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Abstract. InFlooding is predicted to become more frequent in the coming decades, the frequency of floods is expected to 

increase as a result because of global climate changeschange. Recent literature has highlighted the importance of river 

morphodynamics in controlling flood hazards at the local scale. Abrupt and short-term geomorphic changes can occur after 

major flood-inducing storms. However, there is still a generalwidespread lack of the capabilityability to predictforesee where 10 

and if significantwhen substantial geomorphic changes will occur and, as well as their consequences onramifications for future 

flood hazards. This study sought to gain an understanding of the implications of major storm events for future flood hazards. 

For this purpose, we developed self-organizing maps (SOMs) to predict post-storm changes in stage‐discharge relationships, 

based on storm characteristics and watershed properties at 3,101 stream gages across the continentalContiguous United States 

(CONUS). We tested and verified a machine learning (ML) model and its feasibility for (1) mapping the variability of 15 

geomorphic response to extremeflood-inducing storm events and (2) representing the effects of these changes on stage‐

discharge relationships at gaged sites as a proxy for changes in flood hazard. The developedestablished model allows us to 

targetselect rivers with stage-discharge relationships that are more prone to changeschange after majorflood-inducing storms, 

for which flood frequency statisticsrecurrence intervals should be revised periodicallyregularly so that hazard assessment can 

keep pacebe up to date with the alteredchanging conditions. Results from the model show that, even though post-storm changes 20 

in channel conveyance are widespread, the impacts on flood hazard vary across CONUS. The influence of channel conveyance 

variability on flood risk depends on various hydrologic, geomorphologic, and climaticatmospheric parameters characterizing 

a particular landscape or storm. The proposed framework can provideserve as a basis for incorporating channel conveyance 

changesadjustments into predictions of flood hazard variability.  assessment. 

1 Introduction 25 

Several factors contribute to the non-stationarity in flow regimes, including variations in human activities, changes 

in land cover and land use, climate changes, and low-frequency internal climate variability (i.e., multidecadal oscillations) 

(Cunderlik and Burn, 2003; Mostofi Zadeh et al., 2020). Consequently, flood trends over the past decades have changed 

worldwide (Chang et al., 2007; FEMA, 2013; Karagiannis et al., 2017; McEvoy et al., 2012; Ziervogel et al., 2014), resulting 
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in adverse impacts on society and the environment (Blöschl et al., 2019; Dottori et al., 2022, 2018; Hattermann et al., 2014; 30 

Milly et al., 2002; Mostofi Zadeh et al., 2020; Slater et al., 2015).  

Traditional “cause-effect” studies have focused on the time dependency or non-stationarity of individual hydrologic 

flood drivers (Alfieri et al., 2015; Khanam et al., 2021; Lisenby and Fryirs, 2016; Mallakpour and Villarini, 2015; Mostofi 

Zadeh et al., 2020; Munoz et al., 2018). However, these studies might be under or overestimating the actual damage, especially 

in regions where the landscape is changing rapidly, because of the magnitude and ubiquityprevalence of the hydroclimatic 35 

changevariability that is now underway.  

Changes in river properties have been the focus of fluvial geomorphology for decades (Baker, 1994; Benito and 

Hudson, 2010; Stott, 2013). River channels and their adjacent floodplains continuously evolve because of the interactions of 

hydrology, landscape, and climate drivers and the interdependencies of processes at different spatial and temporal scales (Lane 

et al., 2007; Pinter et al., 2006b; Slater et al., 2015; Stover and Montgomery, 2001; Blench 1906-1993, 1969). Humans are 40 

also inextricably linked to water resources, and they are now, more than ever, active participants in the dynamics of this 

complex flood–river system (Ceola et al., 2019; Grill et al., 2019; Wohl, 2019). 

Nonetheless, the measurement of flood risk estimation traditionally has been based on flood frequency, derived from 

variability in streamflow, assuming constant channel capacity (Merz et al., 2012; Slater et al., 2015)2015). The relationship 

between magnitude and frequency is also generally built upon the peak flow distribution, whereas peaks are discretized as 45 

either annual maxima or peaks over the threshold, but mostly assuming that river capacity remains constant over the 

investigation records. . Some recent works (Ahrendt et al., 2022; Naylor et al., 2016; Slater et al., 2015, 2019; Sofia and 

Nikolopoulos, 2020a; Sofia et al., 2020) have suggested the time has come to move beyond flood hazard assessment based on 

this “fixed river” idea. 

For decades, fluvial geomorphology research has focused on changes in river characteristics (Baker, 1994; Benito 50 

and Hudson, 2010; Stott, 2013). Various recent works (Ahrendt et al., 2022; Naylor et al., 2016; Slater et al., 2015, 2019; Sofia 

and Nikolopoulos, 2020a; Sofia et al., 2020; Stephens and Bledsoe, 2020, 2023) have suggested that Changes in the time has 

come to move beyond flood hazard assessment based on this “fixed river” idea. River channels and their adjacent floodplains 

continuously evolve because of the interactions of hydrology, landscape, and climate drivers and the interdependencies of 

processes at different spatial and temporal scales (Lane et al., 2007; Pinter et al., 2006b; Slater et al., 2015; Stover and 55 

Montgomery, 2001; Blench, 1969). Humans and water resources are intertwined, and they are now more than ever active 

players in these intricate geomorphic dynamics of rivers and floods (Ceola et al., 2019; Grill et al., 2019; Wohl, 2019). Rivers 

naturally modify their geometry (i.e., their breadth, depth, and slope) to reflect changes in discharge and sediment in the 

upstream catchment in addition to the obvious alterations brought on by human involvement (Lisenby et al., 2018). Any 

changes in these characteristics possibly will also alter the magnitude, frequency, and risk of future flooding. 60 

The ability of rivers to holdstore and convey flood watersmove floodwaters downstream (river conveyance capacity) 

alteraffects the probability that floods will overtopwould destroy riverbanks or flood defencesbarriers, even ifwhile the total 

volume of water that flows through the river systems during floods does not change.remains constant. Therefore, these changes 
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in channel capacity alter flood properties, even when the magnitude of the flood frequency remains unchanged (Blench 1906-

1993, 1969; Criss and Shock, 2001; Lane et al., 2007; Neuhold et al., 2009; Pinter et al., 2008; Slater et al., 2015c2015; Stover 65 

and Montgomery, 2001). Some obvious evidence of the effects of channel changes on flood properties (e.g. extent, depth, etc) 

has been presented by recurring flooding in different dynamic rivers (Brierley and Fryirs, 2016; Pinter et al., 2001; Zischg et 

al., 2018; Tate, 2019; Munoz et al., 2018). During these flood events, impacts are most evident at sites where the rivers’ channel 

capacity has been drastically reduced (Munoz et al., 2018; Tate, 2019; Sofia et al., 2020).  

Aside fromNeglecting the apparent changes resulting from human intervention, rivers also naturally adjust their 70 

geometry (i.e., their width, depth, and slope) to reflectpossibility of rapid changes in flows and sediment in the upstream 

catchment (Lisenby et al., 2018). Any changes in these characteristics might also alter the frequency and risk of future flooding. 

Changes to streamflow regime and channel conveyance capacity and streamflow regime can be sudden, and 

neglecting this fact can obscureconceal short-term changesshifts in flood threats. (hazards. Li et al., (2020), for example, 

demonstrated that long-term trends comprise numerous short-term transients of much larger magnitude. These transient stages 75 

are often caused by abrupt scourscouring or deposition during extremeflood-inducing storm events and are comparable in 

magnitude to long-term trends in peak streamflow. Additionally, short- and long-term climate variability can simultaneously 

affect patterns ofat the same time impact the streamflow patterns and channel conveyance changes, with the channel form 

adjusting to precipitation and sediment supply (Death et al., 2015; Rathburn et al., 2017; Ruiz-Villanueva et al., 2018; Scorpio 

et al., 2018; Surian et al., 2016; Wicherski et al., 2017).  80 

Figure 1, for example, shows changes in Boulder Creek in Colorado before and after a flash flood in 2013. Comparing 

the channel planform and width, it is evident the channel got wider after the flood. Images from 2015 and 2019 show that the 

secondary channel on the right eventually disappeared, and the main channel acquired a more prominent bend than in the 2013 

image. Such relatively quick changes canalterations have the potential to further alter fluvialmodify the geomorphic properties 

characteristics of rivers and createto produce feedback that will affect the properties of future flood propertiesfloods (depth, 85 

frequency, duration, and spatial extent). 
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Figure 1: Change in channel width in Boulder Creek, Colorado, before (2012) and after (2013-2015-2019) a flash flood in 2013 

(Google Earth imagery). The Discharge reported here is Dailythe daily discharge measured at USGS 06730200 BOULDER CREEK 90 
AT NORTH 75TH ST. NEAR BOULDER, COBoulder Creek at north 75th st. near Boulder, co. 
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Systematic shifts in a river’s stage-discharge relationships identify the need for sharp upward revisions in hazard 

levels and stage- based flood-frequency analysis. Adjustments to the river stage-discharge relationship account for, at least 

partly, climate variability and long-term change. Nonetheless, while some river changes might be persistent in time, others 

could be more sudden and persist for a shorter time frame, like in the case of extremeflood-inducing storms. These short-term 95 

channel changes are difficult to predict, but they could substantially increase the post-stormflood hazard, especially in the case 

of subsequent storms. 

Understanding the scale and severity of channel changes after majorflood-inducing storm events is key to improving 

flood management and building the resilience of critical infrastructure. What is missing from our current knowledge is a 

comprehensive study that shows the impacts of storm-induced channel changes on future flood hazards. Buraas et al., (2014) 100 

cited a general lackshortage of capability to predict where significant geomorphic changes will occur following extremeflood-

inducing events. Other authors have pointed to multidirectional approaches as promising contributions to the analysis of 

channel response to severe floods and the identification of controlling factors ((Rinaldi et al., 2016; Scorpio et al., 2018; Surian 

et al., 2016; Wicherski et al., 2017; among others).  

Linking geomorphic cause and effect becomes more complex atAt regional scales, where assessingwhen it is often 105 

either impracticable or impossible to identify the specificprecise events responsible for periods of channel change is typically 

either impractical or impossible. This shift, linking geomorphic cause and effect becomes increasingly difficult.  However, this 

does not obviatenegate the need, however, to understandrequirement to comprehend and recognize short-term geomorphologic 

and hydrologic and morphologic behavior that could amplifycan exacerbate or offsetmitigate flood hazardsthreats. For this 

purpose, the availability of a large dataset representing a wide range of extremeflood-inducing storm characteristics and 110 

channel morphology under different boundary conditions, such as underlying climatic, hydrologic, and geomorphologic 

settings, is crucial. 

In this study, we have utilized stage-discharge “Residual” as a proxy of the channel capacity change. We sought to 

understand and predict the effects of extremeflood-inducing storms on channel conveyance and, consequently, flood hazards. 

To achieve this, we introduced a modeling framework based on machine learning (ML) (section 2.3) that characterizes the 115 

interdependence of flood drivers, including atmospheric drivers (precipitation), hydrologic drivers (flow, stage), and 

geomorphologic drivers (channel width, depth, drainage area, geophysical characteristics). Despite some limitations (Karpatne 

et al., 2019), ML applications are rapidly gaining popularity in the field of hydrology, geomorphology, and climate studies 

(Bergen et al., 2019; Schlef et al., 2019; Valentine and Kalnins, 2016). Despite some limitations (Karpatne et al., 2019), ML 

can be beneficial when we developin developing non-parametric models that represent unknown multi-variate, non-linear 120 

relationships by training on historical measurements provided that these models are properly validated based on unseen data, 

which informs us as to whether ML results are accurate, transferable, and scalable (Houser et al., 2022; Sarker, 2021; Schlef 

et al., 2019; Sofia, 2020). 2020a) 

. This study uses ML to quantify and model the effects of extremeflood-inducing storms on channel conveyance and 

the impacts on flood hazards. It aims to: (1) map the spatial variability of geomorphic response to an extreme storm 125 
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eventevents, and (2) understand the impact of these storms on the stage‐discharge relationships at gaged sites as a proxy for 

changes in flood hazard. The study provided an independent test of discharge-based results and produced a tool for generating 

timely short-term updates of flood hazard estimates for dynamic rivers.  

2 Materials and Methods 

2.1 Quantifying the Impact on Flood Hazard 130 

For this study, we used data from >2000 U.S. Geological Survey (USGS) gaging stations distributed across the 

continentalcontiguous United States (Figure 2). The dataset allows us to cover a wide range of physiographic and climatic (See 

Fig. 2) regions. 

 We selected stations for which were available both historical field-measured data on channel properties and flood 

stages assigned by the National Weather Service (NWS).) were available. The data for channel properties were retrieved 135 

following a procedure developed by (Slater, 2016; Slater et al., n.d., 2015) and using the codes provided by the authors at 

https://github.com/LouiseJSlater/Hydromorphology.https://github.com/LouiseJSlater/Hydromorphology.  
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Figure 2: USGS gage stations considered in this study overlain on physiographic and climatic regions-Appalachian Highlands 140 
(ApHigh), Atlantic Plain (AtlPlain), Interiors Highlands (IntHigh), Interior Plains (IntPlain), Intermontane Plateaus (IntermPlat), 

Laurentian Upland (LaurUpl), Pacific Mountain System (PacMounSys), and Rocky Mountain System (RockMounSys); and on 

Climatic types- Tropical Rainforest (AF), Tropical Monsoon (Am), Tropical Savanna (Wet and Dry Climate) (Aw), Hot Desert 

Climate (BWh), Cold Desert Climate (BWk), Hot Semi-Arid Climate (BSh), Cold Semi-Arid Climate (BSk), Hot-Summer 

Mediterranean Climate (Csa), Warm-Summer Mediterranean Climate (Csb), Temperate, dry summer, cold summer (Csc), Warm 145 
Oceanic Climate / Humid Subtropical Climate (Cwa), Subtropical highland climate or temperate oceanic climate with dry winters 

(Cwb), Cold subtropical highland/Subpolar Oceanic (Cwc), Humid Subtropical Climate(Cfa), Temperate Oceanic Climate (Cfb), 

Subpolar Oceanic ClimateDsa  -  Humid Continental Climate - Dry Warm Summer (Cfc ), Humid Continental Climate - Dry Cool 

Summer (Dsb), Continental Subarctic - Cold Dry Summer (Dsc), Continental Subarctic – Dry Summer, Very Cold Winter (Dsd), 

Humid Continental Hot Summers With Dry Winters, Humid Continental Mild Summer With Dry Winters (Dwb), Subarctic With 150 
Cool Summers (Dwc). Dry Winters (Dwa), Humid Continental Hot Summers With Year Around Precipitation (Dfa), Humid 

Continental Mild Summer, Wet All Year (Dfb), Subarctic With Cool Summers And Year Around Rainfall (Dfc), Subarctic With 

Cold Winters And Year Around Rainfall (Dfd), Tundra Climate (ET), Ice Cap Climate) (EF). 

 

Figure 2: USGS gage stations considered for in this study overlain on physiographic and climatic regions. For the acronym 155 
description of Physiographic regions and climate types please refer to Table A1 and A2. 

To model the average state of conveyance capacity for each stream gage site, we used theoretical single- stage-

discharge relationships (rating curves) at the height associated with the Flood stageStage, as described by Slater et al. (2015). 

The flood stage, forFlood Stage, from the US National Weather Service, indicates a gauge height above which water level 
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begins to impact lives and human activities, and it generally corresponds to the first flood warning threshold. The procedure, 160 

therefore, can be adapted for other gage datasets, in different parts of the world, by assuming similar warning thresholds.  

Deviations from the theoretical stage-discharge relationship indicate that at a moment in time, a differentdiscrete 

stage-discharge relationship existed, which highlights that there might have been temporal changes in channel conveyance. 

Using a constant flood stage allows to quantify “conveyance residuals (Res)” as reportedAs described by Li et al. (2020), 

Slater et al. (2015, 2019), and Slater and Villarini, (2016), which using a constant flood level enables the quantification of 165 

"conveyance residuals (Res)" that represent temporal changes in the discharge that is requiredneeded to reach it (i.e., thethe 

specific flood level (for example due to shifts in channel capacity). In a temporal analysis of residuals, a positive to negative 

shift indicates a sudden decrease in channel capacity and a potential increase in flood hazard (Slater et al., 2015), as a lower 

discharge is needed to meet the warning threshold. We followed this procedure to capture the sudden changes in channel 

conveyance following major storm events. We focus mainly on sudden shifts, rather than on permanent shifts. The main 170 

reasons for this were, 1. short-term conveyance capacity changes are not considered in typical flood hazard assessments and 

could substantially overstate or understate flood threats at any particular time for subsequent floods; 2. there is a plethora of 

complex and sometimes not linear- processes and coupled feedback that we would need to ‘model’ in the training set, to 

provide a comprehensive benchmark to identify permanent shifts. and this could be potentially interesting research that could 

be tackled by further studies building on our model. 175 

To define the stage-discharge relationship, we usedTo define the stage-discharge relationship, we considered only 

measured values of stage and discharge, as suggested in (Slater, 2016; Slater et al., 2015). Aside from considering consistent 

gages present in the Shen et al. 2017 database, and covered by stream measurements, we applied the same criteria as Slater et 

al. 2015, who only considered field measurements in which the discharge is within one percent of the product of channel 

velocity and cross-sectional channel area, as reported by the USGS, and those made close to the gage station. Following the 180 

work of (Slater, 2016; Slater et al.,2015, 2015a) we detected and excluded sites featuring artificial controls at the gauging 

station that could impede the natural adjustment of the channel's shape. Additionally, we eliminated all field measurements 

conducted at a different location or potentially different location, along with those taken in icy conditions, as these factors 

could impact the accuracy of channel geometry measurements. Our selection process retained only sites with comprehensive 

time series data, and as per Slater’s et al. 2015 work, only kept gages with 99.7% completeness in streamflow records and 40 185 

channel cross-section measurements.  

 The stage-discharge relationship was evaluated through a Locally Weighted Scatterplot Smoothing (LOESS) fitting 

(Cleveland, 1979), as suggested by Li et al. (2020), Slater et al. (2015, 2019), and Slater and Villarini (2016). The fitting 

requires the definition of a smooth parameter, which we set automatically based on the biascorrectedbias-corrected Akaike 

Information Criterion (AIC) (Hurvich et al., 1998). We performed the analysis using the R package fANCOVA 190 

(https://CRAN.R-project.org/package=fANCOVA).(https://CRAN.R-project.org/package=fANCOVA). 

Before performing the above-mentioned steps, we excluded from the analysis measurements taken prior tobefore the 

most recent datum change, if any reported measurement datum change was provided. We didWe have excluded the gages that 

https://cran.r-project.org/package=fANCOVA
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do not consider stations with gaps in the measurements. Wehave continuous data for the timeframe from 2002-2013. By taking 

into account field data when the discharge was within a range of half the flood stage depth on either side of the flood stage, 195 

we also adoptedaccepted the criteria used instandards employed by Slater et al. (2015) by considering field measurements in 

which2015). We evaluated the discharge was within a range of half the flood stage depth on either side of the flood stage. We 

readings visually assessed the measurements, to identify the presence of groupslook for clusters of outliers in the scatterplots 

of the channel measurements, as possible indicators that could be signs of shiftschanges in the measurement location (or 

datum). We systematically eliminated these metrics. According to the information of the gage, the measurements did not shift 200 

in location. For the work itself, consistently with Slater et al. (2015) and the open codes provided in her work, we removed 

these all field measurements made in a location where there is known infrastructure like a bridge for example, and all field 

measurements. 

 made in icy conditions, as these might affect measurements of channel geometry.  Figure 3 provides an example of 

changes in residuals after a majorflood-inducing storm event for the Quinnipiac River in Connecticut. AFrom April 15 to April 205 

18, 2007, a spring nor’easter affectednor'easter hit the East Coast of the United States from April 15 to 18, 2007. During this 

event, the 100-year flood elevations at the. The streamflow-gaging station exceededrecorded stages during this occurrence that 

were more than 0.2 meters higher than the FEMA-projected 100-year elevations by more than 0.2mlevels  (Ahearn, 2009). For 

this gage, the flood stage is at 10ft, the peak discharge of the 2007 event was 11.51 ft, and the Quinnipiac River itself (at  the 

gage right upstream of the one in the figure) measured the maximum discharges for the period of record of the station during 210 

the 2007 flood. In figure. 3a, the stage and discharge data retrieved from field measurements taken after the flood appear to 

shift toward higher values of the stage for comparable discharges from before 2007. The curve fitted at the flood stage (black 

line in Figure. 3a) ultimately aligns between the two sets of data. Looking at the residuals concerning the fitted curve (Figure. 

3b), the shift from positive residuals, before 2007, to negative is noticeable. (outlier residual points were filtered out before 

performing the ML training). This suggests a loss of conveyance capacity due to deposition, assuming no changes in velocity. 215 

The time series of widths (Figure. 3c) and cross-sectional areacapacity (Figure. 3d) confirm this loss of conveyance; for this 

site, slightly changed channel widths (Figure. 3c) and an abrupt change in capacity (Figure. 3d) can be seen, possibly due to 

deposition along the riverbed.. Such a change may result in a potential increase in flood hazard for a given flood volume.  

 

https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR027971#wrcr24852-bib-0054
https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2020WR027971#wrcr24852-bib-0054
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Figure 3: Illustration of the conveyance analysis for the USGS stream gage QUINNIPIAC RIVER AT WALLINGFORD (USGS 

station 01196500), before and after the storm of April 2007. Stage-discharge relationship fitted to flood hazard level is shown in (a), 

and residuals fitted to the rating curve in (b). In (b), some outlier residuals are evident, likely due to shifts in measurement locations. 

These points were filtered out before performing the ML training. Time series of channel widths as measured in the field (c) and 225 
channel capacity (d) are also shown, to highlight that possibly, the major change in residuals is due to a difference in channel depth, 

given a constant velocity. 

2.2 Considered Predictors 

To obtain information on the watershed’s hydrologic and geomorphologic properties, we collected data for each gage 

from the GAGES II dataset (Falcone, 2011). This dataset provides for each gage geomorphologic variables for each gage 230 

associated with watershedwatersheds’ typical characteristics (e.g., Drainage area, Elevation, etc). These properties can be 

considered likely to change at a speed much slower than river discharge and localized channel measurements. Hence, we may 

consider these variables as 'static' in time. However, even if they are static in time, these characteristics are highly variable in 

space as they are spread across the CONUS, providing us with a large sample of values for the ML training. 

We also investigated several extremeflood-inducing events that occurred from 2002 to 2013 in the same watershed 235 

and were included by (Shen et al., 2017) in the flood event database. We ended up with 291201 events total for the 3101 gages. 

The minimum and maximum numbers of events per gage varied from 1 to 520. For each available field measurement of 
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channel properties, we consider all the storms that happened in the previous 15, 30, 90, 180, and 365 days (accounting for the 

lag times between each storm and the response of the river system) and calculate the median values of the storm characteristics 

(as defined in Shen et al., 2017; Table 1) in that timeframe. We did not take the 'median' of excluding situations where we only 240 

had 1 valuestorm. We only kept the gages in the analysis where we havehad more than 10 events. Therefore, for every single 

field measurement (i.e., dot in Fig 3), we have) we had 5 different median storm characteristics – 1 median storm characteristic 

for the five different lag times considered, these medians represent a “typical flood-inducing storm” for that lag time, reducing 

the effects of small variability. The information included by Shen et al., 2017 reported the percentile of the peak flows in the 

entire time series of the watershed, and all the reported events show a value greater than 80 for all storms. The reader should 245 

consider that while the median characteristic per se is not a ‘severe’ value, given the sample of data in Shen et al., 2017, it is a 

value representative of the typical event, for storms which in general encompass events having peak flows greater than 80th 

percentile. 

From these integrated data sources, we identified three groups of drivers: atmospheric, hydrologic, and 

geomorphologic (tableTable 1). The integrated dataset provided direct and statistically derived information regarding flows 250 

and associated precipitation characteristics of each storm event.  

 

Table 1: Variables considered in the analysis and their abbreviations.variables Readers should refer to Shen et al. (2017) and 

FalconeeFalcone (2011) for a complete description of the atmospheric, hydrologic, and geomorphologic variables. Variables in bold 

letters are those used for ML analysis after the variable importance analysis. 255 

VARIABLE DESCRIPTION Unit 

VARIABLE_

TYPE Data Source 

Hydrologic variables 

TOPWET Topographic wetness index ln(m) Hydrologic Falcone (2011) 

HLR100M_SITE 

Hydrologic Landscape Region (HLR) at 

the stream gage location. 

unitle

ss 

Hydrologic 

Falcone (2011) 

Peak Peak flow associated with the storm event   Hydrologic Shen et al. (2017)  

Res Residual 

unitle

ss 

Hydrologic 

Estimated  

IBF Base flow index  m3/m3 Hydrologic Shen et al. (2017)  

Perc 

Percentage of peak flow: The 

corresponding percentile of the peak flow 

in the entire flow series of the gauge % 

Hydrologic 

Shen et al. (2017)  

Q2 Second-order moment of the flow  

  unitl

ess 

Hydrologic 

Shen et al. (2017)  

Els 

Mean water travel distance to the drainage 

outlet  m 

Hydrologic 

Shen et al. (2017)  

Formatted: Font color: Text 1

Formatted: English (United States)

Deleted Cells

Deleted Cells



 

13 

 

EQ Centroid of flow hydrograph  h Hydrologic Shen et al. (2017)  

Vt 

Normalized flow volume ~ average flow 

volume per unit drainage area mm 

Hydrologic 

Shen et al. (2017)  

HYDRO_DISTURB_

INDX Anthropogenic modification  

unitle

ss 

Hydrologic 

Falcone (2011) 

RunoffCoef Runoff coefficient  unitless Hydrologic    

CLASS 

Reference/non-reference class: REF = 

reference (least-disturbed hydrologic 

condition); NON-REF = not reference. N/A Falcone (2011) 

BFI_AVE 

Base Flow Index (BFI): ratio of baseBase 

flow to total streamflow, expressed ratio, 

given as a percentage and ranging from 0 

to 100. Base flow is the sustainedThe 

persistent, slowly varyingfluctuating 

component of streamflow, usually that is 

commonly attributed to ground-water 

discharge to a stream is known as base 

flow. % 

Hydrologic 

Falcone (2011) 

CLASSRFACT 

Reference/non-reference class: REF = 

reference (least-disturbed hydrologic 

condition); NON-REF = not 

reference.Rainfall and Runoff factor 

N/A1

00s ft-

tonf 

in/h/a

c/yr 

Geomorpholo

gic 

Falcone (2011) 

Geomorphologic variables 

GEOL_REEDBUSH_

DOM 

Dominant (highest percent of the area) 

geology, derived from a simplified version 

of Reed & Bush (2001) - Generalized 

Geologic Map of the Conterminous 

United States. N/A 

Geomorpholo

gic 

Falcone (2011) 

STREAMS_KM_SQ_

KM 

Stream density, km of streams per 

watershed sq km, from NHD 100k streams 

km/sq 

km 

Geomorpholo

gic 

Falcone (2011) 

STRAHLER_MAX 

MaximumNHDPlus's maximum Strahler 

stream order in the watershed, from 

NHDPlus . 

unitle

ss 

Geomorpholo

gic 

Falcone (2011) 

MAINSTEM_SINUO

USITY Sinuosity of mainstem streamline  

unitle

ss 

Geomorpholo

gic Falcone (2011) 
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RFACT Rainfall and Runoff factor 100s ft-tonf in/h/ac/yr 

Geomorpholo

gic Falcone (2011) 

ELEV_MEAN_M_B

ASIN 

Mean watershed elevation (meters) from 

100m National Elevation Dataset  m 

Geomorpholo

gic 

Falcone (2011) 

ELEV_MAX_M_BA

SIN 

Maximum watershed elevation (meters) 

from 100m National Elevation Dataset  m 

Geomorpholo

gic 

Falcone (2011) 

ELEV_MIN_M_BAS

IN 

Minimum watershed elevation (meters) 

from 100m National Elevation Dataset m 

Geomorpholo

gic 

Falcone (2011) 

ELEV_MEDIAN_M_

BASIN 

Median watershed elevation (meters) from 

100m National Elevation Dataset m 

Geomorpholo

gic 

Falcone (2011) 

ELEV_STD_M_BAS

IN 

Standard deviation of elevation (meters) 

across the watershed from 100m National 

Elevation Dataset m 

Geomorpholo

gic 

Falcone (2011) 

ELEV_SITE_M 

Elevation at gage location (meters) from 

100m National Elevation Dataset m 

Geomorpholo

gic 

Falcone (2011) 

RRMEAN 

Dimensionless elevation - relief ratio, 

calculated as (ELEV_MEAN - 

ELEV_MIN)/(ELEV_MAX - 

ELEV_MIN). 

unitle

ss 

Geomorpholo

gic 

Falcone (2011) 

RRMEDIAN 

Dimensionless elevation - relief ratio, 

calculated as (ELEV_MEDIAN - 

ELEV_MIN)/(ELEV_MAX - 

ELEV_MIN). 

unitle

ss 

Geomorpholo

gic 

Falcone (2011) 

SLOPE_PCT Mean watershed slope % 

Geomorpholo

gic Falcone (2011) 

ASPECT_DEGREES Mean watershed aspect 

degre

es (0-

360) 

Geomorpholo

gic 

Falcone (2011) 

ASPECT_NORTHN

ESS 

Aspect “northness”. Ranges from -1 to 1. 

A value of 1 means the watershed is 

facing/draining due north, and a value of -

1 means the watershed is facing/draining 

due south  

unitle

ss 

Geomorpholo

gic 

Falcone (2011) 

Deleted Cells
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2.3. Modeling the Impact of MajorFlood-inducing Storms          

The ML-based methodology developed in this study for predicting the median “Residual” is based on clusters of the 

gages. Using a self-organizing map (SOM) with event-specific characteristics, explained in Table 1, we developed a framework 

for understanding and predicting channel changes due to severeflood-inducing storm events. The SOM developed by 260 

(Kohonen, 1982), is one of the most popular clustering/ classification methods used in many research areas such as medical 

science, hydrology, and signal processing (e.g., (Zanchetta and Coulibaly, 2022; Rahmati et al., 2019). The SOM method has 

become a very useful prediction tool in hydrological and environmental studies because it can predict a target variable without 

learning any physical relationship among a collection of variables. The main advantage of the SOMs is that they allow to 

reduce the data dimensionality of the dataset, by organizing the data into a two-dimensional array (Kohonen, 1982) using 265 

ASPECT_EASTNES

S 

Aspect “eastness”. Ranges from -1 to 1. A 

value of 1 means the watershed is 

facing/draining due east, and a value of -1 

means the watershed is facing/draining 

due west  

unitle

ss 

Geomorpholo

gic 

Falcone (2011) 

Physio Physiographic divisions of CONUS N/A 

Geomorpholo

gic (Fennema

n and Johnson, 

1964) 

 (Physiograp

hic divisions 

of the 

conterminous 

U. S., 2023) 

DRAIN_SQKM Drainage area  km2 

Geomorpholo

gic Falcone (2011) 

Atmospheric variables 

CovTrLs 

Covariance of precipitation and water 

travel distance  mh 

Atmospheric 

Shen et al. (2017)  

Etr  Centroid of precipitation  h2 Atmospheric Shen et al. (2017)  

VarTr Spreadness of precipitation  h2 Atmospheric Shen et al. (2017)  

VarLs Variance of water travel distance  m2 Atmospheric Shen et al. (2017)  

Vb Base flow volume  mm Atmospheric Shen et al. (2017)  

Vp Precipitation volume  mm Atmospheric Shen et al. (2017)  

Pmean Mean Precipitation  mm/h Atmospheric Shen et al. (2017)  

  

Climate types (was not included in the ML 

model)  unitless 

Atmospheric (

Beck et al., 

2018)  
 

  

Formatted Table

Deleted Cells

Deleted Cells

Deleted Cells

Deleted Cells
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topology-preserving transformations (Rahmati et al., 2019). SOMs, being a form of artificial neural network, can be thought 

of as a regression technique with a higher level of nonlinearity between the dependent and independent variables (Geem et al., 

2007).    

The proposed SOM framework (Figure 4) consisted of four phases: unsupervised clustering, supervised mapping, 

trained regression, 10-fold validation, and prediction. The whole procedure is described in the sub-sections below.  270 
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     Figure 4: Schematic of the SOM framework proposed in this study. 

The SOM algorithm is technically conceived for numerical datasets. This impliesmeans that any variableSOMs 

cannot be used to analyze variables with non-numerical data types, such as for example categorical values, cannot be analysed 275 

with SOMs. To present the categorical variables to the machine learning model selected for this study, we therefore converted 

all the categorical values into binary digits. Each binary digit was then transformed into one feature column. 

Most storm variables (except Perc- Percentage of peak flow and Percentile-Percentile corresponds to peak flow) were 

normalized considering the range of values available for each station. This normalization was performed to account for the 

influence of the watershed sizes on the various storm properties. Continuous geomorphologic and hydrologic variables, not 280 

coded in the range 0-1 (or 0-100) (aside from RRMEAN-Mean relief ratio and RRMEDIAN- Median relief ratio, 

SLOPE_PCT- Mean watershed slope, and Aspect) were normalized considering the overall range across CONUS. The stage-

discharge residuals were kept as is because they are already “relative” in value to the stage-discharge fitted at flood stage for 

each gage. To reduce the dataset dimensionality, and avoid collinearity, we performed a variable importance analysis using 

the misclassification rate (section 2.3.1). 285 
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2.3.1. Unsupervised Clustering 

The first module used, a SOM algorithm to cluster together gages based on similar characteristics. The main objective 

of this step is to group together gages having similar underliningunderlying patterns of variables. The SOMs are organized in 

two-dimensional space where the neighboring neurons learn similar patterns, and neurons mapped far away have dissimilar 

patterns (Stefanovič &and Kurasova, 2011).) This unsupervised mapping was performed automatically using the Kohonen 290 

package in R (Wehrens and Kruisselbrink, 2018; Wehrens and Buydens, 2007; Kohonen, n.d., 1982; Wehrens, 2019). We 

followed Kohonen’s general rule of thumb to determine the two-dimensional grid sizes, fixing theThe optimal number of nodes 

aswas set at five times the square root of the number of observational data, as per Kohonen's general rule of thumb for 

determining the sizes of two-dimensional grids  (Fytilis and Rizzo, 2013).).  

Data clustering with SOMs is typically carried out in two stages: first, the data set is clustered using the SOMs which 305 

provideoffer the organization of the data into the differentvarious nodes. Then,, and then the nodes are clustered (Vesanto 

&and Alhoniemi, 2000). ) Clustering speeds significantly increase whenThe use of the nodes are used in place of the actual 

data leads to significant gains in the speed of clustering.. The result of the first step is that gages are grouped together in 

neighboring nodes as long asif the underlining patterns of variables are similar. After the SOM is trained, its U-matrix gives 

insight into how all the data are organized, as it displays the nodes and the distance that the weight nodes create between each 310 

weight and all its neighbors. With an average of these distances, color is then assigned to that location. This matrix can be used 

for the second step of identifying and labeling the actual clusters, through image-analysis tools (Pacheco et al., 2017, Vincent 

et al., 1991; Wang et al., 2010; Wu &and Li, 2022); Vincent et al., 1991). In this work, the. The first unsupervised clustering 

was accomplished by using all the data together, including the residuals. We assign in the process. Each gage was assigned a 

cluster numbers to each gage number based on all the variables of that location. Gages grouped in the same cluster are expected 315 

to have similar patterns of the input variables, including the residuals. For each cluster, then, we re-train the model, retaining 

only the gages for that cluster, to provide the most typical residual given by the combination of hydrologic, geomorphologic,  

and atmospheric variables. 

The most common approach is to segment the U-matrix may using the watershed technique of gray-scale image 

processing (Costa and Netto, 1999; Vincent et al., 1991). The Using a watershed analogy, the U-matrix (Figure 5) can be used 320 

to identifylocate the clusters using a watershed analogy, where large “. Large "heights”" and ridges represent largeimply 

significant distances in the feature space, while low “little "valleys”" represent data subsets that are similar (Ultsch and Lötsch, 

2017). The segmentation is performed by flooding the valleys (similar nodes with very close distances from one to the other) 

until a ridge (high dissimilarity) is reached. Where the water converges, watersheds will form, having close boundaries. One 

cluster is represented by all the items in a segmented area or watershed. According to this approach, a minimum height 325 

threshold can be selected to define the clusters (valleys). We followed automatic thresholding and set the threshold to a 

statistical value equal to half the standard deviation of the values. To perform this step, we applied watershed transformation 
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and watershed-based object detection using the function “watersheds” in the R Bioconductor package (Torres-Matallana, 

2016). 

      330 

 

Figure 5: Example of (a) U-Matrix and (b) derived clusters. InRed colors in the U-Matrix, red colors represent large stand for 

significant distances in the feature space, whilewhereas blue colors represent “are "valleys “grouping" that group subsets of 

similarrelated data. The watersheds identifiedshown in (b) represent clustersare collections of similarrelated data. 

 335 

To identify the most important features and avoid data redundancy, we measured the importanceWe assessed the 

relevance of each feature according to its misclassification rate relative to a baseline cluster assignment resulting fromproduced 

by a random permutation of feature values to find the most crucial features and prevent data duplication (Molnar, 2022; 

Breiman, 2001; Fisher et al., 2018). We preferred this approach considering that permutation feature importance does not 

requirecall for retraining of the model before the analysis. According to thisThis approach, states that a variable (feature) is 340 

essential“important” if shufflingchanging its values determinesresults in a cluster reassignment because, in this casescenario, 

the model heavilyprimarily relies on that feature for the prediction ofto forecast the predictors. ConverselyIn contrast, a feature 
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is “considered "unimportant”" if permutingchanging its values leavesdoes not affect the predictedanticipated cluster 

unchanged. The variable identified as important with the shuffling does not necessarily mean they have high variability among 

watersheds. It rather means that this variable is highly correlated with the target variable (the cluster association), because 345 

shuffling its values effectivelyessentially destroys any relationship between that feature and the target variable, as indicated 

by the decrease in the training performance. (Note:After randomly permuting the values of a feature, the model is NOT refitted 

to the training data after randomly permuting the values of a feature). 

. This technique has been recognized in the literature (e.g., (Breiman, 2016; Wei et al., 2015; Fisher et al., 2018; Wei 

et al., 2015)) and it is widely implemented in many statistic packages as well (e.g., Biecek et al., 2018, 2019; Model 350 

Interpretability with DALEX · UC Business Analytics R Programming Guide, n.d.;2018, 2019; Molnar & Schratz, 2008) 

Please refer also to Wei et al (2015) for a review. We ran the clustering algorithm 10 times with different seeds. At each run, 

we trained the clustering using 90% of the data and predicted the remaining 10%; and, for each run, each feature of the dataset 

was permuted 10 times. The permutation misclassification rate of a feature was calculated as the number of observations for 

which the cluster assignment differed from the original cluster assignment, divided by the number of observations given a 355 

permutation of the feature. The overall average misclassification rate iterations were interpreted as variable importance. We 

decided to keep only the variables producing a misclassification rate higher than the mean values. Figure 6 shows the most 

important variables for the interval N = 365 days. This variable selection indirectly checks for collinearity by keeping only the 

variables that have the largest effect on the changes. 

 360 
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Figure 6: Selected variables based on misclassification rate (%). 
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2.3.2. Supervised Mapping and Trained Regression 365 

Self-organizing maps (SOM) are extensively applied for clustering and visualization purposes. Nonetheless, they can 

be used for regression learning. (e.g., (Riese &and Keller, 2019, 2018, 2019)). In the first step, the data (geomorphological, 

atmospheric, hydrologic variables, and measured residuals) are clustered together, based on patterns of variables. The resulting 

SOMs are composed of nodes, each one associated with of which is connected to a "weight" vector, which is  that represents 

the position of the node node's location in the input space. After training, theThe map can be used to classify 370 

additionalcategorize further observations, after training by findinglocating the node with the closestwhose weight vector is 

closest to the input space vector (Bestbest matching unit -, or BMU). 

The regression algorithm of the SOM proceeds similarly to the clustering SOM algorithm. However, the regression 

differs for these main points: 1. The search for the BMU is performed within) Within the finalized input SOM, produced at  

that was created in the first step;stage, the BMU search is carried out.; 2. In) For the regression caseinstance, the weights of 375 

the supervised SOM are based on one single parameter:   (a continuous number, which in our case is the residuals.).  

By combiningCombining the unsupervised and the supervised SOM, allows for the first is used to selectselection of 

the BMU for each datapointdata point while also connecting the second links the selectedchosen best-matching unit to a 

specificparticular residual estimation.  In other words, each gage is mapped to a certain cluster, based on the median 

characteristics of the storms. For the regression part, the data extracted from the SOM are restricted to the best matching 380 

cluster, and given the input storm and watershed properties, we can predict the most likely residual. 

For the supervised mapping and trained regression step, the gages were tagged to their corresponding SOM clusters. 

Once a cluster is defined, we aimed at determiningto determine which features were the most significantly correlated. For this, 

we considered the distance correlation index (dCorr) (Székely et al., 2007) to quantitatively identify the correlation of the 

important variables with the residuals within each cluster. The range of dCorr values range, from 0 to 1, expressingrepresents 385 

the dependence betweenof two independent variables. The stronger the dependence, the closer the value is to 1, the stronger 

the dependency, and 0 implies thatthe statistical independence of the two variables in question are statistically independentis 

implied by a value of zero (Sofia & Nikolopoulos, 2020). We used inverse distance correlation (1-dCorr) to measure the 

dissimilarity of the variables within the cluster and create organized dendrograms. The attribute distances between every pair 

of drivers that have been successively clustered are depicted in a dendrogram.  390 

Having tagged the gages, we performed supervised training with them to predict the residuals based on the 

atmospheric, hydrologic, and geomorphologic variables. The main outcome of this part is to have aan ML system able to 

predict the most probable residual after a storm having certain properties, for a location with specific watershed characteristics. 

To this point, we retrained the SOMs independently for each cluster, using only the data retrieved from the stations within that  

cluster. For this part, we applied an extension of Kohonen’s self-organizing map algorithm, the growing self-organizing map 395 

(GSOM) (Alahakoon et al., 2000; GrowingSOM package | R Documentation, 2020, https://rdrr.io/cran/GrowingSOM/). We 

chose GSOM to refine the analysis and improve the prediction within each cluster. The GSOM hierarchical clustering 
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allowstechnique enables the data analyst to identify significantlocate important and interestingunique clusters at a higher level 

and continue withto focus on a more refined clusteringprecise grouping of the interesting clusters only. (Alahakoon et al., 

2000). The GSOM is computationally expensive, so we decided to apply it to the already clustered data. A spread factor 400 

parameterizes the GSOM. This measure can generate maps of different sizes without previous knowledge about the dataset, 

samples, or attributes. We set the spread factor to 0.8, as suggested by Alahakoon et al. (2000).  

Finally, we trained the model by selecting 90% of the data randomly and validated its performance using the 

remaining 10% for each cluster. The traditional method of identifying the quality of the SOM, proposed by Kohonen, is to 

compute the quantization error by summing the distances between the nodes and the data points, with smaller values indicating 405 

a better fit. This method hadhas been used successfully by many researchers, requiring minimal computation time, to compare 

changes across time-series images (e.g., (Bação et al., 2005; Dresp et al., 2018; Wandeto and Dresp-Langley, 2019). For quality 

assessment, we also followed the approach used by (Swenson and Grotjahn, (2019). We performed cross-validation for a 

particular SOM, first fitting the SOM to the data first to ensure a unique cluster assignment. Then we conducted 100 trials, 

excluding the data used in initialization, as suggested by Swenson and Grotjahn (2019). We consideredutilized a 410 

standardtypical subdivision of 90-10, wherebywhich meant that 90% of the data werewas used as training data to fit a new 

SOM, and the new SOM was then usedutilized to predictforecast the cluster assignments of the remaining 10% of validation 

data. We evaluated theThe percentage of gages for which thewhose cross-validation cluster assignment differedchanged from 

the original assignment in at least 10% of the 100 trials was calculated. We further tested the quality of the ML by evaluating 

the RMSE and the correlation distance between the actual residuals and the predicted ones for the validation dataset. 415 

 

2.3.3. Predicting Major Storm Effects on Future Flood Hazard 

Using the trained model (section 2.3.2), we predicted the residuals for each gaging station, based on all the variables 

(table 1) selected from Shen et al. (2017), Falcone (2011)), and Fenneman and Johnson, (1964). We compared the predicted 

residual for a given storm at a given gage with the average residual measured in the most recent year. We quantified the 420 

“likelihood of change” as the percentage of times the predicted residuals showedyears focusing on prediction showing a sudden 

deviation from positive (before the storm) to negative. (post-storm). This sudden deviation, as illustrated in Figure 3, can 

indicate a rapid changequick shift in channel conveyance in response to sediment deposition, which can trigger increased flood 

hazard even when the flood event’s return period remains unchanged (Blench  1906-1993, 1969; Lane et al., 2007; Pinter et 

al., 2006b, a; Stover and Montgomery, 2001).      425 

We decided to approach this change in terms of how often a gage is predicted to change after a storm. We also compared the 

average residuals predicted from all the storms for a given gage with the confidence interval of the current stage-discharge 

relationship, calculating the ratio between the mean prediction and the lower bound of the confidence interval for those stations 

with predictions showing a deviation from positive to negative. If a gage had a positive residual, and the predicted one after 

flood was negative, and outside the confidence bound of the fitted curve, we labeled this gage at risk. The greater this value, 430 

the more likely the changes would be outside the range of the current stage-discharge error. 
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To highlight the criticality of this sudden shift, we considered as highly at risk those watersheds for which the 

predicted residual, shifting from positive to negative, was outside the lower bound of the 95% confidence interval of the current 

stage-discharge relationship. As LOESS smoothers fit a unique linear regression for every data point by including nearby data 

points to estimate the slope and intercept, the correlation in nearby data points helps ensure obtaining a smooth curve fit. 435 

Therefore, the µ+1.96σ of the nearby data points considered for each fitted value can be considered as a measure of the 95% 

confidence interval. This information is calculated directly from the R package fANCOVA (https://CRAN.R-

project.org/package=fANCOVA) used for the fitting.  Overall, a watershed having positive residuals for the most recent 

measurements, for which we predict a sudden shift to negative outside the confidence bound of the stage-discharge curve, 

represents a critical condition that should be monitored, as the current flood stage might underestimate the flood risk. 440 

3. Results Analysis 

3.1. Variable Importance 

Figure 6 demonstrates the outcome of the variable importance. Based on the results shown in Figure 6, we found that 

the same variables were always important for all intervals. analysis.interval analyses. Table 1 shows all the selected variables 

in bold for N = 365. In this case, out of a total of 40 variables we have selected 30 based on the misclassification rate (%). Of 445 

the selected variables 15 were geomorphologic variables, followed by 10 atmospheric variables and 5 hydrologic variables. 

This confirmed the importance of the geomorphology of the watersheds. While this result on channel changes was expected, 

it further highlighted the critical significance of geomorphology for the dynamics of flood hazards, as most of the 

geomorphologic parameters were important for the prediction of the residuals. The most important were the variables Aspect 

(ASPECT_NORTHNESS, ASPECT_EASTNESS), and stream density (STREAMS_KM_SQ_KM). The importance of 450 

“Aspect” properties can be explained by the different runoff and soil loss yields produced by variations in slope properties.  As 

a result of differences in aspect, steepness, lithology, and vegetation type, soils on south-facing slopes always appear to be far 

more eroded or degraded than those on more humid north-facing slopes. 

Drainage density is another fundamental property of the Earth’s surface that controls erosion and the transport of 

water and sediments (Clubb et al., 2016), and it is correlated with subsurface permeability (Luo et al., 2016). The control these 455 

factors exert on sediment production and delivery and soil permeability may explain the importance of these variables to post-

storm changes in river conveyance. 

The most important variables were the Aspect (ASPECT_NORTHNESS, ASPECT_EASTNESS), and stream density 

(STREAMS_KM_SQ_KM). The most important hydrologic variable was HYDRO_DISTURB_INDX, which explains the 

condition of the watershed, whether it is anthropogenically modified or natural.  Ahrendt et al. (2022) confirmed that channel 460 

regulation is important to conveyance changes. Similarly, engineering activities within rivers and their floodplains (e.g., the 

construction of dikes, bridges, and dams, meander cutoffs, channel constriction by wing dikes, groynes, and so on) can affect 

channel conveyance (Bormann et al., 2011; Pinter et al., 2006b, a) The importance of this variable in the model highlighted 
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the potential interaction of extreme storm events that generate high sediment deposition with the effects of flow regulation 

structures. 465 

3.2. Evaluation of SOMsSOM accuracy 

The quantization error (tableTable 2) provided a measure of the accuracy of SOMs. The quantization error reported 

a higher accuracy as the number of training samples increased (increasing the number of days, resulting in more channel 

measurement and flood properties for each training sample). Homogeneous areas in the U-Matrix became more evident (Figure 

7) as the quantization error diminished (Table 2). As Table 2 indicates, the 365 days interval had the best quality, as represented 470 

by the lowest quantization error. For this reason, the following sections will present an investigation of the maps produced 

with this interval. Table 2 also shows the SOM quality in terms of distance to the closest units of the SOMs trained for each 

cluster. The results suggest that the retraining of the individual cluster using GSOM improved the prediction quality of the 

SOM significantly.  

Table 2 also represents the correlation distance and RMSE between the measured and predicted residuals for each 475 

cluster of the validation datasets. The average correlation was close to 1 for all N values, suggesting the performance of the 

SOM model was satisfactory. The average RMSE was close to 0, which was also an indication of the quality assurance of the 

SOM model. Both the unsupervised correlation distances and the average correlation showed the best results for N- 365 days. 

The RMSE diminished with the increase in the interval. 
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Figure 7: U-Matrix for different intervals (N days). The red colors represent large distances in the feature space, while the blue 

colors represent “valleys “grouping subsets of similar data. 

Table 2:  Accuracy assessment parameters of the ML analysis. This table reports the average correlation and RMSE between the 

predicted and observed residuals for the different intervals. 485 

 

Interval (days) Avg. Corr. (10-fold) 
Avg. RMSE (m) 

(10-fold) 

15 0.81 0.13      Formatted Table
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30 0.84 0.14      

90 0.80      0.13      

180 0.80 0.09 

365 0.86      0.09 

 

Figure 8 presents the results of the unsupervised clustering for N = 365 for the variables used. In the figure, the 

contrast between high (red) and low (blue) value areas emphasizes the spatial patterns of the various parameters we 

investigated. Based on this clustering, a combined U-Matrix is produced (discussed in Figure 7) and a cluster label is assigned 490 

to each gage. Gages with similar characteristics presented by the variables are tagged with the same cluster number. We have 

gotThere are 12 clusters of gages. We for 365 days interval and we have plotted the clusters individually on a map showing 

how they spread across different physiographic regions and climate zones in Figure A1 in Appendix A. Clustering does not 

have a geographical meaning, rather gages behave more consistently between adjacent clusters than non-adjacent clusters, but 

this does not necessarily follow the spatial proximity of the gages. This is reflected in the spatial spreadpattern of the different 495 

clusters of gages in Figure A1. 

If we focus on the SOM of “Res”, we can see that the nodes on the righthand side of the SOM seem to be associated 

with high values of the residuals (Figure 8). Nevertheless, a small cluster of high residuals is seen in the upper lefthand corner. 

At the global level, this highlights a lack of regional synchrony in stage-discharge shifts at the yearly scale. (Pfeiffer et al., 

(2019) reported similar findings on the decadal scale. 500 

Based on the visual interpretation of the unsupervised SOMs, taking the atmospheric, hydrologic, and current 

geomorphologic conditions as single independent drivers is not sufficient to predict the magnitude of the shift in stage-

discharge at the flood stage. This suggests the co-occurring fluctuations in the various parameters, rather than variation in a 

single peak parameter, are the primary driverdrivers of change in flood hazard at the continental scale. 

 505 
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Figure 8: Individual SOMs of all the flood drivers for N= 365. Similar to the U-Matrix the red colors represent large distances in the 

feature space, while blue colors represent “valleys “grouping subsets of similar data. 

Visually, the SOMs in Figure 8 highlight the co-oscillation of hydrologic and geomorphologic variables as a standard 510 

component of watershed behavior. Drainage area (DA) and discharge/peak flow (Peak), for example, are positively correlated, 

with a cluster of high values in the bottom part of the SOMs. We can see that, other hydrologic variables like ELS (Mean water 

travel distance to the drainage outlet), EQ (Centroid of flow hydrograph), Q2 (Second-order moment of the flow), Vp 

(Precipitation volume), Vt (average flow volume per unit drainage area), and VaTr (Spreadness of precipitation), have similar  

patterns. The centroid of precipitation (EQ) and hydrograph (ETr) appear to be highly correlated. Some specific co-oscillations 515 

of variables are evident in multiple regions. Percentage (Perc) and percentile (Percentile) of peak flow show the highest values 

spread across the SOM nodes. This is consistent with the fact that along with the drainage area, the duration and spatial pattern 

of rainfall are responsible for the variability in lag time and basin response (Granato, n.d.; Woods and Sivapalan, 1999). The 

correlation among Drainage area (DA), peak discharge (Peak), and Mean water travel distance to the drainage outlet (Els) is 

evident for various clusters, as is the correlation between Normalized flow volume (Vt) and Baseflow (Vb). This is not 520 

surprising, considering that the basin size is generally the most important basin characteristic in determining the amount and 

timing of surface runoff at the outlet (Gupta and Dawdy, 1995). And the relationship between flood flow quantiles and drainage 

area is expressed by power-law equations (Villarini and Smith, 2010). It also confirms how catchments with larger drainage 

areas exhibit higher values of specific discharge and how morphodynamic properties (including low flows) tend to cluster with 

drainage network characteristics and scaling properties (Saghafian, 2005; Reis, 2006; Sofia and Nikolopoulos, 2020b). Further 525 

cross-cluster variability occurs with some atmospheric and hydrologic variables, namely the Centroid of precipitation (ETr), 

Centroid of flow hydrograph (EQ), and Spreadness of precipitation (VarTr). All the previously mentioned variables present 

their co-occurring peaks in Cluster 6 (the Upper Mississippi and Missouri region), which is in line with the fact that for this 

area (and cluster), snowmelt, rain on snow, or rainfall can cause major flooding. 

3.3. ML Advantages and Limitations 530 

One must note that the permutation feature importance changes with the shuffling of the feature; this process adds 

randomness to the measurement (Molnar, 2022), which might not be representative of a real physical process. When repeating 

the permutation, the results may vary considerably (Molnar, 2022). To increase robustness and stabilize the measure, we 

repeated the permutation and averaged the importance measures over the various repetitions.  

A further aspect to consider is that if the features are correlated, the permutation feature importance may be biased, 535 

with unrealistic data instances. The randomness added by the permutation might result in an unlikely combination of the 

parameters. This issue is more evident if real-world variables are directly or inversely correlated; by shuffling one of the 

features, we may be creating new unlikely or physically impossible instances. Therefore, as Molnar (2022) suggested, we may 

be potentially looking into a decrease in the model performance only due to values that we would never observe in the real 

world. 540 
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We should point out that channel conveyance change is known to vary spatially across a region and strongly correlates 

with climate variations and landscape properties. The feature permutation randomness for our study case was, however, 

counteracted by the two main features of SOMs: (1) the topological preservation of the neighborhood, which generates spatial 

clusters of similar patterns in the output space; and (2) the property of adaptation, where the winner neuron and its neighbors 

are updated to make the weight vectors more similar to the input. The SOM method can recognize new patterns during the 545 

training process. Besides that, using multiple attributes, such as combined atmospheric, hydrologic, and geomorphologic 

variables, can improve the pattern generated by the SOM. In our approach, the variable importance did not change, considering 

the various N intervals used to group storm properties. The high correlation between estimated residuals and measured ones 

during the 10-fold validation confirmed the accuracy of the model. 

Careful interpretations that explain how and why channel conveyance changes happen as they do are essential to 550 

guiding reliable predictions of river conveyance behavior and evolution. Another aspect to consider, as for any ML approach, 

is that SOMs are stochastic, as there are no physical constraints in their prediction. The use of randomness as a feature in the 

SOM analysis exerts confidence in the results mainly when the results are agreeable with the theoretical aspect of the variables. 

We suggest referring to Brierley et al., (2021) for a recent review of ML limitations in geomorphology in general. 

3.4. Changes in Flood Vulnerability after Major Floods  555 

We have interpreted the changes in flood vulnerability at each gage based on changes in predicted residuals. Figure 

9a shows the groups of gages representing different percentages of “likelihood of change.” If the reported value is <10%, for 

example, the predicted residuals for those gages show a sudden change from negative to positive in less than 10% of storms. 

The higher the percentages are, the more likely we expect a drastic reduction of channel capacity after a large storm. Comparing 

with the literature (Slater et al., 2015), we can see that, in our study, the locations with the highest likelihood of change 560 

coincided with those with significant channel capacity and net changes in flood hazard frequency. While the post-storm change 

was not as widespread as the effects highlighted by Slater et al. (2015), this was expected, as we were analyzing post-storm 

effects and not considering the persistence in time of these changes at this stage. Also, a higher rate of change (high percentage) 

might be representative of very dynamic rivers, whose changes are likely to smooth out in time. On the other hand, rivers 

changing less frequently might be witnessing changes with a magnitude sufficient to last longer. This fact should be addressed 565 

carefully. Another thing to consider is that, since USGS gages are intentionally located at stable sites, our analysis, as well as 

other works (e.g., Li et al., 2020; Slater et al., 2015), likely underestimates the importance of conveyance changes.  

Nonetheless, our results highlighted how substantial changes had occurred even for these locations. When we focused 

on the amount of change relative to the current confidence bound of the stage-discharge (Figure. 9b), we could see that the 

magnitude of change was higher for gages that changed less frequently. The northwestern part of CONUS, where Slater et al. 570 

(2015) highlighted clustering of increase in hazard due to channel capacity changes are consistent with clusters of gages for 

which we predicted negative residuals outside the confidence bound of the stage-discharge relationship. For the Northeast, on 

the other hand, our model predicted high-magnitude changes for areas identified by Slater et al. (2015) as areas significantly 
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impacted by flow frequency effects. It is known that existing stage-discharge relationships present uncertainty in estimating 

the discharge because of the variation in the individual measurements from which the estimation is derived. Our model 575 

highlighted that the post-storm increased change lay outside the range of acceptable uncertainty at many gages. As Figure. 9b 

shows, this change was as widespread as the effects highlighted by Slater et al. (2015) for total positive changes in flow hazard 

frequency (FHF). For gages in both this work and Slater’s, the total FHF increased logarithmically, as our predicted changes 

lay further in the negative domain, outside the lower confidence bound. 

  580 
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Figure 9: Predicted changes as compared to the results of Slater et al. (2015) showing Channel Capacity (CC) and Flow Frequency 

(FF) effects on flood hazard frequency (FHF). In (a) “Likelihood of change”- the percentage represents the number of times the 

model predicts a residual change from positive to negative after a major flood (for N = 365); in (b) the panel shows the ratio between 

average prediction and lower 95% confidence bound of the current stage-discharge relationship for the stations showing a drastic 585 
change positive to negative. In (a, b) gages with small variations from this study have been reduced for clarity. Panel (c,d, and e) are 

results from Slater et al. 2015. 

From the predicted results of the channel changes at the gage level, we next analyzed which locations were more 

prone to changes based on the number of gages with predicted changes within each physiographic region and climate type 

(Figure 10). Among the physiographic regions (Figure 10a), the Laurentian uplands and intermontane plateaus had the most 590 

changes (75% of all gages in this region). Rocky Mountain and pacific mountain systems followed the trend with the second 

most changes (50–75%). The changes in the <10% of the gages resided in the Interior Highlands, Atlantic Plains, and 

Appalachian highlands.  

The Appalachian Highlands regions are mountainous. In contrast, the interior plains are mostly flat agricultural lands 

whose river system consists of the upper Mississippi River, the Ohio River, parts of the Great Lakes, and small wetlands. This 595 

region has very dynamic hydrology, with very cold winters and hot summers. Snowmelt in the spring and heavy precipitation 

in the summer and winter result in big floods. Naturally, this can potentially lead to changes in the river reaches. While the 

Atlantic Plain is also relatively flat, it covers the Mississippi Delta, the Gulf of Mexico, and the Atlantic seaboard in the East 

(see Figure 2). The interaction with the ocean gives this region the most complex sediment activity. The coastal plain is also 

influenced frequently by tropical storms and cyclones, which results in a lot of sediment activity. The literature (Bracken and 600 

Croke, 2007; Kalantari et al., 2019; Croke et al., 2013; Sofia and Nikolopoulos, 2020a; Wohl et al., 2019) has highlighted 

sediment connectivity as a potentially critical factor in flood hazards, being linked to both changes in channel properties and 

increasing decadal trends in flood hazard, independent of scale. In addition, for these regions, and in the eastern United States 

more generally, peak flows are highly variable (Villarini & Smith, 2010), and tropical cyclones affect the distribution of 

extremes. All these characteristics contribute to the presence of very dynamic rivers, which, as confirmed by our model, quickly 605 

react to extreme events, adjusting their geometry and possibly altering future flood hazards. 

We made the same comparison for the climate types (Figure 10b). We detected high predicted variability mainly in 

hot and humid climate regions, while cold and dry regions showed minimal changes. Humid Continental climate (Dsb, Dfa, 

Dfb) led with the highest variability (>75% of the gages resided in these climate regions). The gages with 50–75% channel 

changes were in the Tundra Climate (ET) and Warm Summer Mediterranean Climate (Csb). Gages with the least changes 610 

(<10%) were located in Humid Continental Hot Summers with Dry Winters (Dwa), Continental Subarctic-Cold Dry Summer 

(Dsc), Cold Desert Climate (Wk), and Hot Semi-Arid Climate (BSh). These climate zones are mostly dry either year-round or 

seasonally. Our findings confirmed that the impact of major storms on rivers depends on both underlying long-term climate 

signatures (Chen et al., 2019; Stark et al., 2010) and short-term (year-to-year) climate variability (Slater et al., 2019). For many 

river systems, coarse sediment mobilization and transportation rates are controlled by regional climate (Anderson and Konrad, 615 

2019). Climate variability is expected to cause a cascade of geomorphic responses, including adjustments in downstream 

channel morphology. Other studies focusing on long-term changes rather than extreme events have shown how decadal‐scale 
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changes in river morphology could be explained as a downstream‐propagating channel response to regional climate variability 

often associated with periodic increases and decreases in channel geometry and conveyance (Scorpio et al., 2015; Slater et al., 

2019). Consideration of the joint contribution of climate properties and physiographic regions (as a proxy for sediment 620 

characteristics) has also emphasized the nonlinear nature of system response and the possibly severe and synergistic effects 

that come from the combined direct effects of climate signature and sediment delivery (Lane et al., 2007). 

  

Figure 10: Percentages of gages presenting changes in channel capacity in different (a) physiographic regions and (b) climate types. 

3.5. Variables Associated with Flood Vulnerability and Channel Changesshifts in the residuals. 625 

Focusing on the changes in the stage‐discharge relationship residuals (Res), we next investigated the correlation 

between predicted and measured residuals on the one hand and other variables on the other (Figure 119, Table 3). For the 

proposed ML framework, the training was unsupervised. In general, the predicted and measured residuals were highly 

correlated, validating the SOM performance. Table 3 summarizes the correlations among the considered predictors in Figure 

119 for N = 365 days. It presents the analysis of the group of variables based on the dendrogram branches for different 630 

likelihood of change levels (e.g., 0–10%, 10–30%, and 30–50%). This section discusses the correlations for the 30–50% 

category as an example; the other two categories showed similar outcomes. We do not have more than 50% here in the table 

because the highest percentage of gages that showed sudden change was 30-50%. In Table 3, level 1 shows the group of 

variables highly correlated to each other and with residuals. Level 2 shows variables that are highly correlated to each other 

but related to a lesser degree to the variables in Level 1.  635 

InFor level 1, the physiography of the basins is represented by the following variables- ELEV_* EQ, Q2, and ETR 

(Please see table 1 for explanation), which are correlated with all the other variables. The physiography of the basin deeply 

controls the complex land-atmospheric interactions and storm types resulting in rainfall runoff. Thus, this is no surprise that 

physiography alone is(Elevation) highly correlated to all other (hydrologic, geomorphologic, and atmospheric) variables used 

in this study. This highlights the importance of basin characteristics in influencing stage-discharge variability at gage sites.  640 

with EQ- (Centroid of the flow hydrograph and), Q2- (Second-order moment of the flow are also in group 1 of level 

1. Investigations of the influence of the flow stage on channel conveyance often focus on the impacts of peak or minimum 
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bankfull discharges. Recession rates matter in sediment delivery, however, as highlighted in the literature (e.g., Hassan et al., 

2006), and these two properties appear to be highly correlated with the impact of large storms on flood hazards.  The findings 

of this study provide needed insight, and managers could use the results to determine the flow hydrograph shapes that 645 

potentially alter short-term flood hazards. Such knowledge is necessary for the design of river infrastructure.  

The next variable is the), and ETR- (Centroid of precipitation. Many papers in literature (e.g., (Borga et al., 2008; 

Woods and Sivapalan, 1999; Woods, 1999; Smith et al., 2004, 2005, 2002; Zhang et al., 2001)highlighted the relationship 

between the centroid of precipitation and runoff production. Most works showed that, for example, the position of the storm 

centroid relative to the watershed outlet is an important driver of runoff:  storms having a precipitation centroid positioned in 650 

the central portion of the watershed tend to produce a higher runoff than storms having a centroid near the outlet or the head 

of the watershed. This is in line with the fact that rainfall runoff spatial variability influences flash flood severity relative to 

basin physiography and climatology. Flash flood severity, or flashiness, as defined by Saharia et al., (2017), defines the 

potential of a basin to produce severe floods as it encompasses both the magnitude and timing of a flood. It is, therefore, not 

unexpected that the centroid of precipitation appears to be highly correlated with the shifts in residuals.), which are correlated 655 

with all the other variables in Group 2.  

InFor level 2, Residuals (Res) are shown to be correlated with different variables. A noticeable pattern is group 1 contains 

mostly hydrologic variables, while group 2 contains atmospheric variables. In group 1, the residuals (Res) belong to the tree 

containing the variables RFACT (Rainfall and Runoff factor), HYDRO_DISTURB_INDX (Anthropogenic modification), 

STREAMS_KM_SQ_KM (Stream density), BFI_AVE (Base Flow Index), ASPECT_NORTHNESS, ASPECT_EASTNESS, 660 

STRAHLER_MAX (Maximum Strahler stream order in the watershed), MAINSTEM_SINUOUSITY (Sinuosity), 

DRAIN_SQKM (Drainage area), Peak (Peak flow), and CovtrLs  (Covariance of precipitation and water travel distance ) (level 

2 in table 3).  

RFACT- Rainfall runoff factor, directly affects rainfall runoff influencing the channel changes. 

HYDRO_DISTURB_INDX (see section 3.1) represents the channel condition, whether the channel is altered by manmade 665 

construction or not. Channel conveyance changes are highly affected by engineered constructions (Bormann et al., 2011; Pinter 

et al., 2006a, b), and the correlation result from our analysis supports these findings, indicating that human modifications are 

an important element to be considered when analyzing flood hazard changes. As mentioned previously, 

ASPECT_NORTHNESS and ASPECT_EASTNESS influence the daily cycle of solar radiation affecting the temperature, 

humidity, and soil moisture (Desta et al., 2004) that control the vegetation and, hence, the sediment movement of the floodplain. 670 

The variability of these factors can, therefore, affect sediment production and movement, with consequences for flood hazard 

changes.  

A group of highly connected elements comprises a series of drainage properties (STREAMS_KM_SQ_KM, 

STRAHLER_MAX, MAINSTEM_SINUOUSITY, DRAIN_SQKM) that modulate the way precipitation is routed through the 

basin and directly affect flood properties. More sinuous networks reduce peak flows and flooding (Seo and Schmidt, 2012; 675 

Seo et al., 2015; Saco and Kumar, 2002); smaller heterogeneity of path lengths results in a higher peak flow, a shorter time to 
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peak, and a shorter duration (Saco & Kumar, 2002). Also, flood frequency/event increases with the decrease of the fractal 

dimension of the river network (Zhang et al., 2015). Our model suggests these properties are highly correlated with residual 

changes and indirectly linked to post-storm modifications of flood hazards. Lastly, the Base Flow Index and Peak discharge 

are directly related to runoff and, thus, channel conveyance changes. Because the base flow index and Peak discharge define 680 

how much volume of water is in the channel. If the volume exceeds the channel conveyance capacity the channel is expected 

to change. This finding also supports the critical role of the minimal flood (baseflows) and bankfull discharge in river 

morphology. The variability of baseflow is also caused by groundwater recharge, which is a direct product of geologic and 

physiographic variations. 

In level 2, group 2, the tree contains Pmean (Mean Precipitation), ELS (Mean water travel distance to the drainage 685 

outlet), EQ (Centroid of flow hydrograph), Q2 (Second-order moment of the flow), Vp (Precipitation volume), Vt (average 

flow volume per unit drainage area), and VaTr (Spreadness of precipitation), VarLs (Variance of water travel distance), Vb 

(Base flow volume), and RunoffCoef (Runoff coefficient). These are mostly related to rainfall properties. While they are 

important fingerprints for the attribution of regional flood changes, these variables are related to changes in flood hazard to a 

lesser degree than physiography and flow properties.  690 

Overall, the results of our analysis highlight how the impacts of a flood-inducing storm event on channel properties 

and flood hazards are highly correlated with flow characteristics and a region’s geophysical signature.  
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Figure 119: Example of intercorrelation among the flood drivers for N = 365 days for the likelihood of change between 30 and 50%. 695 
The white color signifies that there is no correlation between those variables. The color bar from blue to yellow shows high to low 

correlations.  

Table 3: Highly correlated variable groups for different percentages (%) of the “likelihood of change” from the interpretation of the 

dendrogram in Figure 11. Levels in the table represent the main branches of the dendrograms and groups represent the sub -

branches under the main levels. 700 

 0-10% 10-30% 30-50% 

Variable groups Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 

ELEV_SITE_M, 

RFACT 

Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 

ELEV_SITE_M, EQ, Q2 

Group 2: All the other variables 

Level1:  

Group1: 

ELEV_MEAN_M_BASIN, 

ELEV_MAX_M_BASIN, 

ELEV_MIN_M_BASIN, 

ELEV_MEDIAN_M_BASIN, 

ELEV_STD_M_BASIN, 

ELEV_SITE_M, EQ, Q2, ETR 

Group 2: All the other variables 
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Group 2: All the other variables 

 

Level 2: 

Group1: HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

Res, 

ASPECT_NORTHNESS, 

ASPECT_EASTNESS, 

Vp, Pmean,CovtrLs, Vb, Vt, Els, IBF, 

VarLs 

Group 2: EQ, ETR, Q2, VarTr, 

RunoffCoef, Peak, 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM 

 

 

 

Level 2: 

Group1:  

RFACT, 

HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

BFI_AVE, 

Res, 

ASPECT_NORTHNESS 

ASPECT_EASTNESS 

Pmean, Els, IBF, VarLs 

Group 2: Vp, CovtrLs, IBF, Vb, Vt, 

ETR, VarTr, RunoffCoef, Peak, 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM 

 

 

 

Level 2: 

Group1:  

RFACT, 

HYDRO_DISTURB_INDX, 

STREAMS_KM_SQ_KM, 

BFI_AVE, 

Res, 

ASPECT_NORTHNESS 

ASPECT_EASTNESS 

STRAHLER_MAX, 

MAINSTEM_SINUOUSITY, 

DRAIN_SQKM, IBF, Peak, CovtrLs 

Group 2: Pmean, Els, VarLs, Vp, Vb, 

Vt, VarTr, RunoffCoef 

4. DiscussionsConclusions 

4.1. Channel Changes and Watershed Characteristics 

Our model highlighted in Figure 6, that the most important hydrologic variable was the condition of the watershed, 

whether it is anthropogenically modified or natural. This confirms that human modifications are an important element to be 

considered when analyzing flood hazard changes (Bormann et al., 2011; Pinter et al., 2006a, b). Ahrendt et al. (2022) 705 

demonstrated that channel regulation is important to conveyance changes which resonates with the variable importance 

analysis results from Figure 6. Similarly, the construction of dikes, bridges, dams, meander cutoffs, channel constriction by 

wing dikes, groynes, and other engineering projects can alter channel conveyance within rivers and the characteristics of their 

floodplains (Bormann et al., 2011; Pinter et al., 2006b, a). The importance of this variable in the model highlighted the potential 

interaction of flood-inducing events that generate high sediment deposition with the effects of channel modification. As well 710 

numerous works in literature (Feng et al., 2021; Mazzoleni et al., 2022) also highlighted how urbanization processes and 

landscape changes induced by human activities have large impacts on flood hazards worldwide. 
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The model gave high importance to drainage density, which is an essential characteristic of the Earth's surface that 

regulates erosion and the movement of water and sediments (Clubb et al., 2016). Drainage density is also correlated with 

subsurface permeability (Luo et al., 2016). The control these factors exert on sediment production and delivery and soil 715 

permeability may explain the importance of these variables to post-storm changes in river conveyance. Drainage density is 

also correlated to other hydrologic and climatic variables such as precipitation and climate types (Moglen et al., 1998).  

 Visually, the SOMs in Figure 8 highlight the co-oscillation of hydrologic and geomorphologic variables as a standard 

component of watershed behavior. Drainage area (DA) and discharge/peak flow (Peak), for example, are positively correlated, 

with a cluster of high values in the bottom part of the SOMs. We can see that, other hydrologic variables like ELS (Mean water 720 

travel distance to the drainage outlet), EQ (Centroid of flow hydrograph), Q2 (Second-order moment of the flow), Vp 

(Precipitation volume), Vt (average flow volume per unit drainage area), and VaTr (Spreadness of precipitation), have similar  

patterns. The centroid of precipitation (EQ) and hydrograph (ETr) appear to be highly correlated. Some specific co-oscillations 

of variables are evident in multiple regions. Percentage (Perc) and percentile (Percentile) of peak flow show the highest values 

spread across the SOM nodes. This is consistent with the fact that along with the drainage area, the duration and spatial pattern 725 

of rainfall are responsible for the variability in lag time and basin response (Granato, 2012; Woods and Sivapalan, 1999). The 

correlation among Drainage area (DA), peak discharge (Peak), and Mean water travel distance to the drainage outlet (Els) is 

evident for various clusters, as is the correlation between Normalized flow volume (Vt) and Baseflow (Vb).  

This is not surprising, considering that the basin size is generally the most important basin characteristic in 

determining the amount and timing of surface runoff at the outlet (Gupta and Dawdy, 1995). The relationship between flood 730 

flow quantiles and drainage area is expressed by power-law equations (Villarini and Smith, 2010). It also confirms how 

catchments with larger drainage areas display higher values of specific discharge and how morphodynamic properties 

(including frequent flows such as the bankfull discharge) tend to cluster with drainage network characteristics and scaling 

properties (Saghafian, 2005; Reis, 2006; Sofia and Nikolopoulos, 2020b). Further cross-cluster variability occurs with some 

atmospheric and hydrologic variables, namely the Centroid of precipitation (ETr), Centroid of flow hydrograph (EQ), and 735 

Spreadness of precipitation (VarTr). All the previously mentioned variables present their co-occurring peaks in Cluster 6 (the 

Upper Mississippi and Missouri region), which is in line with the fact that for this area (and cluster), snowmelt, rain on snow, 

or rainfall can cause major flooding.  

The physiography of the basin deeply controls the complex land-atmospheric interactions and storm types resulting 

in rainfall runoff. Thus, this is no surprise that physiography alone is highly correlated (Figure 9, Table 3) to all other 740 

(hydrologic, geomorphologic, and atmospheric) variables used in this study. This highlights the importance of basin attributes 

in prompting stage-discharge variability at gage locations. Investigations of the influence of the flow stage on channel 

conveyance often focus on the impacts of peak or minimum bankfull discharge. From Figure 9 and Table 3, we can see that 

recession rates matter in sediment delivery, as highlighted in the literature (e.g., Hassan et al., 2006), and these two properties 

are highly correlated with the impact of large storms on flood hazards. The findings of this study provide needed insight, and 745 
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managers could use the results to determine the flow hydrograph shapes that potentially alter short-term flood hazards. Such 

knowledge is necessary for the design of river infrastructure.  

Many papers in the literature (e.g., (Borga et al., 2008; Woods and Sivapalan, 1999; Woods, 1999; Smith et al., 2004, 

2005, 2002; Zhang et al., 2001) highlighted the relationship between the centroid of precipitation and runoff production. Most 

works showed that, for example, the position of the storm centroid relative to the watershed outlet is an important driver of  750 

runoff:  storms having a precipitation centroid positioned in the central portion of the watershed tend to produce a higher runoff 

than storms having a centroid near the outlet or the head of the watershed. This is in line with the fact that rainfall runoff spatial 

variability influences flash flood severity relative to basin physiography and climatology. Flash flood severity, or flashiness, 

as defined by Saharia et al., (2017), assesses a basin's capacity to produce severe floods by considering both the volume and 

timing of a flood. It is, therefore, not unexpected that the centroid of precipitation appears to be highly correlated with the 755 

shifts in residuals.  

Also, as shown in Figure 9 the significance of “Aspect” attributes can be understood in terms of the various runoff 

and soil loss yields that can result from changes in slope properties. For example, soils on south-facing slopes always seem to 

be much more eroded or degraded than those on more humid north-facing slopes due to differences in aspect, steepness, 

lithology, and flora type. ASPECT_NORTHNESS and ASPECT_EASTNESS influence the daily cycle of solar radiation 760 

affecting the temperature, humidity, and soil moisture (Desta et al., 2004) that control the vegetation and, hence, the sediment 

movement of the floodplain. The variability of these factors can, therefore, affect sediment production and movement, with 

consequences for flood hazard changes.  

In Figure 9 and Table 3, our model suggests drainage properties related to the routing of the precipitation and flood 

water are highly correlated with residual changes and indirectly linked to post-storm modifications of flood hazards. Greater 765 

network sinuosity lowers peak flows and flooding (Seo and Schmidt, 2012; Seo et al., 2015; Saco and Kumar, 2002). Higher 

peak flow, faster time to peak, and shorter duration are produced by lower variability of flow path lengths (Saco & Kumar, 

2002). Also, flood frequency/event increases with the decrease of the fractal dimension of the river network (Zhang et al., 

2015). Lastly, the Base Flow Index and Peak discharge are intricately connected to runoff and, consequently, alterations in 

channel conveyance. This connection is evident as they characterize the volume of water within the channel. When the volume 770 

surpasses the channel's conveyance capacity, flooding is anticipated, and substantial sediment movement implies potential 

channel adjustments. The significance of these properties is a reaffirmation of the established notion that regular flows, such 

as baseflow below bankfull levels, are sufficient to determine channel shape, as they prevent the substantial accumulation of 

fine sediments and organic matter (Phillips, 2002). On the other hand, rare extreme floods are essential for transporting coarser 

bed material and eroding channel banks (Phillips, 2002). 775 

 4.3. Changes in Flood Risk after Major Floods  

 Figure 10a shows the groups of gages representing different percentages of “likelihood of change.” If the reported 

value is <10%, for example, the predicted residuals for those gages show a sudden change from negative to positive in less 
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than 10% of storms. The higher the percentages are, the more likely we expect a drastic reduction of channel capacity after a 

large storm. Comparing with the literature (Slater et al., 2015), we can see that, in our study, the locations with the highest 780 

likelihood of change coincided with those with significant channel capacity and net changes in flood hazard frequency. While 

the post-storm change was not as widespread as the effects highlighted by Slater et al. (2015), this was expected, as we were 

analyzing post-storm effects and not considering the persistence in time of these changes at this stage. Also, a higher rate of 

change (high percentage) might be representative of very dynamic rivers, whose changes are likely to smooth out in time. On 

the other hand, rivers changing less frequently might be witnessing changes with a magnitude sufficient to last longer. This 785 

fact should be addressed carefully. Another thing to consider is that, because USGS gages are purposely placed at stable 

locations, our analysis, as well as other works (e.g., Li et al., 2020; Slater et al., 2015), probably underestimates the 

consequences of conveyance changes.  

Nonetheless, our results highlighted how substantial changes had occurred even for these locations. When we focused 

on the amount of change relative to the current confidence bound of the stage-discharge (Figure. 10b), we could see that the 790 

magnitude of change was higher for gages that changed less frequently. The northwestern part of CONUS, where Slater et al. 

(2015) highlighted clustering of increase in hazard due to consistent channel capacity changes with clusters of gages for which 

we predicted negative residuals outside the confidence bound of the stage-discharge relationship. For the Northeast, on the 

other hand, our model predicted high-magnitude changes for areas identified by Slater et al. (2015) as areas significantly 

impacted by flow frequency effects. It is known that existing stage-discharge relationships present uncertainty in estimating 795 

the discharge because of the variation in the individual measurements from which the estimation is derived. Our model 

highlighted that the post-storm increased change lay outside the range of acceptable uncertainty at many gages. As Figure. 10b 

shows, this change was as widespread as the effects highlighted by Slater et al. (2015) for total positive changes in flow hazard 

frequency (FHF). For gages, the total FHF increased logarithmically in Slater et al., 2015, our model predicted changes further 

in the negative domain, outside the lower confidence bound. 800 
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Figure 10: Predicted changes as compared to the results of Slater et al. (2015) showing Channel Capacity (CC) and Flow Frequency 

(FF) effects on flood hazard frequency (FHF). In (a) “Likelihood of change”- the percentage represents the number of times the 

model predicts a residual change from positive to negative after a major flood (for N = 365); in (b) the panel shows the ratio between 805 
average prediction and lower 95% confidence bound of the current stage-discharge relationship for the stations showing a drastic 

change positive to negative. In (a, b) gages with small variations from this study have been reduced for clarity. Panel (c,d, and e) are 

results from Slater et al. 2015. 

From the predicted results of the channel changes at the gage level, we next analyzed which locations were more 

prone to changes based on the number of gages with predicted changes within each physiographic region and climate type 810 

(Figure 11). Overall, one must keep in mind the limits and the variability of the gage coverage across CONUS, as described 



 

44 

 

in the chapter related to the model limitation. Nonetheless, observing how variability changes across regions allows us to grasp 

how varying the post-storm effects are. Overall, rivers across the US are highly dynamic per se, and their variability depends 

on a combination of factors, mostly driven by how sediment moves across the landscape (Montgomery and Buffington, 1998; 

Flores et al., 2006). This, in turn, depends on a variety of landscape properties, as well as climate conditions, and human 815 

modifications as well (Wu et al., 2023).  

Among the physiographic regions (Figure 11a), the Laurentian uplands and intermontane plateaus had the most 

changes (75% of all gages in this region). Rocky Mountain and Pacific Mountain systems followed the trend with the second 

most changes (50–75%). The changes in the <10% of the gages resided in the Interior Highlands, Atlantic Plains, and 

Appalachian highlands. The Appalachian Highlands regions are mountainous. In contrast, the interior plains are mostly flat 820 

agricultural lands whose river system consists of the upper Mississippi River, the Ohio River, parts of the Great Lakes, and 

small wetlands. This region has very dynamic hydrology, with very cold winters and hot summers. Snowmelt in the spring 

and heavy precipitation in the summer and winter result in big floods. Naturally, this can potentially lead to changes in the 

river reaches. While the Atlantic Plain is also relatively flat, it covers the Mississippi Delta, the Gulf of Mexico, and the 

Atlantic seaboard in the East (see Figure 2). Moving toward the coastline, frequent tropical storms and cyclones are recorded, 825 

which could increase sediment activity overall  (Tweel and Turner, 2014). As well, lots of human activities can alter river 

morphology, especially in the deltas, due to sediment movements (Nienhuis et al., 2020). The literature (Bracken and Croke, 

2007; Kalantari et al., 2019; Croke et al., 2013; Sofia and Nikolopoulos, 2020a; Wohl et al., 2019) has highlighted sediment 

connectivity as a potentially critical factor in flood hazards, being linked to both changes in channel characteristics and 

increasing decadal trends in flood hazard, independent of scale. In addition, for these regions, and in the eastern United States 830 

more generally, peak flows are highly variable (Villarini & Smith, 2010), and tropical cyclones affect the distribution of  

sediments as well (Tweel and Turner, 2014). All these characteristics contribute to the presence of very dynamic rivers, which, 

as confirmed by our model, quickly react to flood-inducing events, adjusting their geometry and altering flood hazards in the 

case of subsequent floods. 

We made the same comparison for the climate types (Figure 11b). We detected high predicted variability mainly in 835 

hot and humid climate regions, while cold and dry regions showed minimal changes. Humid Continental climate (Dsb, Dfa, 

Dfb) led with the highest variability (>75% of the gages resided in these climate regions). The gages with 50–75% channel 

changes were in the Tundra Climate (ET) and Warm Summer Mediterranean Climate (Csb). Gages with the least changes 

(<10%) were located in Humid Continental Hot Summers with Dry Winters (Dwa), Continental Subarctic-Cold Dry Summer 

(Dsc), Cold Desert Climate (Wk), and Hot Semi-Arid Climate (BSh). These climate zones are mostly dry either year-round or 840 

seasonally. The impact of major storms on rivers depends on both underlying long-term climate signatures (Chen et al., 2019; 

Stark et al., 2010) and short-term (year-to-year) climate variability (Slater et al., 2019). For many river systems, coarse 

sediment mobilization and transportation rates are controlled by regional climate (Anderson and Konrad, 2019). Climate 

variability is projected to trigger a chain reaction of geomorphic responses, including changes in downstream channel 

properties (East and Sankey, 2020; Wendland, 1996; Harrison et al., 2019; Knight and Harrison, 2012). Other studies focusing 845 
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on long-term changes rather than flood-inducing events have shown how decadal‐scale changes in river morphology may be 

accounted for as a downstream propagating channel reaction to regional climate variability, which is frequently accompanied 

by cyclical changes in channel geometry and conveyance (Scorpio et al., 2015; Slater et al., 2019). The joint contribution of 

physiographic regions (as a proxy for sediment characteristics) and climate properties has also highlighted the nonlinearity of 

system response and the potentially harmful and sequential effects that result from the coupled direct impacts of climate 850 

conditions and sediment connectivity (Lane et al., 2007). 

  

Figure 11: Percentages of gages presenting changes in channel capacity in different (a) physiographic regions and (b) climate types. 

4.3. Advantages and Limitations of the Framework 

This work is based on gage measurements, and across CONUS there is a known bias of stream size representation 855 

and spatial density in the gaging network, whereas some river sizes and landscape areas are vastly under- and over-represented 

(Kiang et al., 2013). Regarding the coverage of stream gages, the intrinsic limits of the dataset, in general, have been addressed 

in the literature and are very well summarized in the publication by Kiang et al., (2013). Broadly speaking, the Eastern United 

States has better coverage compared to its Western counterpart. Particularly, the arid Southwestern United States, Alaska, and 

Hawaii show notably lacking spatial coverage. Except for Hawaii, these regions also tend to be covered by shorter streamflow 860 

records. Discrepancies in hydrology contribute to variations in the statistical uncertainty calculated across different parts of 

the country (Kiang et al., 2013). The Central and Southwestern United States, characterized by arid and semiarid conditions, 

generally display higher interannual variability in flow, resulting in increased uncertainty in flow statistics. In the revised 

manuscript, we will incorporate these comments. Despite these distinctions, it's essential to recognize that any research relying 

on gaging sites faces similar limits and is overall affected by potential over or underrepresentation of flows. We believe that 865 

as USGS stream gage information could potentially be transferred from nearby stream gages if there is sufficient similarity 

between the gaged watersheds and the ungaged watersheds of interest, our model could also be applied to ungaged sites. 

However, one must always keep in mind that the successful ‘translation’ to ungaged environments depends on the correlation 

of the stream gages in the surrounding areas. For example, there are areas of CONUS (mostly mountainous) that show highly 

correlated stream gages (Kiang et al., 2013), whereas the Central United States and coastal areas of the Southeastern United 870 
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States show much uncorrelated gages. Therefore, the goodness of the information transfer might not work as well. Also, 

transferability would be most likely to be successful when basin attributes show high similarity and storm properties are within 

the range of variability of the training set used for this work. We do not recommend the use of this model for engineered rivers, 

where channel changes are expected to be limited by infrastructures such as concrete levees, as the model was trained excluding 

specifically sites featuring artificial controls at the gauging station that could impede the natural adjustment of the channel's 875 

shape. 

The ML model was trained considering both storm properties and watershed properties. The system is not capable of 

highlighting which element triggers the change, nonetheless, we provided an assessment of feature importance to stress that 

the shifts in how the model works, are mostly explained by a combination of storm and watershed properties. We would not 

suggest using the model, as it is trained currently, to predict changes without having information on the storm properties. 880 

Regarding storm properties, this study uses a published dataset (Shen et al. 2017) of storm events ranging from 2002 to 2013. 

The framework displays the intercorrelation of the different event properties that can affect channel changes, and this 

framework could be used for identifying variable gages outside the time range covered by the storm event database. 

Nonetheless, researchers can use the trained model with additional years of data, if they have available the same storm 

properties proposed by Shen et al. for more recent events. 885 

A further thing to consider refers to the watershed properties considered in the model. The Gage Dataset includes 

several hundred watershed characteristics compiled from national data sources, Actual stream density, as other properties, for 

example, could be different from those derived from national data sources, due to time and landscape changes happening in 

the watersheds, The advantage of the considered dataset, however, is that it is available consistently for all gages. Researchers 

could also consider using different methods to define the watershed properties and consider improved geomorphological 890 

parameters from high-resolution terrain data, derived from LIDAR sources for example (Passalacqua et al., 2015). In this case, 

it would be recommended to re-train the model and verify once again the importance of this parameter in the re-trained model, 

as the literature strongly highlights the higher variability of geomorphological and hydrological parameters derived from 

varying resolution terrain (Sofia, 2020b). 

One must note that the permutation feature importance changes with the shuffling of the feature; this process 895 

introduces randomness to the process (Molnar, 2022), which might not be representative of a physical process. When repeating 

the permutation, the results may vary considerably (Molnar, 2022). To increase robustness and stabilize the measure, we 

repeated the permutation and averaged the importance measures over the various reiterations. A further aspect to consider is 

that if the features are correlated, the permutation feature importance may be biased, with unrealistic data examples. The 

randomness added by the permutation might result in an unlikely combination of the parameters. This issue is more evident if 900 

real-world variables are directly or inversely correlated; by shuffling one of the features, we may be creating new unlikely or 

physically impossible instances. Therefore, as Molnar (2022) suggested, we may be potentially looking into a decrease in the 

model performance only due to values that we would never observe in the real world. 
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We should point out that channel conveyance change is known to vary spatially across a region and strongly correlates 

with climate variations and landscape properties. The feature permutation randomness for our study case was, however, 905 

counteracted by the two main features of SOMs: (1) the topological preservation of the neighborhood, which results in spatial 

clusters of comparable patterns in the output space; and (2) the adaptation property in which the winner neuron and its 

neighbors are changed to make the weight vectors more similar to the input. The SOM method can recognize new patterns 

during the training process. Besides that, using multiple attributes, such as combined atmospheric, hydrologic, and 

geomorphologic variables, can improve the pattern generated by the SOM. In our approach, the variable importance did not 910 

change, considering the various N intervals used to group storm properties. The high correlation between estimated residuals 

and measured ones during the 10-fold validation confirmed the accuracy of the model. 

Careful interpretations that explain how and why channel conveyance changes happen as they do are essential to 

guiding reliable predictions of river conveyance behavior and evolution. Another aspect to consider, as for any ML approach, 

is that SOMs are stochastic, as there are no physical constraints in their prediction. The use of randomness as a feature in the 915 

SOM analysis exerts confidence in the results mainly when the results are agreeable with the theoretical aspect of the variables. 

We suggest referring to (Brierley et al., 2021) for a recent review of ML limitations in geomorphology in general. 

5. Conclusions 

The variability of geomorphologic processes and future flood patterns can only be understood by evaluating all the 

critical flood drivers responsible. In this era of extreme flood-inducing events and rapidly changing landscapes, accurate flood 920 

vulnerabilityhazard assessment is paramount. Atmospheric, hydrologic, and geomorphologic parameters constitute both the 

main driving force behind and the detector of changes resulting from an extremea flood-inducing event. This study focused on 

the impact of extreme flood-inducing events on future flood hazards by exploring the channel changes following them. We 

utilized the interdependencies of the atmospheric, hydrologic, and geomorphologic flood drivers to gain an understanding of 

the impact of extremeflood-inducing events on channel capacity and identified important drivers for predicting residuals from 925 

the average stage-discharge curve. 

Our results confirm existing knowledge of watershed hydrology and further strengthen the compound importance of 

climate and geomorphology as drivers of changes in flood hazards. The sequential processes during and after a big flood event  

can only be understood by considering the contribution of all the flood drivers together. The results show how the variables of 

different flood drivers are interrelated and can create effects that are more adverse together.  930 

In flood models, channel Channel conveyance change is typically considered often regarded as stationary in flood 

hazard modeling and is recognizedacknowledged as one of the most significantimportant sources of model uncertainty. Since 

The bankfull discharge and flood occurrences are directly related to channel conveyance capacity directly influences bankfull 

flood recurrence intervals, our work suggests. Our research reveals that the assumption of channel stationarity may lead to 

systematicresult in either over- or underpredictionunder-prediction of the frequency of out-of-bank flow (i.e.,river discharge 935 

for a certain flood return periodsstage, as the existing stage-discharge relationship might be temporarily (or permanently if the 

shift pertains) underperforming. This would in turn eventually over/under-estimate flood hazard (recurrence interval, duration, 
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depth, and inundation extent). of flooding), especially in the case of subsequent floods. These models incorrectly feed flood 

control planning procedures, which raises the level of uncertainty in evacuation and rescue operations. Additionally, in flood 

insurance plans created using these models’ results are likewise incorrect.  Furthermore, if engineering, if flood designs are 940 

based on data gatheredcollected before periods when extrememajor flood events have reducedlowered channel conveyance, 

there is a danger existsrisk that surveyed channel dimensions and flood conveyance will be underestimated overoverestimated 

in the longer termlong run. 

The proposed ML model allows us to identify dynamic rivers more prone to changes in the stage-discharge 

relationship after major flood events. The proposed model does not account for the persistence of changes; that being said, the 945 

results highlight the risk of an immediate changereduction in channel capacity after a large storm. For rivers more prone to 

changes, periodic revision of flood frequency statistics is advisable for hazard assessments to keep pace with altered condit ions. 

Understanding the temporal duration of these changes would offer valuable insights into the practicality of implementing these 

updates or exploring alternative approaches to assessing flood risk, especially if the process exhibits significant variability 

over time. 950 

This study considered a limited set of drivers, excluding, for example, human activities in the watersheds and 

vegetation properties. WeChannel changes can be due to other geographically significant events (e.g. landslides, debris flow, 

etc), however, such occurrences could also be triggered by the storm events that caused the flood hazards. At this stage, we 

have a complete database of storm properties, but we did not include an analysis of additional event parameters such as mass 

movements and the volume (if known) of sediment/Debris delivered during such events. Future research could improve the 955 

method by adding predictors and investigating the sensitivity of median storm characteristics to different intervals (lag times).  

In response to increased flow, we do not expectanticipate channel conveyance to increase systematicallyrise consistently 

everywhere in response to increased flow. We caution that fluvial adjustments reflect a complex interplay of non-stationary. 

The intricate interaction of dynamic anthropogenic and, climatic influencesfactors and their consequential processes within 

each basin, including feedback mechanisms. Long-term channel trajectories, local sediment yield conditions, and landcover 960 

history on a site-by-site basisare expected to be evident in the fluvial changes. Hence, sediment connectivity, Land-Use, and 

Land-Cover Change anthropogenic factors could also be included to retrain the model to produce changes in the stage-

discharge relationship at the flood stage and potentially create scope for futurethe prediction of channel changes due to 

extremeflood-inducing events. 

 965 
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Figure A1: Gages with clustering identification assigned by SOM unsupervised clustering (a-l)). For the acronym description of 1380 
Physiographic regions and climate types please refer to Table A1 and A2. 

Table A1: Description of climate types from Köppen-Geiger climate classification (Beck et al., 2018) used in Figure A1  

 

Climate types Description 

Af    Tropical rainforest 

Am    Tropical monsoon 

Aw    Tropical Savanna (Wet and Dry Climate) 

BWh    Hot desert climate 

BWk    Cold desert climate 

BSh    Hot semi-arid climate 

BSk    Cold semi-arid climate 

Csa    Hot-summer mediterranean climate 

Csb    Warm-summer mediterranean climate 

Csc    Temperate dry summer  cold summer 

Cwa    Warm oceanic climate / humid subtropical climate 
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Cwb    Subtropical highland climate or temperate oceanic climate with dry winters 

Cwc    Cold subtropical highland/Subpolar Oceanic 

Cfa    Humid subtropical climate 

Cfb    Temperate oceanic climate 

Cfc    Subpolar oceanic climate 

Dsa Humid continental climate - dry warm summer 

Dsb    Humid continental climate - dry cool summer 

Dsc    Continental subarctic - cold dry summer 

Dsd    Continental subarctic – dry summer very cold winter 

Dwa    Humid continental hot summers dry winters 

Dwb    Humid continental mild summer dry winters 

Dwc    Subarctic with cool summers dry winters 

Dfa    Humid continental hot summers year around precipitation 

Dfb    Humid continental mild summer wet all year 

Dfc    Subarctic with cool summers year around rainfall 

Dfd    Subarctic with cold winters year around rainfall 

ET    Tundra climate 

EF    Ice cap climate 
 

Table A1: Description of Physiographic regions (Fenneman and Johnson, 1964) presented in Figure 2 and A1 1385 

Physiographic Regions Description 

 ApHigh  Appalachian Highlands 

 AtlPlain  Atlantic Plain 

 IntHigh  Interiors Highlands 

 IntPlain  Interior Plains 

 IntermPlat  Intermontane Plateaus 

 LaurUpl  Laurentian Upland 

 PacMounSys  Pacific Mountain System 

 RockMounSys  Rocky Mountain System 
 

 


