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• Abstract. Due to global climate change, flooding is predicted to become more frequent in the coming decades. Recent 

literature has highlighted the importance of river morphodynamics in controlling flood hazards at the local scale. 

Abrupt and short-term geomorphic changes can occur after major storms. However, our ability to foresee where and 

when substantial changes will happen is still limited, hindering our understanding of their ramifications on future 10 

flood hazards. This study sought to understand the implications of major storm events for future flood hazards. For 

this purpose, we developed self-organizing maps (SOMs) to predict post-storm changes in stage‐discharge 

relationships, based on storm characteristics and watershed properties at 3,101 stream gages across the continental 

United States (CONUS). We tested and verified a machine learning (ML) model and its feasibility for (1) mapping 

the variability of geomorphic impacts of extreme storm events and (2) representing the effects of these changes on 15 

stage‐discharge relationships at gaged sites as a proxy for changes in flood hazard. The established model allows us 

to select rivers with stage-discharge relationships that are more prone to change after severe storms, for which flood 

frequency analysis should be revised on a regular basis so that hazard assessment can be up to date with the changing 

conditions. Results from the model show that, even though post-storm changes in channel conveyance are widespread, 

the impacts on flood hazard vary across CONUS. The influence of channel conveyance variability on flood risk 20 

depends on various parameters characterizing a particular landscape or storm. The proposed framework can serve as 

a basis for incorporating channel conveyance adjustments into flood hazard assessment.   

1 Introduction 

Several factors contribute to the non-stationarity in flow regimes, including variations in human activities, changes 

in land cover and land use, climate changes, and low-frequency internal climate variability (i.e., multidecadal oscillations) 25 

(Cunderlik and Burn, 2003; Mostofi Zadeh et al., 2020). Consequently, flood trends over the past decades have changed 

worldwide (Chang et al., 2007; FEMA, 2013; Karagiannis et al., 2017; McEvoy et al., 2012; Ziervogel et al., 2014), with 

critical impacts on society and the environment (Blöschl et al., 2019; Dottori et al., 2022, 2018; Hattermann et al., 2014; Milly 

et al., 2002; Mostofi Zadeh et al., 2020; Slater et al., 2015).  
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Traditional “cause-effect” studies have focused on the time dependency or non-stationarity of individual hydrologic 30 

flood drivers (Alfieri et al., 2015; Khanam et al., 2021; Lisenby and Fryirs, 2016; Mallakpour and Villarini, 2015; Mostofi 

Zadeh et al., 2020; Munoz et al., 2018). However, these studies might be under or overestimating the actual damage, especially 

in regions where the landscape is changing rapidly. 

For decades, fluvial geomorphology research has focused on changes in river characteristics (Baker, 1994; Benito 

and Hudson, 2010; Stott, 2013). River channels and their adjacent floodplains continuously evolve because of the interactions 35 

of hydrology, landscape, and climate drivers and the interdependencies of processes at different spatial and temporal scales 

(Lane et al., 2007; Pinter et al., 2006b; Slater et al., 2015; Stover and Montgomery, 2001; Blench 1906-1993, 1969). Humans 

also critically modify the landscape, contributing to these intricate geomorphic dynamics of rivers and floods (Ceola et al., 

2019; Grill et al., 2019; Wohl, 2019). 

Nonetheless, flood risk measurement has traditionally been based on flood frequency, derived from variability in 40 

streamflow, assuming constant channel capacity (Merz et al., 2012; Slater et al., 2015). Various recent works (Ahrendt et al., 

2022; Naylor et al., 2016; Slater et al., 2015, 2019; Sofia and Nikolopoulos, 2020a; Sofia et al., 2020) have suggested the time 

has come to move beyond flood hazard assessment based on this “fixed river” idea. 

Even though the amount of water that flows through the river systems during floods does not change, changes in 

rivers' capability to hold and transport flood waters downstream (river conveyance capacity) impact the likelihood that floods 45 

will topple riverbanks or flood defenses.  Therefore, these changes in channel capacity alter flood properties, even when flood 

frequency remains unchanged (Blench 1906-1993, 1969; Criss and Shock, 2001; Lane et al., 2007; Neuhold et al., 2009; Pinter 

et al., 2008; Slater et al., 2015c; Stover and Montgomery, 2001). Some obvious evidence of the effects of channel changes on 

flood properties has been presented by recurring flooding in different dynamic rivers (Brierley and Fryirs, 2016; Pinter et al., 

2001; Zischg et al., 2018; Tate, 2019; Munoz et al., 2018). During these flood events, impacts are most evident at sites where 50 

the rivers’ channel capacity has been drastically reduced (Munoz et al., 2018; Tate, 2019; Sofia et al., 2020).  

Rivers naturally adapt their geometry (i.e., their breadth, depth, and slope) to changes in discharge and sediment in 

the upstream catchment and the alterations brought on by human activities (Lisenby et al., 2018). Any changes in these 

characteristics might also alter the frequency and risk of future flooding. 

Neglecting the possibility of rapid changes in streamflow regime and channel conveyance capacity can conceal short-55 

term shifts in flood threats. For example, Li et al., (2020) demonstrated that long-term trends are actually composed of 

numerous short-term shifts of much larger magnitude. These transient stages are mostly caused by abrupt deposition or 

scouring during extreme storm events and are comparable in magnitude to long-term trends in peak streamflow. Additionally, 

short- and long-term climate variability can, at the same time, impact the streamflow patterns and channel conveyance changes, 

with the channel form adjusting to precipitation and sediment supply (Death et al., 2015; Rathburn et al., 2017; Ruiz-Villanueva 60 

et al., 2018; Scorpio et al., 2018; Surian et al., 2016; Wicherski et al., 2017).  

Figure 1, for example, shows changes in Boulder Creek in Colorado before and after a flash flood in 2013. Comparing 

the channel planform and width, it is evident the channel got wider after the flood. Images from 2015 and 2019 show that the 
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secondary channel on the right eventually disappeared, and the main channel acquired a more prominent bend than in the 2013 

image. Such relatively quick alterations have the potential to further modify the geomorphic characteristics of rivers and to 65 

produce feedback that will affect the properties of future floods (depth, frequency, duration, and spatial extent). 

 

Systematic shifts in a river’s stage-discharge relationships identify the need for sharp upward revisions in hazard 70 

levels and stage-based flood-frequency analysis. Adjustments to the river stage-discharge relationship account for, at least 

partly, climate variability and long-term change. Nonetheless, while some river changes might persist in time, others could be 

more sudden and persist for a shorter time frame, like in the case of extreme storms. These short-term changes are difficult to 

predict, but they could substantially increase the post-storm hazard, especially in the case of subsequent storms. 

Understanding the scale and severity of channel changes after major storm events is vital to improving flood 75 

management and building the resilience of critical infrastructure. A comprehensive study that shows the impacts of storm-

induced channel changes on future flood hazards is missing from our current knowledge. Buraas et al., (2014) highlighted our 

limited capability to predict where significant geomorphic changes will occur following extreme events. Other authors have 

pointed to multidirectional approaches as promising contributions to the analysis of channel response to severe floods and the 

identification of controlling factors (Rinaldi et al., 2016; Scorpio et al., 2018; Surian et al., 2016; Wicherski et al., 2017; among 80 

others). Nevertheless, these studies are local examples of how storms can alter rivers and consequently flood hazard. 

At regional scales, it is often either impracticable or impossible to identify the precise events responsible for periods 

of channel shift: at such a level, linking geomorphic cause and effect becomes increasingly difficult.  However, this does not 

Figure 1: Change in channel width in Boulder Creek, Colorado, before (2012) and after (2013-2015-2019) a flash flood in 2013 

(© Google Earth imagery). The Discharge reported here is Daily discharge measured at the gage USGS 06730200. 
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negate the requirement to comprehend and recognize short-term geomorphologic and hydrologic behaviours that can 

exacerbate or mitigate flood threats. For this purpose, the availability of a large dataset representing a wide range of extreme 85 

storm characteristics and channel morphology under different boundary conditions, such as underlying climatic, hydrologic, 

and geomorphologic settings, is crucial. 

In this study, we have utilized stage-discharge “Residuals” [temporal changes in the discharge needed to reach a 

certain flood warning threshold] (Slater et al. 2015) as a proxy of flood hazard change. We sought to understand and predict 

the effects of extreme storms on these residuals and, consequently, flood hazards. To achieve this, we introduced a modeling 90 

framework based on machine learning (ML) (section 2.3) that characterizes the interdependence of flood drivers, including 

atmospheric drivers (precipitation and storm characteristics), hydrologic drivers (flow, stage), and geomorphologic drivers 

(channel width, depth, drainage area, geophysical characteristics). Despite some limitations (Karpatne et al., 2019), ML 

applications are rapidly gaining popularity in the field of hydrology, geomorphology, and climate studies (Bergen et al., 2019; 

Schlef et al., 2019; Valentine and Kalnins, 2016). Despite some limitations (Karpatne et al., 2019), ML can be beneficial when 95 

we develop non-parametric models that represent unknown multi-variate, non-linear relationships by training on historical 

measurements provided that these models are adequately validated based on measured data, which informs us as to whether 

ML results are accurate, transferable, and scalable (Houser et al., 2022; Sarker, 2021; Schlef et al., 2019; Sofia, 2020).  

This study uses ML to quantify and model the effects of extreme storms on channel conveyance and the impacts on 

flood hazards. It aims to: (1) map the spatial variability of geomorphic response to extreme storm events, and (2) understand 100 

the impact of these storms on the stage‐discharge relationships at gaged sites as a proxy for changes in flood hazard. The 

study provided an independent test of discharge-based results and produced a tool for generating timely short-term updates of 

flood hazard estimates for dynamic rivers.  

2 Materials and Methods 

2.1 Quantifying the Impact on Flood Hazard 105 

For this study, we used data from 3,101 U.S. Geological Survey (USGS) gaging stations distributed across the 

continental United States (Figure 2). The dataset allows us to cover a wide range of physiographic and climatic (See Fig. 2) 

regions. 

We selected stations for which were available both historical field-measured data on channel properties and flood 

stages assigned by the National Weather Service (NWS). The data for channel properties were retrieved following a procedure 110 

developed by (Slater, 2016; Slater et al., 2015) and using the codes provided by the authors at 

https://github.com/LouiseJSlater/Hydromorphology. 
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Figure 2: USGS gage stations considered in this study overlain on physiographic and climatic regions-Appalachian Highlands 115 
(ApHigh), Atlantic Plain (AtlPlain), Interiors Highlands (IntHigh), Interior Plains (IntPlain), Intermontane Plateaus (IntermPlat), 

Laurentian Upland (LaurUpl), Pacific Mountain System (PacMounSys), and Rocky Mountain System (RockMounSys); and on 

Climatic types- Tropical Rainforest (AF), Tropical Monsoon (Am), Tropical Savanna (Wet and Dry Climate) (Aw), Hot Desert 

Climate (BWh), Cold Desert Climate (BWk), Hot Semi-Arid Climate (BSh), Cold Semi-Arid Climate (BSk), Hot-Summer 

Mediterranean Climate (Csa), Warm-Summer Mediterranean Climate (Csb), Temperate, dry summer, cold summer (Csc), Warm 120 
Oceanic Climate / Humid Subtropical Climate (Cwa), Subtropical highland climate or temperate oceanic climate with dry winters 

(Cwb), Cold subtropical highland/Subpolar Oceanic (Cwc), Humid Subtropical Climate(Cfa), Temperate Oceanic Climate (Cfb), 

Subpolar Oceanic ClimateDsa  -  Humid Continental Climate - Dry Warm Summer (Cfc ), Humid Continental Climate - Dry Cool 

Summer (Dsb), Continental Subarctic - Cold Dry Summer (Dsc), Continental Subarctic – Dry Summer, Very Cold Winter (Dsd), 

Humid Continental Hot Summers With Dry Winters, Humid Continental Mild Summer With Dry Winters (Dwb), Subarctic With 125 
Cool Summers (Dwc). Dry Winters (Dwa), Humid Continental Hot Summers With Year Around Precipitation (Dfa), Humid 

Continental Mild Summer, Wet All Year (Dfb), Subarctic With Cool Summers And Year Around Rainfall (Dfc), Subarctic With 

Cold Winters And Year Around Rainfall (Dfd), Tundra Climate (ET), Ice Cap Climate) (EF). 

To model the average state of conveyance capacity for each stream gage site, we used theoretical single-stage-

discharge relationships (rating curves) at the height associated with the Flood stage, as described by Slater et al. (2015). The 130 

flood stage, for the US National Weather Service, indicates a gauge height above which water level begins to impact lives and 

human activities, and it generally corresponds to the first flood warning threshold. The procedure, therefore, can be adapted 

for other gage datasets, in different parts of the world, by assuming similar warning thresholds.  
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Deviations from the theoretical stage-discharge relationship indicate that a different stage-discharge relationship 

existed at a moment in time, which highlights that there might have been temporal changes in channel conveyance. As 135 

described by Li et al. (2020), Slater et al. (2015, 2019), and Slater and Villarini, (2016), using a constant flood level enables 

the quantification of "conveyance residuals (Res)" whose variability represents temporal changes in the discharge needed to 

reach such a warning threshold (i.e., due to shifts in channel capacity). In a temporal analysis of residuals, a positive to negative 

shift indicates a sudden decrease in channel capacity and a potential increase in flood hazard (Slater et al., 2015), as a lower 

discharge is needed to meet the warning threshold. We followed this procedure to capture the sudden changes in channel 140 

conveyance following major storm events. 

To define the stage-discharge relationship, we used a Locally Weighted Scatterplot Smoothing (LOESS) fitting 

(Cleveland, 1979), as suggested by Li et al. (2020), Slater et al. (2015, 2019), and Slater and Villarini (2016). The fitting 

requires the definition of a smooth parameter, which we set automatically based on the bias-corrected Akaike Information 

Criterion (AIC) (Hurvich et al., 1998). We performed the analysis using the R package fANCOVA (https://CRAN.R-145 

project.org/package=fANCOVA). 

Before performing the above-mentioned steps, we excluded from the analysis measurements taken prior to the most 

recent datum change, if any reported measurement datum change was provided. We did not consider stations with gaps in the 

measurements. For the fitting, we only kept field data having discharge within a range of half the flood stage depth on either 

side of the flood stage, as suggested in Slater et al. (2015). We evaluated the readings visually to look for clusters of outliers 150 

in the scatterplots of the channel measurements that could be signs of changes in the measurement location (or datum). We 

eliminated these measurement in a systematic manner.  Figure 3 provides an example of changes in residuals after a major 

storm event for the Quinnipiac River in Connecticut. From April 15 to April 18, 2007, a spring storm hit the East Coast of the 

United States. The streamflow-gaging station recorded flood levels during this occurrence that were more than 0.2 meters 

higher than the FEMA-projected 100-year levels (Ahearn, 2009). In figure. 3a, the stage and discharge data retrieved from 155 

field measurements taken after the flood appear to shift toward higher values of the stage for comparable discharges compared 

to before 2007. The curve fitted at the flood stage (black line in Figure. 3a) ultimately aligns between the two sets of data. 

Looking at the residuals concerning the fitted curve (Figure. 3b), the shift from positive residuals, before 2007, to negative is 

noticeable. This suggests a loss of conveyance capacity due to deposition, assuming no changes in velocity. The time series of 

widths (Figure. 3c) and cross-sectional area (Figure. 3d) confirm this loss of conveyance; for this site, slightly changed channel 160 

widths (Figure. 3c) and an abrupt change in capacity (Figure. 3d) can be seen, possibly due to deposition along the riverbed. 

Such a change may result in a potential increase in flood hazard for a given flood volume.  
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Figure 3: Illustration of the conveyance analysis for the USGS stream gage QUINNIPIAC RIVER AT WALLINGFORD (USGS 165 
station 01196500), before and after the storm of April 2007. Stage-discharge relationship fitted to flood hazard level is shown in (a), 

and residuals fitted to the rating curve in (b). In (b), some outlier residuals are evident, likely due to shifts in measurement locations. 

These points were filtered out before performing the ML training. Time series of channel widths (c) and channel capacity (d) are 

also shown, to highlight that possibly, the major change in residuals is due to a difference in channel depth, given a constant velocity. 

2.2 Considered Predictors 170 

To obtain information on the watershed’s hydrologic and geomorphologic properties, we collected data for each gage 

from the GAGES II dataset (Falcone, 2011). This dataset provides for each gage landscape variables associated with watershed 

typical characteristics (e.g., Drainage area, Elevation, etc). These properties can be considered likely to change at a speed much 

slower than river discharge and localised channel measurements. Hence, we may consider these variables as 'static' in time. 

However, even if they are static in time, these characteristics are highly variable in space as they are spread across the CONUS, 175 

providing us with a large sample of values for the ML training. 

We also investigated several extreme events from 2002 to 2013 provided by (Shen et al., 2017). We ended up with 

291201 events total for the 3101 gages. The minimum and maximum numbers of events per gage varied from 1 to 520. For 

each available field measurement of channel properties, we consider all the storms that happened in the previous 15, 30, 90, 

180, and 365 days (accounting for the lag times between each storm and the response of the river system) and calculate the 180 
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median values of the storm characteristics (as defined in Shen et al., 2017; Table 1) in that timeframe, excluding gages with 

less than 10 events. Therefore, for every field measurement (i.e., dot in Fig 3), we have a “typical storm” reducing the effects 

of small variability.  

We identified three groups of drivers from these integrated data sources: atmospheric, hydrologic, and 

geomorphologic (Table 1). The integrated dataset provided direct and statistically derived information regarding flows and 185 

associated precipitation characteristics of each storm event.  

 

Table 1: Variables considered in the analysis and their abbreviations. Readers should refer to Shen et al. (2017) and Falconee (2011) 

for a complete description of the atmospheric, hydrologic, and geomorphologic variables. Variables in bold letters are those used 

for ML analysis after the variable importance analysis. Please note that the description of the variables and their naming is consistent 190 
with that of the two published dataset. 

VARIABLE DESCRIPTION Unit VARIABLE_TYPE Data Source 

TOPWET Topographic wetness index ln(m) Hydrologic Falcone (2011) 

HLR100M_SITE 

Hydrologic Landscape Region 

(HLR) at the stream gage 

location. unitless Hydrologic Falcone (2011) 

Peak 

Peak flow associated with the 

storm event   Hydrologic Shen et al. (2017)  

Res Residual unitless Hydrologic Estimated  

IBF Base flow index  m3/m3 Hydrologic Shen et al. (2017)  

Perc 

Percentage of peak flow: The 

corresponding percentile of the 

peak flow in the entire flow 

series of the gauge % Hydrologic Shen et al. (2017)  

Q2 

Second-order moment of the 

flow    Hydrologic Shen et al. (2017)  

Els 

Mean water travel distance to 

the drainage outlet  m Hydrologic Shen et al. (2017)  

EQ Centroid of flow hydrograph  h Hydrologic Shen et al. (2017)  

Vt 

Normalized flow volume ~ 

average flow volume per unit 

drainage area mm Hydrologic Shen et al. (2017)  

HYDRO_DISTURB_INDX Anthropogenic modification  unitless Hydrologic Falcone (2011) 

RunoffCoef Runoff coefficient  unitless Hydrologic   
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BFI_AVE 

Base Flow Index (BFI): Base 

flow to total streamflow ratio, 

given as a percentage ranging 

from 0 to 100. The persistent, 

slowly fluctuating component of 

streamflow that is commonly 

attributed to ground-water 

discharge to a stream is known 

as base flow. % Hydrologic Falcone (2011) 

CLASS 

Reference/non-reference class: 

REF = reference (least-

disturbed hydrologic condition); 

NON-REF = not reference. N/A Geomorphologic Falcone (2011) 

GEOL_REEDBUSH_DOM 

Dominant (highest percent of 

the area) geology, derived from 

a simplified version of Reed & 

Bush (2001) - Generalized 

Geologic Map of the 

Conterminous United States. N/A Geomorphologic Falcone (2011) 

STREAMS_KM_SQ_KM 

Stream density, km of streams 

per watershed sq km, from NHD 

100k streams 

km/sq 

km Geomorphologic Falcone (2011) 

STRAHLER_MAX 

NHDPlus's maximum Strahler 

stream order in the watershed. unitless Geomorphologic Falcone (2011) 

MAINSTEM_SINUOUSITY 

Sinuosity of mainstem 

streamline  unitless Geomorphologic Falcone (2011) 

RFACT Rainfall and Runoff factor 

100s ft-

tonf 

in/h/ac/yr Geomorphologic Falcone (2011) 

ELEV_MEAN_M_BASIN 

Mean watershed elevation 

(meters) from 100m National 

Elevation Dataset  m Geomorphologic Falcone (2011) 

ELEV_MAX_M_BASIN 

Maximum watershed elevation 

(meters) from 100m National 

Elevation Dataset  m Geomorphologic Falcone (2011) 
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ELEV_MIN_M_BASIN 

Minimum watershed elevation 

(meters) from 100m National 

Elevation Dataset m Geomorphologic Falcone (2011) 

ELEV_MEDIAN_M_BASIN 

Median watershed elevation 

(meters) from 100m National 

Elevation Dataset m Geomorphologic Falcone (2011) 

ELEV_STD_M_BASIN 

Standard deviation of elevation 

(meters) across the watershed 

from 100m National Elevation 

Dataset m Geomorphologic Falcone (2011) 

ELEV_SITE_M 

Elevation at gage location 

(meters) from 100m National 

Elevation Dataset m Geomorphologic Falcone (2011) 

RRMEAN 

Dimensionless elevation - relief 

ratio, calculated as 

(ELEV_MEAN - 

ELEV_MIN)/(ELEV_MAX - 

ELEV_MIN). unitless Geomorphologic Falcone (2011) 

RRMEDIAN 

Dimensionless elevation - relief 

ratio, calculated as 

(ELEV_MEDIAN - 

ELEV_MIN)/(ELEV_MAX - 

ELEV_MIN). unitless Geomorphologic Falcone (2011) 

SLOPE_PCT Mean watershed slope % Geomorphologic Falcone (2011) 

ASPECT_DEGREES Mean watershed aspect 

degrees 

(0-360) Geomorphologic Falcone (2011) 

ASPECT_NORTHNESS 

Aspect “northness”. Ranges 

from -1 to 1. A value of 1 means 

the watershed is facing/draining 

due north, and a value of -1 

means the watershed is 

facing/draining due south  unitless Geomorphologic Falcone (2011) 

ASPECT_EASTNESS 

Aspect “eastness”. Ranges from 

-1 to 1. A value of 1 means the 

watershed is facing/draining due 

east, and a value of -1 means the unitless Geomorphologic Falcone (2011) 
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2.3. Modeling the Impact of Major Storms          

The ML-based methodology developed in this study for predicting the median “Residual” is based on clusters of the 

gages. Using a self-organizing map (SOM) with event-specific characteristics, explained in Table 1, we developed a framework 195 

for understanding and predicting channel changes due to severe storm events. The SOM developed by (Kohonen, 1982), is 

one of the most popular clustering/ classification methods used in many research areas such as medical science, hydrology, 

and signal processing (e.g., (Zanchetta and Coulibaly, 2022; Rahmati et al., 2019). The SOM method has become a very useful 

prediction tool in hydrological and environmental studies because it can predict a target variable without learning any physical 

relationship among a collection of variables. The main advantage of the SOMs is that they allow to reduce the data 200 

dimensionality, by organizing the data into a two-dimensional array (Kohonen 1982) using topology-preserving 

transformations (Rahmati et al., 2019). SOMs, being a form of artificial neural network, can be thought of as a regression 

technique with a higher level of nonlinearity between the dependent and independent variables (Geem et al., 2007).    

The proposed SOM framework (Figure 4) consisted of four phases: unsupervised clustering, supervised mapping, 

trained regression, 10-fold validation, and prediction. The whole procedure is described in the sub-sections below.  205 

watershed is facing/draining due 

west  

Physio 

Physiographic divisions of 

CONUS N/A Geomorphologic 

 (Physiographic 

divisions of the 

conterminous U. S., 

2023) 

DRAIN_SQKM Drainage area  km2 Geomorphologic Falcone (2011) 

CovTrLs 

Covariance of precipitation and 

water travel distance  mh Atmospheric Shen et al. (2017)  

Etr  Centroid of precipitation  h2 Atmospheric Shen et al. (2017)  

VarTr Spreadness of precipitation  h2 Atmospheric Shen et al. (2017)  

VarLs 

Variance of water travel 

distance  m2 Atmospheric Shen et al. (2017)  

Vb Base flow volume  mm Atmospheric Shen et al. (2017)  

Vp Precipitation volume  mm Atmospheric Shen et al. (2017)  

Pmean Mean Precipitation  mm/h Atmospheric Shen et al. (2017)  

  

Climate types (was not included 

in the ML model)   Atmospheric   
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     Figure 4: Schematic of the SOM framework proposed in this study. 

The SOM algorithm is technically conceived for numerical datasets. This means that SOMs cannot be used to analyze 

categorical values. To present the categorical variables to the machine learning model selected for this study, we therefore 

converted all the categorical values into binary digits. Each binary digit was then transformed into one feature column. 210 

Most storm variables (except Perc- Percentage of peak flow and Percentile-Percentile corresponds to peak flow) were 

normalized considering the range of values available for each station. This normalization was performed to account for the 

influence of the watershed sizes on the various storm properties. Continuous geomorphologic and hydrologic variables, not 

coded in the range 0-1 (or 0-100) (aside from RRMEAN-Mean relief ratio and RRMEDIAN- Median relief ratio, 

SLOPE_PCT- Mean watershed slope, and Aspect) were normalized considering the overall range across CONUS. The stage-215 

discharge residuals were kept as is because they are already “relative” in value to the stage-discharge fitted at flood stage for 

each gage. To reduce the dataset dimensionality, and avoid collinearity, we performed a variable importance analysis using 

the misclassification rate (section 2.3.1). 

https://doi.org/10.5194/egusphere-2023-1969
Preprint. Discussion started: 31 August 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

2.3.1. Unsupervised Clustering 

The first module used, a SOM algorithm to cluster together gages based on similar characteristics. The main objective 220 

of this step is to group together gages having similar underlying patterns of variables. The SOMs are organized in two-

dimensional space where the neighbouring neurons learn similar patterns, and neurons mapped far away have dissimilar 

patterns (Stefanovič & Kurasova, 2011). This unsupervised mapping was performed automatically using the Kohonen package 

in R (Wehrens and Kruisselbrink, 2018; Wehrens and Buydens, 2007; Kohonen, 1982; Wehrens, 2019). The optimal number 

of nodes was set at five times the square root of the number of observational data, as per Kohonen's general rule (Fytilis and 225 

Rizzo, 2013).  

Typically, SOM data clustering involves two steps: first, the data set is organized into various nodes, and then the 

nodes are clustered (Vesanto & Alhoniemi, 2000). Clustering speeds significantly increase when nodes are used in place of 

actual data. The result of the first step is that gages are grouped together in neighboring nodes if the underlining patterns of 

variables are similar. After the SOM is trained, its U-matrix gives insight into how all the data are organized, as it displays the 230 

nodes and the distance that the weight nodes create between each weight and all its neighbors. This matrix can be used for the 

second step of identifying and labeling the actual clusters, through image-analysis tools (Pacheco et al., 2017,Vincent et al., 

1991; Wang et al., 2010; Wu & Li, 2022). In this work, the first unsupervised clustering was accomplished by using all the 

data together, including the residuals in the process. Each gage was assigned a cluster number based on all the variables 

pertaining to that location. Gages grouped in the same cluster are expected to have similar patterns of the input variables, 235 

including the residuals. For each cluster, then, we re-train the model, retaining only the gages for that cluster, to provide the 

most typical residual given by the combination of hydrologic, geomorphologic, and atmospheric variables. 

The most common approach is to segment the U-matrix using the watershed technique of gray-scale image processing 

(Costa and Netto, 1999; Vincent et al., 1991). Using a watershed analogy, the U-matrix (Figure 5) can be used to locate the 

clusters. Large "heights" and ridges imply significant distances in the feature space, while little "valleys" represent data subsets 240 

that are similar (Ultsch and Lötsch, 2017). The segmentation is performed by flooding the valleys (similar nodes with very 

close distances from one to the other) until a ridge (high dissimilarity) is reached. Where the water converges, watersheds will 

form, having close boundaries. One cluster is represented by all the items in a segmented area or watershed. According to this 

approach, a minimum height threshold can be selected to define the clusters (valleys). We followed automatic thresholding 

and set the threshold to a statistical value equal to half the standard deviation of the values. To perform this step, we applied 245 

watershed transformation and watershed-based object detection using the function “watersheds” in the R Bioconductor 

package (Torres-Matallana, 2016). 
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Figure 5: Example of (a) U-Matrix and (b) derived clusters. Red colors in the U-Matrix stand for significant distances in the feature 

space, whereas blue colors are "valleys" that group subsets of related data. The watersheds shown in (b) are collections of related 250 
data. 

We assessed the relevance of each feature according to its misclassification rate relative to a baseline cluster 

assignment produced by a random permutation of feature values in order to find the most crucial features and prevent data 

duplication (Molnar, 2022; Breiman, 2001; Fisher et al., 2018). We preferred this approach considering that permutation 

feature importance does not call for retraining of the model before the analysis. This approach states that a variable (feature) 255 

is “important” if changing its values results in a cluster reassignment because, in this scenario, the model primarily relies on 

that feature to forecast the predictors. In contrast, a feature is considered "unimportant" if changing its values has no effect on 

the anticipated cluster. The variable identified as important with the shuffling does not necessarily mean they have high 

variability among watersheds. It rather means that this variable is highly correlated with the target variable (the cluster 

association), because shuffling its values essentially destroys any relationship between that feature and the target variable, as 260 

indicated by the decrease in the training performance. After randomly permuting the values of a feature, the model is NOT 

refitted to the training data. This technique has been recognized in the literature (e.g., Breiman, 2016; Fisher et al., 2018; Wei 

et al., 2015) and it is widely implemented in many statistic packages as well (e.g., Biecek et al., 2018, 2019; Molnar & Schratz, 

2008) Please refer also to Wei et al (2015) for a review. We ran the clustering algorithm 10 times with different seeds. At each 

run, we trained the clustering using 90% of the data and predicted the remaining 10%; and, for each run, each feature of the 265 

dataset was permuted 10 times. The permutation misclassification rate of a feature was calculated as the number of observations 

for which the ‘permutated’ cluster label differed from the original cluster assignment, divided by the number of observations 

given a permutation of the feature. The overall average misclassification rate iterations were interpreted as variable importance. 

We decided to keep only the variables producing a misclassification rate higher than the mean values. Figure 6 shows the most 

important variables for the interval N = 365 days. This variable selection indirectly checks for collinearity by keeping only the 270 

variables that have the largest effect on the changes. 
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Figure 6: Selected variables based on misclassification rate (%). 

 275 

2.3.2. Supervised Mapping and Trained Regression 

Self-organizing maps (SOM) are extensively applied for clustering and visualization purposes. Nonetheless, they can 

be used for regression learning. (e.g., Riese & Keller, 2018, 2019). In the first step, the data (geomorphological, atmospheric, 

hydrologic variables, and measured residuals) are clustered together, based on patterns of variables. The resulting SOMs are 

composed of nodes individually associated to a "weight" vector that gives a representation of the node's location in the input 280 

space. The trained map can be used to categorize new observations, by locating the cell of the SOM grid that best matches the 

training data (best matching unit, or BMU).   

The regression algorithm of the SOM proceeds similarly to the clustering SOM algorithm. However, the regression 

differs for these main points: 1 Within the finalized input SOM that was created in the first stage, the BMU search is carried 

out.; 2. For the regression instance, the weights of the supervised SOM are based only on the residuals.  285 

Combining the unsupervised and supervised SOM allows for the selection of the BMU for each data point while also 

connecting the chosen best-matching unit to a particular residual estimation.  In other words, each gage is mapped to a certain 

cluster, based on the median characteristics of the storms and the landscape. For the regression part, the data extracted from 

the SOM are restricted to the best matching cluster, and given the input storm and watershed properties, we can predict the 

most likely residual. 290 

https://doi.org/10.5194/egusphere-2023-1969
Preprint. Discussion started: 31 August 2023
c© Author(s) 2023. CC BY 4.0 License.



16 

 

For the supervised mapping and trained regression step, the gages were tagged to their corresponding SOM clusters. 

Once a cluster is defined, we aimed to determine which features were the most significantly correlated. For this, we considered 

the distance correlation index (dCorr) (Székely et al., 2007) to quantitatively identify the correlation of the important variables 

with the residuals within each cluster. The range of dCorr values, from 0 to 1, represents the dependence of two independent 

variables. The stronger the dependence, the closer the value is to 1, and the statistical independence of the two variables is 295 

implied by a value of zero (Sofia & Nikolopoulos, 2020). We used inverse distance correlation (1-dCorr) to measure the 

dissimilarity of the variables within the cluster and create organized dendrograms. The attribute distances between every pair 

of drivers that have been successively clustered are depicted in a dendrogram.  

Having tagged the gages, we performed supervised training with them to predict the residuals based on the 

atmospheric, hydrologic, and geomorphologic variables. The main outcome of this part is to have a ML system able to predict 300 

the most probable residual after a storm having certain properties, for a location with specific watershed characteristics. To 

this point, we retrained the SOMs independently for each cluster, using only the data retrieved from the stations within that 

cluster. For this part, we applied an extension of Kohonen’s self-organizing map algorithm, the growing self-organizing map 

(GSOM) (Alahakoon et al., 2000; GrowingSOM package | R Documentation, 2020, https://rdrr.io/cran/GrowingSOM/). We 

chose GSOM to refine the analysis and improve the prediction within each cluster. The GSOM hierarchical clustering 305 

technique enables the data analyst to locate important and unique clusters at a higher level and to focus on more precise 

grouping of the interesting clusters only (Alahakoon et al., 2000). The GSOM is computationally expensive, so we decided to 

apply it to the already clustered data. A spread factor parameterizes the GSOM. This measure can generate maps of different 

sizes without previous knowledge about the dataset, samples, or attributes. We set the spread factor to 0.8, as suggested by 

Alahakoon et al. (2000).  310 

Finally, we trained the model by selecting 90% of the data randomly and validated its performance using the 

remaining 10% for each cluster. The traditional method of identifying the quality of the SOM, proposed by Kohonen, is to 

compute the quantization error by summing the distances between the nodes and the data points, with smaller values indicating 

a better fit. This method had been used successfully by many researchers, requiring minimal computation time, to compare 

changes across time-series images (e.g., Bação et al., 2005; Dresp et al., 2018; Wandeto and Dresp-Langley, 2019). For quality 315 

assessment, we also followed the approach used by Swenson and Grotjahn, (2019). We performed cross-validation for a 

particular SOM, fitting the SOM to the data first to ensure a unique cluster assignment. Then we conducted 100 trials, excluding 

the data used in initialization, as suggested by Swenson and Grotjahn (2019). We utilized a typical subdivision of  90-10, using 

90% of the data to fit a new SOM, and predicting the cluster assignments of the remaining 10% as validation. The percentage 

of gages whose cross-validation cluster assignment changed from the original assignment in at least 10% of the 100 trials was 320 

calculated. We further tested the quality of the ML by evaluating the RMSE and the correlation distance between the actual 

residuals and the predicted ones for the validation dataset. 

 

2.3.3. Predicting Major Storm Effects on Future Flood Hazard 
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Using the trained model (section 2.3.2), we predicted the residuals for each gaging station, based on all the variables 325 

(table 1) selected from Shen et al. (2017), Falcone (2011) and Fenneman and Johnson, 1964. We compared the predicted 

residual for a given storm at a given gage with the average residual measured in the most recent year. We quantified the 

“likelihood of change” as the percentage of times the predicted residuals showed a sudden deviation from positive to negative. 

This sudden deviation, as illustrated in Figure 3, can indicate a quick shift in channel conveyance in response to sediment 

deposition, which can trigger increased flood hazard even when the flood event’s return period remains unchanged (Blench 330 

1906-1993, 1969; Lane et al., 2007; Pinter et al., 2006b, a; Stover and Montgomery, 2001).      

We decided to approach this change in terms of how often a gage is predicted to change after a storm. We also compared the 

average residuals predicted from all the storms for a given gage with the confidence interval of the current stage-discharge 

relationship, calculating the ratio between the mean prediction and the lower bound of the confidence interval for those stations 

with predictions showing a deviation from positive to negative. If a gage had a positive residual, and the predicted one after 335 

flood was negative, and outside the confidence bound of the fitted curve, we labelled this gage at risk. The greater this value, 

the more likely the changes would be outside the range of the current stage-discharge error. 

3. Results Analysis 

3.1. Variable Importance 

Figure 6 demonstrates the outcome of the variable importance. Based on the results shown in Figure 6, we found that 340 

the same variables were always important for all intervals. analysis. Table 1 shows all the selected variables in bold for N = 

365. In this case, out of a total of 40 variables we have selected 30 based on the misclassification rate (%). Of the selected 

variables 15 were geomorphologic variables, followed by 10 atmospheric variables and 5 hydrologic variables. This confirmed 

the importance of the geomorphology of the watersheds. While this result on channel changes was expected, it further 

highlighted the critical significance of geomorphology for the dynamics of flood hazards, as most of the geomorphologic 345 

parameters were important for the prediction of the residuals. The most important were the variables Aspect 

(ASPECT_NORTHNESS, ASPECT_EASTNESS), and stream density (STREAMS_KM_SQ_KM). The significance of 

"Aspect" attributes can be understood in terms of the various runoff and soil loss yields that can result from changes in slope 

properties. For example, hillslopes on opposite aspects tend to have various degrees of erosion and degradation due to 

(compound) differences in soil characteristics, water availability and vegetation development (Kutiel et al. 1998, Nadal-350 

Romero et al. 2014). 

Another essential characteristic of the Earth's surface that regulates mass and water movement on the landscape is 

drainage density (Clubb et al., 2016), which is correlated with subsurface permeability (Luo et al., 2016). The control these 

factors exert on sediment production and delivery and soil permeability may explain the importance of these variables to post-

storm changes in river conveyance. 355 
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The most important hydrologic variable was HYDRO_DISTURB_INDX, which explains the condition of the 

watershed, whether it is anthropogenically modified or natural. Ahrendt et al. (2022) confirmed that channel regulation is 

important to conveyance changes. Similarly, the construction of dikes, bridges, dams, meander cutoffs, channel constriction 

by wing dikes, groynes, and other engineering projects can alter channel conveyance within rivers and the characteristics of 

their floodplains. (Bormann et al., 2011; Pinter et al., 2006b, a) The importance of this variable in the model highlighted the 360 

potential interaction of extreme storm events that generate high sediment deposition with the effects of flow regulation 

structures. 

3.2. Evaluation of SOMs accuracy 

The quantization error (Table 2) provided a measure of the accuracy of SOMs. The quantization error reported a 

higher accuracy as the number of training samples increased (increasing the number of days, resulting in more channel 365 

measurement and flood properties for each training sample). Homogeneous areas in the U-Matrix became more evident (Figure 

7) as the quantization error diminished (Table 2). As Table 2 indicates, the 365 days interval had the best quality, as represented 

by the lowest quantization error. For this reason, the following sections will present an investigation of the maps produced 

with this interval. Table 2 also shows the SOM quality in terms of distance to the closest units of the SOMs trained for each 

cluster. The results suggest that the retraining of the individual cluster using GSOM improved the prediction quality of the 370 

SOM significantly.  

Table 2 also represents the correlation distance and RMSE between the measured and predicted residuals for each 

cluster of the validation datasets. The average correlation was close to 1 for all N values, suggesting the performance of the 

SOM model was satisfactory. The average RMSE was close to 0, which was also an indication of the quality assurance of the 

SOM model. Both the unsupervised correlation distances and the average correlation showed the best results for N- 365 days. 375 

The RMSE diminished with the increase in the interval. 
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Figure 7: U-Matrix for different intervals (N days). The red colors represent large distances in the feature space, while the blue 

colors represent “valleys “grouping subsets of similar data. 

Table 2:  Accuracy assessment parameters of the ML analysis. This table reports the average correlation and RMSE for the different 380 
intervals. 

 

Interval (days) Avg. Corr. (10-fold) Avg. RMSE (m) (10-fold) 

15 0.81 0.13      
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30 0.84 0.14      

90 0.80      0.13      

180 0.80 0.09 

365 0.86      0.09 

 

Figure 8 presents the results of the unsupervised clustering for N = 365 for the variables used. In the figure, the 

contrast between high (red) and low (blue) value areas emphasizes the spatial patterns of the various parameters we 385 

investigated. Based on this clustering, a combined U-Matrix is produced (discussed in Figure 7) and a cluster label is assigned 

to each gage. Gages with similar characteristics presented by the variables are tagged with the same cluster number. We have 

got 12 clusters of gages. We have plotted the clusters individually on a map showing how they spread across different 

physiographic regions and climate zones in Figure A1 in Appendix A. Clustering does not have a geographical meaning, rather 

gages behave more consistently between adjacent clusters than non-adjacent clusters, but this does not necessarily follow the 390 

spatial proximity of the gages. This is reflected in the spatial spread of the different clusters of gages in Figure A1. 

If we focus on the SOM of “Res”, we can see that the nodes on the righthand side of the SOM seem to be associated with high 

values of the residuals (Figure 8). Nevertheless, a small cluster of high residuals is seen in the upper lefthand corner. At the 

global level, this highlights a lack of regional synchrony in stage-discharge shifts at the yearly scale. Pfeiffer et al., (2019) 

reported similar findings on the decadal scale. 395 

Based on the visual interpretation of the unsupervised SOMs, taking the atmospheric, hydrologic, and current 

geomorphologic conditions as single independent drivers is not sufficient to predict the magnitude of the shift in stage-

discharge at the flood stage. This suggests the co-occurring fluctuations in the various parameters, rather than variation in a 

single peak parameter, are the primary drivers of change in flood hazard at the continental scale. 

 400 
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Figure 8: Individual SOMs of all the flood drivers for N= 365. Similar to the U-Matrix the red colors represent large distances in the 

feature space, while blue colors represent “valleys “grouping subsets of similar data. 

Visually, the SOMs in Figure 8 highlight the co-oscillation of hydrologic and geomorphologic variables as a standard 

component of watershed behaviour. Drainage area (DA) and discharge/peak flow (Peak), for example, are positively 405 

correlated, with a cluster of high values in the bottom part of the SOMs. We can see that, other hydrologic variables like ELS 

(Mean water travel distance to the drainage outlet), EQ (Centroid of flow hydrograph), Q2 (Second-order moment of the flow), 

Vp (Precipitation volume), Vt (average flow volume per unit drainage area), and VaTr (Spreadness of precipitation), have 

similar patterns. The centroid of precipitation (EQ) and hydrograph (ETr) appear to be highly correlated. Some specific co-

oscillations of variables are evident in multiple regions. Percentage (Perc) and percentile (Percentile) of peak flow show the 410 

highest values spread across the SOM nodes. This is consistent with the fact that along with the drainage area, the duration 

and spatial pattern of rainfall are responsible for the variability in lag time and basin response (Granato, n.d.; Woods and 

Sivapalan, 1999). The correlation among Drainage area (DA), peak discharge (Peak), and Mean water travel distance to the 

drainage outlet (Els) is evident for various clusters, as is the correlation between Normalized flow volume (Vt) and Baseflow 

(Vb). This is not surprising, considering that the basin size is generally the most important basin characteristic in determining 415 

the amount and timing of surface runoff at the outlet (Gupta and Dawdy, 1995). And the relationship between flood flow 

quantiles and drainage area is expressed by power-law equations (Villarini and Smith, 2010). It also confirms how catchments 

with larger drainage areas display higher values of specific discharge and how morphodynamic properties (including low 

flows) tend to cluster with drainage network characteristics and scaling properties (Saghafian, 2005; Reis, 2006; Sofia and 

Nikolopoulos, 2020b). Further cross-cluster variability occurs with some atmospheric and hydrologic variables, namely the 420 

Centroid of precipitation (ETr), Centroid of flow hydrograph (EQ), and Spreadness of precipitation (VarTr). All the previously 

mentioned variables present their co-occurring peaks in Cluster 6 (the Upper Mississippi and Missouri region), which is in line 

with the fact that for this area (and cluster), snowmelt, rain on snow, or rainfall can cause major flooding. 

3.3. ML Advantages and Limitations 

A critical aspect of the approach is that randomness is introduced every time feature permutation is applied (Molnar, 425 

2022). Such randomness might not be representative of a real physical process. When repeating the permutation, the results 

may vary considerably (Molnar, 2022). To increase robustness and stabilize the measure, we repeated the permutation and 

averaged the importance measures over the various reiterations.  

A further aspect to consider is that if the features are in reality correlated, permutation might introduce unrealistic 

(uncorrelated) data, determining an unlikely combination of the parameters. This issue is more evident if real-world variables 430 

are directly or inversely correlated; by shuffling one of the features, we may be creating new unlikely or physically impossible 

instances. Therefore, as Molnar (2022) suggested, we may be potentially looking into a decrease in the model performance 

only due to values that we would never observe in the real world. 
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We should point out that channel conveyance change is known to vary spatially across a region and strongly correlates 

with climate variations and landscape properties. The feature permutation randomness for our study case was, however, 435 

counteracted by the two main features of SOMs: (1) SOMs tend to preserve neighbourhoods, which results in spatial clusters 

of comparable patterns in the output space; and (2) SOMs ‘adapt’, so that the winner neuron and its neighbours are changed 

to make the weight vectors more similar to the input. Due to these two features, random ‘unrealistic’ gages would likely end 

up grouped into a single neuron, whereas ‘real’ data are mapped into different neurons. During the BMU phase, therefore, 

actual gages are mapped to the most similar neuron, likely excluding randomness. Besides that, using multiple attributes, such 440 

as combined atmospheric, hydrologic, and geomorphologic variables, can improve the pattern generated by the SOM. In our 

approach, the variable importance did not change, considering the various N intervals used to group storm properties. The high 

correlation between estimated residuals and measured ones during the 10-fold validation confirmed the accuracy of the model. 

Careful interpretations that explain how and why channel conveyance changes happen as they do are essential to 

guiding reliable predictions of river conveyance behaviour and evolution. Another aspect to consider, as for any ML approach, 445 

is that SOMs are stochastic, as there are no physical constraints in their prediction. The use of randomness as a feature in the 

SOM analysis exerts confidence in the results mainly when the results are agreeable with the theoretical aspect of the variables. 

We suggest referring to Brierley et al., (2021) for a recent review of ML limitations in geomorphology in general. 

3.4. Changes in Flood Vulnerability after Major Floods  

We have interpreted the changes in flood vulnerability at each gage based on changes in predicted residuals. Figure 450 

9a shows the groups of gages representing different percentages of “likelihood of change.” If the reported value is <10%, for 

example, the predicted residuals for those gages show a sudden change from negative to positive in less than 10% of storms. 

The higher the percentages are, the more likely we expect a drastic reduction of channel capacity after a large storm. Comparing 

with the literature (Slater et al., 2015), we can see that, in our study, the locations with the highest likelihood of change 

coincided with those with significant channel capacity and net changes in flood hazard frequency. While the post-storm change 455 

was not as widespread as the effects highlighted by Slater et al. (2015), this was expected, as we were analysing post-storm 

effects and not considering the persistence in time of these changes at this stage. Also, a higher rate of change (high percentage) 

might be representative of very dynamic rivers, whose changes are likely to smooth out in time. On the other hand, rivers 

changing less frequently might be witnessing changes with a magnitude sufficient to last longer. This fact should be addressed 

carefully. Another thing to consider is that, because USGS gages are operationally placed at stable locations, our analysis, as 460 

well as other works (e.g., Li et al., 2020; Slater et al., 2015), does not capture the full range of the consequences of conveyance 

changes.  

Nonetheless, our results highlighted how substantial changes had occurred even for these locations. When we focused 

on the amount of change relative to the current confidence bound of the stage-discharge (Figure. 9b), we could see that the 

magnitude of change was higher for gages that changed less frequently. The northwestern part of CONUS, where Slater et al. 465 

(2015) highlighted clustering of increase in hazard due to consistent channel capacity changes with clusters of gages for which 
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we predicted negative residuals outside the confidence bound of the stage-discharge relationship. For the Northeast, on the 

other hand, our model predicted high-magnitude changes for areas identified by Slater et al. (2015) as areas significantly 

impacted by flow frequency effects. It is known that existing stage-discharge relationships present uncertainty in estimating 

the discharge because of the variation in the individual measurements from which the estimation is derived. Our model 470 

highlighted that the post-storm increased change lay outside the range of acceptable uncertainty at many gages. As Figure. 9b 

shows, this change was as widespread as the effects highlighted by Slater et al. (2015) for total positive changes in flow hazard 

frequency (FHF). For gages in both this work and Slater’s, the total FHF increased logarithmically, as our predicted changes 

lay further in the negative domain, outside the lower confidence bound. 

  475 
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Figure 9: Predicted changes as compared to the results of Slater et al. (2015) showing Channel Capacity (CC) and Flow Frequency 

(FF) effects on flood hazard frequency (FHF). In (a) “Likelihood of change”- the percentage represents the number of times the 

model predicts a residual change from positive to negative after a major flood (for N = 365); in (b) the panel shows the ratio between 

average prediction and lower 95% confidence bound of the current stage-discharge relationship for the stations showing a drastic 480 
change positive to negative. In (a, b) gages with small variations from this study have been reduced for clarity. Panel (c,d, and e) are 

results from Slater et al. 2015. 

From the predicted results of the channel changes at the gage level, we next analysed which locations were more 

prone to changes based on the number of gages with predicted changes within each physiographic region and climate type 

(Figure 10). Among the physiographic regions (Figure 10a), the Laurentian uplands and intermontane plateaus had the most 485 
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changes (75% of all gages in this region). Rocky Mountain and Pacific mountain systems followed the trend with the second 

most changes (50–75%). The changes in the <10% of the gages resided in the Interior Highlands, Atlantic Plains, and 

Appalachian highlands.  

The Appalachian Highlands regions are mountainous. In contrast, the interior plains are mostly flat agricultural lands 

whose river system consists of the upper Mississippi River, the Ohio River, parts of the Great Lakes, and small wetlands. This 490 

region has very dynamic hydrology, with very cold winters and hot summers. Snowmelt in the spring and heavy precipitation 

in the summer and winter result in big floods. Naturally, this can potentially lead to changes in the river reaches. While the 

Atlantic Plain is also relatively flat, it covers the Mississippi Delta, the Gulf of Mexico, and the Atlantic seaboard in the East 

(see Figure 2). The interaction with the ocean gives this region the most complex sediment activity. The coastal plain is also 

influenced frequently by tropical storms and cyclones, which results in a lot of sediment activity. The literature (Bracken and 495 

Croke, 2007; Kalantari et al., 2019; Croke et al., 2013; Sofia and Nikolopoulos, 2020a; Wohl et al., 2019) has highlighted 

sediment connectivity as a potentially critical factor in flood hazards, being linked simultaneously to changes in channel 

characteristics and shifts in decadal trends in flood hazard, independent of scale. In addition, for these regions, and in the 

eastern United States more generally, peak flows are highly variable (Villarini & Smith, 2010), and tropical cyclones affect 

the distribution of extremes. All these characteristics contribute to the presence of very dynamic rivers, which, as confirmed 500 

by our model, quickly react to extreme events, adjusting their geometry and possibly altering future flood hazards. 

We made the same comparison for the climate types (Figure 10b). We detected high predicted variability mainly in 

hot and humid climate regions, while cold and dry regions showed minimal changes. Humid Continental climate (Dsb, Dfa, 

Dfb) led with the highest variability (>75% of the gages resided in these climate regions). The gages with 50–75% channel 

changes were in the Tundra Climate (ET) and Warm Summer Mediterranean Climate (Csb). Gages with the least changes 505 

(<10%) were located in Humid Continental Hot Summers with Dry Winters (Dwa), Continental Subarctic-Cold Dry Summer 

(Dsc), Cold Desert Climate (Wk), and Hot Semi-Arid Climate (BSh). These climate zones are mostly dry either year-round or 

seasonally. Our findings confirmed that the impact of major storms on rivers depends on both underlying long-term climate 

signatures (Chen et al., 2019; Stark et al., 2010) and short-term (year-to-year) climate variability (Slater et al., 2019). For many 

river systems, coarse sediment mobilization and transportation rates are controlled by regional climate (Anderson and Konrad, 510 

2019). Climate variability is projected to trigger a chain reaction of geomorphic responses, including changes in downstream 

channel properties. Other studies focusing on long-term changes rather than extreme events have shown how decadal‐scale 

changes in river morphology may be accounted for as a downstream propagating channel reaction to regional climate 

variability, which is frequently accompanied by cyclical changes in channel geometry and conveyance. (Scorpio et al., 2015; 

Slater et al., 2019). The joint contribution of physiographic regions (as a proxy for sediment characteristics) and climate 515 

properties confirms the nonlinearity of system response and the coupled impacts of climate conditions and sediment 

connectivity. (Lane et al., 2007). 
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Figure 10: Percentages of gages presenting changes in channel capacity in different (a) physiographic regions and (b) climate types. 

3.5. Variables Associated with Flood Vulnerability and Channel Changes 520 

Focusing on the changes in the stage‐discharge relationship residuals (Res), we next investigated the correlation 

between predicted and measured residuals on the one hand and other variables on the other (Figure 11, Table 3). For the 

proposed ML framework, the training was unsupervised. In general, the predicted and measured residuals were highly 

correlated, validating the SOM performance. Table 3 summarizes the correlations among the considered predictors in Figure 

11 for N = 365 days. It presents the analysis of the group of variables based on the dendrogram branches for different likelihood 525 

of change levels (e.g., 0–10%, 10–30%, and 30–50%). This section discusses the correlations for the 30–50% category as an 

example; the other two categories showed similar outcomes. We do not have more than 50% here in the table because the 

highest percentage of gages that showed sudden change was 30-50%. In Table 3, level 1 shows the group of variables highly 

correlated to each other and with residuals. Level 2 shows variables that are highly correlated to each other but related to a 

lesser degree to the variables in Level 1.  530 

In level 1, the physiography of the basins is represented by the following variables- ELEV_* EQ, Q2, and ETR (Please 

see table 1 for explanation), which are correlated with all the other variables. The physiography of the basin deeply controls 

the complex land-atmospheric interactions and storm types resulting in rainfall runoff. Thus, this is no surprise that 

physiography alone is highly correlated to all other (hydrologic, geomorphologic, and atmospheric) variables used in this 

study. This highlights the importance of basin attributes in prompting stage-discharge variability at gage locations.  535 

EQ-Centroid of the flow hydrograph and Q2-Second-order moment of the flow are also in group 1 of level 1. 

Investigations of the influence of the flow stage on channel conveyance often focus on the impacts of peak or minimum bankful 

discharges. Recession rates matter in sediment delivery, however, as highlighted in the literature (e.g., Hassan et al., 2006), 

and these two properties appear to be highly correlated with the impact of large storms on flood hazards. The findings of this 

study provide needed insight, and managers could use the results to determine the flow hydrograph shapes that potentially alter 540 

short-term flood hazards. Such knowledge is necessary for the design of river infrastructure.  
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The next variable is the ETR-Centroid of precipitation. Many papers in literature (e.g., (Borga et al., 2008; Woods 

and Sivapalan, 1999; Woods, 1999; Smith et al., 2004, 2005, 2002; Zhang et al., 2001)highlighted the relationship between 

the centroid of precipitation and runoff production. Most works showed that, for example, the position of the storm centroid 

relative to the watershed outlet is an important driver of runoff:  storms having a precipitation centroid positioned in the central 545 

portion of the watershed tend to produce a higher runoff than storms having a centroid near the outlet or the head of the 

watershed. This is in line with the fact that rainfall runoff spatial variability influences flash flood severity relative to basin 

physiography and climatology. Flash flood severity, or flashiness, as defined by Saharia et al., (2017), assesses a basin's 

capacity to produce severe floods by considering both the volume and timing of a flood. It is, therefore, not unexpected that 

the centroid of precipitation appears to be highly correlated with the shifts in residuals. 550 

In level 2, Residuals (Res) are shown to be correlated with different variables. A noticeable pattern is group 1 contains mostly 

hydrologic variables, while group 2 contains atmospheric variables. In group 1, the residuals (Res) belong to the tree containing 

the variables RFACT (Rainfall and Runoff factor), HYDRO_DISTURB_INDX (Anthropogenic modification), 

STREAMS_KM_SQ_KM (Stream density), BFI_AVE (Base Flow Index), ASPECT_NORTHNESS, ASPECT_EASTNESS, 

STRAHLER_MAX (Maximum Strahler stream order in the watershed), MAINSTEM_SINUOUSITY (Sinuosity), 555 

DRAIN_SQKM (Drainage area), Peak (Peak flow), and CovtrLs  (Covariance of precipitation and water travel distance ) (level 

2 in table 3).  

RFACT- Rainfall runoff factor, directly affects rainfall runoff influencing the channel changes. 

HYDRO_DISTURB_INDX (see section 3.1) represents the channel condition, whether the channel is altered by manmade 

construction or not. Channel conveyance changes are highly affected by engineered constructions (Bormann et al., 2011; Pinter 560 

et al., 2006a, b), and the correlation result from our analysis supports these findings, indicating that human modifications are 

an important element to be considered when analysing flood hazard changes. As mentioned previously, 

ASPECT_NORTHNESS and ASPECT_EASTNESS influence the daily cycle of solar radiation affecting the temperature, 

humidity, and soil moisture (Desta et al., 2004) that control the vegetation and, hence, the sediment movement of the floodplain. 

The variability of these factors can, therefore, affect sediment production and movement, with consequences for flood hazard 565 

changes.  

A group of highly connected elements comprises a series of drainage properties (STREAMS_KM_SQ_KM, 

STRAHLER_MAX, MAINSTEM_SINUOUSITY, DRAIN_SQKM) that modulate the way precipitation is routed through the 

basin and directly affect flood properties. Peak flows and flooding tend to reduce as network sinuosity increases  (Seo and 

Schmidt, 2012; Seo et al., 2015; Saco and Kumar, 2002). Watersheds presenting a more homogeneous flow path length 570 

generally show higher peak flows and shorter time to peak, as well as duration (Saco & Kumar, 2002). Also, the fractal 

dimension of the river network is inversely related to flood frequency (Zhang et al., 2015). Our model suggests these properties 

are highly correlated with residual changes and indirectly linked to post-storm modifications of flood hazards. Lastly, the Base 

Flow Index and Peak discharge are directly related to runoff and, thus, channel conveyance changes. Because the base flow 

index and Peak discharge define how much volume of water is in the channel. If the volume exceeds the channel conveyance 575 
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capacity the channel is expected to change. This finding also supports the critical role of the minimal flood (baseflows) and 

bankfull discharge in river morphology. The variability of baseflow is also caused by groundwater recharge, which is a direct 

product of geologic and physiographic variations. 

In level 2, group 2, the tree contains Pmean (Mean Precipitation), ELS (Mean water travel distance to the drainage 

outlet), EQ (Centroid of flow hydrograph), Q2 (Second-order moment of the flow), Vp (Precipitation volume), Vt (average 580 

flow volume per unit drainage area), and VaTr (Spreadness of precipitation), VarLs (Variance of water travel distance), Vb 

(Base flow volume), and RunoffCoef (Runoff coefficient). These are mostly related to rainfall properties. While they are 

important fingerprints for the attribution of regional flood changes, these variables are related to changes in flood hazard to a 

lesser degree than physiography and flow properties.  

Overall, the results of our analysis highlight how the impacts of a storm event on channel properties and flood hazards 585 

are highly correlated with flow characteristics and a region’s geophysical signature.  

 

Figure 11: Example of intercorrelation among the flood drivers for N = 365 days for the likelihood of change between 30 and 50%. 

The white color signifies that there is no correlation between those variables. The color bar from blue to yellow shows high to low 

correlations.  590 

Table 3: Highly correlated variable groups for different percentages (%) of the “likelihood of change” from the interpretation of the 

dendrogram in Figure 11. Levels in the table represent the main branches of the dendrograms and groups represent the sub-

branches under the main levels. 
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 0-10% 10-30% 30-50% 

Variable groups Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 

ELEV_SITE_M, 

RFACT 

Group 2: All the other variables 

 

Level 2: 

Group1: HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

Res, 

ASPECT_NORTHNESS, 

ASPECT_EASTNESS, 

Vp, Pmean,CovtrLs, Vb, Vt, Els, IBF, 

VarLs 

Group 2: EQ, ETR, Q2, VarTr, 

RunoffCoef, Peak, 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM 

 

Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 

ELEV_SITE_M, EQ, Q2 

Group 2: All the other variables 

 

 

Level 2: 

Group1:  

RFACT, 

HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

BFI_AVE, 

Res, 

ASPECT_NORTHNESS 

ASPECT_EASTNESS 

Pmean, Els, IBF, VarLs 

Group 2: Vp, CovtrLs, IBF, Vb, Vt, 

ETR, VarTr, RunoffCoef, Peak, 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM 

 

Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 

ELEV_SITE_M, EQ, Q2, ETR 

Group 2: All the other variables 

 

 

Level 2: 

Group1:  

RFACT, 

HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

BFI_AVE, 

Res, 

ASPECT_NORTHNESS 

ASPECT_EASTNESS 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM, IBF, Peak, CovtrLs 

Group 2: Pmean, Els, VarLs, Vp, Vb, 

Vt, VarTr, RunoffCoef 
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4. Conclusions 

The variability of geomorphologic processes and future flood patterns can only be understood by evaluating all the 595 

critical flood drivers responsible. In this era of extreme events and rapidly changing landscapes, accurate flood vulnerability 

assessment is paramount. Atmospheric, hydrologic, and geomorphologic parameters constitute both the main driving force 

behind and the detector of changes resulting from an extreme event. This study focused on the impact of extreme flood events 

on future flood hazards by exploring the channel changes following them. We utilized the interdependencies of the 

atmospheric, hydrologic, and geomorphologic flood drivers to gain an understanding of the impact of extreme events on 600 

channel capacity. 

Our results confirm existing knowledge of watershed hydrology and further strengthen the compound importance of 

climate and geomorphology as drivers of changes in flood hazards. The sequential processes during and after a big flood event 

can only be understood by considering the contribution of all the flood drivers together. The results show how the variables of 

different flood drivers are interrelated and can create effects that are more adverse together.  605 

 Channel conveyance is often regarded as stationary in flood hazard modelling, and is acknowledged as one of the 

most important sources of uncertainty. Our research reveals that the assumption of channel stationarity may result in either 

over or under-prediction of the river discharge and eventually over/under-estimation of flood hazard. These models incorrectly 

feed flood control planning procedures, which raises the level of uncertainty in evacuation and rescue operations. Additionally, 

flood insurance plans created using these models’ results are likewise incorrect.  Furthermore, if engineering designs are based 610 

on data collected prior to periods when major flood events have lowered channel conveyance, there is a risk that surveyed 

channel dimensions and flood conveyance will be overestimated in the long run. 

The proposed ML model allows us to identify dynamic rivers more prone to changes in the stage-discharge 

relationship after major flood events. The proposed model does not account for the persistence of changes; that being said, the 

results highlight the risk of immediate change after a large storm. For rivers more prone to changes, periodic revision of flood 615 

frequency statistics is advisable for hazard assessments to keep pace with altered conditions.  

This study considered a limited set of drivers, excluding, for example, human activities in the watersheds and 

vegetation properties. In response to increased flow, we do not anticipate channel conveyance to rise consistently everywhere. 

The intricate interaction of dynamic anthropogenic, climatic factors and their consequential processes within each basin, are 

expected to be evident in the fluvial changes. Hence, future channel changes, sediment connectivity, Land-Use and Land-620 

Cover Change an anthropogenic factors could also be included to retrain the model to produce changes in the stage-discharge 

relationship at the flood stage and potentially create scope for future prediction of channel changes due to extreme events. 
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Data Sources: 

• Flood stage values are provided by the US National Weather Service (National Oceanic and Atmospheric 

Administration, 2021). 

• Historical mean daily streamflow records are stored by the US Geological Survey (USGS) and made publicly 630 

available online (U.S. Geological Survey, 2021a). 

• The flood event database used in the study was generated by Shen et al. (2017). 

• Historical field measurements of channel properties are made publicly available online by the USGS (U.S. Geological 

Survey, 2021b). 
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Figure A1: Gages with clustering identification assigned by SOM unsupervised clustering (a-l) 
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