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Abstract, Flooding is predicted to become more frequent in the coming decades;-the-frequency-of floods-is-expected-to

inerease—as—a—result because of global climate ehargeschange. Recent literature has highlighted the importance of river
morphodynamics in controlling flood hazards at the local scale. Abrupt and short-term geomorphic changes can occur after

major flood-inducing storms. However, there is still a generalwidespread lack of the-capabilityability to predietforesee where
and if significantwhen substantial geomorphic changes will occur-and, as well as their eenseguences-enramifications for future

flood hazards. This study sought to gain an understanding of the implications of major storm events for future flood hazards.
For this purpose, we developed self-organizing maps (SOMs) to predict post-storm changes in stage-discharge relationships,
based on storm characteristics and watershed properties at 3,101 stream gages across the eentinentalContiguous United States
(CONUS). We tested and verified a machine learning (ML) model and its feasibility for (1) mapping the variability of
geomorphic response to extremeflood-inducing storm events and (2) representing the effects of these changes on stage-
discharge relationships at gaged sites as a proxy for changes in flood hazard. The developedestablished model allows us to
targetselect rivers with stage-discharge relationships that are more prone to ehangeschange after majorflood-inducing storms,
for which flood frequeney-statisticsrecurrence intervals should be revised periodicallyregularly so that hazard assessment can
keep-pacebe up to date with the alteredchanging conditions. Results from the model show that, even though post-storm changes

in channel conveyance are widespread, the impacts on flood hazard vary across CONUS. The influence of channel conveyance
variability on flood risk depends on various hydrologic, geomorphologic, and ehimaticatmospheric parameters characterizing
a particular landscape or storm. The proposed framework can prevideserve as a basis for incorporating channel conveyance

changesadjustments into predictions-offlood hazard variability-—assessment.

1 Introduction

Several factors contribute to the non-stationarity in flow regimes, including variations in human activities, changes
in land cover and land use, climate changes, and low-frequency internal climate variability (i.e., multidecadal oscillations)
(Cunderlik and Burn, 2003; Mostofi Zadeh et al., 2020). Consequently, flood trends over the past decades have changed
worldwide (Chang et al., 2007; FEMA, 2013; Karagiannis et al., 2017; McEvoy et al., 2012; Ziervogel et al., 2014), resulting
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in adverse impacts on society and the environment (Bldschl et al., 2019; Dottori et al., 2022, 2018; Hattermann et al., 2014;
Milly et al., 2002; Mostofi Zadeh et al., 2020; Slater et al., 2015).

Traditional “cause-effect” studies have focused on the time dependency or non-stationarity of individual hydrologic
flood drivers (Alfieri et al., 2015; Khanam et al., 2021; Lisenby and Fryirs, 2016; Mallakpour and Villarini, 2015; Mostofi
Zadeh et al., 2020; Munoz et al., 2018). However, these studies might be under or overestimating the actual damage, especially
in regions where the landscape is changing rapidly, because of the magnitude and ubiguityprevalence of the hydroclimatic
changevariability that is now underway.

variability in streamflow, assuming constant channel capacity (Merz et al., 2012; Slater et al., 2015)2015). The relationship

between magnitude and frequency is also generally built upon the peak flow distribution, whereas peaks are discretized as

either_annual maxima or peaks over the threshold, but mostly assuming that river capacity remains constant over the
investigation records. —Seme-recent-w (AR al_2022: N al_2016- Slatar ot gl 2015 201Q- Sofiq

For decades, fluvial geomorphology research has focused on changes in river characteristics (Baker, 1994; Benito

and Hudson, 2010; Stott, 2013). Various recent works (Ahrendt et al., 2022; Naylor et al., 2016; Slater et al., 2015, 2019; Sofia
and Nikolopoulos, 2020a; Sofia et al., 2020; Stephens and Bledsoe, 2020, 2023) have suggested that Charges-in-the time has

come to move beyond flood hazard assessment based on this “fixed river” idea. River channels and their adjacent floodplains

continuously evolve because of the interactions of hydrology, landscape, and climate drivers and the interdependencies of

processes at different spatial and temporal scales (Lane et al., 2007; Pinter et al., 2006b; Slater et al., 2015; Stover and

Montgomery, 2001; Blench, 1969). Humans and water resources are intertwined, and they are now more than ever active
players in these intricate geomorphic dynamics of rivers and floods (Ceola et al., 2019; Grill et al., 2019; Wohl, 2019). Rivers
naturally modify their geometry (i.e., their breadth, depth, and slope) to reflect changes in discharge and sediment in the

upstream catchment in addition to the obvious alterations brought on by human involvement (Lisenby et al., 2018). Any

changes in these characteristics possibly will also alter the magnitude, frequency, and risk of future flooding.

The ability of rivers to heldstore and eenvey-flood-watersmove floodwaters downstream {rivercenveyance-capacity)
alteraffects the probability that floods wit-evertepwould destroy riverbanks or flood defencesbarriers, even ifwhile the total
volume of water that flows through the-river systems during floods dees-netchange-remains constant. Therefore, these changes
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in channel capacity alter flood properties, even when the magnitude of the flood fregueney-remains unchanged (Blench-1966-
4993, 1969; Criss and Shock, 2001; Lane et al., 2007; Neuhold et al., 2009; Pinter et al., 2008; Slater et al., 2045¢2015; Stover
and Montgomery, 2001). Some obvious evidence of the effects of channel changes on flood properties (e.g. extent, depth, etc)
has been presented by recurring flooding in different dynamic rivers (Brierley and Fryirs, 2016; Pinter et al., 2001; Zischg et
al., 2018; Tate, 2019; Munoz et al., 2018). During these flood events, impacts are most evident at sites where the rivers’ channel
capacity has been drastically reduced (Munoz et al., 2018; Tate, 2019; Sofia et al., 2020).
AsidefromNeglecting the apparent-changes—resulting—from-human-intervention—rivers-alsonaturaly adjust-thei

changes in flows and sediment in the upstream

enby etal.; 2018). Any changes in these characte might also-alter the frequency and of future flooding
: :

Changes—te-streamflow regime and channel conveyance capacity and-streamflowregime—can be-sudden—and
neglecting-this-fact-can-ebseureconceal short-term ehangesshifts in flood threats. (hazards—Li et al., 2020), for example,

demonstrated that long-term trends comprise numerous short-term transients of much larger magnitude. These transient stages

are often caused by abrupt seeurscouring or deposition during extremeflood-inducing storm events and are comparable in
magnitude to long-term trends in peak streamflow. Additionally, short- and long-term climate variability can simultaneoushy
affect-patterns-ofat the same time impact the streamflow patterns and channel conveyance_changes, with the channel form
adjusting to precipitation and sediment supply (Death et al., 2015; Rathburn et al., 2017; Ruiz-Villanueva et al., 2018; Scorpio
etal., 2018; Surian et al., 2016; Wicherski et al., 2017).

Figure 1, for example, shows changes in Boulder Creek in Colorado before and after a flash flood in 2013. Comparing
the channel planform and width, it is evident the channel got wider after the flood. Images from 2015 and 2019 show that the
secondary channel on the right eventually disappeared, and the main channel acquired a more prominent bend than in the 2013
image. Such relatively quick ehanges-eanalterations have the potential to further atterfhaiatmodify the geomorphic preperties
characteristics of rivers and ereateto produce feedback that will affect the properties of future fleed-propertiesfloods (depth,

frequency, duration, and spatial extent).
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October 07, 2012
Q=0.7 m3/s

October 09, 2015
Q=93 m3/s

October 07, 2012
Q=0.7 m3/s

October 09, 2015
Q=93 m’/s

October 06, 2013
Q=8.2mi/s

September 12, 2019
Q=1.7m3/s

October 06, 2013
Q=8.2m3/s

Figure 1: Change in channel width in Boulder Creek, Colorado, before (2012) and after (2013-2015-2019) a flash flood in 2013
90 (Google Earth imagery). The Discharge reported here is Dailythe daily discharge measured at USGS 06730200 BOULDER CREEK
AT-NORTH75TH ST NEARBOULDER-COBoulder Creek at north 75th st. near Boulder, co.
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Systematic shifts in a river’s stage-discharge relationships identify the need for sharp upward revisions in hazard
levels and stage- based flood-frequency analysis. Adjustments to the river stage-discharge relationship account for, at least
partly, climate variability and long-term change. Nonetheless, while some river changes might be persistent in time, others
could be more sudden and persist for a shorter time frame, like in the case of extremeflood-inducing storms. These short-term
channel changes are difficult to predict, but they could substantially increase the post-stermflood hazard, especially in the case
of subsequent storms.

Understanding the scale and severity of channel changes after majorflood-inducing storm events is key to improving
flood management and building the resilience of critical infrastructure. What is missing from our current knowledge is a
comprehensive study that shows the impacts of storm-induced channel changes on future flood hazards. Buraas et al., (2014)
cited a general lackshortage of capability to predict where significant geomorphic changes will occur following extremeflood-
inducing events. Other authors have pointed to multidirectional approaches as promising contributions to the analysis of
channel response to severe floods and the identification of controlling factors, (¢Rinaldi et al., 2016; Scorpio et al., 2018; Surian
etal., 2016; Wicherski et al., 2017; among others).
inki i at/At regional scales, where-assessingwhen it is often
either impracticable or impossible to identify the specificprecise events responsible for periods of channel ehange-is-typicathy
eitherimpractical-orimpessible—This-shift, linking geomorphic cause and effect becomes increasingly difficult. However, this
does not ebviatenegate the need-howeverto-understandrequirement to comprehend and recognize short-term geomorphologic
and hydrologic and-merphelegic-behavior that eould-amplifiycan exacerbate or effsetmitigate flood hazardsthreats. For this
purpose, the availability of a large dataset representing a wide range of extremeflood-inducing storm characteristics and

channel morphology under different boundary conditions, such as underlying climatic, hydrologic, and geomorphologic
settings, is crucial.

In this study, we have utilized stage-discharge “Residual” as a proxy of the channel capacity change. We sought to
understand and predict the effects of extremeflood-inducing storms on channel conveyance and, consequently, flood hazards.
To achieve this, we introduced a modeling framework based on machine learning (ML) (section 2.3) that characterizes the
interdependence of flood drivers, including atmospheric drivers (precipitation), hydrologic drivers (flow, stage), and
geomorphologic drivers (channel width, depth, drainage area, geophysical characteristics). Despite-some-Hmitations-(Karpatne
et-al-2019)-ML applications are rapidly gaining popularity in the field of hydrology, geomorphology, and climate studies
(Bergen et al., 2019; Schlef et al., 2019; Valentine and Kalnins, 2016). Despite some limitations (Karpatne et al., 2019), ML
can be beneficial when-we-develepin developing non-parametric models that represent unknown multi-variate, non-linear
relationships by training on historical measurements provided that these models are properly validated based on unseen data,
which informs us-as to whether ML results are accurate, transferable, and scalable (Houser et al., 2022; Sarker, 2021; Schlef
etal., 2019; Sofia, 2020).-2020a)

. This study uses ML to quantify and model the effects of extremeflood-inducing storms on channel conveyance and
the impacts on flood hazards. It aims to: (1) map the spatial variability of geomorphic response to an-extreme-storm

5

[ Formatted: Font color: Text 1

[ Formatted: Font color: Text 1




130

135

eventevents, and (2) understand the impact of these storms on the stage-discharge relationships at gaged sites as a proxy for
changes in flood hazard. The study provided an independent test of discharge-based results and produced a tool for generating
timely short-term updates of flood hazard estimates for dynamic rivers.

2 Materials and Methods
2.1 Quantifying the Impact on Flood Hazard

For this study, we used data from >2000 U.S. Geological Survey (USGS) gaging stations distributed across the
continentalcontiguous United States (Figure 2). The dataset allows us to cover a wide range of physiographic and climatic (See
Fig. 2) regions.

‘We selected stations for which-were-available both historical field-measured data on channel properties and flood
stages assigned by the National Weather Service (NWS).) were available. The data for channel properties were retrieved
following a procedure developed by (Slater, 2016; Slater et al., n.¢--2015) and using the codes provided by the authors at
hittps:/github-com/louisedSlater/Hydromerphelogy-https://github.com/LouiseJSlater/Hydromorphology. ,
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155 Figure 2: USGS gage stations considered for in this study overlain on physiographic and climatic regions. For the acronym
description of Physiographic regions and climate types please refer to Table Al and A2.

To model the average state of conveyance capacity for each stream gage site, we used theoretical single-_stage-
discharge relationships (rating curves) at the height associated with the Flood stageStage, as described by Slater et al. (2015).
The flood-stage,ferFlood Stage, from the US National Weather Service, indicates a gauge height above which water level
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begins to impact lives and human activities, and it generally corresponds to the first flood warning threshold. The procedure,
therefore, can be adapted for other gage datasets, in different parts of the world, by assuming similar warning thresholds.
Deviations from the theoretical stage-discharge relationship indicate that at a moment in time, a differentdiscrete
stage-discharge relationship existed, which highlights that there might have been temporal changes in channel conveyance.
As described by Li et al. (2020),
Slater et al. (2015, 2019), and Slater and Villarini, (2016), whieh-using a constant flood level enables the quantification of
"conveyance residuals (Res)" that represent temporal changes in the discharge that-is-requiredneeded to reach it-(i-e-thethe
specific flood level (for example due to shifts in channel capacity). In a temporal analysis of residuals, a positive to negative

shift indicates a sudden decrease in channel capacity and a potential increase in flood hazard (Slater et al., 2015), as a lower
discharge is needed to meet the warning threshold. We followed this procedure to capture the sudden changes in channel
conveyance following major storm events. We focus mainly on sudden shifts, rather than on permanent shifts. The main

reasons for this were, 1. short-term conveyance capacity changes are not considered in typical flood hazard assessments and

could substantially overstate or understate flood threats at any particular time for subsequent floods; 2. there is a plethora of

complex and sometimes not linear- processes and coupled feedback that we would need to ‘model” in the training set, to

provide a comprehensive benchmark to identify permanent shifts. and this could be potentially interesting research that could

be tackled by further studies building on our model.

TFo-define-the-stage-discharge-relationship,-we-usedTo define the stage-discharge relationship, we considered only

measured values of stage and discharge, as suggested in (Slater, 2016; Slater et al., 2015). Aside from considering consistent

gages present in the Shen et al. 2017 database, and covered by stream measurements, we applied the same criteria as Slater et

al. 2015, who only considered field measurements in which the discharge is within one percent of the product of channel

velocity and cross-sectional channel area, as reported by the USGS, and those made close to the gage station. Following the

work of (Slater, 2016; Slater et al.,2015, 2015a) we detected and excluded sites featuring artificial controls at the gauging

station that could impede the natural adjustment of the channel's shape. Additionally, we eliminated all field measurements

conducted at a different location or potentially different location, along with those taken in icy conditions, as these factors

could impact the accuracy of channel geometry measurements. Our selection process retained only sites with comprehensive

time series data, and as per Slater’s et al. 2015 work, only kept gages with 99.7% completeness in streamflow records and 40

channel cross-section measurements.

The stage-discharge relationship was evaluated through a Locally Weighted Scatterplot Smoothing (LOESS) fitting
(Cleveland, 1979), as suggested by Li et al. (2020), Slater et al. (2015, 2019), and Slater and Villarini (2016). The fitting
requires the definition of a smooth parameter, which we set automatically based on the biasecerrectedbias-corrected Akaike
Information Criterion (AIC) (Hurvich et al., 1998). We performed the analysis using the R package fANCOVA
{https://CRAN-R-project-orgipackage=FANCOVA)-(https://CRAN.R-project.org/package=fANCOVA).

Before performing the above-mentioned steps, we excluded from the analysis measurements taken prior-tebefore the

most recent datum change, if any reported measurement datum change was provided. We-did\We have excluded the gages that
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do not consider-stations-with-gaps-in-the-measurements—Wehave continuous data for the timeframe from 2002-2013. By taking

into account field data when the discharge was within a range of half the flood stage depth on either side of the flood stage,
we also adeptedaccepted the eriteria-used-instandards employed by Slater et al. (2015)-by-considering-field-measurementsin
which2015). We evaluated the discharge was within a range of half the flood stage depth on either side of the flood stage. We
readings visually assessed-the-measurements;-to identify-the-presence-of-groupslook for clusters of outliers in the scatterplots

of the channel measurements;-as-possible-indicators_that could be signs of shiftschanges in the measurement location (or
datum). We systematically eliminated these metrics. According to the information of the gage, the measurements did not shift

in location. For the work itself, consistently with Slater et al. (2015) and the open codes provided in her work, we removed

these-all field measurements made in a location where there is known infrastructure like a bridge for example, and all field

measurements-

made in icy conditions, as these might affect measurements of channel geometry. Figure 3 provides an example of

changes in residuals after a majerflood-inducing storm event for the Quinnipiac River in Connecticut. AFrom April 15 to April
18, 2007, a spring ner easter-affectednor'easter hit the East Coast of the United States-from-April-15-t0-18, 2007 During-this
event-the 100-year flood-elevations-at-the. The streamflow-gaging station exceededrecorded stages during this occurrence that
were more than 0.2 meters higher than the FEMA-projected 100-year elevations-by-mere-than-0-2mlevels (Ahearn, 2009). For
this gage, the flood stage is at 10ft, the peak discharge of the 2007 event was 11.51 ft, and the Quinnipiac River itself (at the

gage right upstream of the one in the figure) measured the maximum discharges for the period of record of the station during

the 2007 flood. In figure. 3a, the stage and discharge data retrieved from field measurements taken after the flood appear to
shift toward higher values of the stage for comparable discharges from before 2007. The curve fitted at the flood stage (black
line in Figure. 3a) ultimately aligns between the two sets of data. Looking at the residuals concerning the fitted curve (Figure.
3b), the shift from positive residuals, before 2007, to negative is noticeable-_(outlier residual points were filtered out before

performing the ML training). This suggests a loss of conveyance capacity due to deposition, assuming no changes in velocity.

The time series of widths (Figure. 3c) and eross-sectional-areacapacity (Figure. 3d) confirm this loss of conveyance; for this
site, slightly changed channel widths (Figure. 3c) and an abrupt change in capacity (Figure. 3d) can be seen;-pessibly-due-to
deposition-along-the-riverbed.. Such a change may result in a potential increase in flood hazard for a given flood volume.
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Figure 3: lllustration of the conveyance analysis for the USGS stream gage QUINNIPIAC RIVER AT WALLINGFORD (USGS
station 01196500), before and after the storm of April 2007. Stage-discharge relationship fitted to flood hazard level is shown in (a),
and residuals fitted to the rating curve in (b). In (b), some outlier residuals are evident, likely due to shifts in measurement locations.
These points were filtered out before performing the ML training. Time series of channel widths_as measured in the field (c) and

channel capacity (d) are also shown, to highlight that possibly, the major change in residuals is due to a difference in channel depth,
given a constant velocity.

2.2 Considered Predictors

To obtain information on the watershed’s hydrologic and geomorphologic properties, we collected data for each gage
from the GAGES Il dataset (Falcone, 2011). This dataset provides foer-each-gage-geomorphologic variables for each gage
associated with watershedwatersheds’ typical characteristics (e.g., Drainage area, Elevation, etc). These properties can be
considered likely to change at a speed much slower than river discharge and localized channel measurements. Hence, we may
consider these variables as 'static' in time. However, even if they are static in time, these characteristics are highly variable in
space as they are spread across the CONUS, providing us with a large sample of values for the ML training.

We also investigated several extremeflood-inducing events that occurred from 2002 to 2013 in the same watershed
and were included by {Shen et al., 20175 in the flood event database. We ended up with 291201 events total for the 3101 gages.

The minimum and maximum numbers of events per gage varied from 1 to 520. For each available field measurement of
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channel properties, we consider all the storms that happened in the previous 15, 30, 90, 180, and 365 days (accounting for the
lag times between each storm and the response of the river system) and calculate the median values of the storm characteristics
(as defined in Shen et al., 2017; Table 1) in that timeframe-\We-did-not-take-the-median-of excluding situations where we only
had 1 valuestorm. We only kept the gages in the analysis where we havehad more than 10 events. Therefore, for every single

field measurement (i.e., dot in Fig 3)we-have) we had 5 different median storm characteristics — 1 median storm characteristic
for the five different lag times considered, these medians represent a “typical flood-inducing storm” for that lag time, reducing

the effects of small variability. The information included by Shen et al., 2017 reported the percentile of the peak flows in the

entire time series of the watershed, and all the reported events show a value greater than 80 for all storms. The reader should

consider that while the median characteristic per se is not a ‘severe’ value, given the sample of data in Shen et al., 2017, itis a

value representative of the typical event, for storms which in general encompass events having peak flows greater than 80th

percentile,
From these integrated data sources, we identified three groups of drivers: atmospheric, hydrologic, and

geomorphologic (tableTable 1). The integrated dataset provided direct and statistically derived information regarding flows

and associated precipitation characteristics of each storm event.

Table 1: Variables-considered-in-the-analysis-and-their-abbreviations-variables Readers should refer to Shen et al. (2017) and
FaleoneeFalcone (2011) for a complete description of the atmespherichydrologicand-geomorphoelegic-variables. Variables in bold

letters are those used for ML analysis after the variable importance analysis.

VARIABLE_
VARIABLE DESCRIPTION Unit TYPE Data Source
Hydrologic variables
TOPWET Topographic wetness index In(m)  Hydrologie Falcone (2011)
Hydrologic Landscape Region (HLR) at unitle  Hydrelogic
HLR100M_SITE the stream gage location. ss Falcone (2011)
Peak Peak flow associated with the storm event el Shen et al. (2017)
unitle  Hydrologie
Res Residual ss Estimated
IBF Base flow index m3mé  Hysdrologic Shen et al. (2017)
Percentage of peak flow: The Hydrologic
corresponding percentile of the peak flow
Perc in the entire flow series of the gauge % Shen et al. (2017)
_unitl - Hydrolegic
Q2 Second-order moment of the flow ess Shen et al. (2017)
Mean water travel distance to the drainage Hydrolegic
Els outlet m Shen et al. (2017)
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EQ Centroid of flow hydrograph h el Shen et al. (2017)
Normalized flow volume ~ average flow Hydrologic
Vit volume per unit drainage area mm Shen et al. (2017)
HYDRO_DISTURB_ unitle  Hydrologie
INDX Anthropogenic modification ss Falcone (2011)
RunoffCoef Runoff coefficient unitless e i
Reference/non-reference class: REF =
reference  (least-disturbed _hydrologic
CLASS condition); NON-REF = not reference. N/A Falcone (2011)
Base Flow Index (BFI): ratio-of-baseBase Hydrologic
flow to total streamflow -expressed ratio,
given as a percentage ane-ranging from 0
to 100. Base—flow—is—thesustainedThe
persistent,  slowly  varyingfluctuating
component of streamflow;—usuaty that is
commonly attributed to ground-water
discharge to a stream_is known as base
BFI_AVE flow. % Falcone (2011)
N/AL  Geomorpholo
Reference/non-ref class—REF—= 00s ft- gie
reference — (least-disturbed — hydrologic  tonf
condition)——NON-REF———=—net in/h/a
GCLASSRFACT, referenee-Rainfall and Runoff factor clyr Falcone (2011)
Geomorphologic variables
Dominant (highest percent of the area) ‘Geomorpholo
geology, derived from a simplified version e
of Reed & Bush (2001) - Generalized
GEOL_REEDBUSH_  Geologic Map of the Conterminous
DOM United States. N/A Falcone (2011)
Geomorpholo
STREAMS_KM_SQ_  Stream density, km of streams per km/sq gis
KM watershed sq km, from NHD 100k streams ~ km Falcone (2011)
MaximumNHDPIus's maximum Strahler Geomorpholo
stream order in the watershed,—from unitle gic
STRAHLER_MAX Pl ss Falcone (2011)
MAINSTEM_SINUO unitle  Geomorpholo
usITY Sinuosity of mainstem streamline ss gic Falcone (2011)
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RFACT

ELEV_MEAN_M_B
ASIN

ELEV_MAX_M_BA
SIN

ELEV_MIN_M_BAS
IN

ELEV_MEDIAN_M_

BASIN

ELEV_STD_M_BAS
IN

ELEV_SITE_M

RRMEAN

RRMEDIAN

SLOPE_PCT

ASPECT_DEGREES

ASPECT_NORTHN
ESS

Rainfall-and-Runoff-factor

Mean watershed elevation (meters) from
100m National Elevation Dataset

Maximum watershed elevation (meters)

from 100m National Elevation Dataset

Minimum watershed elevation (meters)

from 100m National Elevation Dataset

Median watershed elevation (meters) from
100m National Elevation Dataset
Standard deviation of elevation (meters)
across the watershed from 100m National
Elevation Dataset

Elevation at gage location (meters) from
100m National Elevation Dataset
Dimensionless elevation - relief ratio,
calculated a  (ELEV_MEAN -
ELEV_MIN)/(ELEV_MAX -
ELEV_MIN).

Dimensionless elevation - relief ratio,
calculated as (ELEV_MEDIAN -
ELEV_MIN)/(ELEV_MAX -
ELEV_MIN).

Mean watershed slope

Mean watershed aspect

Aspect “northness”. Ranges from -1 to 1.
A value of 1 means the watershed is
facing/draining due north, and a value of -
1 means the watershed is facing/draining
due south
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%
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360)
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Geomorpholo
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Falcone (2011)

Falcone (2011)

Falcone (2011)

Falcone (2011)

Falcone (2011)

Falcone (2011)

Falcone (2011)

Falcone (2011)

Falcone (2011)

Falcone (2011)

Falcone (2011)

Deleted Cells



Aspect “eastness”. Ranges from-1to 1. A e
value of 1 means the watershed is gic
facing/draining due east, and a value of -1

ASPECT_EASTNES  means the watershed is facing/draining unitle

S due west ss Falcone (2011)
APhysiograp Deleted Cells
Geomorpholo hic—divisions
gic (Fennema ofF——the
nand Johnson, EORtEFMiAGUS
Physio Physiographic divisions of CONUS N/A 1964) U-55-2023) « [ Formatted Table
Seormorphole Deleted Cells
DRAIN_SQKM Drainage area km? gic Falcone (2011)
Atmospheric variables
Covariance of precipitation and water e b Deleted Cells
CovTrLs travel distance mh Shen et al. (2017)
Etr Centroid of precipitation h2 Atospharie Shen et al. (2017)
VarTr Spreadness of precipitation h? Atospharie Shen et al. (2017)
VarLs Variance of water travel distance m? Atospharie Shen et al. (2017)
Vb Base flow volume mm Atmospheric Shen et al. (2017)
Vp Precipitation volume mm Atmospheric Shen et al. (2017)
Pmean Mean Precipitation mm/h  Atmespheric Shen et al. (2017)
Atmospherie (¢ Deleted Cells
Climate types (was not included in the ML Beck et al.
model) unitless 2018)

2.3. Modeling the Impact of MajerFlood-inducing Storms

The ML-based methodology developed in this study for predicting the median “Residual” is based on clusters of the

gages. Using a self-organizing map (SOM) with event-specific characteristics, explained in Table 1, we developed a framework

260 for understanding and predicting channel changes due to severeflood-inducing storm events. The SOM developed by
(Kohonen, 1982), is one of the most popular clustering/ classification methods used in many research areas such as medical
science, hydrology, and signal processing (e.g., (Zanchetta and Coulibaly, 2022; Rahmati et al., 2019). The SOM method has
become a very useful prediction tool in hydrological and environmental studies because it can predict a target variable without
learning any physical relationship among a collection of variables. The main advantage of the SOMs is that they allow to

265 reduce the data dimensionality-of-the-dataset, by organizing the data into a two-dimensional array (Kohonen, 1982) using

15



topology-preserving transformations (Rahmati et al., 2019). SOMs, being a form of artificial neural network, can be thought
of as a regression technique with a higher level of nonlinearity between the dependent and independent variables (Geem et al.,
2007).

The proposed SOM framework (Figure 4) consisted of four phases: unsupervised clustering, supervised mapping,

270 trained regression, 10-fold validation, and prediction. The whole procedure is described in the sub-sections below.

Prediction of
Residual as a
proxy of

Variable
Importance

Input Variables

Changes in
Channel
Capacity

Neurons/ Seeds

Unsupervised
Clustering
using SOM

Supervised
mapping

Trained
regression

Cluster model using
l:abels SOM
assigned to

gages

10-fold
validation

Intra Cluster Correlation
Among Flood Drivers
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Prediction of
Residual as a
proxy of

Variable
Importance

Input Variables

Changes in
Channel
Capacity

Neurons/ Seeds

Unsupervised
Clustering
using SOM

Supervised
mapping

Trained

UMatrix Chusters regression
| » Clust:r model using
l:aber " SOM
gages
ta |
a) b)

10-fold

Intra Cluster Correlation validation

Among Flood Drivers

Figure 4: Schematic of the SOM framework proposed in this study.

The SOM algorithm is technically conceived for numerical datasets. This imphesmeans that any—variableSOMs
cannot be used to analyze variables with non-numerical data types, such as for-example-categorical values,-cannet-be-analysed

with-SOMs. To present the categorical variables to the machine learning model selected for this study, we therefore converted

all the categorical values into binary digits. Each binary digit was then transformed into one feature column.

Most storm variables (except Perc- Percentage of peak flow and Percentile-Percentile corresponds to peak flow) were
normalized considering the range of values available for each station. This normalization was performed to account for the
influence of the watershed sizes on the various storm properties. Continuous geomorphologic and hydrologic variables, not
coded in the range 0-1 (or 0-100) (aside from RRMEAN-Mean relief ratio and RRMEDIAN- Median relief ratio,
SLOPE_PCT- Mean watershed slope, and Aspect) were normalized considering the overall range across CONUS. The stage-
discharge residuals were kept as is because they are already “relative” in value to the stage-discharge fitted at flood stage for
each gage. To reduce the dataset dimensionality, and avoid collinearity, we performed a variable importance analysis using

the misclassification rate (section 2.3.1).
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2.3.1. Unsupervised Clustering

The first module used, a SOM algorithm to cluster together gages based on similar characteristics. The main objective
of this step is to group tegether-gages having similar underhiningunderlying patterns of variables. The SOMs are organized in
two-dimensional space where the neighboring neurons learn similar patterns, and neurons mapped far away have dissimilar

patterns (Stefanovi¢ &and, Kurasova, 2011).) This unsupervised mapping was performed automatically using the Kohonen

package in R (Wehrens and Kruisselbrink, 2018; Wehrens and Buydens 2007; Kohonen, n.d., 1982; Wehrens, 2019). We
s xing-the The optimal number of nodes

aswas set at five times the square root of the number of observational data, as per Kohonen's general rule of thumb for

determining the sizes of two-dimensional grids (Fytllls and Rizzo, 2013}L
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provideoffer the organization of the data into the differentvarious nodes—Fhen;, and then the nodes are clustered (Vesanto

&and, Alhoniemi, 2000)--) Clustering speeds significantly increase whenFhe-use-of-the nodes are used in place of the-actual

data-leads-to-significant-gains-in-the-speed-of-clustering-. The result of the first step is that gages are grouped together-in
neighboring nodes as-teng-asif the underlining patterns of variables are similar. After the SOM is trained, its U-matrix gives

insight into how all the data are organized, as it dlsplays the nodes and the distance that the weight nodes create between each

weight and all its neighbors. oA-This matrix can be used

for the second step of identifying and labeling the actual clusters, through image-analysis tools (Pacheco et al., 2017-\ineent
et-al199%; Wang et al., 2010; Wu &and, Li, 2022); Vincent et al., 1991). In this work, the—Fhe first unsupervised clustering

was accomplished by using all the data together, including the residuals—\We-assign in the process. Each gage was assigned a |

cluster numbers-te-each-gage-number based on all the variables of that location. Gages grouped in the same cluster are expected |

to have similar patterns of the input variables, including the residuals. For each cluster, then, we re-train the model, retaining
only the gages for that cluster, to provide the most typical residual given by the combination of hydrologic, geomorphologic,
and atmospheric variables.

The most common approach is to segment the U-matrix may-using the watershed technique of gray-scale image
processing (Costa and Netto, 1999; Vincent et al., 1991). Fhe Using a watershed analogy, the U-matrix (Figure 5) can be used

to identifylocate the clusters-usinga—watershed-analogy,—wherelarge—. Large "heights”" and ridges represent-targeimply
significant distances in the feature space, while tew—little "valleys="

represent data subsets that are similar (Ultsch and Ldtsch,
2017). The segmentation is performed by flooding the valleys (similar nodes with very close distances from one to the other)
until a ridge (high dissimilarity) is reached. Where the water converges, watersheds will form, having close boundaries. One
cluster is represented by all the items in a segmented area or watershed. According to this approach, a minimum height
threshold can be selected to define the clusters (valleys). We followed automatic thresholding and set the threshold to a
statistical value equal to half the standard deviation of the values. To perform this step, we applied watershed transformation
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and watershed-based object detection using the function “watersheds” in the R Bioconductor package (Torres-Matallana,
2016).

U-Matrix : Clusters

-
2
.3
-
- s
-6
g
= s P -
a) b)
330
U-Matrix . Clusters
-
M 2
3
» ma
- s
.6
° -
b)
Figure 5: Example of (a) U-Matrix and (b) derived clusters. rRed colors in the U-Matrix;—+ed-eolors—representtarge stand for
significant distances in the feature space, whilewhereas blue colors represent—are "valleys—greuping’ that group subsets of
similarrelated data. The watersheds identifiedshown in (b) representclustersare collections of similarrelated data.
335

reeWe assessed the
relevance of each feature according to its misclassification rate relative to a baseline cluster assignment resulting-fremproduced
by a random permutation of feature values to find the most crucial features and prevent data duplication (Molnar, 2022;
Breiman, 2001; Fisher et al., 2018). We preferred this approach considering that permutation feature importance does not
340 reguirecall for retraining of the model before the analysis. Aceerding-to-thisThis approach; states that a variable (feature) is
essential“important” if shufflingchanging its values determinesresults in a cluster reassignment because, in this easescenario,
the model heavityprimarily relies on that feature forthe-prediction-ofto forecast the predictors. Cenverselyln contrast, a feature
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is “considered "unimportant>" if permutingchanging its values leavesdoes not affect the predictedanticipated cluster
unechanged. The variable identified as important with the shuffling does not necessarily mean they have high variability among
watersheds. It rather means that this variable is highly correlated with the target variable (the cluster association), because
shuffling its values effectivelyessentially destroys any relationship between that feature and the target_variable, as indicated
by the decrease in the training performance. {Nete:After randomly permuting the values of a feature, the model is NOT refitted
to the training data-afterrandemby-permutingthe-values-of afeature)
. This technique has been recognized in the literature (e.g., (Breiman, 2016; Wei et al., 2015; Fisher et al., 2018;-\A/ei
et-al—2015)) and it is widely implemented in many statistic packages as well (e.g., Biecek et al., 2018,2019:Meodel
nterpretability-with- DA UGC-Business-Analytics-R-Programming-Guide;n.6-:2018, 2019; Molnar & Schratz, 2008)

Please refer also to Wei et al (2015) for a review. We ran the clustering algorithm 10 times with different seeds. At each run,
we trained the clustering using 90% of the data and predicted the remaining 10%; and, for each run, each feature of the dataset
was permuted 10 times. The permutation misclassification rate of a feature was calculated as the number of observations for
which the cluster assignment differed from the original cluster assignment, divided by the number of observations given a
permutation of the feature. The overall average misclassification rate iterations were interpreted as variable importance. We
decided to keep only the variables producing a misclassification rate higher than the mean values. Figure 6 shows the most
important variables for the interval N = 365 days. This variable selection indirectly checks for collinearity by keeping only the

variables that have the largest effect on the changes.
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Figure 6: Selected variables based on misclassification rate (%6).
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2.3.2. Supervised Mapping and Trained Regression

Self-organizing maps (SOM) are extensively applied for clustering and visualization purposes. Nonetheless, they can
be used for regression learning. (e.g., (Riese &and, Keller, 2019, 2018;-2019)). In the first step, the data (geomorphological,

atmospheric, hydrologic variables, and measured residuals) are clustered together, based on patterns of variables. The resulting
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SOMs are composed of nodes, each ene-associated-with-of which is connected to a "weight" vector;-which-is- that represents

the pesition—of-the—nede—node's location in the input space. After—training;—theThe map can be used to elassify
additionalcategorize further observations; after training by findinglocating the node with-the-clesestwhose weight vector is

closest to the input space vector (Bestbest matching unit—-, or BMU).
The regression algorithm of the SOM proceeds similarly to the clustering SOM algorithm. However, the regression

differs for these main points: 1.-TFhe-search-for-the BMU-is-performed-within) Within the finalized input SOM;—produced-at

that was created in the first step;stage, the BMU search is carried out.; 2-3) For the regression easeinstance, the weights of

the supervised SOM are based on one single parameter:— (a continuous number, which in our case is the residuals:).
By-ecombinirgCombining the unsupervised and the-supervised SOM; allows for the first-is-used-to-selectselection of

the BMU for each datapeintdata point while also connecting the second-tinks-the-selectedchosen best-matching unit to a

speeificparticular residual estimation._ In other words, each gage is mapped to a certain cluster, based on the median

characteristics of the storms. For the regression part, the data extracted from the SOM are restricted to the best matching
cluster, and given the input storm and watershed properties, we can predict the most likely residual.

For the supervised mapping and trained regression step, the gages were tagged to their corresponding SOM clusters.
Once a cluster is defined, we aimed at-determiningto determine which features were the most significantly correlated. For this,
we considered the distance correlation index (dCorr) (Székely et al., 2007) to quantitatively identify the correlation of the
important variables with the residuals within each cluster. The range of dCorr values-range, from 0 to 1, expressingrepresents
the dependence betweenof two independent variables. The stronger the dependence, the closer the value is to 1, the-strenger
the-dependeney;-and 0-implies-thatthe statistical independence of the two variables in-guestion-are-statisticathy-independentis

implied by a value of zero (Sofia & Nikolopoulos, 2020). We used inverse distance correlation (1-dCorr) to measure the

dissimilarity of the variables within the cluster and create organized dendrograms. The attribute distances between every pair
of drivers that have been successively clustered are depicted in a dendrogram.

Having tagged the gages, we performed supervised training with them to predict the residuals based on the
atmospheric, hydrologic, and geomorphologic variables. The main outcome of this part is to have aan ML system able to
predict the most probable residual after a storm having certain properties, for a location with specific watershed characteristics.
To this point, we retrained the SOMs independently for each cluster, using only the data retrieved from the stations within that
cluster. For this part, we applied an extension of Kohonen’s self-organizing map algorithm, the growing self-organizing map
(GSOM) (Alahakoon et al., 2000; GrowingSOM package | R Documentation, 2020, https:/rdrr.io/cran/GrowingSOM/). We

chose GSOM to refine the analysis and improve the prediction within each cluster. The GSOM hierarchical clustering
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aHewstechnique enables the data analyst to identify-significantlocate important and taterestingunique clusters at a higher level
and eentinue-withto focus on a more refined-clusteringprecise grouping of the interesting clusters only. (Alahakoon et al.,
2000). The GSOM is computationally expensive, so we decided to apply it to the already clustered data. A spread factor
parameterizes the GSOM. This measure can generate maps of different sizes without previous knowledge about the dataset,
samples, or attributes. We set the spread factor to 0.8, as suggested by Alahakoon et al. (2000).

Finally, we trained the model by selecting 90% of the data randomly and validated its performance using the
remaining 10% for each cluster. The traditional method of identifying the quality of the SOM, proposed by Kohonen, is to
compute the quantization error by summing the distances between the nodes and the data points, with smaller values indicating
a better fit. This method haehas been used successfully by many researchers, requiring minimal computation time, to compare
changes across time-series images (e.qg., (Bagéo et al., 2005; Dresp et al., 2018; Wandeto and Dresp-Langley, 2019). For quality
assessment, we also followed the approach used by (Swenson and Grotjahn, {2019). We performed cross-validation for a
particular SOM, first-fitting the SOM to the data_first to ensure a unique cluster assignment. Then we conducted 100 trials,
excluding the data used in initialization, as suggested by Swenson and Grotjahn (2019). We censideredutilized a
standardtypical subdivision of 90-10, wherebywhich meant that 90% of the data werewas used as training data to fit a new
SOM, and the rew-SOM was then usedutilized to predietforecast the cluster assignments of the remaining 10% of validation
data. We-evaluated-theThe percentage of gages fer-which-thewhose cross-validation cluster assignment eifferedchanged from
the original assignment in at least 10% of the 100 trials was calculated. We further tested the quality of the ML by evaluating

the RMSE and the correlation distance between the actual residuals and the predicted ones for the validation dataset.

2.3.3. Predicting Major Storm Effects on-Future Flood Hazard
Using the trained model (section 2.3.2), we predicted the residuals for each gaging station, based on all the variables
(table 1) selected from Shen et al. (2017), Falcone (2011})), and Fenneman and Johnson, (1964). We compared the predicted

residual for a given storm at a given gage with the average residual measured in the most recent year—\We-guantified-the

o

years focusing on prediction showing a sudden
deviation from positive (before the storm) to negative- (post-storm). This sudden deviation, as illustrated in Figure 3, can
indicate a rapid-changequick shift in channel conveyance in response to sediment deposition, which can trigger increased flood

hazard even when the flood event’s return period remains unchanged (Blench—1906-1993, 1969; Lane et al., 2007; Pinter et

al., 2006b, a; Stover and Montgomery, 2001).
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To highlight the criticality of this sudden shift, we considered as highly at risk those watersheds for which the

predicted residual, shifting from positive to negative, was outside the lower bound of the 95% confidence interval of the current

stage-discharge relationship. As LOESS smoothers fit a unique linear regression for every data point by including nearby data

points to estimate the slope and intercept, the correlation in nearby data points helps ensure obtaining a smooth curve fit.

Therefore, the u+1.960 of the nearby data points considered for each fitted value can be considered as a measure of the 95%
confidence interval. This information is calculated directly from the R package fANCOVA (https://CRAN.R-

project.org/package=fANCOVA) used for the fitting. Overall, a watershed having positive residuals for the most recent

measurements, for which we predict a sudden shift to negative outside the confidence bound of the stage-discharge curve,

represents a critical condition that should be monitored, as the current flood stage might underestimate the flood risk.

3. Results Analysis
3.1. Variable Importance

Figure 6 demonstrates the outcome of the variable importance. Based on the results shown in Figure 6, we found that
the same variables were always important for all intervals—analysis:interval analyses. Table 1 shows all the selected variables

in bold for N = 365. In this case, out of a total of 40 variables we have selected 30 based on the misclassification rate (%). Of

the selected variables 15 were geomorphologic variables, followed by 10 atmospheric variables and 5 hydrologic variables.

The most important variables were the Aspect (ASPECT_NORTHNESS, ASPECT EASTNESS), and stream density
(STREAMS _KM_SQ_KM). The most important hydrologic variable was HYDRO_DISTURB_INDX, which explains the

condition of the watershed, whether it is anthropogenically modified or natural. -Akserdietab=(2022) confirmed-that channel
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3.2. Evaluation of SOMsSOM accuracy

The quantization error (tableTable 2) provided a measure of the accuracy of SOMs. The quantization error reported
a higher accuracy as the number of training samples increased (increasing the number of days, resulting in more channel
measurement and flood properties for each training sample). Homogeneous areas in the U-Matrix became more evident (Figure
7) as the quantization error diminished (Table 2). As Table 2 indicates, the 365 days interval had the best quality, as represented
by the lowest quantization error. For this reason, the following sections will present an investigation of the maps produced
with this interval. Table 2 also shows the SOM quality in terms of distance to the closest units of the SOMs trained for each
cluster. The results suggest that the retraining of the individual cluster using GSOM improved the prediction quality of the
SOM significantly.

Table 2 also represents the correlation distance and RMSE between the measured and predicted residuals for each
cluster of the validation datasets. The average correlation was close to 1 for all N values, suggesting the performance of the
SOM model was satisfactory. The average RMSE was close to 0, which was also an indication of the quality assurance of the
SOM model. Both the unsupervised correlation distances and the average correlation showed the best results for N- 365 days.

The RMSE diminished with the increase in the interval.
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Figure 7: U-Matrix for different intervals (N days). The red colors represent large distances in the feature space, while the blue
colors represent “valleys “grouping subsets of similar data.

Table 2: Accuracy assessment parameters of the ML analysis. This table reports the average correlation and RMSE between the

predicted and observed residuals for the different intervals.

Avg. RMSE (m)

Interval (days Avg. Corr. (10-fold
(days) g ( ) (10-fold)

15 0.81 0.13
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30 0.84 0.14

90 0.80 0.13
180 0.80 0.09
365 0.86 0.09

«
Figure 8 presents the results of the unsupervised clustering for N = 365 for the variables used. In the figure, the
contrast between high (red) and low (blue) value areas emphasizes the spatial patterns of the various parameters we
investigated. Based on this clustering, a combined U-Matrix is produced (discussed in Figure 7) and a cluster label is assigned
to each gage. Gages with similar characteristics presented by the variables are tagged with the same cluster number. We-have
getThere are 12 clusters of gages—\/e for 365 days interval and we have plotted the clusters individually on a map showing

how they spread across different physiographic regions and climate zones in Figure Al in Appendix A. Clustering does not
have a geographical meaning, rather gages behave more consistently between adjacent clusters than non-adjacent clusters, but
this does not necessarily follow the spatial proximity of the gages. This is reflected in the spatial spreadpattern of the different
clusters of gages in Figure Al.

If we focus on the SOM of “Res”, we can see that the nodes on the righthand side of the SOM seem to be associated=
with high values of the residuals (Figure 8). Nevertheless, a small cluster of high residuals is seen in the upper lefthand corner.
At the global level, this highlights a lack of regional synchrony in stage-discharge shifts at the yearly scale. (Pfeiffer et al.,
{2019) reported similar findings on the decadal scale.

Based on the visual interpretation of the unsupervised SOMs, taking the atmospheric, hydrologic, and current
geomorphologic conditions as single independent drivers is not sufficient to predict the magnitude of the shift in stage-
discharge at the flood stage. This suggests the co-occurring fluctuations in the various parameters, rather than variation in a

single peak parameter, are the primary driverdrivers of change in flood hazard at the continental scale.
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Figure 8: Individual SOMs of all the flood drivers for N=365. Similar to the U-Matrix the red colors represent large distances in the
feature space, while blue colors represent “valleys “grouping subsets of similar data.
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625 3.5. Variables Associated with Floed-\ulnerability-and-Channel-Changesshifts in the residuals.

Focusing on the changes in the stage-discharge relationship residuals (Res), we next investigated the correlation
| between predicted and measured residuals on the one hand and other variables on the other (Figure 19, Table 3). For the
proposed ML framework, the training was unsupervised. In general, the predicted and measured residuals were highly
correlated, validating the SOM performance. Table 3 summarizes the correlations among the considered predictors in Figure
|630 119 for N = 365 days. It presents the analysis of the group of variables based on the dendrogram branches for different
likelihood of change levels (e.g., 0-10%, 10-30%, and 30-50%). This section discusses the correlations for the 30-50%
category as an example; the other two categories showed similar outcomes. We do not have more than 50% here in the table
because the highest percentage of gages that showed sudden change was 30-50%. In Table 3, level 1 shows the group of
variables highly correlated to each other and with residuals. Level 2 shows variables that are highly correlated to each other

635 but related to a lesser degree to the variables in Level 1.

InFor level 1, the physiography of the basins is represented by the-following-variables~ELEV_* EQ,-Q2and ETR

physiography-alene-is(Elevation) highly correlated
640 in-thi dvThis-highlights-the-im nce-of basi
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and-Sivapalan—1999:--Woods—1999;-Smith-et-al—2004.-2005; - Zhang-et-a ighlighted-the relati i
650
655 unexpeeted-thatthe-centrol precipitation appears to be highly correlated wi e-shifts-in-residuals-), which are correlated

with all the other variables in Group 2.

tnFor level 2, Residuals (Res) are shown to be correlated with different variables. A noticeable pattern is group 1 contains
mostly hydrologic variables, while group 2 contains atmospheric variables. In group 1, the residuals (Res) belong to the tree
containing the variables RFACT (Rainfall and Runoff factor), HYDRO_DISTURB_INDX (Anthropogenic modification),
660 STREAMS_KM_SQ_KM (Stream density), BFI_AVE (Base Flow Index), ASPECT_NORTHNESS, ASPECT_EASTNESS,
STRAHLER_MAX (Maximum Strahler stream order in the watershed), MAINSTEM_SINUOUSITY (Sinuosity),
DRAIN_SQKM (Drainage area), Peak (Peak flow), and CovtrLs (Covariance of precipitation and water travel distance ) (level

2in table 3).
RFACT- Rainfall runoff factor, directly affects rainfall runoff influencing the channel changes.
665 HYDRO_DISTURB_INDX (see section 3.1) represents the channel condition, whether the channel is altered by manmade

construction or not. Channel-conveyancechanges-are-highly-affected by engineered-construction

A group of highly connected elements comprises a series of drainage properties (STREAMS_KM_SQ_KM,
STRAHLER_MAX, MAINSTEM_SINUOUSITY, DRAIN_SQKM) that modulate the way precipitation is routed through the

675 basin and directly affect flood properties.-More-sinuous-netwe educepeakflows-and-flooding{Seo-and-Schmidt-20
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In level 2, group 2, the tree contains Pmean (Mean Precipitation), ELS (Mean water travel distance to the drainage
outlet), EQ (Centroid of flow hydrograph), Q2 (Second-order moment of the flow), Vp (Precipitation volume), Vt (average
flow volume per unit drainage area), and VaTr (Spreadness of precipitation), VarLs (Variance of water travel distance), Vb
(Base flow volume), and RunoffCoef (Runoff coefficient). These are mostly related to rainfall properties. While they are

important fingerprints for the attribution of regional flood changes, these variables are related to changes in flood hazard to a
lesser degree than physiography and flow properties.
Overall, the results of our analysis highlight how the impacts of a flood-inducing storm event on channel properties

and flood hazards are highly correlated with flow characteristics and a region’s geophysical signature.
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Figure 119: Example of intercorrelation among the flood drivers for N = 365 days for the likelihood of change between 30 and 50%.
The white color signifies that there is no correlation between those variables. The color bar from blue to yellow shows high to low

correlations.

Table 3: Highly correlated variable groups for different percentages (%) of the “likelihood of change” from the interpretation of the
dendrogram in Figure 11. Levels in the table represent the main branches of the dendrograms and groups represent the sub-

branches under the main levels.

ELEV_MEAN_M_BASIN,
ELEV_MAX_M_BASIN,
ELEV_MIN_M_BASIN,
ELEV_MEDIAN_M_BASIN,
ELEV_STD_M_BASIN,
ELEV_SITE_M,

RFACT

ELEV_MEAN_M_BASIN,
ELEV_MAX_M_BASIN,
ELEV_MIN_M_BASIN,
ELEV_MEDIAN_M_BASIN,
ELEV_STD_M_BASIN,
ELEV_SITE_M, EQ, Q2

Group 2: All the other variables

0-10% 10-30% 30-50%
Variable groups Levell: Levell: Levell:
Groupl: Groupl: Groupl:

ELEV_MEAN_M_BASIN,
ELEV_MAX_M_BASIN,
ELEV_MIN_M_BASIN,
ELEV_MEDIAN_M_BASIN,
ELEV_STD_M_BASIN,
ELEV_SITE_M, EQ, Q2, ETR

Group 2: All the other variables
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Group 2: All the other variables

Level 2:

Groupl: HYDRO_DISTURB_INDX,
STREAMS_KM_SQ_KM,

Res,

ASPECT_NORTHNESS,
ASPECT_EASTNESS,

Vp, Pmean,CovtrLs, Vb, Vt, Els, IBF,
Varls

Group 2: EQ, ETR, Q2, VarTr,
RunoffCoef, Peak,
STRAHLER_MAX,

MAINSTEM_SINUQUSITY,

DRAIN_SQKM

Level 2:
Groupl:

RFACT,
HYDRO_DISTURB_INDX,

STREAMS_KM_SQ_KM,
BFI_AVE,

Res,
ASPECT_NORTHNESS
ASPECT_EASTNESS
Pmean, Els, IBF, VarLs

Group 2: Vp, CovtrLs, IBF, Vb, Vt,
ETR, VarTr, RunoffCoef, Peak,
STRAHLER_MAX,

MAINSTEM_SINUOUSITY,

DRAIN_SQKM

Level 2:
Groupl:

RFACT,
HYDRO_DISTURB_INDX,

STREAMS_KM_SQ_KM,
BFI_AVE,

Res,

ASPECT_NORTHNESS
ASPECT_EASTNESS
STRAHLER_MAX,
MAINSTEM_SINUOUSITY,
DRAIN_SQKM, IBF, Peak, CovtrLs

Group 2: Pmean, Els, VarLs, Vp, Vb,
Vt, VarTr, RunoffCoef

4. DiscussionsSenelusions

4.1. Channel Changes and Watershed Characteristics

Our model highlighted in Figure 6, that the most important hydrologic variable was the condition of the watershed,

whether it is anthropogenically modified or natural. This confirms that human modifications are an important element to be
considered when analyzing flood hazard changes (Bormann et al., 2011; Pinter et al., 2006a, b), Ahrendt et al. (2022)
demonstrated that channel regulation is important to conveyance changes which resonates with the variable importance

analysis results from Figure 6. Similarly, the construction of dikes, bridges, dams, meander cutoffs, channel constriction by

wing dikes, groynes, and other engineering projects can alter channel conveyance within rivers and the characteristics of their

floodplains (Bormann et al., 2011; Pinter et al., 2006b, a). The importance of this variable in the model highlighted the potential

interaction of flood-inducing events that generate high sediment deposition with the effects of channel modification. As well

numerous works in literature (Feng et al., 2021; Mazzoleni et al., 2022) also highlighted how urbanization processes and

landscape changes induced by human activities have large impacts on flood hazards worldwide.

39

[ Formatted: Font color: Text 1

[ Formatted: Font color: Text 1




715

720

725

730

735

740

745

The model gave high importance to drainage density, which is an essential characteristic of the Earth's surface that

regulates erosion and the movement of water and sediments (Clubb et al., 2016). Drainage density is also correlated with

subsurface permeability (Luo et al., 2016). The control these factors exert on sediment production and delivery and soil

permeability may explain the importance of these variables to post-storm changes in river conveyance. Drainage density is

also correlated to other hydrologic and climatic variables such as precipitation and climate types (Moglen et al., 1998).

Visually, the SOMs in Figure 8 highlight the co-oscillation of hydrologic and geomorphologic variables as a standard

component of watershed behavior. Drainage area (DA) and discharge/peak flow (Peak), for example, are positively correlated,
with a cluster of high values in the bottom part of the SOMs. We can see that, other hydrologic variables like ELS (Mean water
travel distance to the drainage outlet), EQ (Centroid of flow hydrograph), Q2 (Second-order moment of the flow), Vi

(Precipitation volume), Vt (average flow volume per unit drainage area), and VaTr (Spreadness of precipitation), have similar
patterns. The centroid of precipitation (EQ) and hydrograph (ETr) appear to be highly correlated. Some specific co-oscillations

of variables are evident in multiple regions. Percentage (Perc) and percentile (Percentile) of peak flow show the highest val ues

spread across the SOM nodes. This is consistent with the fact that along with the drainage area, the duration and spatial pattern
of rainfall are responsible for the variability in lag time and basin response (Granato, 2012; Woods and Sivapalan, 1999). The

correlation among Drainage area (DA), peak discharge (Peak), and Mean water travel distance to the drainage outlet (EIs) is
evident for various clusters, as is the correlation between Normalized flow volume (Vt) and Baseflow (V).

This is not surprising, considering that the basin size is generally the most important basin characteristic in

determining the amount and timing of surface runoff at the outlet (Gupta and Dawdy, 1995). The relationship between flood

flow guantiles and drainage area is expressed by power-law equations (Villarini and Smith, 2010). It also confirms how

catchments with larger drainage areas display higher values of specific discharge and how morphodynamic properties

(including frequent flows such as the bankfull discharge) tend to cluster with drainage network characteristics and scaling

properties (Saghafian, 2005; Reis, 2006; Sofia and Nikolopoulos, 2020b). Further cross-cluster variability occurs with some

atmospheric and hydrologic variables, namely the Centroid of precipitation (ETr), Centroid of flow hydrograph (EQ), and
Spreadness of precipitation (VarTr). All the previously mentioned variables present their co-occurring peaks in Cluster 6 (the

Upper Mississippi and Missouri region), which is in line with the fact that for this area (and cluster), snowmelt, rain on snow.
or rainfall can cause major flooding.

The physiography of the basin deeply controls the complex land-atmospheric interactions and storm types resulting«
in rainfall runoff. Thus, this is no surprise that physiography alone is highly correlated (Figure 9, Table 3) to all other

(hydrologic, geomorphologic, and atmospheric) variables used in this study. This highlights the importance of basin attributes

in_prompting stage-discharge variability at gage locations. Investigations of the influence of the flow stage on channel

conveyance often focus on the impacts of peak or minimum bankfull discharge. From Figure 9 and Table 3, we can see that

recession rates matter in sediment delivery, as highlighted in the literature (e.g., Hassan et al., 2006), and these two properties

are highly correlated with the impact of large storms on flood hazards. The findings of this study provide needed insight, and
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managers could use the results to determine the flow hydrograph shapes that potentially alter short-term flood hazards. Such

knowledge is necessary for the design of river infrastructure.
Many papers in the literature (e.g., (Borga et al., 2008; Woods and Sivapalan, 1999; Woods, 1999; Smith et al., 2004,

2005, 2002; Zhang et al., 2001) highlighted the relationship between the centroid of precipitation and runoff production. Most

works showed that, for example, the position of the storm centroid relative to the watershed outlet is an important driver of
runoff: storms having a precipitation centroid positioned in the central portion of the watershed tend to produce a higher runoff

than storms having a centroid near the outlet or the head of the watershed. This is in line with the fact that rainfall runoff spatial

variability influences flash flood severity relative to basin physiography and climatology. Flash flood severity, or flashiness

as defined by Saharia et al., (2017), assesses a basin's capacity to produce severe floods by considering both the volume and

timing of a flood. It is, therefore, not unexpected that the centroid of precipitation appears to be highly correlated with the

shifts in residuals.
Also, as shown in Figure 9 the significance of “Aspect” attributes can be understood in terms of the various runoff

and soil loss yields that can result from changes in slope properties. For example, soils on south-facing slopes always seem to

be much more eroded or degraded than those on more humid north-facing slopes due to differences in aspect, steepness
lithology, and flora type. ASPECT_NORTHNESS and ASPECT_EASTNESS influence the daily cycle of solar radiation
affecting the temperature, humidity, and soil moisture (Desta et al., 2004) that control the vegetation and, hence, the sediment

movement of the floodplain. The variability of these factors can, therefore, affect sediment production and movement, with

conseqguences for flood hazard changes.

In Figure 9 and Table 3, our model suggests drainage properties related to the routing of the precipitation and flood

water are highly correlated with residual changes and indirectly linked to post-storm modifications of flood hazards. Greater

network sinuosity lowers peak flows and flooding (Seo and Schmidt, 2012; Seo et al., 2015; Saco and Kumar, 2002). Higher

peak flow, faster time to peak, and shorter duration are produced by lower variability of flow path lengths (Saco & Kumar,

2002). Also, flood frequency/event increases with the decrease of the fractal dimension of the river network (Zhang et al.,

2015). Lastly, the Base Flow Index and Peak discharge are intricately connected to runoff and, consequently, alterations in

channel conveyance. This connection is evident as they characterize the volume of water within the channel. When the volume

surpasses the channel's conveyance capacity, flooding is anticipated, and substantial sediment movement implies potential

channel adjustments. The significance of these properties is a reaffirmation of the established notion that regular flows, such

as baseflow below bankfull levels, are sufficient to determine channel shape, as they prevent the substantial accumulation of
fine sediments and organic matter (Phillips, 2002). On the other hand, rare extreme floods are essential for transporting coarser
bed material and eroding channel banks (Phillips, 2002).

4.3. Changes in Flood Risk after Major Floods

Figure 10a shows the groups of gages representing different percentages of “likelihood of change.” If the reported
value is <10%, for example, the predicted residuals for those gages show a sudden change from negative to positive in less
41
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than 10% of storms. The higher the percentages are, the more likely we expect a drastic reduction of channel capacity after a
large storm. Comparing with the literature (Slater et al., 2015), we can see that, in our study, the locations with the highest

likelihood of change coincided with those with significant channel capacity and net changes in flood hazard frequency. While
the post-storm change was not as widespread as the effects highlighted by Slater et al. (2015), this was expected, as we were
analyzing post-storm effects and not considering the persistence in time of these changes at this stage. Also, a higher rate of

change (high percentage) might be representative of very dynamic rivers, whose changes are likely to smooth out in time. On
the other hand, rivers changing less frequently might be witnessing changes with a magnitude sufficient to last longer. This

fact should be addressed carefully. Another thing to consider is that, because USGS gages are purposely placed at stable

locations, our analysis, as well as other works (e.g., Li et al., 2020; Slater et al., 2015), probably underestimates the
consequences of conveyance changes.

Nonetheless, our results highlighted how substantial changes had occurred even for these locations. When we focused
on the amount of change relative to the current confidence bound of the stage-discharge (Figure. 10b), we could see that the
magnitude of change was higher for gages that changed less frequently. The northwestern part of CONUS, where Slater et al.
(2015) highlighted clustering of increase in hazard due to consistent channel capacity changes with clusters of gages for which
we predicted negative residuals outside the confidence bound of the stage-discharge relationship. For the Northeast, on the
other hand, our model predicted high-magnitude changes for areas identified by Slater et al. (2015) as areas significantly

impacted by flow frequency effects. It is known that existing stage-discharge relationships present uncertainty in estimating
the discharge because of the variation in the individual measurements from which the estimation is derived. Our model

highlighted that the post-storm increased change lay outside the range of acceptable uncertainty at many gages. As Figure. 10b

shows, this change was as widespread as the effects highlighted by Slater et al. (2015) for total positive changes in flow hazard

frequency (FHF). For gages, the total FHF increased logarithmically in Slater et al., 2015, our model predicted changes further

in the negative domain, outside the lower confidence bound.
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From the predicted results of the channel changes at the gage level, we next analyzed which locations were more
prone to changes based on the number of gages with predicted changes within each physiographic region and climate type

810

(Figure 11). Overall, one must keep in mind the limits and the variability of the gage coverage across CONUS, as described
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in the chapter related to the model limitation. Nonetheless, observing how variability changes across regions allows us to grasp

how varying the post-storm effects are. Overall, rivers across the US are highly dynamic per se, and their variability depends

on a combination of factors, mostly driven by how sediment moves across the landscape (Montgomery and Buffington, 1998;

Flores et al., 2006). This, in turn, depends on a variety of landscape properties, as well as climate conditions, and human
modifications as well (Wu et al., 2023).

Among the physiographic regions (Figure 11a), the Laurentian uplands and intermontane plateaus had the most
changes (75% of all gages in this region). Rocky Mountain and Pacific Mountain systems followed the trend with the second

most changes (50-75%). The changes in the <10% of the gages resided in the Interior Highlands, Atlantic Plains, and
Appalachian highlands. The Appalachian Highlands regions are mountainous. In contrast, the interior plains are mostly flat

agricultural lands whose river system consists of the upper Mississippi River, the Ohio River, parts of the Great Lakes, and
small wetlands. This region has very dynamic hydrology, with very cold winters and hot summers. Snowmelt in the spring
and heavy precipitation in the summer and winter result in big floods. Naturally, this can potentially lead to changes in the
river reaches. While the Atlantic Plain is also relatively flat, it covers the Mississippi Delta, the Gulf of Mexico, and the
Atlantic seaboard in the East (see Figure 2). Moving toward the coastline, frequent tropical storms and cyclones are recorded,
which could increase sediment activity overall (Tweel and Turner, 2014). As well, lots of human activities can alter river

morphology, especially in the deltas, due to sediment movements (Nienhuis et al., 2020). The literature (Bracken and Croke,
2007; Kalantari et al., 2019; Croke et al., 2013; Sofia and Nikolopoulos, 2020a; Wohl et al., 2019) has highlighted sediment
connectivity as a potentially critical factor in flood hazards, being linked to both changes in channel characteristics and
increasing decadal trends in flood hazard, independent of scale. In addition, for these regions, and in the eastern United States

more generally, peak flows are highly variable (Villarini & Smith, 2010), and tropical cyclones affect the distribution of

sediments as well (Tweel and Turner, 2014). All these characteristics contribute to the presence of very dynamic rivers, which,

as confirmed by our model, quickly react to flood-inducing events, adjusting their geometry and altering flood hazards in the

case of subsequent floods.

We made the same comparison for the climate types (Figure 11b). We detected high predicted variability mainly in
hot and humid climate regions, while cold and dry regions showed minimal changes. Humid Continental climate (Dsb, Dfa,
Dfb) led with the highest variability (>75% of the gages resided in these climate regions). The gages with 50—75% channel

changes were in the Tundra Climate (ET) and Warm Summer Mediterranean Climate (Csh). Gages with the least changes

(<10%) were located in Humid Continental Hot Summers with Dry Winters (Dwa), Continental Subarctic-Cold Dry Summer

(Dsc), Cold Desert Climate (Wk), and Hot Semi-Arid Climate (BSh). These climate zones are mostly dry either year-round or

seasonally. The impact of major storms on rivers depends on both underlying long-term climate signatures (Chen et al., 2019;

Stark et al., 2010) and short-term (year-to-year) climate variability (Slater et al., 2019). For many river systems, coarse

sediment_mobilization and transportation rates are controlled by regional climate (Anderson and Konrad, 2019). Climate

variability is projected to trigger a chain reaction of geomorphic responses, including changes in downstream channel

properties (East and Sankey, 2020; Wendland, 1996; Harrison et al., 2019; Knight and Harrison, 2012). Other studies focusing
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on long-term changes rather than flood-inducing events have shown how decadal-scale changes in river morphology may be
accounted for as a downstream propagating channel reaction to regional climate variability, which is frequently accompanied
by cyclical changes in channel geometry and conveyance (Scorpio et al., 2015; Slater et al., 2019). The joint contribution of
physiographic regions (as a proxy for sediment characteristics) and climate properties has also highlighted the nonlinearity of
system response and the potentially harmful and sequential effects that result from the coupled direct impacts of climate

conditions and sediment connectivity (Lane et al., 2007).
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Figure 11: Percentages of gages presenting changes in channel capacity in different (a) physiographic regions and (b) climate types.

4.3. Advantages and Limitations of the Framework

This work is based on gage measurements, and across CONUS there is a known bias of stream size representation

and spatial density in the gaging network, whereas some river sizes and landscape areas are vastly under- and over-represented
(Kiang et al., 2013). Regarding the coverage of stream gages, the intrinsic limits of the dataset, in general, have been addressed

in the literature and are very well summarized in the publication by Kiang et al., (2013). Broadly speaking, the Eastern United

States has better coverage compared to its Western counterpart. Particularly, the arid Southwestern United States, Alaska, and

Hawaii show notably lacking spatial coverage. Except for Hawaii, these regions also tend to be covered by shorter streamflow

records. Discrepancies in hydrology contribute to variations in the statistical uncertainty calculated across different parts of

the country (Kiang et al., 2013). The Central and Southwestern United States, characterized by arid and semiarid conditions

generally display higher interannual variability in flow, resulting in increased uncertainty in flow statistics. In the revised

manuscript, we will incorporate these comments. Despite these distinctions, it's essential to recognize that any research relying

on gaging sites faces similar limits and is overall affected by potential over or underrepresentation of flows. We believe that

as USGS stream gage information could potentially be transferred from nearby stream gages if there is sufficient similarity

between the gaged watersheds and the ungaged watersheds of interest, our model could also be applied to ungaged sites.

However, one must always keep in mind that the successful ‘translation” to ungaged environments depends on the correlation

of the stream gages in the surrounding areas. For example, there are areas of CONUS (mostly mountainous) that show highly
correlated stream gages (Kiang et al., 2013), whereas the Central United States and coastal areas of the Southeastern United
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States show much uncorrelated gages. Therefore, the goodness of the information transfer might not work as well. Also,

transferability would be most likely to be successful when basin attributes show high similarity and storm properties are within

the range of variability of the training set used for this work. We do not recommend the use of this model for engineered rivers,

where channel changes are expected to be limited by infrastructures such as concrete levees, as the model was trained excluding

specifically sites featuring artificial controls at the gauging station that could impede the natural adjustment of the channel's
shape.

The ML model was trained considering both storm properties and watershed properties. The system is not capable of

highlighting which element triggers the change, nonetheless, we provided an assessment of feature importance to stress that

the shifts in how the model works, are mostly explained by a combination of storm and watershed properties. We would not

suggest using the model, as it is trained currently, to predict changes without having information on the storm properties.

Regarding storm properties, this study uses a published dataset (Shen et al. 2017) of storm events ranging from 2002 to 2013.

The framework displays the intercorrelation of the different event properties that can affect channel changes, and this

framework could be used for identifying variable gages outside the time range covered by the storm event database.

Nonetheless, researchers can use the trained model with additional years of data, if they have available the same storm

properties proposed by Shen et al. for more recent events.

A further thing to consider refers to the watershed properties considered in the model. The Gage Dataset includes

several hundred watershed characteristics compiled from national data sources, Actual stream density, as other properties, for

example, could be different from those derived from national data sources, due to time and landscape changes happening in

the watersheds, The advantage of the considered dataset, however, is that it is available consistently for all gages. Researchers

could also consider using different methods to define the watershed properties and consider improved geomorphological

parameters from high-resolution terrain data, derived from LIDAR sources for example (Passalacqua et al., 2015). In this case,

it would be recommended to re-train the model and verify once again the importance of this parameter in the re-trained model,

as the literature strongly highlights the higher variability of geomorphological and hydrological parameters derived from

varying resolution terrain (Sofia, 2020b).

One must note that the permutation feature importance changes with the shuffling of the feature; this process

introduces randomness to the process (Molnar, 2022), which might not be representative of a physical process. When repeating

the permutation, the results may vary considerably (Molnar, 2022). To increase robustness and stabilize the measure, we
repeated the permutation and averaged the importance measures over the various reiterations. A further aspect to consider is

that if the features are correlated, the permutation feature importance may be biased, with unrealistic data examples. The

randomness added by the permutation might result in an unlikely combination of the parameters. This issue is more evident if
real-world variables are directly or inversely correlated; by shuffling one of the features, we may be creating new unlikely or

hysically impossible instances. Therefore, as Molnar (2022) suggested, we may be potentially looking into a decrease in the
model performance only due to values that we would never observe in the real world.
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We should point out that channel conveyance change is known to vary spatially across a region and strongly correlates
with climate variations and landscape properties. The feature permutation randomness for our study case was, however,

counteracted by the two main features of SOMs: (1) the topological preservation of the neighborhood, which results in spatial

clusters of comparable patterns in the output space; and (2) the adaptation property in which the winner neuron and its

neighbors are changed to make the weight vectors more similar to the input. The SOM method can recognize new patterns

during the training process. Besides that, using multiple attributes, such as combined atmospheric, hydrologic, and

geomorphologic variables, can improve the pattern generated by the SOM. In our approach, the variable importance did not

change, considering the various N intervals used to group storm properties. The high correlation between estimated residuals

and measured ones during the 10-fold validation confirmed the accuracy of the model.
Careful interpretations that explain how and why channel conveyance changes happen as they do are essential to

guiding reliable predictions of river conveyance behavior and evolution. Another aspect to consider, as for any ML approach
is that SOM s are stochastic, as there are no physical constraints in their prediction. The use of randomness as a feature in the

SOM analysis exerts confidence in the results mainly when the results are agreeable with the theoretical aspect of the variables.
We suggest referring to (Brierley et al., 2021) for a recent review of ML limitations in geomorphology in general.
5. Conclusions

The variability of geomorphologic processes and future flood patterns can only be understood by evaluating all the
critical flood drivers responsible. In this era of extreme-flood-inducing events and rapidly changing landscapes, accurate flood
valnerabilityhazard assessment is paramount. Atmospheric, hydrologic, and geomorphologic parameters constitute both the
main driving force behind and the detector of changes resulting from an-extremea flood-inducing event. This study focused on
the impact of extreme-flood-inducing events on-future flood hazards by exploring the channel changes following them. We
utilized the interdependencies of the atmospheric, hydrologic, and geomorphologic flood drivers to gain an understanding of
the impact of extremeflood-inducing events on channel capacity and identified important drivers for predicting residuals from

the average stage-discharge curve,

Our results confirm existing knowledge of watershed hydrology and further strengthen the compound importance of
climate and geomorphology as drivers of changes in flood hazards. The sequential processes during and after a big flood event
can only be understood by considering the contribution of all the flood drivers together. The results show how the variables of
different flood drivers are interrelated and can create effects that are more adverse together.

1n-flood-models—channel_Channel conveyance change is typically-censidered-often regarded as stationary in flood«
hazard modeling and is recegnizedacknowledged as one of the most significantimportant sources of medel-uncertainty. Since
The bankfull discharge and flood occurrences are directly related to channel conveyance capacity-eirecthy-influences-bankfull
Hlood-recurrence-intervals—ourwork-suggests. Our research reveals that the assumption of channel stationarity may fead-te
systematicresult in either over- or underpredictionunder-prediction of the frequeney-of-out-of-bank-FHlow-(i-esriver discharge
for a certain flood return-periedsstage, as the existing stage-discharge relationship might be temporarily (or permanently if the

shift pertains) underperforming. This would in turn eventually over/under-estimate flood hazard (recurrence interval, duration,
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depth, and inundation extent). of flooding), especially in the case of subsequent floods. These models incorrectly feed flood

control planning procedures, which raises the level of uncertainty in evacuation and rescue operations. Additionally, in-flood

insurance plans created using these models’ results are likewise incorrect. Furthermore, if engineering—f-fleod designs are

based on data gatheredcollected before periods when extrememajor flood events have reducedlowered channel conveyance,
there is a dangerexistsrisk that surveyed channel dimensions and flood conveyance will be underestimated-everoverestimated
in the lenger-termlong run.

The proposed ML model allows us to identify dynamic rivers more prone to changes in the stage-discharge
relationship after major flood events. The proposed model does not account for the persistence of changes; that being said, the
results highlight the risk of an immediate ehangereduction in channel capacity after a large storm. For rivers more prone to
changes, periodic revision of flood frequency statistics is advisable for hazard assessments to keep pace with altered conditions.
Understanding the temporal duration of these changes would offer valuable insights into the practicality of implementing these

updates or exploring alternative approaches to assessing flood risk, especially if the process exhibits significant variability
over time.

This study considered a limited set of drivers, excluding, for example, human activities in the watersheds and

vegetation properties. WeChannel changes can be due to other geographically significant events (e.qg. landslides, debris flow,

etc), however, such occurrences could also be triggered by the storm events that caused the flood hazards. At this stage, we

have a complete database of storm properties, but we did not include an analysis of additional event parameters such as mass

movements and the volume (if known) of sediment/Debris delivered during such events. Future research could improve the

method by adding predictors and investigating the sensitivity of median storm characteristics to different intervals (lag times).
In response to increased flow, we do not expectanticipate channel conveyance to inerease-systematicathyrise consistently

eVETYWhere' eSponRseto-ereasea oW We-cadtien-tha thAHaaajdsStmen eHe a-Compie Aterpiay-6+hen atiohRafry

The intricate interaction of dynamic anthropogenic-and, climatic influencesfactors and their consequential processes within
each basin, including-feedback mechanisms—Long-term-channel-trajectories,tocal-sediment yield-conditions—and-landecove
history-on-a-site-by-site-basisare expected to be evident in the fluvial changes. Hence, sediment connectivity, Land-Use, and
Land-Cover Change anthropogenic factors could also be included to retrain the model to produce changes in the stage-

discharge relationship at the flood stage and potentially create scope for futurethe prediction of channel changes due to
extremeflood-inducing events.
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e Historical mean daily streamflow records are stored by the US Geological Survey (USGS) and made publicly
available online (U.S. Geological Survey, 2021a).

e The flood event database used in the study was generated by Shen et al. (2017).

o Historical field measurements of channel properties are made publicly available online by the USGS (U.S. Geological
Survey, 2021b).
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1380 Figure Al: Gages with clustering identification assigned by SOM unsupervised clustering (a-1}). For the acronym description of
Physiographic regions and climate types please refer to Table Al and A2.

Table Al: Description of climate types from Képpen-Geiger climate classification (Beck et al., 2018) used in Figure Al

Climate types Description

Af Tropical rainforest

Am Tropical monsoon

Aw Tropical Savanna (Wet and Dry Climate)
BWh Hot desert climate

BWK Cold desert climate

BSh Hot semi-arid climate

BSk Cold semi-arid climate

Csa Hot-summer mediterranean climate

Csh Warm-summer mediterranean climate
Csc Temperate dry summer cold summer
Cwa Warm oceanic climate / humid subtropical climate
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Ccwb
Ccwe
Cfa
Cfb
Cfc
Dsa
Dsb
Dsc
Dsd
Dwa
Dwb
Dwc
Dfa
Dfb
Dfc
Dfd
ET
EF

Subtropical highland climate or temperate oceanic climate with dry winters
Cold subtropical highland/Subpolar Oceanic

Humid subtropical climate

Temperate oceanic climate

Subpolar oceanic climate

Humid continental climate - dry warm summer

Humid continental climate - dry cool summer
Continental subarctic - cold dry summer

Continental subarctic — dry summer very cold winter
Humid continental hot summers dry winters

Humid continental mild summer dry winters

Subarctic with cool summers dry winters

Humid continental hot summers year around precipitation
Humid continental mild summer wet all year

Subarctic with cool summers year around rainfall
Subarctic with cold winters year around rainfall

Tundra climate

Ice cap climate

385 Table Al: Description of Physiographic regions (Fenneman and Johnson, 1964) presented in Figure 2 and Al

Physiographic Regions Description

ApHigh Appalachian Highlands
AtlPlain Atlantic Plain

IntHigh Interiors Highlands
IntPlain Interior Plains
IntermPlat Intermontane Plateaus
LaurUpl Laurentian Upland
PacMounSys Pacific Mountain System
RockMounSys Rocky Mountain System
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