, Cr, Cu, Ni and Rb; the visible colorimetric index A3, and the goethite peak at 445 nm

(G445), as their measurement uncertainties were too high.
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3.1 Tracer selection

3.1.1 Selection of tracers

Three-step method.335

The different range tests resulted in unique sets of conservative properties, with only TN and Q7/4 passing all tests (Fig. 2).

Nevertheless, the majority of tests identified TOC, G525 b*, Al, Ti, L* and C* (Table 3) as being conservative. The minimum-

maximum ± 10% is the range test criterion that identified the highest number of properties (19), followed by the minimum-

maximum (16) and whiskers (12). The minimum-maximum ± 10% range test criterion was the only one that identified Fe, Pb,

h, A1 and GT. As the minimum-maximum criterion, this test identified Ca, K, Mg and Sr as conservative. The mean and median340

criteria identified only three (TN, b*, Q7/4) and four properties (TOC, TN, Q7/4, G525), respectively. Among the properties

identified as conservative, Fe, Mg, Pb and Ti were not identified as discriminant by the Kruskal-Wallis H-test (p-value = 0.08)

and were therefore removed from the list of potential tracers. Although a majority of tests identified Ti as conservative, only

the minimum-maximum ± 10% criterion identified Fe, Mg and Pb as conservative. The DFA procedure mostly resulted in the

systematic exclusion of A2, and in the frequent exclusion of TN and G525 while TOC, Al, Si, L*, and Q7/4 were retained by345

most of the range test criteria. Among the 16 tracers selected by the minimum-maximum criterion, the DFA discarded seven of

them (TN, Ca, Sr, b*, C*, A2 and G525). In contrast, the minimum-maximum ± 10% criterion that selected 19 tracers and only

five tracers (i.e. TOC, TN, Ca, A2 and G525) were discarded by the DFA. The outputs of the mean and median criteria were not

modified by the DFA.

350
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Three-Step Method

TOC TN Al FeCa K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt Q7/4G525

OM Geochemistry Visible colourimetry

TOC TN Al FeCa K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt Q7/4G525

Kruskal-Wallis H-test

Selected tracers - conservative and discriminant properties;      tracers retained by the DFA

Conservative behaviour

Discriminant Power

Properties

Min-Max
Min-Max ± 10%
Whiskers
Hinge
Mean
Mean ± SD
Median

Range test
criterion

Min-Max
Min-Max ± 10%
Whiskers
Hinge
Mean
Mean ± SD
Median

Range test
criterion

*** *** ** *** ** . *** ** . ****** * *** *** *** *** *** ** ** *** *** ***

Figure 2. Tracer selection using the three-step method (TSM) according to different range test criteria. Green filled circles indicate a property

that passed the conservative behaviour (i.e. range test) or the discriminant power (Kruskal-Wallis H-test) tests. Blue filled diamonds indicate

selected tracers (i.e. properties that passed both conservative behaviour and discriminant power tests) and blue diamonds with white points

indicate tracers retained by the discriminant function analysis (DFA) forward stepwise selection based on Wilk’s lambda criterion. Kruskal-

Wallis H-test’s p-value significance: "∗∗∗" p-value < 0.001; "∗∗" p-value < 0.01; "∗" p-value < 0.05; "." p-value < 0.1; " " p-value < 1. OM:

organic matter; Min-Max: minimum-maximum; SD: standard deviation.

Consensus method.

The CI values indicate that TOC, TN, b* and C* were identified as conservative properties (CI strictly equal to 0, Fig. 3)

However, Al, Si, Ti, Q7/4 and G525 obtained a CI very close to zero (i.e. -0.1), whereas it was equal to -0.2 for Zn, L* and

A2. For these four properties, all sediment samples (n = 32) obtained a CR score above the threshold (i.e. 70) for all sediment

samples (i.e. 32 out of 32), and were therefore considered relevant and kept in the list of tracers for further analysis. In addi-355

tion, properties which obtained CI close to zero (i.e. Al, Si, Ti, Q7/4, G525, Zn, L* and A2) also reached a high CR score (i.e.

respectively 25, 22, 30, 25, 32, 24, 16 and 20).
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Consensus Method

TOC TN Al FeCa K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt Q7/4G525

OM Geochemistry Visible colourimetry

TOC TN Al FeCa K Mg Mn Pb Si Sr Ti Zn Zr L* a* b* C* h A1 A2 Gt Q7/4G525

Conservativeness Index

Consensus Ranking

Selected tracers

Properties

0.0 0.0 -0.1 -0.5 -4.9 -1.0 -5.7 -3.7 -2.6 -0.1 -0.8 -0.1 -0.2 -1.8 -0.2 -0.4 0.0 0.0 -1.1 -1.3 -0.2 -0.8 -0.1 -0.1

32 32 25 9 1 1 1 0 0 22 5 30 24 1 16 3 32 32 1 0 20 6 25 32

Figure 3. Tracer selection using the consensus method (CM). Green filled circles indicate properties selected by the Conservativeness Index

(i.e. CI = 0.0). The value in the circle refers to the number of sediment samples (out of 32) that obtained a Consensus Raking score above the

threshold (i.e. CR ≥ 70). Blue filled diamonds indicate selected tracers. OM: organic matter.

Table 3 summarises the list of tracers selected by each approach.

Table 3. Tracers selected by the Three-step Method (TSM) according to the range test criteria and the consensus method (CM). Tracers

underlined and written in bold were retained by the discriminant function analysis (DFA) forward stepwise selection based on Wilk’s lambda

criterion. Min-Max = minimum-maximum.

Tracer selection method
Selected tracers

Range test

Min-Max TOC, TN, Al, Ca, K, Si, Sr, Zn, Zr, L*, a*, b*, C*, A2, Q7/4, G525

Min-Max ± 10% TOC, TN, Al, Ca, K, Si, Sr, Zn, Zr, L*, a*, b*, C*, h, A1, A2, Gt, Q7/4, G525

Whiskers TOC, TN, Al, Si, Zr, L*, a*, b*, C*, A2, Q7/4, G525

Three-step method Hinge TOC, TN, Al, Si, L*, b*, C*, Q7/4, G525

Mean TN, b*, Q7/4

Mean ± SD TOC, TN, Al, L*, b*, C*, A2, Q7/4, G525

Median TOC, TN, Q7/4, G525

Consensus method TOC, TN, b*, C*

3.2 Prediction accuracy and tracer selection methods360

The sediment source apportionment prediction accuracies obtained when using the mean range test criterion and CM for

tracer selection were lower compared to that obtained when using the other TSM range test criteria (Fig. 4 and Appendix

Table A1, A2, A3 and A4). However, the difference in prediction accuracy was greater between sources within each tracer

selection method than between methods (i.e. TSM and CM). The effect of the DFA stepwise selection was to mainly modify

the prediction accuracy of cropland and forest. On average, W50* values (+ 20%), r2 (+ 0.01) and NSE (+ 0.04) increased,365
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while ME (- 37%), RMSE (- 8%) and CRPS (- 1) decreased. In short, uncertainty increased (W50*), bias decreased (ME) and

performance slightly increased (r2, NSE, CRPS*) when the DFA was applied.

Regardless of the tracer selection method, the W50* values indicate a higher uncertainty for cropland, followed by forest and

subsoil (Fig. 4). The CM, mean and median range test criteria showed higher W50* for each source (21-25, 13-18 and 11-12%

for cropland, forest and subsoil, respectively) among the tracer selection methods. The lowest W50* values were obtained by370

minimum-maximum ± 10% and minimum-maximum with and without DFA stepwise selection. Overall, minimum-maximum

and minimum-maximum ± 10% showed homogeneous values over the 0-100% contribution range for all sources (Fig. 5).

The subsoil W50 curves showed no trend over the contribution range for most of the range test criteria, while there was a

slight reduction in W50 values for the median criterion and the CM. However, the W50 value for cropland and forest tended

to increase for most of the range test criteria (i.e. whiskers, hinge, mean, mean ± SD, median) and the CM. This increase was375

more pronounced for the forest and also for the CM, the mean and median criteria. In addition, the W50 values were more

scattered for these three tracer selections, especially for the contributions below 60-70%. As observed for the W50* (Fig. 4),

the DFA stepwise selection was associated with an increase in W50 values for all range test criteria.

Regarding the model residuals for all tracer selections except that obtained with the mean criteria, the error for subsoil was

low (RMSE = 6-8%) with a small bias (ME = -3 - 5%). In contrast, forest and cropland errors were about twice higher (RMSE380

= 10-20%), with a negative bias for forest (ME = -19 - -2%) and a positive bias for cropland (ME = 2-11%). Accordingly,

forest and cropland contributions were under- and over-predicted, respectively.

In terms of model performance, the subsoil predictions were highly linear (r2 = 0.97-0.99) and well predicted (NSE =

0.92-0.95). For the TSM criteria, linearity and prediction quality were slightly improved in most cases. Nevertheless, a slight

decrease in precision and accuracy was observed for contributions below 10% and above 80% (Fig. 6). Forest predictions were385

highly linear for most tracer selections (r2 = 0.92-0.98), although their prediction quality was lower (NSE = 0.58-0.86) due to

an under-estimation (i.e. ME values, Fig 6). This under-estimation was also confirmed by the CRPS values, which increased

strongly and linearly above 20% of forest contribution (Fig. 6). Cropland predictions were relatively linear (r2 = 0.71-0.89)

but not well predicted (NSE = 0.52-0.80), representing the lowest performance among the sources. The CRPS curves were

U-shaped, with a decrease in accuracy and precision for contributions below 60% and above 70% (Fig. 7). This pattern was390

also observed on the observed versus predicted plots in Fig. 6, with a tipping point at around 40 to 60% of the contribution.

In addition, for a contribution below 60%, two types of behaviour were observed regardless of the tracer selection method

considered (Fig. 6). One group of virtual mixtures was well predicted with a small bias and low CRPS values (≤ 0.05), while

another group was significantly less well predicted with a strong positive bias and higher CRPS values (Fig. 7). These two

groups correspond to virtual mixtures with a dominant proportion of subsoil and forest, respectively. For contributions above395

60%, these two groups converge and no difference can be observed. This suggests that selected tracers were able to successfully

discriminate between subsoil and forest sources, while cropland was confused with one of the other two sources.

Among the selection of tracers, the mean range test criterion was the one that resulted in the lowest prediction quality

(Fig. 4). Despite the fact that subsoil had a prediction quality close to that of the other methods, cropland and forest were poorly
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Figure 4. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: Three-step

Method (TSM) range test criteria and consensus method (CM) for each individual soil source and average of all three sources for each

method. Tracers selected by each method are listed in Table 3. Model accuracy statistics were shown by darker barplot for each selection

approach. W50*: prediction interval width; ME: mean error; RMSE: root mean square error; r2: squared Pearson’s correlation coefficient;

NSE: Nash-Sutcliffe modelling efficiency coefficient; CRPS: continuous ranked probability score. Note: * = Mean values per source.
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Figure 5. Relationship between theoretical virtual mixture source contributions and prediction interval width (W50) across sources: cropland,

forest, subsoil, according to each tracer selection approach: three-step method (TSM) range test criteria: minimum-maximum (red circle),

minimum-maximum ± 10% (brown crossed circle), whiskers (yellow/orange diamond), hinge (green square), mean ± SD (blue triangle

point down) filled and empty symbols correspond to the selection before DFA (no DFA) and after DFA respectively, except for mean (blue

triangle) and median (blue crossed square) criteria for which empty symbols correspond to the same selection of tracers before and after

DFA, and consensus method (CM; purple circle plus).

predicted (NSE = -0.17 and 0.00 respectively), modelled contributions being quite far from the theoretical values (Fig. 6 and400

7).

3.3 Source contribution predictions

The tracer selection methods resulted in three types of source contribution trends: strong dominance of forest, strong dominance

of cropland, and equivalent contribution of forest and cropland (Fig. 8).

For all approaches, subsoil contributions were low and stable, for most methods from 0 ± 1 to 8 ± 3%. The mean and405

mean ± SD criteria without DFA led to higher and more variable subsoil contributions than other methods, 12 ± 5% versus

about 4 ± 2%. The relationship between cropland and forest was different depending on the tracer selection method. For the

CM, the mean and median criteria led to model outputs showing that cropland was dominant compared to forest along the sed-

iment core. In contrast, according to the mean ± SD and hinge criteria, the contributions of cropland and forest were modelled

to be similar or with only a slight dominance of forest. Finally, for the minimum-maximum, minimum-maximum ± 10% and410

whiskers criteria, the model calculated a strong dominance of forest over cropland. The DFA had limited impact on the trends

in the contributions of cropland and forest for the mean ± SD and hinge criteria, although it resulted in a significant smoothing
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Figure 6. Relationship between theoretical and predicted virtual mixture source contributions: cropland, forest, subsoil, according to each

tracer selection approach: three-step method (TSM) range test criteria: minimum-maximum (red circle), minimum-maximum ± 10% (brown

crossed circle), whiskers (yellow/orange diamond), hinge (green square), mean ± SD (blue triangle point down) filled and empty symbols

correspond to the selection before DFA (no DFA) and after DFA respectively, except for mean (blue triangle) and median (blue crossed

square) criteria for which empty symbols correspond to the same selection of tracers before and after DFA, and consensus method (CM;

purple circle plus).

of the contribution values for the minimum-maximum, minimum-maximum ± 10% and whiskers criteria. The contribution of

cropland was greatly reduced from 16-27% to 2-8%, and the dominance of forest increased from 67-80% to 89-97%, resulting

in an almost unique and stable contribution from forests along the entire core. However, the contributions of cropland and forest415

showed similar variations and tendencies along the sediment core for all tracer selection methods, although their values were

significantly different. Samples taken at 9/10-10/11, 11/12-13/14, 19/20-20/21 and 24/25-07/28 cm depths were associated

with higher contributions from forest and lower contributions from cropland compared to upper/lower samples.
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Figure 7. Relationship between theoretical virtual mixture source contributions and continuous ranked probability score (CRPS) across

sources: three-step method (TSM) range test criteria: minimum-maximum (red circle), minimum-maximum ± 10% (brown crossed circle),

whiskers (yellow/orange diamond), hinge (green square), mean ± SD (blue triangle point down) filled and empty symbols correspond to the

selection before DFA (no DFA) and after DFA respectively, except for mean (blue triangle) and median (blue crossed square) criteria for

which empty symbols correspond to the same selection of tracers before and after DFA, and consensus method (CM; purple circle plus).

The selected tracers did not provide the same information and therefore did not provide the same ability to discriminate

between the sources (Fig. 9). For most of the tracers, the following relationship between source group signatures (i.e. mean and420

SD of log transformed values) was observed: cropland showed intermediate values, with either forest (TOC, TN) or subsoil

(Al, Si, L*, a*, b*, C*, A2, Q7/4, G525) being the highest values. For most of these tracers, cropland had similar values as those

of forest (TOC, TN, Si, a*, b*, C*, A2, Q7/4) or subsoil (G525). For a few tracers, cropland had the higher values with either

subsoil (Zn, Gt) or forest (h) corresponding to the the lower values. However, for h, the signatures of cropland and subsoil were

similar, and this similarity was also observed for Zn in cropland and forest, and for Gt in forest and subsoil sources. In addition,425

for some selected tracers (Ca, K, Sr, Zr, A1), all source signatures were all very close and hardly distinguishable, making the

information derived from the relationships between sources less clear.

Depending on the tracer, sediment sample values did not show the same position in relation to the source signatures (Fig. 9.

For some tracers, sample values were close to those of cropland (i.e. Zn, b*, A1, Q7/4), forest (Al, K, Zr, L*) or subsoil (a*,

C*, h). However, for most of the tracers (i.e. TOC, TN, Ca, Si, Sr, A2, Gt, G525) samples values were intermediate between430

those of cropland and forest.
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Figure 8. Predicted source contributions for the sediment core samples according to each tracer selection approach. The different range tests

criteria of the three-step method (TSM): minimum-maximum (red circle), minimum-maximum ± 10% (brown crossed circle), whiskers

(yellow/orange diamond), hinge (green square), mean (blue triangle), mean ± SD (light blue triangle point down), median (purple crossed

square) and consensus method (CM; light purple circle plus). Empty and filled symbols correspond to the use of DFA or not. The error buffer

ribbons around the plotted values correspond to the respective RMSE values calculated on virtual mixtures.
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Figure 9. Log-transformed values of selected tracers along the sediment core (black dot; and measurement uncertainty represented with a

grey buffer) and in the potential source signatures (vertical line represents mean value and the buffer zone along each lines represents the

standard deviation).

4 Discussion

4.1 Conservative behaviour assessment

The different tests used to assess conservative behaviour, the TSM range test using different criteria and the CM CI, resulted

in selection of properties with different restriction levels. These tests can be divided into three groups according to the number435
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of properties selected, from the least restrictive (minimum-maximum, minimum-maximum ± 10%, whiskers), the moderately

restrictive (hinge, mean ± SD), to the more restrictive (CI, mean, median). Overall, the conservative behaviour tests tended to

mainly identify the same properties as being conservative: TOC, TN, b*, C*, and Q7/4.

In this study, all the tests identified organic matter properties as conservative (i.e. TOC and TN), except for the mean

criterion, which did not select TOC. To assess the composition of organic matter, either from terrestrial and/or freshwater-440

origin, the distribution of δ13C versus C/N ratio can be compared to thresholds (Lamb et al., 2006). In a previous study

conducted on a sediment core sampled from the same site in Hayama Lake in 2014, Huon et al. (2018) concluded that there

was no autochtonous input of freshwater-originating organic matter, which was confirmed in our data (see Appendix Fig. C1).

Organic matter and carbon may be expected to provide a conservative property (García-Comendador et al., 2023) and this is

supported by their widespread selection.445

Among the geochemical properties, Al, Ti and Si were frequently selected by range tests. This can be explained by their well-

known low solubility (Meybeck and Helmer, 1989; Phillips and Greenway, 1998; Koiter et al., 2013), and more specifically for

Al and Si, which are constituents of clay sheets given the granitic geological context of the study area (see Appendix Fig. A2).

However, these geochemical properties are sensitive to grain size sorting occurring along the transport pathway as they are

clays sheets constituents. Other geochemical properties that were rarely selected (i.e. Fe, Pb, Ca, K) or systematically rejected,450

such as Mn, are associated with higher solubility or higher desorption susceptibility (Koiter et al., 2013; García-Comendador

et al., 2023; Meybeck and Helmer, 1989; Phillips and Greenway, 1998).

Among the visible colour indices, all conservative behaviour tests selected Q7/4, and other indices such as G525, b*, C*, and

L* were widely selected. The colour indices L*, b* and C* were highly correlated with organic matter properties (i.e. TOC and

TN) that were also identified as conservative (Pearson r2 from -0.61 to -0.77, see Appendix Table A5). This is consistent with455

the fact that organic matter and iron oxides are the main soil colouring elements. The existence of different visible colour spaces

provides several tools for sediment fingerprinting studies and to selected the most appropriate space and indices according to

the local context (Viscarra Rossel et al., 2006). These colour spaces are interconnected and transformation of indices can

be achieved with simple mathematical formula. However, care must be taken to avoid multicolinerarity when using multiple

indices from different colour spaces together, as redundancy of information tends to degrade modelling accuracy (Cox et al.,460

2023). However, the visible colour parameters are quite sensitive to spatial and temporal variations (García-Comendador et al.,

2023). The acquisition of other spectral regions such as Vis-NIR, NIR and MIR appears to be more robust (Chen et al., 2023),

especially as these regions are a powerful and reliable way to obtain extensive range of properties and information on the

sample with the advantages of being rapid, cost-effective and non-destructive measurement (Soriano-Disla et al., 2014). Of

note, in order to ensure the exchange of spectra within the community, the adoption of a common protocol and/or the provision465

of calibration spectra using inter-calibration samples should be discussed, as spectra tend to be instrument-dependent (Pimstein

et al., 2011).

The CI was a restrictive method compared to most range test criteria. It selected four properties, which is a similar to the

number of properties selected by the mean and median range test criteria. Nevertheless, some properties selected by other range

test criteria, which were a priori conservative properties, showed a score close to the threshold of 0.00 defined by Lizaga et al.470
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(2020a). Thus, Al, Si, Ti, Q7/4 and G525 obtained a CI equal to -0.1, while it was equal to -0.2 for Zn, L* and A2. This could

indicate that properties that yielded a CI score close to the threshold (i.e. 0.00) were not strictly conservative (e.g. size sorting

for Al, Si and Ti). We suggest that either the CI can be used to identify less conservative properties in a selection resulting

from different tests or from the modification of the CI threshold (i.e. not strictly equal to 0.00) to select properties currently

considered not conservative.475

As this study shows, a priori and field knowledge are essential to assess the relevance of conservative behaviour assessments

(Laceby et al., 2015; Koiter et al., 2018; Batista et al., 2019). However, this knowledge is not sufficient and not usable for

all measured properties, especially for relatively new properties as colour parameters, due to their complex relationship with

environmental processes. Other studies developed particle size and organic matter corrections, which were shown to be effective

(Koiter et al., 2018). However, they require additional measurements and are site-specific (Koiter et al., 2018). Therefore, it is480

essential to develop cost-, time-effective and generalised methods (Koiter et al., 2018).

4.2 Tracer selection and contribution modelling

The CR index was designed to select properties based on their relevance to prediction, as they maximise convergence. Of the

24 properties considered in the current research, only the TOC, TN, b*, L*, and G525 reached a CR score above 70 (Fig. 3).

These properties were redundant, as they showed very similar trends along the sediment core (Fig. 9). By removing tracers that485

prevents consensus, CR favours redundant properties and discards dissenting properties that could nevertheless be relevant,

and this may lead to an information gap. Dissenting properties can provide complementary information, as properties do not

discriminate between sources in the same way.

Indeed, the selection of consistent properties can result in the prediction of a dominant source while ignoring other. For

example, in this study, the CR selected properties for which sediment values were close to cropland signature or were interme-490

diate between cropland and forest values (Fig. 9). This selection of tracers with consistent cropland signature resulted in the

prediction of dominant cropland contributions (Fig. 8).

Conversely, the DFA stepwise procedure of the TSM aims to maximise the difference between properties by simultaneously

minimising redundant information, which could increase the prediction quality of MixSIAR (Cox et al., 2023). In this study,

the use of the DFA improved model accuracy for all the range test criteria compared to the selection prior DFA (Fig. 4).495

However, DFA application tended to reduce source contribution variations - especially for minimum-maximum, minimum-

maximum ± 10% and whiskers criteria - (Fig. 8). Overall, the impact of the DFA on tracer selection modelling outputs needs

more research to be clarified.

From the different tracer selections, which were all distinct, three main tendencies were observed in terms of modelled

contributions (Fig. 8). On the one hand, extensive tracer selections, such as minimum-maximum, minimum-maximum ± 10%500

and whiskers criteria, resulted in a modelled dominance of the forest contribution over cropland and subsoil. On the other

hand, restrictive selections of tracers, such as the CM, mean and median criteria, resulted in a modelled dominance of cropland

contribution. Finally, methods that selected an intermediate number of tracers, i.e. mean ± SD and median criteria, led to the

prediction of a balanced contribution between forest and cropland. This major impact of the tracer selection methods on the
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source contribution modelling was demonstrated by multiple studies (Laceby et al., 2015; Palazón et al., 2015; Smith et al.,505

2018; Gaspar et al., 2019).

However, in the current research, all methods agreed on a low subsoil contribution associated with high modelling accuracy

statistics (Fig. 4). It can be assumed that since all tracer selection methods selected TN, b* and C*, they allowed to predict

the general trend of the subsoil contribution behaviour. Thus, methods that selected additional tracers, such as mean ± SD

and median criteria, did not result in significant modifications of the trend. However, the methods that selected a large number510

of tracers (i.e. minimum-maximum, minimum-maximum ± 10%, and whiskers) resulted in a strong reduction or even disap-

pearance of the subsoil contribution, on average about 2% versus 8%. The need for few tracers to predict subsoil with a good

prediction accuracy can be explained by its significantly different signature compared to forest and cropland (Fig. 9). Most of

the modelling limitations were related to the prediction quality for cropland and forest, as their respective signatures were very

close to each other for many tracers (Fig. 9). However, the same variations, i.e. higher forest and lower cropland contributions,515

were observed for most methods. These variations could be explained by the information provided through the incorporation

of TN and TOC contents, which were the most frequently selected tracers. That is consistent with the results of Huon et al.

(2018), which associated a higher TOC content with a high forest contribution. Furthermore, for the methods that selected

Al, these contribution variations were sharper and more detailed, especially for samples collected from the upper part of the

sediment core (i.e. depth from 7 to 17 cm).520

Of note, additional metrics, such as sensitivity analysis or variable importance approach, could provide a more detailed

understanding of the role of each tracer in contribution predictions (Russi et al., 2008; Bennett et al., 2013; Wei et al., 2015).

4.3 Assessing modelling prediction accuracy

The generation of virtual mixtures allowed the evaluation of model prediction accuracy for a wide range of source contributions.

The use of several metrics allowed to describe different aspects of the modelling (i.e. residuals, accuracy and precision) and to525

better interpret the prediction on real sediment samples (Latorre et al., 2021; Batista et al., 2022). The graphical representation

of the metrics (Figs. 5, 6, and 7) allowed to identify ranges of source contributions with different prediction accuracies. This

understanding of the model supports a better appreciation and interpretation of predictions on sediment samples.

Virtual mixtures were generated to cover the full range of potential combinations of source contributions, varying from

0 to 100% with 5-% increments. The range of predicted contributions for virtual mixtures (i.e. minimum and maximum)530

defines the space of possible model predictions obtained with a given set of tracers. However, for the majority of the tracer

selections investigated here, part or totality of the sediment samples predicted contributions fell outside of the space of the

virtual mixture predicted contributions (Appendix Table A6). This result may be explained by the fact that the assumptions

made when generating virtual mixtures generation were not respected. For instance, tracers may not behave fully conservatively

during erosion processes (Koiter et al., 2013) or source may not have been correctly identified or classified (Palazón et al., 2015;535

Smith et al., 2018; Batista et al., 2022). Novel techniques should be developed to quantify the extent to which a property is

modified during transport (i.e. depletion or enrichment) (García-Comendador et al., 2023) to support the generation of virtual

mixtures with tracer values that better represent the reality. Here, virtual mixtures were generated as simple proportional
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mixtures of mean properties of each source tracer, which implies that all properties are considered as strictly conservative

properties. This has likely not been fully achieved with the commonly implemented tests (i.e. range tests and CI). Indeed,540

the use of not fully-conservative tracers may result in the generation of virtual mixture property values that differ from those

observed in actual sediment samples. This may raise concerns regarding the validity of modelling prediction accuracy statistics

calculated with virtual mixtures and their direct transferability to actual sediment samples. Accordingly, we may hypothesize

that the farther the sediment sample predicted contributions are from the space of virtual mixture predicted contributions, the

less transferable the accuracy statistics of the model will be to actual sediment samples. In our opinion this comparison may545

help appreciating the level of confidence in the metrics calculated using virtual mixtures and their direct transferability to the

model predictions obtained for actual sediment samples. This may lead to over- or mis-interpretation. Future research could

usefully develop novel metrics to quantify this level of confidence and better support model evaluation.

5 Conclusions

In this study, we compared two source sediment fingerprinting tracer selection methods, the TSM and the CM, on their selection550

of tracers and their resulting predictions of source contributions for a single dataset. Conservative behaviour tests of both

methods were compared, including a total of seven different TSM range test criteria and the CM CI. The different test resulted

in different selection of properties that had different sensitivity levels. On the one hand, the minimum-maximum, minimum-

maximum ± 10% and whiskers range test criteria selected a large number of properties, from 12 to 23 out of 24 potential

properties, and including non-conservative properties. On the other hand, mean and median criteria and the CI selected a low555

number of properties, from 3 to 4 tracers, which can lead to limitations when modelling source contributions in target samples.

The mean ± SD and hinge criteria resulted in an intermediate selection of tracers, selecting from 7 to 9 properties. Although

differences were observed among methods, some tracers were selected by most of the methods (i.e. TOC, TN, b*, C* and Q7/4)

showing some consistency among them. Although the different methods resulted in different selections of tracers, three main

contribution tendencies were observed in relation with the number of tracers selected. Indeed, methods that selected a large560

number of tracers resulted in a strong dominance of forest. In contrast, a limited selection of tracers resulted in a dominant

contribution of cropland. Finally, balanced contributions of forest and cropland were obtained for the methods selecting an

intermediate number of tracers. Based on this high variability of selected tracers among methods, future research should

develop novel metrics to quantify and qualify the conservative behaviour of tracing properties during erosion and transport

processes.565

To assess modelling accuracy, 138 virtual mixtures were generated as a simple proportional mixtures of sources individual

properties. Several modelling accuracy metrics were computed for each tracer selection using virtual mixture predicted con-

tributions. These metrics and their associated representations provided a useful support to better evaluate the impact of each

tracer selection method on model predictions. However, for most of the tracer selections, a strong divergence in the range of

predicted contributions was observed for virtual mixtures and those values obtained for actual sediment samples. These diver-570

gences highlight the fact that evaluation metrics obtained for virtual mixtures are likely not directly transferable to prediction
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obtained for actual sediment samples. Metrics should be used with caution, to avoid over- or mis-interpretation of modelling

results. These divergences may likely be attributed to the selection of tracing properties with a non(-fully) conservative be-

haviour during erosion, transport and deposition processes, which could not be quantified and reproduced when generating

the virtual mixtures with currently available methods. New methods should be designed to generate virtual mixtures closer to575

reality to better evaluate modelling accuracy.

Among the compared methods, the high variability of selected tracers among the TSM and the CM, and within the TSM

according to the range test criteria, was associated with strong divergences on modelling output results. This may raise con-

cerns regarding the use of quantitative outputs as it may not meet the ultimate goal sought for by fingerprinting approaches

as they are currently implemented by the scientific community. Consequently, to avoid a potential loss of confidence of stake-580

holders regarding the validity of the outputs of this method in the future, it is essential to take as much care as possible to

conduct an accurate and reliable identification of conservative behaviour, as the whole methodology and the results rely on

this initial step. This is fundamental both for improving our understanding of erosion and sedimentation processes and for

guiding the implementation of effective landscape management measures. Accordingly, we encourage our colleagues from the

scientific community to share their tracing datasets obtained in contrasted environmental conditions around the world in order585

to contribute to the further improvement, development and evaluation of sediment source fingerprinting techniques.

Code and data availability. The dataset is available on line at Chalaux-Clergue et al. (2022) [Zenodo]. The code to run models, summarise

and plot results is available in the supplementary material .Rmd file. In order to facilitate the implementation of the presented framework, an

R package, fingR (Chalaux-Clergue and Bizeul, 2023, ver. 1.1.0), with all the functions used in the current study has been developed and is

freely accessible.590
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Appendix B: Maps

Figure B1. Map of the main land uses in the study area over the 2014-2016 period with location of the source samples and the sediment core

(cartographic data: GSI and JAXA). FDNPP: Fukushima Dai-ichi Nuclear power plant.
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Figure B2. Map of the main geology types in the study area with location of the source samples and the sediment core (cartographic data:

GSI). FDNPP: Fukushima Dai-ichi Nuclear power plant.
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Figure B3. Map of the main soil types in the study area with location of the source samples and the sediment core (cartographic data: GSI

and NARO). FDNPP: Fukushima Dai-ichi Nuclear power plant.
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Appendix C: Laboratory analysis

C1 Organic Matter

In the Hayama lake catchment, sediment and soils were found not to contain carbonate minerals, and all the carbon associated

with particulate matter is organic in nature (Huon et al., 2018). Total organic carbon (TOC) and total nitrogen (TN) elemental595

concentrations and isotopes (δ13C and δ15N) were determined by combustion using a continuous flow elementary analyser (El-

ementar VarioPyro cube) coupled with an Isotope Ratio Mass Spectrometer (EA-IRMS) (Micromass Isoprime) at the Institute

of Ecology and Environmental Sciences (iEES Paris) in France. A first analysis was conducted to measure TOC concentrations

together with a set of tyrosine standards (Coplen et al., 1983). The second analysis was dedicated to measure TN concentra-

tions after sample weight optimisation from TOC results. For combustion, oxygen was injected during 70 s (30 mL min−1) at600

850 ◦C for reduction and the combustion furnace at 1120 ◦C (Agnihotri et al., 2014). The analytical precision was assessed

with repeated analyses of a tyrosine intern standard (n = 51), calibrated against international reference standards (Girardin and

Mariotti, 1991). The analysis of these properties in source material is described in details in the study of Laceby et al. (2016b).

To evaluate whether the samples are composed of terrestrial or freshwater-originating material the distribution of sample val-

ues was plotted in a δ13C versus TOC/TN diagram and compared to the thresholds reported in Lamb et al. (2006) (Appendix.605

Fig. C1).

Figure C1. Sediment core and source samples δ13C and TOC/N and typical ranges for organic inputs to lacustrine environments (thresholds

from (Lamb et al., 2006)).

31



C2 Geochemistry

Elemental geochemistry was determined using X-ray fluorescence (XRF) (Malvern Panalytical, ED-XRF Epsilon 4). A total

of 17 elemental concentrations were measured (Al, Ca, Co, Cr, Cu, Fe, K, Mg, Mn, Ni, Pb, Rb, Si, Sr, Ti, Zn, and Zr).

Measurements were conducted in containers covered with a 3.6 µm thin Mylar film (Chemplex, Mylar Thin-Film cat. no. 157)610

with a 10 mm exposure surface. A minimum of 0.1 g of material was analysed. To consider the potential heterogeneity within a

sample, three replicate measurements were made, and the mean value of these replicates was calculated. To assess the accuracy

of the measurements, a standard (JMS-1, sediment from the Tokyo Bay (Terashima et al., 2002)) was measured every seven

samples (n = 38) and the accuracy of the measured batch was determined based on the calculation of the root mean square

errors (RMSE).615

C3 Visible colorimetry

Visible colorimetry was measured using a portable diffuse reflectance spectrophotometer, Konica Minolta CM-700d, set on

a 3 mm target radius. Samples were measured in a plastic zip bag. In order to for account potential heterogeneities within a

sample, three measurements were made at different locations on the bag. The spectrophotometer was calibrated at the start

of each set of measurements with a zero (black) and white standards. Measurements were conducted according to the D65620

illuminance standard, 10◦ angle observer and excluding the specular component. The spectral reflectance (in %) was measured

from 360 nm to 740 nm with a 10 nm resolution (30 wavelength classes). Raw data was processed using the colour data

software CM-S100w SpectraMagic NX (Konica Minolta, 2022). Colour parameters within the Cartesian coordinate systems

CIE Lab (1976) (i.e. L*, a* and b*) (on Illumination, 2008) and CIE LCh (i.e. C* and h) were exported. The CIE LCh is a

vector representation of the CIE Lab (1976). C and h are derived from a* and b* parameters. Within the CIE Lab system: L* is625

the lightness of the colour, from black (0) to white (100), a* is the position between green to red (negative values are associated

with green and positives with red), b* is the position between blue and yellow (negative values are associated with blue and

positive values with yellow). Within the CIE LCh system: C* is the chroma (positive values are associated to brighter colors

and negative values to duller colors) and h is the hue angle (in ◦) in the CIE Lab color wheel.

The Q7/4 ratio as defined by Debret et al. (2011) was calculated as the ratio between 700 nm and 400 nm reflectance values.630

This ratio provides a numerical description of the reflectance spectrum general slope.

The oxy-hydroxide geothite (α-FeOOH) soil richness can be determined using visible diffuse reflectance spectra (Kosmas

et al., 1984; Balsam et al., 2004; Hao et al., 2009; Torrent et al., 2007) and its peaks values at 445 nm and 525 nm were calcu-

lated from the first derivative reflectance spectrum Debret et al. (2011). In our case the geothite concentration was not aimed,

only the relative abundance among our samples in order to differentiate between them. For each replicate of the measurements635

and for each sample, the first derivative reflectance spectrum was calculated and smoothed with a Savitzky-Golay filter using

the savitzkyGolay function (differentiation order = 1, polynomial order = 3, window size = 5 (eq. 50 nm)) from R package

prospectr (Stevens and Ramirez-Lopez, 2022) (Wadoux et al., 2021). Then the mean per sample and the standard deviation

were calculated. From the first derivative of reflectance, two geothite peaks were calculated: first, the 445 nm peak value was
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calculated as the mean of values at 440 and 450 nm, and the 525 nm peak as the mean of those at 520 and 530 nm (Debret640

et al., 2011).

The remission function was calculated from the reflectance spectrum: f(R) = (1−R)2 according to the Kubelka-Munk re-

lationship (Scheinost et al., 1998). Then, the second derivative was calculated and the spectrum was smoothed with a Savitzky-

Golay filter using the savitzkyGolay function (differentiation order = 2, polynomial order = 3, window size = 5). From the

second derivative of remission function spectrum, the iron oxide-associated parameters A1, A2, A3 and the goethite proportion645

within iron oxides (Gt) (Tiecher et al., 2015). The A1 and A2 peaks are associated with goethite and the A3 peak is associated

with hematite, and all peaks were calculated as the amplitude between each maximum and minimum bands. Thus, A1 is the

difference between 450 and 420 nm, A2 is the difference between 510 and 480 nm and A3 is the difference between 575 (as

the mean of 570 and 580 nm) and 535 nm (as the mean of 530 and 540 nm) and Gt is calculated as the ratio of A1/(A1+A3).
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A1 Statistics650

Table A1. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: Three-step

Method (TSM) range test criteria and consensus method (CM) for cropland course. W50*: prediction interval width; ME: mean error;

RMSE: root mean square error; r2: squared Pearson’s correlation coefficient; NSE: Nash-Sutcliffe modelling efficiency coefficient; CRPS:

continuous ranked probability score. Note: * = Mean values per source.

Cropland

Tracer selection method W50* ME RMSE
CRPS* r2 NSE

Range test criterion DFA (%) (%) (%)

Three-step method

Minimum-maximum
No 10 2 15 9 0.89 0.74

Yes 13 -2 13 7 0.96 0.80

Minimum-maximum ± 10%
No 9 5 14 9 0.92 0.77

Yes 10 6 13 7 0.95 0.80

Whiskers
No 15 7 16 10 0.84 0.63

Yes 17 5 15 9 0.87 0.71

Hinge
No 12 10 18 11 0.85 0.62

Yes 17 7 15 9 0.90 0.73

Mean No & Yes 24 21 31 17 0.36 -0.17

Mean ± 10%
No 15 11 19 12 0.78 0.56

Yes 16 10 18 11 0.77 0.59

Median No & Yes 25 2 17 10 0.77 0.63

Consensus method 21 11 20 11 0.71 0.52
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Table A2. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: Three-

step Method (TSM) range test criteria and consensus method (CM) for forest course. W50*: prediction interval width; ME: mean error;

RMSE: root mean square error; r2: squared Pearson’s correlation coefficient; NSE: Nash-Sutcliffe modelling efficiency coefficient; CRPS:

continuous ranked probability score. Note: * = Mean values per source.

Forest

Tracer selection method W50* ME RMSE
CRPS* r2 NSE

Range test criterion DFA (%) (%) (%)

Three-step method

Minimum-maximum
No 7 -7 14 8 0.96 0.75

Yes 10 -2 10 6 0.96 0.86

Minimum-maximum ± 10%
No 6 -8 14 9 0.98 0.74

Yes 8 -6 13 6 0.98 0.79

Whiskers
No 10 -8 15 9 0.96 0.73

Yes 12 -6 14 8 0.95 0.77

Hinge
No 8 -10 16 10 0.97 0.67

Yes 11 -7 14 8 0.97 0.77

Mean No & Yes 18 -19 28 15 0.79 0.00

Mean ± 10%
No 10 -11 17 10 0.96 0.65

Yes 10 -10 17 10 0.96 0.65

Median No & Yes 14 -6 14 8 0.92 0.75

Consensus method 13 -12 18 10 0.93 0.58
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Table A3. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: Three-

step Method (TSM) range test criteria and consensus method (CM) for subsoil course. W50*: prediction interval width; ME: mean error;

RMSE: root mean square error; r2: squared Pearson’s correlation coefficient; NSE: Nash-Sutcliffe modelling efficiency coefficient; CRPS:

continuous ranked probability score. Note: * = Mean values per source.

Subsoil

Tracer selection method W50* ME RMSE
CRPS* r2 NSE

Range test criterion DFA (%) (%) (%)

Three-step method

Minimum-maximum
No 8 5 8 5 0.99 0.92

Yes 8 3 7 4 0.99 0.93

Minimum-maximum ± 10%
No 5 3 7 4 1.00 0.93

Yes 6 0 7 4 1.00 0.93

Whiskers
No 8 1 6 4 0.98 0.95

Yes 8 1 6 4 0.98 0.95

Hinge
No 6 -1 7 4 0.99 0.95

Yes 9 0 7 4 0.99 0.94

Mean No & Yes 11 -3 8 5 0.97 0.92

Mean ± 10%
No 8 0 7 4 0.98 0.95

Yes 8 1 7 4 0.97 0.95

Median No & Yes 12 4 9 5 0.95 0.90

Consensus method 11 1 7 4 0.97 0.94
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Table A4. Summary of MixSIAR accuracy statistics calculated on virtual mixtures (n = 138) for each tracer selection method: Three-

step Method (TSM) range test criteria and consensus method (CM) averaged on the three sources (i.e. cropland, forest and subsoil). W50*:

prediction interval width; ME: mean error; RMSE: root mean square error; r2: squared Pearson’s correlation coefficient; NSE: Nash-Sutcliffe

modelling efficiency coefficient; CRPS: continuous ranked probability score. Note: * = Mean values per source.

Averaged

Tracer selection method W50* ME RMSE
CRPS* r2 NSE

Range test criterion DFA (%) (%) (%)

Three-step method

Minimum-maximum
No 8 0 12 7 0.95 0.80

Yes 10 0 10 6 0.97 0.86

Minimum-maximum ± 10%
No 7 0 12 7 0.97 0.81

Yes 8 0 11 6 0.98 0.84

Whiskers
No 11 0 12 8 0.93 0.77

Yes 12 0 12 7 0.93 0.81

Hinge
No 9 0 14 8 0.94 0.75

Yes 12 0 12 7 0.95 0.81

Mean No & Yes 18 0 22 12 0.71 0.25

Mean ± 10%
No 11 0 14 9 0.91 0.72

Yes 11 0 14 8 0.90 0.73

Median No & Yes 17 0 13 8 0.88 0.76

Consensus method 15 0 15 8 0.87 0.68
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Table A5. Selected tracers Pearson correlation coefficients. · = correlation with significance test p-value lower than 0.05.

TOC TN Al Ca K Si Sr Zn Zr L* a* b* C* h A1 A2 Gt Q7/4

TN 0.97

Al -0.76 -0.83

Ca 0.13 0.21 -0.52

K -0.33 -0.37 0.56 -0.50

Si -0.47 -0.53 0.51 -0.41 0.47

Sr 0.05 0.12 -0.49 0.87 -0.53 -0.37

Zn 0.06 0.20 -0.28 0.47 -0.39 -0.53 0.23

Zr · -0.27 0.47 -0.43 0.71 0.24 -0.48 -0.19

L* -0.71 -0.77 0.83 -0.56 0.65 0.53 -0.50 -0.37 0.53

a* -0.29 -0.43 0.66 -0.63 0.29 0.39 -0.53 -0.43 0.37 0.61

b* -0.63 -0.72 0.75 -0.49 0.20 0.45 -0.38 -0.32 · 0.68 0.79

C* -0.61 -0.71 0.75 -0.52 0.21 0.45 -0.40 -0.34 0.17 0.69 0.83 1.00

h · · · · · · 0.30 · -0.35 · · · ·

A1 · · · · -0.56 · 0.36 · -0.55 · · · · 0.55

A2 -0.27 -0.27 · · · · · · · · 0.41 0.58 0.58 · 0.77

Gt · · -0.32 0.55 -0.23 -0.21 0.52 0.33 -0.37 -0.30 -0.68 -0.28 -0.33 0.64 · ·

Q7/4 -0.49 -0.54 0.47 · · 0.17 · · · 0.35 0.52 0.83 0.81 · 0.76 0.82 ·

G525 -0.59 -0.68 0.80 -0.57 0.44 0.53 -0.50 -0.42 0.33 0.83 0.78 0.89 0.89 · · 0.44 -0.35 0.64
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Table A6. Number of sediment samples that fell inside of the space of the virtual mixture predicted contributions for each tracer selection

method out of 32.

Tracer selection method Source group

Range test criterion DFA Cropland Forest Subsoil

Three-step method

Minimum-maximum
No 33 2 0

Yes 0 0 0

Minimum-maximum ± 10%
No 31 1 0

Yes 0 0 0

Whiskers
No 36 15 9

Yes 13 0 0

Hinge
No 37 34 6

Yes 37 31 16

Mean No & Yes 37 37 30

Mean ± SD
No 37 31 30

Yes 37 33 10

Median No & Yes 6 37 13

Consensus method 10 37 7
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