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Abstract. Flooding is predicted to become more frequent in the coming decades because of global climate change. Recent 

literature has highlighted the importance of river morphodynamics in controlling flood hazards at the local scale. Abrupt and  

short-term geomorphic changes can occur after major flood-inducing storms. However, there is still a widespread lack of 

ability to foresee where and when substantial geomorphic changes will occur, as well as their ramifications for future flood 

hazards. This study sought to gain an understanding of the implications of major storm events for future flood hazards. For 10 

this purpose, we developed self-organizing maps (SOMs) to predict post-storm changes in stage‐discharge relationships, based 

on storm characteristics and watershed properties at 3,101 stream gages across the Contiguous United States (CONUS). We 

tested and verified a machine learning (ML) model and its feasibility to (1) highlight the variability of geomorphic response 

to flood-inducing storms across various climatic and geomorphologic regions across CONUS, and (2) understand the impact 

of these storms on the stage‐discharge relationships at gaged sites as a proxy for changes in flood hazard. The established 15 

model allows us to select rivers with stage-discharge relationships that are more prone to change after flood-inducing storms, 

for which flood recurrence intervals should be revised regularly so that hazard assessment can be up to date with the changing 

conditions. Results from the model show that, even though post-storm changes in channel conveyance are widespread, the 

impacts on flood hazard vary across CONUS. The influence of channel conveyance variability on flood risk depends on various 

hydrologic, geomorphologic, and atmospheric parameters characterizing a particular landscape or storm. The proposed 20 

framework can serve as a basis for incorporating channel conveyance adjustments into flood hazard assessment. 

1 Introduction 

Several factors contribute to the non-stationarity in flow regimes, including variations in human activities, changes 

in land cover and land use, climate changes, and low-frequency internal climate variability (i.e., multidecadal oscillations) 

(Cunderlik and Burn, 2003; Mostofi Zadeh et al., 2020). Consequently, flood trends over the past decades have changed 25 

worldwide (Chang et al., 2007; FEMA, 2013; Karagiannis et al., 2017; McEvoy et al., 2012; Ziervogel et al., 2014), resulting 

in adverse impacts on society and the environment (Blöschl et al., 2019; Dottori et al., 2022, 2018; Hattermann et al., 2014; 

Milly et al., 2002; Mostofi Zadeh et al., 2020; Slater et al., 2015). Traditional “cause-effect” studies have focused on the time 

dependency or non-stationarity of individual hydrologic flood drivers (Alfieri et al., 2015; Khanam et al., 2021; Lisenby and 
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Fryirs, 2016; Mallakpour and Villarini, 2015; Mostofi Zadeh et al., 2020; Munoz et al., 2018). However, these studies might 

be under or overestimating the actual damage, especially in regions where the landscape is changing rapidly, because of the 

magnitude and prevalence of the hydroclimatic variability that is now underway. Nonetheless, the flood risk estimation 

traditionally has been based on flood frequency, derived from variability in streamflow, assuming constant channel capacity 40 

(Merz et al., 2012; Slater et al., 2015). The relationship between magnitude and frequency is also generally built upon the peak 

flow distribution, whereas peaks are discretized as either annual maxima or peaks over the threshold, but mostly assuming that 

river capacity remains constant over the investigation records. For decades, fluvial geomorphology research has focused on 

changes in river characteristics (Baker, 1994; Benito and Hudson, 2010; Stott, 2013). Various recent works (Ahrendt et al., 

2022; Naylor et al., 2016; Slater et al., 2015, 2019; Sofia and Nikolopoulos, 2020a; Sofia et al., 2020; Stephens and Bledsoe , 45 

2020, 2023) have suggested that the time has come to move beyond flood hazard assessment based on this “fixed river” idea. 

River channels and their adjacent floodplains continuously evolve because of the interactions of hydrology, landscape, and 

climate drivers and the interdependencies of processes at different spatial and temporal scales (Lane et al., 2007; Pinter et al., 

2006b; Slater et al., 2015; Stover and Montgomery, 2001; Blench, 1969). Humans and water resources are intertwined, and 

they are now more than ever active players in these intricate geomorphic dynamics of rivers and floods (Ceola et al., 2019; 50 

Grill et al., 2019; Wohl, 2019). Rivers naturally modify their geometry (i.e., their breadth, depth, and slope) to reflect changes 

in discharge and sediment in the upstream catchment in addition to the obvious alterations brought on by human involvement 

(Lisenby et al., 2018). Any changes in these characteristics possibly will also alter the magnitude, frequency, and risk of future 

flooding. 

The ability of rivers to store and move floodwaters downstream affects the probability that floods would destroy 55 

riverbanks or flood barriers, even while the total volume of water that flows through river systems during floods remains 

constant. Therefore, these abrupt changes in channel capacity alter flood properties, even when the magnitude of the flood 

remains unchanged (Blench, 1969; Criss and Shock, 2001; Lane et al., 2007; Neuhold et al., 2009; Pinter et al., 2008; Slater 

et al., 2015; Stover and Montgomery, 2001). Some obvious evidence of the effects of channel changes on flood properties (e.g. 

extent, depth, etc) has been presented by recurring flooding in different dynamic rivers (Brierley and Fryirs, 2016; Pinter et 60 

al., 2001; Zischg et al., 2018; Tate, 2019; Munoz et al., 2018). During these flood events, impacts are most evident at sites 

where the rivers’ channel capacity has been drastically reduced (Munoz et al., 2018; Tate, 2019; Sofia et al., 2020). Neglecting 

the possibility of rapid changes in streamflow regime and channel conveyance capacity can conceal short-term shifts in flood 

threats. Li et al., 2020, for example, demonstrated that long-term trends comprise numerous short-term transients of much 

larger magnitude. These transient stages are often caused by abrupt scouring or deposition during flood-inducing storm events 65 

and are comparable in magnitude to long-term trends in peak streamflow. Additionally, short- and long-term climate variability 

can at the same time impact the streamflow patterns and channel conveyance changes, with the channel form adjusting to 

precipitation and sediment supply (Death et al., 2015; Rathburn et al., 2017; Ruiz-Villanueva et al., 2018; Scorpio et al., 2018; 

Surian et al., 2016; Wicherski et al., 2017). Figure 1, for example, shows changes in Boulder Creek in Colorado before and 

after a flash flood in 2013. Comparing the channel planform and width, it is evident the channel got wider after the flood. 70 
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Images from 2015 and 2019 show that the secondary channel on the right eventually disappeared, and the main channel 

acquired a more prominent bend than in the 2013 image. Such relatively quick alterations have the potential to further modify  75 

the geomorphic characteristics of rivers and to produce feedback that will affect the properties of future floods (depth, 

frequency, duration, and spatial extent). 

 

Figure 1: Change in channel width in Boulder Creek, Colorado, before (2012) and after (2013-2015-2019) a flash flood in 2013 

(Google Earth imagery). The Discharge reported here is the daily discharge measured at USGS 06730200 Boulder Creek at north 80 
75th St. near Boulder, co. The red circles denote the section of the channel that has changed over the years and the blue arrow shows 

the missing channel from the year 2012 to 2019. 

Systematic shifts in a river’s stage-discharge relationships identify the need for sharp upward revisions in hazard 

levels and stage-based flood-frequency analysis. Adjustments to the river stage-discharge relationship account for, at least 

partly, climate variability and long-term change. Nonetheless, while some river changes might be persistent in time, others 85 

could be more sudden and persist for a shorter time frame, like in the case of flood-inducing storms. These short-term channel 

changes are difficult to predict, but they could substantially increase the post-flood hazard, especially in the case of subsequent 

storms. Understanding the scale and severity of channel changes after flood-inducing storm events is key to improving flood 

management and building the resilience of critical infrastructure. What is missing from our current knowledge is a 

comprehensive study that shows the impacts of storm-induced channel changes on future flood hazards. Buraas et al., (2014) 90 

cited a general shortage of capability to predict where significant geomorphic changes will occur following flood-inducing 

events. Other authors have pointed to multidirectional approaches as promising contributions to the analysis of channel 

response to severe floods and the identification of controlling factors (Rinaldi et al., 2016; Scorpio et al., 2018; Surian et al., 

Deleted: st. near Boulder, co. © Google Earth imagery

Deleted:  95 

Deleted: ¶

Formatted: Font color: Text 1

Formatted: Font color: Text 1



 

4 

 

2016; Wicherski et al., 2017; among others). At regional scales, when it is often either impracticable or impossible to identify 

the precise events responsible for periods of channel shift, linking geomorphic cause and effect becomes increasingly difficult.  

However, this does not negate the requirement to comprehend and recognize short-term geomorphologic and hydrologic 

behavior that can exacerbate or mitigate flood threats. For this purpose, the availability of a large dataset representing a wide 100 

range of flood-inducing storm characteristics and channel morphology under different boundary conditions, such as underlying 

climatic, hydrologic, and geomorphologic settings, is crucial. This set of information forms a complex interacting system. The 

processes underlining these boundary conditions vary in spatial and temporal scale, and this calls for the use of improved 

analysis methods, able to draw predictions interlocking data of varying nature. In this context, machine learning (ML) is 

gaining popularity in the field of hydrology, geomorphology, and climate studies (Bergen et al., 2019; Schlef et al., 2019; 105 

Valentine and Kalnins, 2016), thanks to its ability to tackle coupled processes across space and time. Despite some limitations 

(Karpatne et al., 2019), and provided that the benchmark data used for the training are of high quality (Bergen et al. 2019), 

ML offers a valuable tool to gain new data-driven insights with high accuracy, transferability, and scalability (Houser et al., 

2022; Sarker, 2021; Schlef et al., 2019; Sofia, 2020a). 

In the context of river morphology, specifically, in the last few years recent studies highlighted their capability to 110 

predict channel types (Guillon et al., 2020), providing a geomorphological characterization of channels (Rabanaque et al., 

2022), quantifying below-water (Woodget et al., 2019), or spatiotemporal changes (Boothroyd et al., 2021) in rivers, and 

guiding discharge estimation building from river morphology (Brinkerhoff et al., 2020), These works highlight how ML, when 

properly guided by field-based interpretation, can offer a valuable potential to push geomorphology into an increasingly 

predictive science (Fryirs and Brierley, 2022; Brierley et al., 2021). Tackling on the opportunities offered by ML potential, in 115 

this study, we sought to understand and predict the effects of flood-inducing storms on channel conveyance and, consequently, 

flood hazards. To achieve this, we have utilized stage-discharge “Residual” as a proxy of the channel capacity change, and we 

introduced an ML framework  (section 2.3) that characterizes the interdependence of flood drivers, including atmospheric 

drivers (precipitation), hydrologic drivers (flow, stage), and geomorphologic drivers (channel width, depth, drainage area, 

geophysical characteristics). Overall, the analysis aims to: (1) highlight the variability of geomorphic response to flood-120 

inducing storms across various climatic and geomorphologic regions in the Contiguous US (CONUS), and (2) understand the 

impact of these storms on the stage‐discharge relationships at gaged sites as a proxy for changes in flood hazard.  The study 

provided an independent test of discharge-based results and produced a tool for generating timely short-term updates of flood 

hazard estimates for dynamic rivers. 

2 Materials and Methods 125 

2.1 Quantifying the Impact on Flood Hazard 

For this study, we used data from 3,101 U.S. Geological Survey (USGS) gaging stations distributed across the 

contiguous United States (Figure 2). The dataset allows us to cover a wide range of physiographic and climatic (See Fig. 2) 
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regions. We selected stations for which both historical field-measured data on channel properties and flood stages assigned by 150 

the National Weather Service (NWS) were available. The data for channel properties were retrieved following a procedure 

developed by (Slater, 2016; Slater et al., 2015) and using the codes provided by the authors at 

https://github.com/LouiseJSlater/Hydromorphology.  

 

Figure 2: USGS gage stations considered for in this study overlain on physiographic and climatic regions. For the acronym 155 
description of Physiographic regions and climate types please refer to Table A1 and A2. 

To model the average state of conveyance capacity for each stream gage site, we used theoretical single  stage-

discharge relationships (rating curves) at the height associated with the Flood Stage, as described by Slater et al. (2015). The 

Flood Stage, from the US National Weather Service, indicates a gauge height above which water level begins to impact lives 

and human activities, and it generally corresponds to the first flood warning threshold. The procedure, therefore, can be adapted 160 

for other gage datasets, in different parts of the world, by assuming similar warning thresholds. Deviations from the theoretical 

stage-discharge relationship indicate that at a moment in time, a discrete stage-discharge relationship existed, which highlights 

that there might have been temporal changes in channel conveyance. As described by Li et al. (2020), Slater et al. (2015, 2019), 

and Slater and Villarini, (2016), using a constant flood level enables the quantification of "conveyance residuals (Res)" that 

represent temporal changes in the discharge needed to reach the specific flood level (for example due to shifts in channel 165 
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capacity). In a temporal analysis of residuals, a positive to negative shift indicates a sudden decrease in channel capacity and 

a potential increase in flood hazard (Slater et al., 2015), as a lower discharge is needed to meet the warning threshold. We 

followed this procedure to capture the sudden changes in channel conveyance following major storm events.  We focus mainly 

on sudden shifts, rather than on permanent shifts. The main reasons for this were, 1. short-term conveyance capacity changes 170 

are not considered in typical flood hazard assessments and could substantially overstate or understate flood threats at any 

particular time for subsequent floods; 2. there is a plethora of complex and sometimes not linear- processes and coupled 

feedback that we would need to ‘model’ in the training set, to provide a comprehensive benchmark to identify permanent 

shifts. This could be potentially interesting research that may be tackled by further studies building on our model. 

To define the stage-discharge relationship, we considered only measured values of stage and discharge, as suggested 175 

in (Slater, 2016; Slater et al., 2015). Aside from considering consistent gages present in the Shen et al. 2017 database, and 

covered by stream measurements, we applied the same criteria as Slater et al. 2015, who only considered field measurements 

in which the discharge is within one percent of the product of channel velocity and cross-sectional channel area, as reported 

by the USGS, and those made close to the gage station. Following the work of (Slater, 2016; Slater et al.,2015, 2015a) we 

detected and excluded sites featuring artificial controls at the gauging station that could impede the natural adjustment of the 180 

channel's shape. Additionally, we eliminated all field measurements conducted at a different location or potentially different 

location, along with those taken in icy conditions, as these factors could impact the accuracy of channel geometry 

measurements. Our selection process retained only sites with comprehensive time series data, and as per Slater’s et al. 2015 

work, only kept gages with 99.7% completeness in streamflow records and 40 channel cross-section measurements. The stage-

discharge relationship was evaluated through a Locally Weighted Scatterplot Smoothing (LOESS) fitting (Cleveland, 1979), 185 

as suggested by Li et al. (2020), Slater et al. (2015, 2019), and Slater and Villarini (2016). The fitting requires the defin ition 

of a smooth parameter, which we set automatically based on the bias-corrected Akaike Information Criterion (AIC) (Hurvich 

et al., 1998). We performed the analysis using the R package fANCOVA (https://CRAN.R-project.org/package=fANCOVA). 

Before performing the above-mentioned steps, we excluded from the analysis measurements taken before the most 

recent datum change, if any reported measurement datum change was provided. We have excluded the gages that do not have 190 

continuous data for the timeframe from 2002-2013. By taking into account field data when the discharge was within a range 

of half the flood stage depth on either side of the flood stage, we also accepted the standards employed by Slater et al. (2015). 

We evaluated the readings visually to look for clusters of outliers in the scatterplots of the channel measurements that could 

be signs of changes in the measurement location (or datum). We systematically eliminated these metrics. According to the 

information of the gage, the measurements did not shift in location. For the work itself, consistently with Slater et al. (2015) 195 

and the open codes provided in her work, we removed all field measurements made in a location where there is known 

infrastructure like a bridge for example, and all field measurements made in icy conditions, as these might affect measurements 

of channel geometry.  Figure 3 provides an example of changes in residuals after a flood-inducing storm event for the 

Quinnipiac River in Connecticut. From April 15 to April 18, 2007, a spring nor'easter hit the East Coast of the United States. 

The streamflow-gaging station recorded stages during this occurrence that were more than 0.2 meters higher than the FEMA-200 
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projected 100-year levels  (Ahearn, 2009). For this gage, the flood stage is at 10ft, the peak discharge of the 2007 event was 205 

11.51 ft, and the Quinnipiac River itself (at the gage right upstream of the one in the figure) measured the maximum discharges 

for the period of record of the station during the 2007 flood. In figure. 3a, the stage and discharge data retrieved from field 

measurements taken after the flood appear to shift toward higher values of the stage for comparable discharges from before 

2007. The curve fitted at the flood stage (black line in Figure. 3a) ultimately aligns between the two sets of data. Looking at 

the residuals concerning the fitted curve (Figure. 3b), the shift from positive residuals, before 2007, to negative is noticeable 210 

(outlier residual points were filtered out before performing the ML training). This suggests a loss of conveyance capacity due 

to deposition, assuming no changes in velocity. The time series of widths (Figure. 3c) and capacity (Figure. 3d) confirm this 

loss of conveyance; for this site, slightly changed channel widths (Figure. 3c) and an abrupt change in capacity (Figure. 3d)  

can be seen. Such a change may result in a potential increase in flood hazard for a given flood volume.  

 215 

 

Figure 3: Illustration of the conveyance analysis for the USGS stream gage QUINNIPIAC RIVER AT WALLINGFORD (USGS 

station 01196500), before and after the storm of April 2007. Stage-discharge relationship fitted to flood hazard level is shown in (a), 

and residuals fitted to the rating curve in (b). In (b), some outlier residuals are evident, likely due to shifts in measurement locations. 

These points were filtered out before performing the ML training. Time series of channel widths as measured in the field (c) and 220 
channel capacity (d) are also shown, to highlight that possibly, the major change in residuals is due to a difference in channel depth, 

given a constant velocity. 
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2.2 Considered Predictors 

To obtain information on the watershed’s hydrologic and geomorphologic properties, we collected data for each gage 

from the GAGES II dataset (Falcone, 2011). This dataset provides geomorphologic variables for each gage associated with 225 

watersheds’ typical characteristics (e.g., Drainage area, Elevation, etc). These properties can be considered likely to change at 

a speed much slower than river discharge and localized channel measurements. Hence, we may consider these variables as 

'static' in time. However, even if they are static in time, these characteristics are highly variable in space as they are spread 

across the CONUS, providing us with a large sample of values for the ML training. 

We also investigated several flood-inducing events that occurred from 2002 to 2013 in the same watershed and were 230 

included by Shen et al., 2017 in the flood event database. We ended up with 291201 events total for the 3101 gages. The 

minimum and maximum numbers of events per gage varied from 1 to 520. For each available field measurement of channel 

properties, we consider all the storms that happened in the previous 15, 30, 90, 180, and 365 days (accounting for the lag times 

between each storm and the response of the river system) and calculate the median values of the storm characteristics (as 

defined in Shen et al., 2017; Table 1) in that timeframe excluding situations where we only had 1 storm. We only kept the 235 

gages in the analysis where we had more than 10 events. Therefore, for every single field measurement (i.e., dot in Fig 3) we 

had 5 different median storm characteristics – 1 median storm characteristic for the five different lag times considered, these 

medians represent a “typical flood-inducing storm” for that lag time, reducing the effects of small variability. The information 

included by Shen et al., 2017 reported the percentile of the peak flows in the entire time series of the watershed, and all the 

reported events show a value greater than 80 for all storms. The reader should consider that while the median characteristic 240 

per se is not a ‘severe’ value, given the sample of data in Shen et al., 2017, it is a value representative of the typical event, for 

storms which in general encompass events having peak flows greater than 80th percentile of the entire flow series. 

From these integrated data sources, we identified three groups of drivers: atmospheric, hydrologic, and 

geomorphologic (Table 1). The integrated dataset provided direct and statistically derived information regarding flows and 

associated precipitation characteristics of each storm event.  245 

Table 1: variables Readers should refer to Shen et al. (2017) and Falcone (2011) for a complete description of the variables. Variables 

in bold letters are those used for ML analysis after the variable importance analysis. 

Variable Description Unit Data Source 

Hydrologic variables 

TOPWET Topographic wetness index ln(m) Falcone (2011) 

HLR100M_SITE 

Hydrologic Landscape Region (HLR) at the stream gage 

location. unitless Falcone (2011) 

Peak Peak flow associated with the storm event   Shen et al. (2017)  

Res Residual unitless Estimated  

IBF Base flow index  m3/m3 Shen et al. (2017)  
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Perc 

Percentage of peak flow: The corresponding percentile of the 

peak flow in the entire flow series of the gauge % Shen et al. (2017)  

Q2 Second-order moment of the flow    unitless Shen et al. (2017)  

Els Mean water travel distance to the drainage outlet  m Shen et al. (2017)  

EQ Centroid of flow hydrograph  h Shen et al. (2017)  

Vt 

Normalized flow volume ~ average flow volume per unit 

drainage area mm Shen et al. (2017)  

HYDRO_DISTURB_INDX Anthropogenic modification  unitless Falcone (2011) 

RunoffCoef Runoff coefficient  unitless   

CLASS 

Reference/non-reference class: REF = reference (least-

disturbed hydrologic condition); NON-REF = not reference. N/A Falcone (2011) 

BFI_AVE 

Base Flow Index (BFI): Base flow to total streamflow ratio, 

given as a percentage ranging from 0 to 100. The persistent, 

slowly fluctuating component of streamflow that is 

commonly attributed to ground-water discharge to a stream 

is known as base flow. % Falcone (2011) 

RFACT Rainfall and Runoff factor 

100s ft-

tonf 

in/h/ac/y

r Falcone (2011) 

Geomorphologic variables 

GEOL_REEDBUSH_DOM 

Dominant (highest percent of the area) geology, derived from 

a simplified version of Reed & Bush (2001) - Generalized 

Geologic Map of the Conterminous United States. N/A Falcone (2011) 

STREAMS_KM_SQ_KM 

Stream density, km of streams per watershed sq km, from 

NHD 100k streams 

km/sq 

km Falcone (2011) 

STRAHLER_MAX NHDPlus's maximum Strahler stream order in the watershed. unitless Falcone (2011) 

MAINSTEM_SINUOUSITY Sinuosity of mainstem streamline  unitless Falcone (2011) 

ELEV_MEAN_M_BASIN 

Mean watershed elevation (meters) from 100m National 

Elevation Dataset  m Falcone (2011) 

ELEV_MAX_M_BASIN 

Maximum watershed elevation (meters) from 100m National 

Elevation Dataset  m Falcone (2011) 
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ELEV_MIN_M_BASIN 

Minimum watershed elevation (meters) from 100m National 

Elevation Dataset m Falcone (2011) 

ELEV_MEDIAN_M_BASIN 

Median watershed elevation (meters) from 100m National 

Elevation Dataset m Falcone (2011) 

ELEV_STD_M_BASIN 

Standard deviation of elevation (meters) across the watershed 

from 100m National Elevation Dataset m Falcone (2011) 

ELEV_SITE_M 

Elevation at gage location (meters) from 100m National 

Elevation Dataset m Falcone (2011) 

RRMEAN 

Dimensionless elevation - relief ratio, calculated as 

(ELEV_MEAN - ELEV_MIN)/(ELEV_MAX - 

ELEV_MIN). unitless Falcone (2011) 

RRMEDIAN 

Dimensionless elevation - relief ratio, calculated as 

(ELEV_MEDIAN - ELEV_MIN)/(ELEV_MAX - 

ELEV_MIN). unitless Falcone (2011) 

SLOPE_PCT Mean watershed slope % Falcone (2011) 

ASPECT_DEGREES Mean watershed aspect 

degrees 

(0-360) Falcone (2011) 

ASPECT_NORTHNESS 

Aspect “northness”. Ranges from -1 to 1. A value of 1 means 

the watershed is facing/draining due north, and a value of -1 

means the watershed is facing/draining due south  unitless Falcone (2011) 

ASPECT_EASTNESS 

Aspect “eastness”. Ranges from -1 to 1. A value of 1 means 

the watershed is facing/draining due east, and a value of -1 

means the watershed is facing/draining due west  unitless Falcone (2011) 

Physio Physiographic divisions of CONUS N/A 

 (Fenneman and 

Johnson, 1964) 

DRAIN_SQKM Drainage area  km2 Falcone (2011) 

Atmospheric variables 

CovTrLs Covariance of precipitation and water travel distance  mh Shen et al. (2017)  

Etr  Centroid of precipitation  h2 Shen et al. (2017)  
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2.3. Modeling the Impact of Flood-inducing Storms          250 

The ML-based methodology developed in this study for predicting the median “Residual” is based on clusters of the 

gages. Using a self-organizing map (SOM) with event-specific characteristics, explained in Table 1, we developed a framework 

for understanding and predicting channel changes due to flood-inducing storm events. The SOM developed by (Kohonen, 

1982), is one of the most popular clustering/ classification methods used in many research areas such as medical science, 

hydrology, and signal processing (e.g., (Zanchetta and Coulibaly, 2022; Rahmati et al., 2019). The SOM method has become 255 

a very useful prediction tool in hydrological and environmental studies because it can predict a target variable without learning 

any physical relationship among a collection of variables. The main advantage of the SOMs is that they allow to reduce the 

data dimensionality, by organizing the data into a two-dimensional array (Kohonen, 1982) using topology-preserving 

transformations (Rahmati et al., 2019). SOMs, being a form of artificial neural network, can be thought of as a regression 

technique with a higher level of nonlinearity between the dependent and independent variables (Geem et al., 2007). The 260 

proposed SOM framework (Figure 4) consisted of four phases: unsupervised clustering, supervised mapping, trained 

regression, 10-fold validation, and prediction. The whole procedure is described in the sub-sections below.  

VarTr Spreadness of precipitation  h2 Shen et al. (2017)  

VarLs Variance of water travel distance  m2 Shen et al. (2017)  

Vb Base flow volume  mm Shen et al. (2017)  

Vp Precipitation volume  mm Shen et al. (2017)  

Pmean Mean Precipitation  mm/h Shen et al. (2017)  

  Climate types (was not included in the ML model)  unitless  (Beck et al., 2018)  
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     Figure 4: Schematic of the SOM framework proposed in this study. 265 

The SOM algorithm is technically conceived for numerical datasets. This means that SOMs cannot be used to analyze 

variables with non-numerical data types, such as categorical values. To present the categorical variables to the machine learning 

model selected for this study, we therefore converted all the categorical values into binary digits. Each binary digit was then 

transformed into one feature column. 

Most storm variables (except Perc- Percentage of peak flow and Percentile-Percentile corresponds to peak flow) were 270 

normalized considering the range of values available for each station. This normalization was performed to account for the 

influence of the watershed sizes on the various storm properties. Continuous geomorphologic and hydrologic variables, not 

coded in the range 0-1 (or 0-100) (aside from RRMEAN-Mean relief ratio and RRMEDIAN- Median relief ratio, 

SLOPE_PCT- Mean watershed slope, and Aspect) were normalized considering the overall range across CONUS. The stage-

discharge residuals were kept as is because they are already “relative” in value to the stage-discharge fitted at flood stage for 275 

each gage. To reduce the dataset dimensionality, and avoid collinearity, we performed a variable importance analysis using 

the misclassification rate (section 2.3.1). 
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2.3.1. Unsupervised Clustering 

The first module used, a SOM algorithm to cluster together gages based on similar characteristics. The main objective 

of this step is to group gages having similar underlying patterns of variables. The SOMs are organized in two-dimensional 280 

space where the neighboring neurons learn similar patterns, and neurons mapped far away have dissimilar patterns (Stefanovič 

and Kurasova, 2011) This unsupervised mapping was performed automatically using the Kohonen package in R (Wehrens and 

Kruisselbrink, 2018; Wehrens and Buydens, 2007; Kohonen, n.d., 1982; Wehrens, 2019). The optimal number of nodes was 

set at five times the square root of the number of observational data, as per Kohonen's general rule of thumb for determining 

the sizes of two-dimensional grids (Fytilis and Rizzo, 2013).  285 

Typically, SOM data clustering involves two steps: first, the data set is clustered using SOMs, which offer the 

organization of the data into the various nodes, and then the nodes are clustered (Vesanto and Alhoniemi, 2000) Clustering 

speeds significantly increase when nodes are used in place of actual data. The result of the first step is that gages are grouped 

in neighboring nodes if the underlining patterns of variables are similar. After the SOM is trained, its U-matrix gives insight 

into how all the data are organized, as it displays the nodes and the distance that the weight nodes create between each weight 290 

and all its neighbors. This matrix can be used for the second step of identifying and labeling the actual clusters, through image-

analysis tools (Pacheco et al., 2017; Wang et al., 2010; Wu and Li, 2022; Vincent et al., 1991). In this work, the first 

unsupervised clustering was accomplished by using all the data together, including the residuals in the process. Each gage was 

assigned a cluster number based on all the variables of that location. Gages grouped in the same cluster are expected to have 

similar patterns of the input variables, including the residuals. For each cluster, then, we re-train the model, retaining only the 295 

gages for that cluster, to provide the most typical residual given by the combination of hydrologic, geomorphologic, and 

atmospheric variables. 

The most common approach is to segment the U-matrix using the watershed technique of gray-scale image processing 

(Costa and Netto, 1999; Vincent et al., 1991). Using a watershed analogy, the U-matrix (Figure 5) can be used to locate the 

clusters. Large "heights" and ridges imply significant distances in the feature space, while little "valleys" represent data subsets 300 

that are similar (Ultsch and Lötsch, 2017). The segmentation is performed by flooding the valleys (similar nodes with very 

close distances from one to the other) until a ridge (high dissimilarity) is reached. Where the water converges, watersheds will 

form, having close boundaries. One cluster is represented by all the items in a segmented area or watershed. According to this 

approach, a minimum height threshold can be selected to define the clusters (valleys). We followed automatic thresholding 

and set the threshold to a statistical value equal to half the standard deviation of the values. To perform this step, we applied 305 

watershed transformation and watershed-based object detection using the function “watersheds” in the R Bioconductor 

package (Torres-Matallana, 2016). 
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Figure 5: Example of (a) U-Matrix and (b) derived clusters. Red colors in the U-Matrix stand for significant distances in the feature 

space, whereas blue colors are "valleys" that group subsets of related data. The watersheds shown in (b) are collections of related 310 
data. 

We assessed the relevance of each feature according to its misclassification rate relative to a baseline cluster 

assignment produced by a random permutation of feature values to find the most crucial features and prevent data duplication 

(Molnar, 2022; Breiman, 2001; Fisher et al., 2018). We preferred this approach considering that permutation feature 

importance does not call for retraining of the model before the analysis. This approach states that a variable (feature) is 315 

“important” if changing its values results in a cluster reassignment because, in this scenario, the model primarily relies on that 

feature to forecast the predictors. In contrast, a feature is considered "unimportant" if changing its values does not affect the 

anticipated cluster. The variable identified as important with the shuffling does not necessarily mean they have high variability 

among watersheds. It rather means that this variable is highly correlated with the target variable (the cluster association), 

because shuffling its values essentially destroys any relationship between that feature and the target variable, as indicated by 320 

the decrease in the training performance. After randomly permuting the values of a feature, the model is NOT refitted to the 

training data. This technique has been recognized in the literature (e.g., (Breiman, 2016; Wei et al., 2015; Fisher et al., 2018) 

and it is widely implemented in many statistic packages as well (e.g., Biecek et al., 2018, 2019; Molnar & Schratz, 2008) 

Please refer also to Wei et al (2015) for a review. We ran the clustering algorithm 10 times with different seeds. At each run, 

we trained the clustering using 90% of the data and predicted the remaining 10%; and, for each run, each feature of the dataset 325 

was permuted 10 times. The permutation misclassification rate of a feature was calculated as the number of observations for 

which the cluster assignment differed from the original cluster assignment, divided by the number of observations given a 

permutation of the feature. The overall average misclassification rate iterations were interpreted as variable importance. We 

decided to keep only the variables producing a misclassification rate higher than the mean values. Figure 6 shows the most 

important variables for the interval N = 365 days. This variable selection indirectly checks for collinearity by keeping only the 330 

variables that have the largest effect on the changes. 
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Figure 6: Selected variables based on misclassification rate (%). 

2.3.2. Supervised Mapping and Trained Regression 335 

Self-organizing maps (SOM) are extensively applied for clustering and visualization purposes. Nonetheless, they can 

be used for regression learning. (e.g., (Riese and Keller, 2019, 2018)). In the first step, the data (geomorphological, 

atmospheric, hydrologic variables, and measured residuals) are clustered together, based on patterns of variables. The resulting 

SOMs are composed of nodes, each of which is connected to a "weight" vector that represents the node's location in the input 

space. The map can be used to categorize further observations after training by locating the node whose weight vector is closest 340 

to the input space vector (best matching unit, or BMU). 

The regression algorithm of the SOM proceeds similarly to the clustering SOM algorithm. However, the regression 

differs for these main points: 1) Within the finalized input SOM that was created in the first stage, the BMU search is carried 

out.; 2) For the regression instance, the weights of the supervised SOM are based on one single parameter (a continuous 

number, which in our case is the residuals). Combining the unsupervised and supervised SOM allows for the selection of the 345 

BMU for each data point while also connecting the chosen best-matching unit to a particular residual estimation.  In other 

words, each gage is mapped to a certain cluster, based on the median characteristics of the storms. For the regression part, the 

data extracted from the SOM are restricted to the best matching cluster, and given the input storm and watershed properties, 

we can predict the most likely residual. 

For the supervised mapping and trained regression step, the gages were tagged to their corresponding SOM clusters. 350 

Once a cluster is defined, we aimed to determine which features were the most significantly correlated. For this, we considered 

the distance correlation index (dCorr) (Székely et al., 2007) to quantitatively identify the correlation of the important variables 
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with the residuals within each cluster. The range of dCorr values, from 0 to 1, represents the dependence of two independent 

variables. The stronger the dependence, the closer the value is to 1, and the statistical independence of the two variables is 355 

implied by a value of zero (Sofia & Nikolopoulos, 2020). We used inverse distance correlation (1-dCorr) to measure the 

dissimilarity of the variables within the cluster and create organized dendrograms. The attribute distances between every pair 

of drivers that have been successively clustered are depicted in a dendrogram.  

Having tagged the gages, we performed supervised training with them to predict the residuals based on the 

atmospheric, hydrologic, and geomorphologic variables. The main outcome of this part is to have an ML system able to predict 360 

the most probable residual after a storm having certain properties, for a location with specific watershed characteristics. To 

this point, we retrained the SOMs independently for each cluster, using only the data retrieved from the stations within that  

cluster. For this part, we applied an extension of Kohonen’s self-organizing map algorithm, the growing self-organizing map 

(GSOM) (Alahakoon et al., 2000; GrowingSOM package | R Documentation, 2020, https://rdrr.io/cran/GrowingSOM/). We 

chose GSOM to refine the analysis and improve the prediction within each cluster. The GSOM hierarchical clustering 365 

technique enables the data analyst to locate important and unique clusters at a higher level and to focus on a more precise 

grouping of the interesting clusters only. (Alahakoon et al., 2000). The GSOM is computationally expensive, so we decided to 

apply it to the already clustered data. A spread factor parameterizes the GSOM. This measure can generate maps of different 

sizes without previous knowledge about the dataset, samples, or attributes. We set the spread factor to 0.8, as suggested by 

Alahakoon et al. (2000).  370 

Finally, we trained the model by selecting 90% of the data randomly and validated its performance using the 

remaining 10% for each cluster. The traditional method of identifying the quality of the SOM, proposed by Kohonen, is to 

compute the quantization error by summing the distances between the nodes and the data points, with smaller values indicating 

a better fit. This method has been used successfully by many researchers, requiring minimal computation time, to compare 

changes across time-series images (e.g., (Bação et al., 2005; Dresp et al., 2018; Wandeto and Dresp-Langley, 2019). For quality 375 

assessment, we also followed the approach used by (Swenson and Grotjahn, 2019). We performed cross-validation for a 

particular SOM, fitting the SOM to the data first to ensure a unique cluster assignment. Then we conducted 100 trials, excluding 

the data used in initialization, as suggested by Swenson and Grotjahn (2019). We utilized a typical subdivision of 90-10, which 

meant that 90% of the data was used as training data to fit a new SOM, and the SOM was then utilized to forecast the cluster 

assignments of the remaining 10% of validation data. The percentage of gages whose cross-validation cluster assignment 380 

changed from the original assignment in at least 10% of the 100 trials was calculated. We further tested the quality of the ML 

by evaluating the RMSE and the correlation distance between the actual residuals and the predicted ones for the validation 

dataset. 

2.3.3. Predicting Major Storm Effects on Flood Hazard 

Using the trained model (section 2.3.2), we predicted the residuals for each gaging station, based on all the variables 385 

(table 1) selected from Shen et al. (2017), Falcone (2011), and Fenneman and Johnson, (1964). We compared the predicted 
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residual for a given storm at a given gage with the average residual measured in the most recent years focusing on prediction 

showing a sudden deviation from positive (before the storm) to negative (post-storm). This sudden deviation, as illustrated in 

Figure 3, can indicate a quick shift in channel conveyance in response to sediment deposition, which can trigger increased 

flood hazard even when the flood event’s return period remains unchanged (Blench, 1969; Lane et al., 2007; Pinter et al., 390 

2006b, a; Stover and Montgomery, 2001).      

To highlight the criticality of this sudden shift, we considered as highly at risk those watersheds for which the 

predicted residual, shifting from positive to negative, was outside the lower bound of the 95% confidence interval of the current 

stage-discharge relationship. As LOESS smoothers fit a unique linear regression for every data point by including nearby data 

points to estimate the slope and intercept, the correlation in nearby data points helps ensure obtaining a smooth curve fit. 395 

Therefore, the µ+1.96σ of the nearby data points considered for each fitted value can be considered as a measure of the 95% 

confidence interval. This information is calculated directly from the R package fANCOVA (https://CRAN.R-

project.org/package=fANCOVA) used for the fitting.  Overall, a watershed having positive residuals for the most recent 

measurements, for which we predict a sudden shift to negative outside the confidence bound of the stage-discharge curve, 

represents a critical condition that should be monitored, as the current flood stage might underestimate the flood risk. 400 

3. Results Analysis 

3.1. Variable Importance 

Figure 6 demonstrates the outcome of the variable importance. Based on the results shown in Figure 6, we found that 

the same variables were always important for all interval analyses. Table 1 shows all the selected variables in bold for N = 

365. In this case, out of a total of 40 variables we have selected 30 based on the misclassification rate (%). Of the selected 405 

variables 15 were geomorphologic variables, followed by 10 atmospheric variables and 5 hydrologic variables.  The most 

important variables were the Aspect (ASPECT_NORTHNESS, ASPECT_EASTNESS), and stream density 

(STREAMS_KM_SQ_KM). The most important hydrologic variable was HYDRO_DISTURB_INDX, which explains the 

condition of the watershed, whether it is anthropogenically modified or natural. 

3.2. Evaluation of SOM accuracy 410 

The quantization error (Table 2) provided a measure of the accuracy of SOMs. The quantization error reported a 

higher accuracy as the number of training samples increased (increasing the number of days, resulting in more channel 

measurement and flood properties for each training sample). Homogeneous areas in the U-Matrix became more evident (Figure 

7) as the quantization error diminished (Table 2). As Table 2 indicates, the 365 days interval had the best quality, as represented 

by the lowest quantization error. For this reason, the following sections will present an investigation of the maps produced 415 

with this interval. Table 2 also shows the SOM quality in terms of distance to the closest units of the SOMs trained for each 

https://cran.r-project.org/package=fANCOVA
https://cran.r-project.org/package=fANCOVA
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cluster. The results suggest that the retraining of the individual cluster using GSOM improved the prediction quality of the 

SOM significantly.  

Table 2 also represents the correlation distance and RMSE between the measured and predicted residuals for each 

cluster of the validation datasets. The average correlation was close to 1 for all N values, suggesting the performance of the 420 

SOM model was satisfactory. The average RMSE was in the range of 0.09 – 0.14 m, which indicates a low random error 

relative to the dynamic range (-3 to 3) of the predicted variable. Both the unsupervised correlation distances and the average 

correlation showed the best results for N- 365 days. The RMSE diminished with the increase in the interval. 

 

Figure 7: U-Matrix for different intervals (N days). The red colors represent large distances in the feature space, while the blue 425 
colors represent “valleys “grouping subsets of similar data. 

Deleted: close to 

Deleted: was also an indication of the quality assurance

Deleted: SOM model



 

19 

 

Table 2:  Accuracy assessment parameters of the ML analysis. This table reports the average correlation and RMSE between the 430 
predicted and observed residuals for the different intervals. 

 

Interval (days) Avg. Corr. (10-fold) 
Avg. RMSE (m) 

(10-fold) 

15 0.81 0.13      

30 0.84 0.14      

90 0.80      0.13      

180 0.80 0.09 

365 0.86      0.09 

 

Figure 8 presents the results of the unsupervised clustering for N = 365 for the variables used. In the figure, the 

contrast between high (red) and low (blue) value areas emphasizes the spatial patterns of the various parameters we 435 

investigated. Based on this clustering, a combined U-Matrix is produced (discussed in Figure 7) and a cluster label is assigned 

to each gage. Gages with similar characteristics presented by the variables are tagged with the same cluster number. There are 

12 clusters of gages for 365 days interval and we have plotted the clusters individually on a map showing how they spread 

across different physiographic regions and climate zones in Figure A1 in Appendix A. Clustering does not have a geographical 

meaning, rather gages behave more consistently between adjacent clusters than non-adjacent clusters, but this does not 440 

necessarily follow the spatial proximity of the gages. This is reflected in the spatial pattern of the different clusters of gages in 

Figure A1. 

Click or tap here to enter text. Visually, the SOMs in Figure 8 highlight the co-oscillation of hydrologic and 

geomorphologic variables as a standard component of watershed behavior. Drainage area (DA) and discharge/peak flow 

(Peak), for example, are positively correlated, with a cluster of high values in the bottom part of the SOMs. We can see that, 445 

other hydrologic variables like ELS (Mean water travel distance to the drainage outlet), EQ (Centroid of flow hydrograph), 

Q2 (Second-order moment of the flow), Vp (Precipitation volume), Vt (average flow volume per unit drainage area), and VaTr 

(Spreadness of precipitation), have similar patterns. The centroid of precipitation (EQ) and hydrograph (ETr) appear to be 

highly correlated. Some specific co-oscillations of variables are evident in multiple regions. Percentage (Perc) and percentile 

(Percentile) of peak flow show the highest values spread across the SOM nodes. If we focus on the SOM of “Res”, we can see 450 

that the nodes on the righthand side of the SOM seem to be associated with high values of the residuals (Figure 8). Nevertheless, 

a small cluster of high residuals is seen in the upper lefthand corner. At the global level, this highlights a lack of regional 

synchrony in stage-discharge shifts at the yearly scale. (Pfeiffer et al., 2019) reported similar findings on the decadal scale. 
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Figure 8: Individual SOMs of all the flood drivers for N= 365. Similar to the U-Matrix the red colors represent large distances in the 

feature space, while blue colors represent “valleys “grouping subsets of similar data. 

3.3. Variables Associated with shifts in the residuals. 

Focusing on the changes in the stage‐discharge relationship residuals (Res), we next investigated the correlation 

between predicted and measured residuals on the one hand and other variables on the other (Figure 9, Table 3). For the proposed 470 

ML framework, the training was unsupervised. In general, the predicted and measured residuals were highly correlated, 

validating the SOM performance. Table 3 summarizes the correlations among the considered predictors in Figure 9 for N = 

365 days. It presents the analysis of the group of variables based on the dendrogram branches for different likelihood of change 

levels (e.g., 0–10%, 10–30%, and 30–50%). This section discusses the correlations for the 30–50% category as an example; 

the other two categories showed similar outcomes. We do not have more than 50% here in the table because the highest 475 

percentage of gages that showed sudden change was 30-50%. In Table 3, level 1 shows the group of variables highly correlated 

to each other and with residuals. Level 2 shows variables that are highly correlated to each other but related to a lesser degree 

to the variables in Level 1.  

For level 1, the physiography of the basins is represented by ELEV_* (Elevation) highly correlated with EQ (Centroid 

of flow hydrograph), Q2 (Second-order moment of the flow), and ETR (Centroid of precipitation), which are correlated with 480 

all the other variables in Group 2. For level 2, Residuals (Res) are shown to be correlated with different variables. A noticeable 

pattern is group 1 contains mostly hydrologic variables, while group 2 contains atmospheric variables. In group 1, the residuals 

(Res) belong to the tree containing the variables RFACT (Rainfall and Runoff factor), HYDRO_DISTURB_INDX 

(Anthropogenic modification), STREAMS_KM_SQ_KM (Stream density), BFI_AVE (Base Flow Index), 

ASPECT_NORTHNESS, ASPECT_EASTNESS, STRAHLER_MAX (Maximum Strahler stream order in the watershed), 485 

MAINSTEM_SINUOUSITY (Sinuosity), DRAIN_SQKM (Drainage area), Peak (Peak flow), and CovtrLs  (Covariance of 

precipitation and water travel distance ) (level 2 in table 3). RFACT- Rainfall runoff factor, directly affects rainfall runoff 

influencing the channel changes. HYDRO_DISTURB_INDX (see section 3.1) represents the channel condition, whether the 

channel is altered by manmade construction or not. A group of highly connected elements comprises a series of drainage 

properties (STREAMS_KM_SQ_KM, STRAHLER_MAX, MAINSTEM_SINUOUSITY, DRAIN_SQKM) that modulate the 490 

way precipitation is routed through the basin and directly affect flood properties. 

In level 2, group 2, the tree contains Pmean (Mean Precipitation), ELS (Mean water travel distance to the drainage 

outlet), EQ (Centroid of flow hydrograph), Q2 (Second-order moment of the flow), Vp (Precipitation volume), Vt (average 

flow volume per unit drainage area), and VaTr (Spreadness of precipitation), VarLs (Variance of water travel distance), Vb 

(Base flow volume), and RunoffCoef (Runoff coefficient). These are mostly related to rainfall properties. While they are 495 

important fingerprints for the attribution of regional flood changes, these variables are related to changes in flood hazard to a 

lesser degree than physiography and flow properties.  
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Overall, the results of our analysis highlight how the impacts of a flood-inducing storm event on channel properties 500 

and flood hazards are highly correlated with flow characteristics and a region’s geophysical signature.  

 

Figure 9: Example of intercorrelation among the flood drivers for N = 365 days for the likelihood of change between 30 and 50%. 

The white color signifies that there is no correlation between those variables. The color bar from blue to yellow shows high to low 

correlations.  505 

Table 3: Highly correlated variable groups for different percentages (%) of the “likelihood of change” from the interpretation of the 

dendrogram in Figure 11. Levels in the table represent the main branches of the dendrograms and groups represent the sub -

branches under the main levels. 

 0-10% 10-30% 30-50% 

Variable groups Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 

Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 

Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 
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ELEV_SITE_M, 

RFACT 

Group 2: All the other variables 

 

Level 2: 

Group1: HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

Res, 

ASPECT_NORTHNESS, 

ASPECT_EASTNESS, 

Vp, Pmean,CovtrLs, Vb, Vt, Els, IBF, 

VarLs 

Group 2: EQ, ETR, Q2, VarTr, 

RunoffCoef, Peak, 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM 

 

ELEV_SITE_M, EQ, Q2 

Group 2: All the other variables 

 

 

Level 2: 

Group1:  

RFACT, 

HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

BFI_AVE, 

Res, 

ASPECT_NORTHNESS 

ASPECT_EASTNESS 

Pmean, Els, IBF, VarLs 

Group 2: Vp, CovtrLs, IBF, Vb, Vt, 

ETR, VarTr, RunoffCoef, Peak, 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM 

 

ELEV_SITE_M, EQ, Q2, ETR 

Group 2: All the other variables 

 

 

Level 2: 

Group1:  

RFACT, 

HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

BFI_AVE, 

Res, 

ASPECT_NORTHNESS 

ASPECT_EASTNESS 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM, IBF, Peak, CovtrLs 

Group 2: Pmean, Els, VarLs, Vp, Vb, 

Vt, VarTr, RunoffCoef 

4. Discussions 

4.1. Channel Changes and Watershed Characteristics 510 

Our model highlighted in Figure 6, that the most important hydrologic variable was the condition of the watershed, 

whether it is anthropogenically modified or natural. This confirms that human modifications are an important element to be 

considered when analyzing flood hazard changes (Bormann et al., 2011; Pinter et al., 2006a, b). Ahrendt et al. (2022) 

demonstrated that channel regulation is important to conveyance changes which resonates with the variable importance 

analysis results from Figure 6. Similarly, the construction of dikes, bridges, dams, meander cutoffs, channel constriction by 515 

wing dikes, groins, and other engineering projects can alter channel conveyance within rivers and the characteristics of their 

floodplains (Bormann et al., 2011; Pinter et al., 2006b, a). The importance of this variable in the model highlighted the potential 

interaction of flood-inducing events that generate high sediment deposition with the effects of channel modification. As well 
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numerous works in literature (Feng et al., 2021; Mazzoleni et al., 2022) also highlighted how urbanization processes and 520 

landscape changes induced by human activities have large impacts on flood hazards worldwide. 

The model gave high importance to drainage density, which is an essential characteristic of the Earth's surface that 

regulates erosion and the movement of water and sediments (Clubb et al., 2016). Drainage density is also correlated with 

subsurface permeability (Luo et al., 2016). The control these factors exert on sediment production and delivery and soil 

permeability may explain the importance of these variables to post-storm changes in river conveyance. Drainage density is 525 

also correlated to other hydrologic and climatic variables such as precipitation and climate types (Moglen et al., 1998).  

 Based on the visual interpretation of the unsupervised SOMs (Figure 8), taking the atmospheric, hydrologic, and 

current geomorphologic conditions as single independent drivers is not sufficient to predict the magnitude of the shift in stage-

discharge at the flood stage. This suggests the co-occurring fluctuations in the various parameters, rather than variation in a 

single peak parameter, are the primary drivers of change in flood hazard at the continental scale.  The patterns visible in the 530 

SOM depend on existing relationships among processes. For example, along with the drainage area, the duration and spatial 

pattern of rainfall are responsible for￼￼. The correlation among Drainage area (DA), peak discharge (Peak), and Mean water 

travel distance to the drainage outlet (Els) is evident for various clusters, as is the correlation between Normalized flow volume 

(Vt) and Baseflow (Vb).  

This is not surprising, considering that the basin size is generally the most important basin characteristic in 535 

determining the amount and timing of surface runoff at the outlet (Gupta and Dawdy, 1995). The relationship between flood 

flow quantiles and drainage area is expressed by power-law equations (Villarini and Smith, 2010). It also confirms how 

catchments with larger drainage areas display higher values of specific discharge and how morphodynamic properties 

(including frequent flows such as the bankfull discharge) tend to cluster with drainage network characteristics and scaling 

properties (Saghafian, 2005; Reis, 2006; Sofia and Nikolopoulos, 2020b). Further cross-cluster variability occurs with some 540 

atmospheric and hydrologic variables, namely the Centroid of precipitation (ETr), Centroid of flow hydrograph (EQ), and 

Spreadness of precipitation (VarTr). All the previously mentioned variables present their co-occurring peaks in Cluster 6 (the 

Upper Mississippi and Missouri region), which is in line with the fact that for this area (and cluster), snowmelt, rain on snow, 

or rainfall can cause major flooding.  

The physiography of the basin deeply controls the complex land-atmospheric interactions and storm types resulting 545 

in rainfall runoff. Thus, this is no surprise that physiography alone is highly correlated (Figure 9, Table 3) to all other 

(hydrologic, geomorphologic, and atmospheric) variables used in this study. This highlights the importance of basin attributes 

in prompting stage-discharge variability at gage locations. Investigations of the influence of the flow stage on channel 

conveyance often focus on the impacts of peak or minimum bankfull discharge. From Figure 9 and Table 3, we can see that 

recession rates matter in sediment delivery, as highlighted in the literature (e.g., Hassan et al., 2006), and these two properties 550 

are highly correlated with the impact of large storms on flood hazards. The findings of this study provide needed insight, and 

managers could use the results to determine the flow hydrograph shapes that potentially alter short-term flood hazards. Such 

knowledge is necessary for the design of river infrastructure.  
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Vt (average flow volume per unit drainage area), and VaTr 
(Spreadness of precipitation), have similar patterns. The centroid of 

precipitation (EQ) and hydrograph (ETr) appear to be highly 565 
correlated. Some specific co-oscillations of variables are evident in 

multiple regions. Percentage (Perc) and percentile (Percentile) of 

peak flow show the highest values spread across the SOM nodes. 
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Many papers in the literature (e.g., Borga et al., 2008; Woods and Sivapalan, 1999; Woods, 1999; Smith et al., 2004, 

2005, 2002; Zhang et al., 2001) highlighted the relationship between the centroid of precipitation and runoff production. Most 

works showed that, for example, the position of the storm centroid relative to the watershed outlet is an important driver of  575 

runoff:  storms having a precipitation centroid positioned in the central portion of the watershed tend to produce a higher runoff 

than storms having a centroid near the outlet or the head of the watershed. This is in line with the fact that rainfall runoff spatial 

variability influences flash flood severity relative to basin physiography and climatology. Flash flood severity, or flashiness, 

as defined by Saharia et al., (2017), assesses a basin's capacity to produce severe floods by considering both the volume and 

timing of a flood. It is, therefore, not unexpected that the centroid of precipitation appears to be highly correlated with the 580 

shifts in residuals.  

Also, as shown in Figure 9 the significance of “Aspect” attributes can be understood in terms of the various runoff 

and soil loss yields that can result from changes in slope properties. For example, soils on south-facing slopes always seem to 

be much more eroded or degraded than those on more humid north-facing slopes due to differences in aspect, steepness, 

lithology, and flora type. ASPECT_NORTHNESS and ASPECT_EASTNESS influence the daily cycle of solar radiation 585 

affecting the temperature, humidity, and soil moisture (Desta et al., 2004) that control the vegetation and, hence, the sediment 

movement of the floodplain. The variability of these factors can, therefore, affect sediment production and movement, with 

consequences for flood hazard changes.  

In Figure 9 and Table 3, our model suggests drainage properties related to the routing of the precipitation and flood 

water are highly correlated with residual changes and indirectly linked to post-storm modifications of flood hazards. Greater 590 

network sinuosity lowers peak flows and flooding (Seo and Schmidt, 2012; Seo et al., 2015; Saco and Kumar, 2002). Higher 

peak flow, faster time to peak, and shorter duration are produced by lower variability of flow path lengths (Saco & Kumar, 

2002). Also, flood frequency/event increases with the decrease of the fractal dimension of the river network (Zhang et al., 

2015). Lastly, the Base Flow Index and Peak discharge are intricately connected to runoff and, consequently, alterations in 

channel conveyance. This connection is evident as they characterize the volume of water within the channel. When the volume 595 

surpasses the channel's conveyance capacity, flooding is anticipated, and substantial sediment movement implies potential 

channel adjustments. The significance of these properties is a reaffirmation of the established notion that regular flows, such 

as baseflow below bankfull levels, are sufficient to determine channel shape, as they prevent the substantial accumulation of 

fine sediments and organic matter (Phillips, 2002). On the other hand, rare extreme floods are essential for transporting coarser 

bed material and eroding channel banks (Phillips, 2002). 600 

4.2. Changes in Flood Risk after Major Floods  

 Figure 10a shows the groups of gages representing different percentages of “likelihood of change.” If the reported 

value is <10%, for example, the predicted residuals for those gages show a sudden change from negative to positive in less 

than 10% of storms. The higher the percentages are, the more likely we expect a drastic abrupt reduction of channel capacity 

after a large storm. Comparing with the literature (Slater et al., 2015), we can see that, in our study, the locations with the 605 
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highest likelihood of change coincided with those with significant channel capacity and net changes in flood hazard frequency. 

While the post-storm change was not as widespread as the effects highlighted by Slater et al. (2015), this was expected, as we 610 

were analyzing post-storm effects and not considering the persistence in time of these changes at this stage. Also, a higher rate 

of change (high percentage) might be representative of very dynamic rivers, whose changes are likely to smooth out in time. 

On the other hand, rivers changing less frequently might be witnessing changes with a magnitude sufficient to last longer. This 

fact should be addressed carefully. Another thing to consider is that, because USGS gages are purposely placed at stable 

locations, our analysis, as well as other works (e.g., Li et al., 2020; Slater et al., 2015), probably underestimates the 615 

consequences of conveyance changes.  

Nonetheless, our results highlighted how substantial changes had occurred even for these locations. When we focused 

on the amount of change relative to the current confidence bound of the stage-discharge (Figure. 10b), we could see that the 

magnitude of change was higher for gages that changed less frequently. The northwestern part of CONUS, where Slater et al. 

(2015) highlighted clustering of increase in hazard due to consistent channel capacity changes with clusters of gages for which 620 

we predicted negative residuals outside the confidence bound of the stage-discharge relationship. For the Northeast, on the 

other hand, our model predicted high-magnitude changes for areas identified by Slater et al. (2015) as areas significantly 

impacted by flow frequency effects. It is known that existing stage-discharge relationships present uncertainty in estimating 

the discharge because of the variation in the individual measurements from which the estimation is derived. Our model 

highlighted that the post-storm increased change lay outside the range of acceptable uncertainty at many gages. As Figure. 10b 625 

shows, this change was as widespread as the effects highlighted by Slater et al. (2015) for total positive changes in flow hazard 

frequency (FHF). For gages, the total FHF increased logarithmically in Slater et al., 2015, our model predicted changes further 

in the negative domain, outside the lower confidence bound. 
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      630 

Figure 10: Predicted changes as compared to the results of Slater et al. (2015) showing Channel Capacity (CC) and Flow Frequency 

(FF) effects on flood hazard frequency (FHF). In (a) “Likelihood of change”- the percentage represents the number of times the 

model predicts a residual change from positive to negative after a major flood (for N = 365); in (b) the panel shows the ratio between 

average prediction and lower 95% confidence bound of the current stage-discharge relationship for the stations showing a drastic 

change positive to negative. In (a, b) gages with small variations from this study have been reduced for clarity. Panel (c,d, and e) are 635 
results from Slater et al. 2015. 

From the predicted results of the channel changes at the gage level, we next analyzed which locations were more 

prone to changes based on the number of gages with predicted changes within each physiographic region and climate type 

(Figure 11). Overall, one must keep in mind the limits and the variability of the gage coverage across CONUS, as described 
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in the chapter related to the model limitation. Nonetheless, observing how variability changes across regions allows us to grasp 640 

how varying the post-storm effects are. Overall, rivers across the US are highly dynamic per se, and their variability depends 

on a combination of factors, mostly driven by how sediment moves across the landscape (Montgomery and Buffington, 1998; 

Flores et al., 2006). This, in turn, depends on a variety of landscape properties, as well as climate conditions, and human 

modifications as well (Wu et al., 2023).  

Among the physiographic regions (Figure 11a), the Laurentian uplands and intermontane plateaus had the most 645 

changes (75% of all gages in this region). Rocky Mountain and Pacific Mountain systems followed the trend with the second 

most changes (50–75%). The changes in the <10% of the gages resided in the Interior Highlands, Atlantic Plains, and 

Appalachian highlands. The Appalachian Highlands regions are mountainous. In contrast, the interior plains are mostly flat 

agricultural lands whose river system consists of the upper Mississippi River, the Ohio River, parts of the Great Lakes, and 

small wetlands. This region has very dynamic hydrology, with very cold winters and hot summers. Snowmelt in the spring 650 

and heavy precipitation in the summer and winter result in big floods. Naturally, this can potentially lead to changes in the 

river reaches. While the Atlantic Plain is also relatively flat, it covers the Mississippi Delta, the Gulf of Mexico, and the 

Atlantic seaboard in the East (see Figure 2). Moving toward the coastline, frequent tropical storms and cyclones are recorded, 

which could increase sediment activity overall (Tweel and Turner, 2014). As well, lots of human activities can alter river 

morphology, especially in the deltas, due to sediment movements (Nienhuis et al., 2020). The literature (Bracken and Croke, 655 

2007; Kalantari et al., 2019; Croke et al., 2013; Sofia and Nikolopoulos, 2020a; Wohl et al., 2019) has highlighted sediment 

connectivity as a potentially critical factor in flood hazards, being linked to both changes in channel characteristics and 

increasing decadal trends in flood hazard, independent of scale. In addition, for these regions, and in the eastern United States 

more generally, peak flows are highly variable (Villarini & Smith, 2010), and tropical cyclones affect the distribution of  

sediments as well (Tweel and Turner, 2014). All these characteristics contribute to the presence of very dynamic rivers, which, 660 

as confirmed by our model, quickly react to flood-inducing events, adjusting their geometry and altering flood hazards in the 

case of subsequent floods. 

We made the same comparison for the climate types (Figure 11b). We detected high predicted variability mainly in 

hot and humid climate regions, while cold and dry regions showed minimal changes. Humid Continental climate (Dsb, Dfa, 

Dfb) led with the highest variability (>75% of the gages resided in these climate regions). The gages with 50–75% channel 665 

changes were in the Tundra Climate (ET) and Warm Summer Mediterranean Climate (Csb). Gages with the least changes 

(<10%) were located in Humid Continental Hot Summers with Dry Winters (Dwa), Continental Subarctic-Cold Dry Summer 

(Dsc), Cold Desert Climate (Wk), and Hot Semi-Arid Climate (BSh). These climate zones are mostly dry either year-round or 

seasonally. The impact of major storms on rivers depends on both underlying long-term climate signatures (Chen et al., 2019; 

Stark et al., 2010) and short-term (year-to-year) climate variability (Slater et al., 2019). For many river systems, coarse 670 

sediment mobilization and transportation rates are controlled by regional climate (Anderson and Konrad, 2019). Climate 

variability is projected to trigger a chain reaction of geomorphic responses, including changes in downstream channel 

properties (East and Sankey, 2020; Wendland, 1996; Harrison et al., 2019; Knight and Harrison, 2012). Other studies focusing 

Formatted: Font color: Text 1

Deleted:  

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1



 

29 

 

on long-term changes rather than flood-inducing events have shown how decadal‐scale changes in river morphology may be 675 

accounted for as a downstream propagating channel reaction to regional climate variability, which is frequently accompanied 

by cyclical changes in channel geometry and conveyance (Scorpio et al., 2015; Slater et al., 2019). The joint contribution of 

physiographic regions (as a proxy for sediment characteristics) and climate properties has also highlighted the nonlinearity of 

system response and the potentially harmful and sequential effects that result from the coupled direct impacts of climate 

conditions and sediment connectivity (Lane et al., 2007). 680 

  

Figure 11: Percentages of gages presenting changes in channel capacity in different (a) physiographic regions and (b) climate types. 

5. Advantages and Limitations of the Framework 

This work is based on gage measurements, and across CONUS there is a known bias of stream size representation 

and spatial density in the gaging network, whereas some river sizes and landscape areas are vastly under- and over-represented 685 

(Kiang et al., 2013). Regarding the coverage of stream gages, the intrinsic limits of the dataset, in general, have been addressed 

in the literature and are very well summarized in the publication by Kiang et al., (2013). Broadly speaking, the Eastern United 

States has better coverage compared to its Western counterpart. Particularly, the arid Southwestern United States shows notably 

lacking spatial coverage. Discrepancies in hydrology contribute to variations in the statistical uncertainty calculated across 

different parts of the country (Kiang et al., 2013). The Central and Southwestern United States, characterized by arid and 690 

semiarid conditions, generally display higher interannual variability in flow, resulting in increased uncertainty in flow sta tistics. 

Despite these distinctions, it's essential to recognize that any research relying on gaging sites faces similar limits and is overall 

affected by potential over or underrepresentation of flows. We believe that as USGS stream gage information could potentially 

be transferred from nearby stream gages if there is sufficient similarity between the gaged watersheds and the ungaged 

watersheds of interest, our model could also be applied to ungaged sites. However, one must always keep in mind that the 695 

successful ‘translation’ to ungaged environments depends on the correlation of the stream gages in the surrounding areas. For 

example, there are areas of CONUS (mostly mountainous) that show highly correlated stream gages (Kiang et al., 2013), 

whereas the Central United States and coastal areas of the Southeastern United States show much uncorrelated gages. 
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Therefore, the goodness of the information transfer might not work as well. Also, transferability would be most likely to be 705 

successful when basin attributes show high similarity and storm properties are within the range of variability of the training 

set used for this work. We do not recommend the use of this model for engineered rivers, where channel changes are expected 

to be limited by infrastructures such as concrete levees, as the model was trained excluding specifically sites featuring artificial 

controls at the gauging station that could impede the natural adjustment of the channel's shape. 

The ML model was trained considering both storm properties and watershed properties. The system is not capable of 710 

highlighting which element triggers the change, nonetheless, we provided an assessment of feature importance to stress that 

the shifts in how the model works, are mostly explained by a combination of storm and watershed properties. We would not 

suggest using the model, as it is trained currently, to predict changes without having information on the storm properties. 

Regarding storm properties, this study uses a published dataset (Shen et al. 2017) of storm events ranging from 2002 to 2013. 

The framework displays the intercorrelation of the different event properties that can affect channel changes, and this 715 

framework could be used for identifying variable gages outside the time range covered by the storm event database. 

Nonetheless, researchers can use the trained model with additional years of data, if they have available the same storm 

properties proposed by Shen et al. for more recent events. 

A further thing to consider refers to the watershed properties considered in the model. The Gage Dataset includes 

several hundred watershed characteristics compiled from national data sources, Actual stream density, as other properties, for 720 

example, could be different from those derived from national data sources, due to time and landscape changes happening in 

the watersheds, The advantage of the considered dataset, however, is that it is available consistently for all gages. Researchers 

could also consider using different methods to define the watershed properties and consider improved geomorphological 

parameters from high-resolution terrain data, derived from LIDAR sources for example (Passalacqua et al., 2015). In this case, 

it would be recommended to re-train the model and verify once again the importance of this parameter in the re-trained model, 725 

as the literature strongly highlights the higher variability of geomorphological and hydrological parameters derived from 

varying resolution terrain (Sofia, 2020b). 

One must note that the permutation feature importance changes with the shuffling of the feature; this process 

introduces randomness to the process (Molnar, 2022), which might not be representative of a physical process. When repeating 

the permutation, the results may vary considerably (Molnar, 2022). To increase robustness and stabilize the measure, we 730 

repeated the permutation and averaged the importance measures over the various reiterations. A further aspect to consider is 

that if the features are correlated, the permutation feature importance may be biased, with unrealistic data examples. The 

randomness added by the permutation might result in an unlikely combination of the parameters. This issue is more evident if 

real-world variables are directly or inversely correlated; by shuffling one of the features, we may be creating new unlikely or 

physically impossible instances. Therefore, as Molnar (2022) suggested, we may be potentially looking into a decrease in the 735 

model performance only due to values that we would never observe in the real world. 

We should point out that channel conveyance change is known to vary spatially across a region and strongly correlates 

with climate variations and landscape properties. The feature permutation randomness for our study case was, however, 
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counteracted by the two main features of SOMs: (1) the topological preservation of the neighborhood, which results in spatial  

clusters of comparable patterns in the output space; and (2) the adaptation property in which the winner neuron and its 740 

neighbors are changed to make the weight vectors more similar to the input. The SOM method can recognize new patterns 

during the training process. Besides that, using multiple attributes, such as combined atmospheric, hydrologic, and 

geomorphologic variables, can improve the pattern generated by the SOM. In our approach, the variable importance did not 

change, considering the various N intervals used to group storm properties. The high correlation between estimated residuals 

and measured ones during the 10-fold validation confirmed the accuracy of the model. 745 

Careful interpretations that explain how and why channel conveyance changes happen as they do are essential to 

guiding reliable predictions of river conveyance behavior and evolution. Another aspect to consider, as for any ML approach, 

is that SOMs are stochastic, as there are no physical constraints in their prediction. The use of randomness as a feature in the 

SOM analysis exerts confidence in the results mainly when the results are agreeable with the theoretical aspect of the variables. 

We suggest referring to (Brierley et al., 2021) for a recent review of ML limitations in geomorphology in general. 750 

6. Conclusions 

The variability of geomorphologic processes and future flood patterns can only be understood by evaluating all the 

critical flood drivers responsible. In this era of flood-inducing events and rapidly changing landscapes, accurate flood hazard 

assessment is paramount. Atmospheric, hydrologic, and geomorphologic parameters constitute both the main driving force 

behind and the detector of changes resulting from a flood-inducing event. This study focused on the impact of flood-inducing 755 

events on flood hazards by exploring the channel changes following them. We utilized the interdependencies of the 

atmospheric, hydrologic, and geomorphologic flood drivers to gain an understanding of the impact of flood-inducing events 

on channel capacity and identified important drivers for predicting residuals from the average stage-discharge curve. 

Our results confirm existing knowledge of watershed hydrology and further strengthen the compound importance of 

climate and geomorphology as drivers of changes in flood hazards. The sequential processes during and after a big flood event  760 

can only be understood by considering the contribution of all the flood drivers together. The results show how the variables of 

different flood drivers are interrelated and can create effects that are more adverse together. Channel conveyance change is 

often regarded as stationary in flood hazard modeling and is acknowledged as one of the most important sources of uncertainty . 

The bankfull discharge and flood occurrences are directly related to channel conveyance capacity. Our research reveals that 

the assumption of channel stationarity may result in either over or under-prediction of the river discharge for a certain flood 765 

stage, as the existing stage-discharge relationship might be temporarily (or permanently if the shift pertains) underperforming. 

This would in turn eventually over/under-estimate flood hazard (recurrence interval, duration, depth, and inundation extent of 

flooding), especially in the case of subsequent floods. These models incorrectly feed flood control planning procedures, which 

raises the level of uncertainty in evacuation and rescue operations. Additionally, flood insurance plans created using these 

models’ results are likewise incorrect.  Furthermore, if engineering designs are based on data collected before periods when 770 
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major flood events have lowered channel conveyance, there is a risk that surveyed channel dimensions and flood conveyance 

will be overestimated in the long run. 775 

The proposed ML model allows us to identify dynamic rivers more prone to changes in the stage-discharge 

relationship after major flood events. The proposed model does not account for the persistence of changes; that being said, the 

results highlight the risk of an abrupt reduction in channel capacity after a large storm. For rivers more prone to changes, 

periodic revision of flood frequency statistics is advisable for hazard assessments to keep pace with altered conditions. 

Understanding the temporal duration of these changes would offer valuable insights into the practicality of implementing these 780 

updates or exploring alternative approaches to assessing flood risk, especially if the process exhibits significant variability 

over time. The model predicts a shift in the discharge at the flood stage (residuals), as a proxy for flood hazard changes, 

implying that a certain discharge, expected to produce floodings, will be reached for lower stages than expected (residual 

shifting from positive to negative, at a specific gage). The approach starts from the concept that, typically, discharge time 

series are derived from water level measurements through an existing stage-discharge relationship. This is the general case for 785 

most gaging sites in the US, as well as other realities in other countries. As rating changes often happen during episodic storms, 

the proposed model can be adapted for other gage datasets, in different parts of the world, by assuming the operational existence 

of a similar approach. 

The gages used in the study although distributed across CONUS have intrinsic limitations in terms of stream size 

representations and spatial coverage of the river network. Therefore, careful considerations should be applied while 790 

considering the model for predicting the impact of flood-inducing storms on abrupt loss of channel capacity outside the basins 

used in our study.  This study considered a limited set of drivers, excluding, for example, human activities in the watersheds 

and vegetation properties. Channel changes can be due to other geographically significant events (e.g. landslides, debris flow, 

etc), however, such occurrences could also be triggered by the storm events that caused the flood hazards. At this stage, we 

have a complete database of storm properties, but we did not include an analysis of additional event parameters such as mass 795 

movements and the volume (if known) of sediment/Debris delivered during such events. Future research could improve the 

method by adding predictors and investigating the sensitivity of median storm characteristics to different intervals (lag times).  

In response to increased flow, we do not anticipate channel conveyance to rise consistently everywhere. The intricate 

interaction of dynamic anthropogenic, climatic factors and their consequential processes within each basin, are expected to be 

evident in the fluvial changes. Hence, sediment connectivity, Land-Use, and Land-Cover Change anthropogenic factors could 800 

also be included to retrain the model to produce changes in the stage-discharge relationship at the flood stage and potentially 

create scope for the prediction of channel changes due to flood-inducing events. 
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• Flood stage values are provided by the US National Weather Service (National Oceanic and Atmospheric 

Administration, 2021). 

• Historical mean daily streamflow records are stored by the US Geological Survey (USGS) and made publicly 810 

available online (U.S. Geological Survey, 2021a). 

• The flood event database used in the study was generated by Shen et al. (2017). 

• Historical field measurements of channel properties are made publicly available online by the USGS (U.S. Geological 

Survey, 2021b). 

References 815 

Ahearn, E. A.: Flood of April 2007 and Flood-Frequency Estimates at Streamflow-Gaging Stations in Western Connecticut: 

U.S. Geological Survey Scientific Investigations Report 2009-5108, 40, 2009. 

Ahrendt, S., Horner-Devine, A. R., Collins, B. D., Morgan, J. A., and Istanbulluoglu, E.: Channel Conveyance Variability can 

Influence Flood Risk as Much as Streamflow Variability in Western Washington State, Water Resour Res, 58, 

e2021WR031890, https://doi.org/10.1029/2021WR031890, 2022. 820 

Alahakoon, D., Halgamuge, S. K., and Srinivasan, B.: Dynamic self-organizing maps with controlled growth for knowledge 

discovery, IEEE Trans Neural Netw, 11, 601–614, https://doi.org/10.1109/72.846732, 2000. 

Alfieri, L., Feyen, L., Dottori, F., and Bianchi, A.: Ensemble flood risk assessment in Europe under high end climate scenarios, 

Global Environmental Change, 35, 199–212, https://doi.org/10.1016/j.gloenvcha.2015.09.004, 2015. 

Anderson, S. W. and Konrad, C. P.: Downstream-Propagating Channel Responses to Decadal-Scale Climate Variability in a 825 

Glaciated River Basin, J Geophys Res Earth Surf, 124, 902–919, https://doi.org/10.1029/2018JF004734, 2019. 

Bação, F., Lobo, V., and Painho, M.: The self-organizing map, the Geo-SOM, and relevant variants for geosciences, Comput 

Geosci, 31, 155–163, https://doi.org/10.1016/j.cageo.2004.06.013, 2005. 

Baker, V. R.: Geomorphological understanding of floods, Geomorphology, 10, 139–156, https://doi.org/10.1016/0169-

555X(94)90013-2, 1994. 830 

Beck, H. E., Zimmermann, N. E., Mcvicar, T. R., Vergopolan, N., Berg, A., and Wood, E. F.: Data Descriptor: Present and 

future Köppen-Geiger climate classification maps at 1-km resolution Background & Summary, 

https://doi.org/10.1038/sdata.2018.214, 2018. 

Benito, G. and Hudson, P. F.: Flood hazards: The context of fluvial geomorphology, Geomorphological Hazards and Disaster 

Prevention, 111–128, https://doi.org/10.1017/CBO9780511807527.010, 2010. 835 

Bergen, K. J., Johnson, P. A., De Hoop, M. V., and Beroza, G. C.: Machine learning for data-driven discovery in solid Earth 

geoscience, Science (1979), 363, https://doi.org/10.1126/SCIENCE.AAU0323/ASSET/E01F2E56-540A-4836-991B-

3D3E7652D547/ASSETS/GRAPHIC/363_AAU0323_F5.JPEG, 2019. 



 

34 

 

Biecek, P., Baniecki, H., and Izdebski, A.: Effects and Importances of Model Ingredients, Journal of Machine Learning 

Research, 19, 2018. 840 

Biecek, P., Gosiewska, A., Baniecki, H., Izdebski, A., and Komosinski, D.: Model Agnostic Instance Level Variable 

Attributions, R Journal, 10, 395–409, https://doi.org/10.32614/RJ-2018-072, 2019. 

Blench, T.: Mobile-bed fluviology: a regime theory treatment of rivers for engineers and hydrologists, Edmonton (Ca.) : 

University of Alberta press, 1969. 

Blöschl, G., Hall, J., Viglione, A., Perdigão, R. A. P., Parajka, J., Merz, B., Lun, D., Arheimer, B., Aronica, G. T., Bilibashi, 845 

A., Boháč, M., Bonacci, O., Borga, M., Čanjevac, I., Castellarin, A., Chirico, G. B., Claps, P., Frolova, N., Ganora, D., 

Gorbachova, L., Gül, A., Hannaford, J., Harrigan, S., Kireeva, M., Kiss, A., Kjeldsen, T. R., Kohnová, S., Koskela, J. J., 

Ledvinka, O., Macdonald, N., Mavrova-Guirguinova, M., Mediero, L., Merz, R., Molnar, P., Montanari, A., Murphy, C., 

Osuch, M., Ovcharuk, V., Radevski, I., Salinas, J. L., Sauquet, E., Šraj, M., Szolgay, J., Volpi, E., Wilson, D., Zaimi, K., and 

Živković, N.: Changing climate both increases and decreases European river floods, Nature 2019 573:7772, 573, 108–111, 850 

https://doi.org/10.1038/s41586-019-1495-6, 2019. 

Boothroyd, R. J., Williams, R. D., Hoey, T. B., Barrett, B., and Prasojo, O. A.: Applications of Google Earth Engine in fluvial 

geomorphology for detecting river channel change, Wiley Interdisciplinary Reviews: Water, 8, e21496, 

https://doi.org/10.1002/WAT2.1496, 2021. 

Borga, M., Gaume, E., Creutin, J. D., and Marchi, L.: Surveying flash floods: gauging the ungauged extremes, Hydrol Process, 855 

22, 3883–3885, https://doi.org/10.1002/HYP.7111, 2008. 

Bormann, H., Pinter, N., and Elfert, S.: Hydrological signatures of flood trends on German rivers: Flood frequencies, flood 

heights and specific stages, J Hydrol (Amst), 404, 50–66, https://doi.org/10.1016/J.JHYDROL.2011.04.019, 2011. 

Bracken, L. J. and Croke, J.: The concept of hydrological connectivity and its contribution to understanding runoff-dominated 

geomorphic systems, Hydrol Process, 21, 1749–1763, https://doi.org/10.1002/hyp.6313, 2007. 860 

Breiman, L.: RANDOM FORESTS, International Journal of Advanced Computer Science and Applications, 7, 1–33, 

https://doi.org/10.14569/ijacsa.2016.070603, 2016. 

Breiman, L.: Random Forests, Mach Learn, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001. 

Brierley, G. J. and Fryirs, K. A.: The Use of Evolutionary Trajectories to Guide ‘Moving Targets’ in the Management of River 

Futures, River Res Appl, 32, 823–835, https://doi.org/10.1002/rra.2930, 2016. 865 

Brierley, G., Fryirs, K., Reid, H., and Williams, R.: The dark art of interpretation in geomorphology, Geomorphology, 390, 

107870, https://doi.org/10.1016/J.GEOMORPH.2021.107870, 2021. 

Brierley, G., Fryirs, K., Reid, H., and Williams, R.: The dark art of interpretation in geomorphology, Geomorphology, 390, 

107870, https://doi.org/10.1016/J.GEOMORPH.2021.107870, 2021. 

Brinkerhoff, C. B., Gleason, C. J., Feng, D., and Lin, P.: Constraining Remote River Discharge Estimation Using Reach-Scale 870 

Geomorphology, Water Resour Res, 56, e2020WR027949, https://doi.org/10.1029/2020WR027949, 2020. 



 

35 

 

Buraas, E. M., Renshaw, C. E., Magilligan, F. J., and Dade, W. B.: Impact of reach geometry on stream channel sensitivity to 

extreme floods, Earth Surf Process Landf, 39, 1778–1789, https://doi.org/10.1002/esp.3562, 2014. 

Ceola, S., Laio, F., and Montanari, A.: Global-scale human pressure evolution imprints on sustainability of river systems, 

Hydrol Earth Syst Sci, 23, 3933–3944, https://doi.org/10.5194/HESS-23-3933-2019, 2019. 875 

Chang, S. E., McDaniels, T. L., Mikawoz, J., and Peterson, K.: Infrastructure failure interdependencies in extreme events: 

power outage consequences in the 1998 Ice Storm, Natural Hazards, 41, 337–358, https://doi.org/10.1007/s11069-006-9039-

4, 2007. 

Chen, S. A., Michaelides, K., Grieve, S. W. D., and Singer, M. B.: Aridity is expressed in river topography globally, Nature, 

573, 573–577, https://doi.org/10.1038/s41586-019-1558-8, 2019. 880 

Cleveland, W. S.: Robust locally weighted regression and smoothing scatterplots, J Am Stat Assoc, 74, 829–836, 

https://doi.org/10.1080/01621459.1979.10481038, 1979. 

Clubb, F. J., Mudd, S. M., Attal, M., Milodowski, D. T., and Grieve, S. W. D.: The relationship between drainage density, 

erosion rate, and hilltop curvature: Implications for sediment transport processes, J Geophys Res Earth Surf, 121, 1724–1745, 

https://doi.org/10.1002/2015JF003747, 2016. 885 

Costa, J. A. and Netto, M. L.: Estimating the number of clusters in multivariate data by self-organizing maps, Int J Neural 

Syst, 9, 195–202, https://doi.org/10.1142/S0129065799000186, 1999. 

Criss, R. E. and Shock, E. L.: Flood enhancement through flood control, Geology, 29, 875, https://doi.org/10.1130/0091-

7613(2001)029<0875:FETFC>2.0.CO;2, 2001. 

Croke, J., Fryirs, K., and Thompson, C.: Channel-floodplain connectivity during an extreme flood event: implications for 890 

sediment erosion, deposition, and delivery, Earth Surf Process Landf, 38, n/a-n/a, https://doi.org/10.1002/esp.3430, 2013. 

Cunderlik, J. M. and Burn, D. H.: Non-stationary pooled flood frequency analysis, J Hydrol (Amst), 276, 210–223, 

https://doi.org/10.1016/S0022-1694(03)00062-3, 2003. 

Death, R. G., Fuller, I. C., and Macklin, M. G.: Resetting the river template: the potential for climate-related extreme floods 

to transform river geomorphology and ecology, Freshw Biol, 60, 2477–2496, https://doi.org/10.1111/fwb.12639, 2015. 895 

Desta, F., Colbert, J. J., Rentch, J. S., and Gottschalk, K. W.: Aspect induced differences in vegetation, soil, and microclimatic 

characteristics of an Appalachian watershed | Treesearch, Scientific Journal (JRNL) CASTANEA. 69(2): 92-108., 2004. 

Dottori, F., Alfieri, L., Bianchi, A., Skoien, J., and Salamon, P.: A new dataset of river flood hazard maps for Europe and the 

Mediterranean Basin, Earth Syst Sci Data, 14, 1549–1569, https://doi.org/10.5194/essd-14-1549-2022, 2022. 

Dottori, F., Szewczyk, W., Ciscar, J. C., Zhao, F., Alfieri, L., Hirabayashi, Y., Bianchi, A., Mongelli, I., Frieler, K., Betts, R. 900 

A., and Feyen, L.: Increased human and economic losses from river flooding with anthropogenic warming, 

https://doi.org/10.1038/s41558-018-0257-z, 1 September 2018. 

Dresp, B., Wandeto, J. M., and Nyongesa, H. O.: Données image et décision: détection automatique de variations dans des 

séries temporelles par réseau de Kohonen-- Using the quantization error from Self‐Organizing Map (SOM) output for fast 

detection of critical variations in image time series, Des données à la décision-From data to decisions , 2, 2018. 905 



 

36 

 

East, A. E. and Sankey, J. B.: Geomorphic and Sedimentary Effects of Modern Climate Change: Current and Anticipated 

Future Conditions in the Western United States, Reviews of Geophysics, 58, https://doi.org/10.1029/2019RG000692, 2020. 

Falcone, J.: GAGES-II: Geospatial Attributes of Gages for Evaluating Streamflow: 

https://water.usgs.gov/GIS/metadata/usgswrd/XML/gagesII_Sept2011.xml, last access: 7 February 2022. 

FEMA: Reducing Flood Effects in Critical Facilities, HSFE60-13-, 1–11, 2013. 910 

Feng, B., Zhang, Y., and Bourke, R.: Urbanization impacts on flood risks based on urban growth data and coupled flood 

models, Natural Hazards, 106, 613–627, https://doi.org/10.1007/S11069-020-04480-0/TABLES/3, 2021. 

Fenneman, N. M., & Johnson, D. W.: Physiographic divisions of the conterminous U. S., U.S. Geological Survey. 

https://water.usgs.gov/lookup/getspatial?physio, 1946. 

Fisher, A., Rudin, C., and Dominici, F.: All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by 915 

Studying an Entire Class of Prediction Models Simultaneously, Journal of Machine Learning Research, 20, 2018. 

Fryirs, K. and Brierley, G.: Assemblages of geomorphic units: A building block approach to analysis and interpretation of 

river character, behaviour, condition and recovery, Earth Surf Process Landf, 47, 92–108, https://doi.org/10.1002/ESP.5264, 

2022. 

Geem, Z. W., Tseng, C. L., Kim, J., and Bae, C.: Trenchless Water Pipe Condition Assessment Using Artificial Neural 920 

Network, Pipelines 2007: Advances and Experiences with Trenchless Pipeline Projects - Proceedings of the ASCE 

International Conference on Pipeline Engineering and Construction, 1–9, https://doi.org/10.1061/40934(252)26, 2007. 

Granato, G. E.: Estimating Basin Lagtime and Hydrograph-Timing Indexes Used to Characterize Stormflows for Runoff-

Quality Analysis Scientific Investigations Report 2012-5110,  Prepared in cooperation with the Department of Transportation 

Federal Highway Administration Office of Project Development and Environmental Review, 2012. 925 

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., 

Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., Nilsson, 

C., Olden, J. D., Opperman, J. J., Petry, P., Reidy Liermann, C., Sáenz, L., Salinas-Rodríguez, S., Schelle, P., Schmitt, R. J. 

P., Snider, J., Tan, F., Tockner, K., Valdujo, P. H., van Soesbergen, A., and Zarfl, C.: Mapping the world’s free-flowing rivers, 

Nature, 569, 215–221, https://doi.org/10.1038/s41586-019-1111-9, 2019. 930 

GrowingSOM package | R Documentation: https://www.rdocumentation.org/packages/GrowingSOM/versions/0.1.1, last 

access: 12 July 2020. 

Guillon, H., Byrne, C. F., Lane, B. A., Sandoval Solis, S., and Pasternack, G. B.: Machine Learning Predicts Reach-Scale 

Channel Types From Coarse-Scale Geospatial Data in a Large River Basin, Water Resour Res, 56, e2019WR026691, 

https://doi.org/10.1029/2019WR026691, 2020. 935 

Gupta, V. K. and Dawdy, D. R.: Physical interpretations of regional variations in the scaling exponents of flood quantiles, 

Hydrol Process, 9, 347–361, https://doi.org/10.1002/hyp.3360090309, 1995. 



 

37 

 

Harrison, S., Mighall, T., Stainforth, D. A., Allen, P., Macklin, M., Anderson, E., Knight, J., Mauquoy, D., Passmore, D., Rea, 

B., Spagnolo, M., and Shannon, S.: Uncertainty in geomorphological responses to climate change, Clim Change, 156, 69–86, 

https://doi.org/10.1007/S10584-019-02520-8/FIGURES/7, 2019. 940 

Hassan, M. A., Egozi, R., and Parker, G.: Experiments on the effect of hydrograph characteristics on vertical grain sorting in 

gravel bed rivers, Water Resour Res, 42, 9408, https://doi.org/10.1029/2005WR004707, 2006. 

Hattermann, F. F., Huang, S., Burghoff, O., Willems, W., Österle, H., Büchner, M., and Kundzewicz, Z.: Modelling flood 

damages under climate change conditions-a case study for Germany, Natural Hazards and Earth System Sciences, 14, 3151–

3169, https://doi.org/10.5194/nhess-14-3151-2014, 2014. 945 

Houser, C., Lehner, J., and Smith, A.: The Field Geomorphologist in a Time of Artificial Intelligence and Machine Learning, 

https://doi.org/10.1080/24694452.2021.1985956, 112, 1260–1277, https://doi.org/10.1080/24694452.2021.1985956, 2022. 

Hurvich, C. M., Simonoff, J. S., and Tsai, C.-L.: Smoothing parameter selection in nonparametric regression using an improved 

Akaike information criterion, J R Stat Soc Series B Stat Methodol, 60, 271–293, https://doi.org/10.1111/1467-9868.00125, 

1998. 950 

Kalantari, Z., Ferreira, C. S. S., Koutsouris, A. J., Ahmer, A. K., Cerdà, A., and Destouni, G.: Assessing flood probability for 

transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture, 

Science of the Total Environment, 661, 393–406, https://doi.org/10.1016/j.scitotenv.2019.01.009, 2019. 

Karagiannis, G. M., Chondrogiannis, S., Krausmann, E., and Turksezer, Z. I.: Power grid recovery after natural hazard impact, 

https://doi.org/10.2760/87402, 2017. 955 

Karpatne, A., Ebert-Uphoff, I., Ravela, S., Babaie, H. A., and Kumar, V.: Machine Learning for the Geosciences: Challenges 

and Opportunities, IEEE Trans Knowl Data Eng, 31, 1544–1554, https://doi.org/10.1109/TKDE.2018.2861006, 2019. 

Khanam, M., Sofia, G., Koukoula, M., Lazin, R., Nikolopoulos, E. I., Shen, X., and Anagnostou, E. N.: Impact of compound 

flood event on coastal critical infrastructures considering current and future climate, Natural Hazards and Earth System 

Sciences, 21, https://doi.org/10.5194/nhess-21-587-2021, 2021. 960 

Kiang, J. E., Stewart, D. W., Archfield, S. A., Osborne, E. B., Eng, K., and Survey, U. S. G.: A national streamflow network 

gap analysis, Scientific Investigations Report, Reston, VA, https://doi.org/10.3133/sir20135013, 2013. 

Knight, J. and Harrison, S.: Evaluating the Impacts of Global Warming on Geomorphological Systems, Ambio, 41, 206, 

https://doi.org/10.1007/S13280-011-0178-9, 2012. 

Kohonen, T.: Self-organized formation of topologically correct feature maps, Biological Cybernetics 1982 43:1, 43, 59–69, 965 

https://doi.org/10.1007/BF00337288, 1982. 

Kohonen, T.: Self-Organizing Maps, Springer Series in Information Sciences, Vol. 30, Third Extended Edition, 501 pp, n.d. 

Lane, S. N., Tayefi, V., Reid, S. C., Yu, D., and Hardy, R. J.: Interactions between sediment delivery, channel change, climate 

change and flood risk in a temperate upland environment, Earth Surf Process Landf, 32, 429–446, 

https://doi.org/10.1002/esp.1404, 2007. 970 



 

38 

 

Li, Y., Wright, D. B., and Byrne, P. K.: The Influence of Tropical Cyclones on the Evolution of River Conveyance Capacity 

in Puerto Rico, Water Resour Res, 56, https://doi.org/10.1029/2020WR027971, 2020. 

Lisenby, P. E. and Fryirs, K. A.: Catchment- and reach-scale controls on the distribution and expectation of geomorphic 

channel adjustment, Water Resour Res, 52, 3408–3427, https://doi.org/10.1002/2015WR017747, 2016. 

Lisenby, P. E., Croke, J., and Fryirs, K. A.: Geomorphic effectiveness: a linear concept in a non-linear world, Earth Surf 975 

Process Landf, 43, 4–20, https://doi.org/10.1002/esp.4096, 2018. 

Luo, W., Jasiewicz, J., Stepinski, T., Wang, J., Xu, C., and Cang, X.: Spatial association between dissection density and 

environmental factors over the entire conterminous United States, Geophys Res Lett, 43, 692–700, 

https://doi.org/10.1002/2015GL066941, 2016. 

Mallakpour, I. and Villarini, G.: The changing nature of flooding across the central United States, Nat Clim Chang, 5, 250–980 

254, https://doi.org/10.1038/nclimate2516, 2015. 

Mazzoleni, M., Dottori, F., Cloke, H. L., and Di Baldassarre, G.: Deciphering human influence on annual maximum flood 

extent at the global level, Commun Earth Environ, 3, https://doi.org/10.1038/s43247-022-00598-0, 2022. 

McEvoy, D., Ahmed, I., and Mullett, J.: The impact of the 2009 heat wave on Melbourne’s critical infrastructure, Local 

Environ, 17, 783–796, https://doi.org/10.1080/13549839.2012.678320, 2012. 985 

Merz, B., Vorogushyn, S., Uhlemann, S., Delgado, J., and Hundecha, Y.: HESS Opinions &amp;quot;More efforts and 

scientific rigour are needed to attribute trends in flood time series&amp;quot;, Hydrol Earth Syst Sci, 16, 1379–1387, 

https://doi.org/10.5194/hess-16-1379-2012, 2012. 

Milly, P. C. D., Wetherald, R. T., Dunne, K. A., and Delworth, T. L.: Increasing risk of great floods in a changing climate, 

Nature, 415, 514–517, https://doi.org/10.1038/415514a, 2002. 990 

Model Interpretability with DALEX · UC Business Analytics R Programming Guide: https://uc-r.github.io/dalex, last access: 

29 May 2023. 

Moglen, G. E., Eltahir, E. A. B., and Bras, R. L.: On the sensitivity of drainage density to climate change, 1998. 

Molnar, C. and Schratz, P.: Interpretable Machine Learning, Annals of Applied Statistics, 2, 916–954, 

https://doi.org/10.1214/07-AOAS148, 2008. 995 

Molnar, C.: Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, 2nd ed., 2022. 

Mostofi Zadeh, S., Burn, D. H., and O’Brien, N.: Detection of trends in flood magnitude and frequency in Canada, J Hydrol 

Reg Stud, 28, 100673, https://doi.org/10.1016/j.ejrh.2020.100673, 2020. 

Munoz, S. E., Giosan, L., Therrell, M. D., Remo, J. W. F., Shen, Z., Sullivan, R. M., Wiman, C., O’Donnell, M., and Donnelly, 

J. P.: Climatic control of Mississippi River flood hazard amplified by river engineering, Nature, 556, 95–98, 1000 

https://doi.org/10.1038/nature26145, 2018. 

Naylor, L. A., Spencer, T., Lane, S. N., Darby, S. E., Magilligan, F. J., Macklin, M. G., and Möller, I.: State of Science Stormy 

geomorphology: geomorphic contributions in an age of climate extremes, https://doi.org/10.1002/esp.4062, 2016. 



 

39 

 

Neuhold, C., Stanzel, P., and Nachtnebel, H. P.: Incorporating river morphological changes to flood risk assessment: 

Uncertainties, methodology and application, Natural Hazards and Earth System Science, 9, 789–799, 1005 

https://doi.org/10.5194/nhess-9-789-2009, 2009. 

Pacheco, F. S., Miranda, M., Pezzi, L. P., Assireu, A., Marinho, M. M., Malafaia, M., Reis, A., Sales, M., Correia, G., 

Domingos, P., Iwama, A., Rudorff, C., Oliva, P., and Ometto, J. P.: Water quality longitudinal profile of the Paraíba do Sul 

River, Brazil during an extreme drought event, Limnol Oceanogr, 62, S131–S146, https://doi.org/10.1002/LNO.10586, 2017. 

Passalacqua, P., Belmont, P., Staley, D. M., Simley, J. D., Arrowsmith, J. R., Bode, C. A., Crosby, C., DeLong, S. B., Glenn, 1010 

N. F., Kelly, S. A., Lague, D., Sangireddy, H., Schaffrath, K., Tarboton, D. G., Wasklewicz, T., and Wheaton, J. M.: Analyzing 

high resolution topography for advancing the understanding of mass and energy transfer through landscapes: A review, Earth 

Sci Rev, 148, 174–193, https://doi.org/10.1016/J.EARSCIREV.2015.05.012, 2015. 

Pfeiffer, A. M., Collins, B. D., Anderson, S. W., Montgomery, D. R., and Istanbulluoglu, E.: River Bed Elevation Variability 

Reflects Sediment Supply, Rather Than Peak Flows, in the Uplands of Washington State, Water Resour Res, 55, 6795–6810, 1015 

https://doi.org/10.1029/2019WR025394, 2019. 

Phillips, J. D.: Geomorphic impacts of flash flooding in a forested headwater basin, J Hydrol (Amst), 269, 236–250, 

https://doi.org/10.1016/S0022-1694(02)00280-9, 2002. 

Pinter, N., Ickes, B. S., Wlosinski, J. H., and van der Ploeg, R. R.: Trends in flood stages: Contrasting results from the 

Mississippi and Rhine River systems, J Hydrol (Amst), 331, 554–566, https://doi.org/10.1016/J.JHYDROL.2006.06.013, 1020 

2006b. 

Pinter, N., Jemberie, A. A., Remo, J. W. F., Heine, R. A., and Ickes, B. S.: Flood trends and river engineering on the Mississippi 

River system, Geophys. Res. Lett, 35, 23404, https://doi.org/10.1029/2008GL035987, 2008. 

Pinter, N., Thomas, R., and Wlosinski, J. H.: Assessing flood hazard on dynamic rivers, Eos, Transactions American 

Geophysical Union, 82, 333–333, https://doi.org/10.1029/01EO00199, 2001. 1025 

Pinter, N., Van der Ploeg, R. R., Schweigert, P., and Hoefer, G.: Flood magnification on the River Rhine, Hydrol Process, 20, 

147–164, https://doi.org/10.1002/hyp.5908, 2006a. 

Rabanaque, M. P., Martínez-Fernández, V., Calle, M., and Benito, G.: Basin-wide hydromorphological analysis of ephemeral 

streams using machine learning algorithms‡, Earth Surf Process Landf, 47, 328–344, https://doi.org/10.1002/ESP.5250, 2022. 

Rahmati, O., Darabi, H., Haghighi, A. T., Stefanidis, S., Kornejady, A., Nalivan, O. A., and Bui, D. T.: Urban flood hazard 1030 

modeling using self-organizing map neural network, Water (Switzerland), 11, https://doi.org/10.3390/w11112370, 2019. 

Rathburn, S. L., Bennett, G. L., Wohl, E. E., Briles, C., McElroy, B., and Sutfin, N.: The fate of sediment, wood, and organic 

carbon eroded during an extreme flood, Colorado Front Range, USA, Geology, 45, 499–502, 

https://doi.org/10.1130/G38935.1, 2017. 

Reis, A. H.: Constructal view of scaling laws of river basins, Geomorphology, 78, 201–206, 1035 

https://doi.org/10.1016/j.geomorph.2006.01.015, 2006. 



 

40 

 

Riese, F. M. and Keller, S.: Introducing a framework of self-organizing maps for regression of soil moisture with hyperspectral 

data, International Geoscience and Remote Sensing Symposium (IGARSS), 2018-July, 6151–6154, 

https://doi.org/10.1109/IGARSS.2018.8517812, 2018. 

Riese, F. M. and Keller, S.: SuSi: Supervised Self-Organizing Maps for Regression and Classification in Python, Remote 1040 

Sensing 2020, Vol. 12, Page 7, 12, 7, 2019. 

Rinaldi, M., Amponsah, W., Benvenuti, M., Borga, M., Comiti, F., Lucía, A., Marchi, L., Nardi, L., Righini, M., and Surian, 

N.: An integrated approach for investigating geomorphic response to extreme events: methodological framework and 

application to the October 2011 flood in the Magra River catchment, Italy, Earth Surf Process Landf, 41, 835–846, 

https://doi.org/10.1002/esp.3902, 2016. 1045 

Ruiz-Villanueva, V., Badoux, A., Rickenmann, D., Böckli, M., Schläfli, S., Steeb, N., Stoffel, M., and Rickli, C.: Impacts of 

a large flood along a mountain river basin: The importance of channel widening and estimating the large wood budget in the 

upper Emme River (Switzerland), Earth Surface Dynamics, 6, 1115–1137, https://doi.org/10.5194/esurf-6-1115-2018, 2018. 

Saco, P. M. and Kumar, P.: Kinematic dispersion in stream networks 1. Coupling hydraulic and network geometry, Water 

Resour Res, 38, 26–1, https://doi.org/10.1029/2001WR000695, 2002. 1050 

Saghafian, B.: Time of Concentration and Travel Time in Watersheds, Water Encyclopedia, 469–472, 

https://doi.org/10.1002/047147844X.SW1033, 2005. 

Saharia, M., Kirstetter, P. E., Vergara, H., Gourley, J. J., Hong, Y., and Giroud, M.: Mapping Flash Flood Severity in the 

United States, J Hydrometeorol, 18, 397–411, https://doi.org/10.1175/JHM-D-16-0082.1, 2017. 

Sarker, I. H.: Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions, 1055 

SN Comput Sci, 2, 1–20, https://doi.org/10.1007/S42979-021-00815-1/FIGURES/6, 2021. 

Schlef, K. E., Moradkhani, H., and Lall, U.: Atmospheric Circulation Patterns Associated with Extreme United States Floods 

Identified via Machine Learning, Sci Rep, 9, 7171, https://doi.org/10.1038/s41598-019-43496-w, 2019. 

Scorpio, V., Crema, S., Marra, F., Righini, M., Ciccarese, G., Borga, M., Cavalli, M., Corsini, A., Marchi, L., Surian, N., and 

Comiti, F.: Basin-scale analysis of the geomorphic effectiveness of flash floods: A study in the northern Apennines (Italy), 1060 

Science of The Total Environment, 640–641, 337–351, https://doi.org/10.1016/j.scitotenv.2018.05.252, 2018. 

Seo, Y. and Schmidt, A. R.: The effect of rainstorm movement on urban drainage network runoff hydrographs, Hydrol Process, 

26, 3830–3841, https://doi.org/10.1002/HYP.8412, 2012. 

Seo, Y., Hwang, J., and Noh, S. J.: Analysis of Urban Drainage Networks Using Gibbs’ Model:  A Case Study in Seoul, South 

Korea, Water 2015, Vol. 7, Pages 4129-4143, 7, 4129–4143, https://doi.org/10.3390/W7084129, 2015. 1065 

Shen, X., Mei, Y., and Anagnostou, E. N.: A comprehensive database of flood events in the contiguous United States from 

2002 to 2013, Bull Am Meteorol Soc, 98, 1493–1502, https://doi.org/10.1175/BAMS-D-16-0125.1, 2017. 

Slater, L. J. and Villarini, G.: Recent trends in U.S. flood risk, Geophys Res Lett, 43, 12,428-12,436, 

https://doi.org/10.1002/2016GL071199, 2016. 



 

41 

 

Slater, L. J., Khouakhi, A., and Wilby, R. L.: River channel conveyance capacity adjusts to modes of climate variability, Sci 1070 

Rep, 9, 1–10, https://doi.org/10.1038/s41598-019-48782-1, 2019. 

Slater, L. J., Singer, M. B., and Kirchner, J. W.: Hydrologic versus geomorphic drivers of trends in flood hazard, Geophys Res 

Lett, 42, 370–376, https://doi.org/10.1002/2014GL062482, 2015. 

Slater, L. J., Singer, M. B., and Kirchner, J. W.: Supporting Information for Hydrologic versus geomorphic drivers of trends 

in flood hazard, Geophysical Research Letters, 2015a. 1075 

Slater, L. J.: To what extent have changes in channel capacity contributed to flood hazard trends in England and Wales?, Earth 

Surf Process Landf, 41, 1115–1128, https://doi.org/10.1002/esp.3927, 2016. 

Smith, J. A., Baeck, M. L., Meierdiercks, K. L., Nelson, P. A., Miller, A. J., and Holland, E. J.: Field studies of the storm event 

hydrologic response in an urbanizing watershed, Water Resour Res, 41, https://doi.org/10.1029/2004WR003712, 2005. 

Smith, J. A., Baeck, M. L., Morrison, J. E., Sturdevant-Rees, P., Turner-Gillespie, D. F., and Bates, P. D.: The regional 1080 

hydrology of extreme floods in an urbanizing drainage basin, J Hydrometeorol, 3, 267–282, https://doi.org/10.1175/1525-

7541(2002)003<0267:TRHOEF>2.0.CO;2, 2002. 

Smith, M. B., Koren, V. I., Zhang, Z., Reed, S. M., Pan, J. J., and Moreda, F.: Runoff response to spatial variability in 

precipitation: An analysis of observed data, J Hydrol (Amst), 298, 267–286, https://doi.org/10.1016/j.jhydrol.2004.03.039, 

2004. 1085 

Sofia, G. and Nikolopoulos, E. I.: Floods and rivers: a circular causality perspective, Sci Rep, 10, 

https://doi.org/10.1038/s41598-020-61533-x, 2020a. 

Sofia, G. and Nikolopoulos, E. I.: Floods and rivers: a circular causality perspective, Sci Rep, 10, 

https://doi.org/10.1038/s41598-020-61533-x, 2020b. 

Sofia, G., Nikolopoulos, E., and Slater, L.: It’s Time to Revise Estimates of River Flood Hazards, Eos (Washington DC), 101, 1090 

https://doi.org/10.1029/2020EO141499, 2020. 

Sofia, G.: Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward, 

Geomorphology, 355, 107055, https://doi.org/10.1016/J.GEOMORPH.2020.107055, 2020a. 

Sofia, G.: Combining geomorphometry, feature extraction techniques and Earth-surface processes research: The way forward, 

Geomorphology, 355, 107055, https://doi.org/10.1016/J.GEOMORPH.2020.107055, 2020b. 1095 

Stark, C. P., Barbour, J. R., Hayakawa, Y. S., Hattanji, T., Hovius, N., Chen, H., Lin, C. W., Horng, M. J., Xu, K. Q., and 

Fukahata, Y.: The climatic signature of incised river meanders, Science (1979), 327, 1497–1501, 

https://doi.org/10.1126/science.1184406, 2010. 

Stefanovič, P. and Kurasova, O.: Visual analysis of self-organizing maps, Nonlinear Analysis: Modelling and Control, 16, 

488–504, https://doi.org/10.15388/na.16.4.14091, 2011. 1100 

Stephens, T. A. and Bledsoe, B. P.: Flood Protection Reliability: The Impact of Uncertainty and Nonstationarity, Water Resour 

Res, 59, e2021WR031921, https://doi.org/10.1029/2021WR031921, 2023. 



 

42 

 

Stephens, T. A. and Bledsoe, B. P.: Probabilistic mapping of flood hazards: Depicting uncertainty in streamflow, land use, and 

geomorphic adjustment, Anthropocene, 29, 100231, https://doi.org/10.1016/J.ANCENE.2019.100231, 2020. 

Stott, T.: Review of research in fluvial geomorphology 2010–2011:, http://dx.doi.org/10.1177/0309133313477124, 37, 248–1105 

258, https://doi.org/10.1177/0309133313477124, 2013. 

Stover, S. C. and Montgomery, D. R.: Channel change and flooding, Skokomish River, Washington, J Hydrol (Amst), 243, 

272–286, https://doi.org/10.1016/S0022-1694(00)00421-2, 2001. 

Surian, N., Righini, M., Lucía, A., Nardi, L., Amponsah, W., Benvenuti, M., Borga, M., Cavalli, M., Comiti, F., Marchi, L., 

Rinaldi, M., and Viero, A.: Channel response to extreme floods: Insights on controlling factors from six mountain rivers in 1110 

northern Apennines, Italy, Geomorphology, 272, 78–91, https://doi.org/10.1016/j.geomorph.2016.02.002, 2016. 

Swenson, L. M. and Grotjahn, R.: Using Self-Organizing Maps to Identify Coherent CONUS Precipitation Regions, J Clim, 

32, 7747–7761, https://doi.org/10.1175/JCLI-D-19-0352.1, 2019. 

Székely, G. J., Rizzo, M. L., and Bakirov, N. K.: MEASURING AND TESTING DEPENDENCE BY CORRELATION OF 

DISTANCES, The Annals of Statistics, 35, 2769–2794, https://doi.org/10.1214/009053607000000505, 2007. 1115 

Tate, E.: Déjà Vu All Over Again: Trends in Flood Drivers Point to Continuing Vulnerability, Environment: Science and 

Policy for Sustainable Development, 61, 50–55, https://doi.org/10.1080/00139157.2019.1637688, 2019. 

Torres-Matallana, J. A.: Spatial Watershed Aggregation and Spatial Drainage Network Analysis, 2016. 

Tweel, A. W. and Turner, R. E.: Contribution of tropical cyclones to the sediment budget for coastal wetlands in Louisiana, 

USA, Landsc Ecol, 29, 1083–1094, https://doi.org/10.1007/s10980-014-0047-6, 2014. 1120 

Ultsch, A. and Lötsch, J.: Machine-learned cluster identification in high-dimensional data, J Biomed Inform, 66, 95–104, 

https://doi.org/10.1016/j.jbi.2016.12.011, 2017. 

Valentine, A. and Kalnins, L.: An introduction to learning algorithms and potential applications in geomorphometry and Earth 

surface dynamics, Earth Surface Dynamics, 4, 445–460, https://doi.org/10.5194/esurf-4-445-2016, 2016. 

Vesanto, J. and Alhoniemi, E.: Clustering of the self-organizing map, IEEE Trans Neural Netw, 11, 586–600, 1125 

https://doi.org/10.1109/72.846731, 2000. 

Villarini, G. and Smith, J. A.: Flood peak distributions for the eastern United States, Water Resour Res, 46, 6504, 

https://doi.org/10.1029/2009WR008395, 2010. 

Vincent, L., Vincent, L., and Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion 

Simulations, IEEE Trans Pattern Anal Mach Intell, 13, 583–598, https://doi.org/10.1109/34.87344, 1991. 1130 

Wandeto, J. M. and Dresp-Langley, B.: Reprint of: The quantization error in a Self-Organizing Map as a contrast and colour 

specific indicator of single-pixel change in large random patterns, Neural Networks, 120, 116–128, 

https://doi.org/10.1016/j.neunet.2019.09.017, 2019. 

Wang, H., Chen, X., Moss, R. H., Stanley, R. J., Stoecker, W. V., Celebi, M. E., Szalapski, T. M., Malters, J. M., Grichnik, J. 

M., Marghoob, A. A., Rabinovitz, H. S., and Menzies, S. W.: Watershed segmentation of dermoscopy images using a 1135 

watershed technique, Skin Res Technol, 16, 378, https://doi.org/10.1111/J.1600-0846.2010.00445.X, 2010. 



 

43 

 

Wehrens, M. R.: Package ‘ kohonen ,’ 2019. 

Wehrens, R. and Buydens, L. M. C.: Self- and Super-organizing Maps in R: The kohonen Package, Journal of Statistical 

Software; Vol 1, Issue 5 (2007) , 2007. 

Wehrens, R. and Kruisselbrink, J.: Flexible Self-Organizing Maps in kohonen 3.0, Journal of Statistical Software; Vol 1, Issue 1140 

7 (2018) , 2018. 

Wei, P., Lu, Z., and Song, J.: Variable importance analysis: A comprehensive review, Reliab Eng Syst Saf, 142, 399–432, 

https://doi.org/10.1016/j.ress.2015.05.018, 2015. 

Wendland, W. M.: Climate changes: impacts on geomorphic processes, Eng Geol, 45, 347–358, 

https://doi.org/10.1016/S0013-7952(96)00021-X, 1996. 1145 

Wicherski, W., Dethier, D. P., and Ouimet, W. B.: Erosion and channel changes due to extreme flooding in the Fourmile Creek 

catchment, Colorado, Geomorphology, 294, 87–98, https://doi.org/10.1016/j.geomorph.2017.03.030, 2017. 

Wohl, E., Brierley, G., Cadol, D., Coulthard, T. J., Covino, T., Fryirs, K. A., Grant, G., Hilton, R. G., Lane, S. N., Magilligan, 

F. J., Meitzen, K. M., Passalacqua, P., Poeppl, R. E., Rathburn, S. L., and Sklar, L. S.: Connectivity as an emergent property 

of geomorphic systems, Earth Surf Process Landf, 44, 4–26, https://doi.org/10.1002/esp.4434, 2019. 1150 

Wohl, E.: Forgotten Legacies: Understanding and Mitigating Historical Human Alterations of River Corridors, Water Resour 

Res, 55, 5181–5201, https://doi.org/10.1029/2018WR024433, 2019. 

Woodget, A. S., Dietrich, J. T., and Wilson, R. T.: Quantifying Below-Water Fluvial Geomorphic Change: The Implications 

of Refraction Correction, Water Surface Elevations, and Spatially Variable Error, Remote Sensing 2019, Vol. 11, Page 2415, 

11, 2415, https://doi.org/10.3390/RS11202415, 2019. 1155 

Woods, R. and Sivapalan, M.: A synthesis of space-time variability in storm response: Rainfall, runoff generation, and routing, 

Water Resour Res, 35, 2469–2485, https://doi.org/10.1029/1999WR900014, 1999. 

Woods, R.: Rain • Distributed • Hillslope • Channel _• Q ( t ), 35, 2469–2485, 1999. 

Wu, Q., Ke, L., Wang, J., Pavelsky, T. M., Allen, G. H., Sheng, Y., Duan, X., Zhu, Y., Wu, J., Wang, L., Liu, K., Chen, T., 

Zhang, W., Fan, C., Yong, B., and Song, C.: Satellites reveal hotspots of global river extent change, Nature Communications 1160 

2023 14:1, 14, 1–13, https://doi.org/10.1038/s41467-023-37061-3, 2023. 

Wu, Y. and Li, Q.: The Algorithm of Watershed Color Image Segmentation Based on Morphological Gradient, Sensors 

(Basel), 22, https://doi.org/10.3390/S22218202, 2022. 

Zanchetta, A. D. L. and Coulibaly, P.: Hybrid Surrogate Model for Timely Prediction of Flash Flood Inundation Maps Caused 

by Rapid River Overflow, Forecasting 2022, Vol. 4, Pages 126-148, 4, 126–148, https://doi.org/10.3390/FORECAST4010007, 1165 

2022. 

Zhang, S., Guo, Y., and Wang, Z.: Correlation between flood frequency and geomorphologic complexity of rivers network – 

A case study of Hangzhou China, J Hydrol (Amst), 527, 113–118, https://doi.org/10.1016/J.JHYDROL.2015.04.060, 2015. 

Zhang, Y., Smith, J. A., and Baeck, M. L.: The hydrology and hydrometeorology of extreme floods in the Great Plains of 

Eastern Nebraska, Adv Water Resour, 24, 1037–1049, https://doi.org/10.1016/S0309-1708(01)00037-9, 2001. 1170 



 

44 

 

Ziervogel, G., New, M., Archer van Garderen, E., Midgley, G., Taylor, A., Hamann, R., Stuart-Hill, S., Myers, J., and 

Warburton, M.: Climate change impacts and adaptation in South Africa, Wiley Interdiscip Rev Clim Change, 5, 605–620, 

https://doi.org/10.1002/wcc.295, 2014. 

Zischg, A. P., Hofer, P., Mosimann, M., Röthlisberger, V., Ramirez, J. A., Keiler, M., and Weingartner, R.: Flood risk 

(d)evolution: Disentangling key drivers of flood risk change with a retro-model experiment, Science of the Total Environment, 1175 

639, 195–207, https://doi.org/10.1016/j.scitotenv.2018.05.056, 2018. 

Appendix A 

 



 

45 

 

 



 

46 

 

 1180 



 

47 

 

 



 

48 

 

 



 

49 

 

 



 

50 

 

 



 

51 

 

 1185 



 

52 

 

 



 

53 

 

 



 

54 

 

 



 

55 

 

 

 1190 

Figure A1: Gages with clustering identification assigned by SOM unsupervised clustering (a-l). For the acronym description of 

Physiographic regions and climate types please refer to Table A1 and A2. 

Table A1: Description of climate types from Köppen-Geiger climate classification (Beck et al., 2018) used in Figure A1  

 

Climate types Description 

Af    Tropical rainforest 

Am    Tropical monsoon 

Aw    Tropical Savanna (Wet and Dry Climate) 

BWh    Hot desert climate 

BWk    Cold desert climate 

BSh    Hot semi-arid climate 

BSk    Cold semi-arid climate 

Csa    Hot-summer mediterranean climate 

Csb    Warm-summer mediterranean climate 

Csc    Temperate dry summer  cold summer 

Cwa    Warm oceanic climate / humid subtropical climate 
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Cwb    Subtropical highland climate or temperate oceanic climate with dry winters 

Cwc    Cold subtropical highland/Subpolar Oceanic 

Cfa    Humid subtropical climate 

Cfb    Temperate oceanic climate 

Cfc    Subpolar oceanic climate 

Dsa Humid continental climate - dry warm summer 

Dsb    Humid continental climate - dry cool summer 

Dsc    Continental subarctic - cold dry summer 

Dsd    Continental subarctic – dry summer very cold winter 

Dwa    Humid continental hot summers dry winters 

Dwb    Humid continental mild summer dry winters 

Dwc    Subarctic with cool summers dry winters 

Dfa    Humid continental hot summers year around precipitation 

Dfb    Humid continental mild summer wet all year 

Dfc    Subarctic with cool summers year around rainfall 

Dfd    Subarctic with cold winters year around rainfall 

ET    Tundra climate 

EF    Ice cap climate 
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Table A1: Description of Physiographic regions (Fenneman and Johnson, 1964) presented in Figure 2 and A1 

Physiographic Regions Description 

 ApHigh  Appalachian Highlands 

 AtlPlain  Atlantic Plain 

 IntHigh  Interiors Highlands 

 IntPlain  Interior Plains 

 IntermPlat  Intermontane Plateaus 

 LaurUpl  Laurentian Upland 

 PacMounSys  Pacific Mountain System 

 RockMounSys  Rocky Mountain System 
 

 


