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Abstract. Warm-sector heavy rainfall often occurs along the coast of South China , and it is usually localized and long-lasting,

making it challenging to predict. High-resolution
:::::
along

:::
the

:::::
South

:::::
China

::::
coast

:::::
poses

:::::::::
significant

:::::::::
forecasting

:::::::::
challenges

:::
due

::
to
:::
its

:::::::
localized

::::::
nature

:::
and

::::::::
prolonged

::::::::
duration.

::
To

:::::::
improve

:::
the

:::::::::
prediction

::
of

::::
such

::::::::::
high-impact

::::::
weather

::::::
events,

:::::::::::::
high-resolution numeri-

cal weather prediction (NWP) models are increasingly used to better resolve topographic features and forecast such high-impact

weather events
::::
more

:::::::::
accurately

::::::::
represent

:::::::::::
topographic

::::::
effects. However, when the grid spacing becomes comparable to the5

length scales of convection, known as the gray zone, the turbulent eddies in
::
as

:::::
these

:::::::
models’

::::
grid

:::::::
spacing

::::::::::
approaches

:::
the

::::
scale

::
of

:::::::::
convective

:::::::::
processes,

::::
they

:::::
enter

:
a
:::::
"gray

:::::
zone"

::::::
where

:::
the

::::::
models

:::::::
struggle

::
to

::::
fully

:::::::
resolve

:::
the

:::::::
turbulent

::::::
eddies

::::::
within

the atmospheric boundary layerare only partially resolved and parameterized to some extent. Whether using a
:
,
:::::::::::
necessitating

:::::
partial

:::::::::::::::
parameterization.

:::
The

:::::::::::::
appropriateness

::
of

::::::::
applying convection parameterization (CP) scheme in the

:::::::
schemes

:::::
within

::::
this

gray zone remains controversial. Scale-aware CP schemes are developed to enhance
::
To

:::::::
address

::::
this,

:::::::::
scale-aware

:::
CP

::::::::
schemes10

::::
have

::::
been

:::::::::
developed

::
to

:::::::
improve the representation of convective transportwithin the gray zone. The

:
.
::::::
Among

:::::
these,

:::
the

:
multi-

scale Kain-Fritsch (MSKF) scheme includes modifications that allow for its effective implementation at a grid resolution

:::::::
enhances

:::
the

:::::::::
traditional

::::::::::
Kain-Fritsch

:::::
(KF)

:::::::
scheme,

:::::::::::
incorporating

:::::::::::
modifications

::::
that

:::::::
facilitate

:::
its

:::::::
effective

:::::::::
application

::
at

::::::
spatial

:::::::::
resolutions as high as 2 km. In recent years, there has been an increasing application of machine learning (ML) models to

:::::
across

:
various domains of atmospheric sciences, including the replacement of

:::::
efforts

::
to

:::::::
replace

::::::::::
conventional

:
physical param-15

eterizations with ML models. This work proposes
:::::::::
introduces a multi-output bidirectional long short-term memory (Bi-LSTM)

model as a
:::::::
intended

::
to

:
replace the scale-aware MSKF CP scheme. The

::::
Data

:::
for

::::::
training

::::
and

::::::
testing

:::
the

:::::
model

:::
are

:::::::::
generated

::::
using

:::
the

:
Weather Research and Forecast (WRF) model is used to generate training and testing data over South China at a

horizontal resolution of 5 km. Furthermore, the WRF model is
:::
this

::::
work

::::::::
evaluates

:::
the

:::::::::::
performance

::
of

:::
the

::::
WRF

::::::
model coupled

with the ML based CP scheme and compared with WRF simulations with original
::::::::
ML-based

:::
CP

:::::::
scheme

::::::
against

::::::::::
simulations20

::::
with

::::::::
traditional

:
MSKF scheme. The results demonstrate that the Bi-LSTM model can achieve high accuracy, indicating the

potential use
::::::::
promising

:::::::
potential

:
of ML models to substitute the MSKF scheme in the gray zone.
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1 Introduction

Warm-sector heavy rainfall often occurs during the pre-flood seasons in South China due to the influence of
:::::
during

:::
the

::::::::
pre-flood

::::::
season,

::::::::
primarily

:::::::::
influenced

:::
by the East Asian summer monsoon (Ding, 2004). These rainfall events are localized and are25

characterized by high precipitation intensity but limited spatial coverage. However, despite being small size,
::::::::::
characterized

:::
by

::::::
intense

:::
and

::::::::
localized

::::::::::
precipitation

::::
over

::::::
limited

:::::
area.

::::::
Despite

::::
their

:::::
small

:::::
scale,

::::
such

:
unexpected and extreme warm-sector rain-

fall can cause significant damage, resulting in
::::::::
including flooding homes and vehicles, destroying crop fields, and endangering

lives, with costs amounting to millions or
::::::
leading

::
to
:::::::::

economic
:::::
losses

:::::::
ranging

::::
from

::::::::
millions

::
to even billions of dollars (Tao,

1981; Zhao et al., 2007; Zhong et al., 2015). Accurately predicting warm-sector heavy rainfall using
::::
with Numerical Weather30

Prediction (NWP) models is challenging due to the complex interaction between the influence of
::
of

::::::
various

:::::::
factors,

::::
such

::
as the

low-level jet (LLJ), land-sea contrast, topography, and urban landscape (Zhong and Chen, 2017; Luo et al., 2017; Jian et al.,

2002; Di et al., 2006; Xia and Zhao, 2009; Zhang and Ni, 2009). The land surface in the
:::::::
complex

::::::
terrain

:::
and

::::::::::::
heterogeneous

::::
land

::::::
surface

::
of

:
South China region is characterized by complex terrain and heterogeneity, which play a crucial role in promoting

more active convections
:::
are

::::::
crucial

::
in

:::::::::
promoting

:::::
active

:::::::::
convection. Previous studies (Giorgi et al., 2016; Mishra et al., 2018;35

Schumacher et al., 2020; Onishi et al., 2023) have shown
:::::::::::
demonstrated

:
that higher spatial resolution improves the perfor-

mance of convective rainfall forecasts by resolving topographic characteristics more accurately . Recognizing
::::
more

:::::::::
accurately

:::::::
resolving

::::::::::
topographic

::::::::
features.

:::::::::::::
Acknowledging the importance of resolution in forecasting severe convective weather, both the

Chinese government and the community have shown increased support for developing
::::::::::
increasingly

::::::::
supported

:::
the

:::::::::::
development

::
of high-resolution operational forecast models

:::::::::
specifically

::::::::
designed for warm-sector rainstorms and sudden local rainstorms.40

In early 2017, the China Meteorological Administration (CMA) initiated the development of a robust framework to evaluate

the forecast accuracy
:::::::
launched

:::
an

:::::::
initiative

::
to
:::::::

develop
::

a
:::::::::::::
comprehensive

:::::::::
framework

:::
for

:::::::::
evaluating

:::
the

:::::::
forecast

:::::::::::
performance

of all available models, including high-resolution regional models, and to develop
::::::::
advancing

:
key technologies for

:::::::::
forecasting

high-impact weatherforecasting.

With the increased availability computational resources , there has been a growing trend of using
:::
The

::::::::
increased

::::::::::::
computational45

::::::::
resources

:::
has

::::::::
facilitated

:
a
::::
shift

:::::::
towards

:::
the

:::::::::::::
implementation

::
of

:
regional NWP models with

:::::::::
increasingly

:
finer grid spacings, typ-

ically ranging from
:::::
within

:::
the

:::::
range

:::
of 1 to 10 km. However, when the model grid spacing becomes comparable to the size

:::::::::
approaches

:::
the

::::
scale

:
of convection, which is known as the gray zone

:::::::
entering

:::
the

:::::::
so-called

:::::
"gray

:::::
zone"

:
(Wyngaard, 2004; Hong

and Dudhia, 2012), cumulus convection that was previously unresolved becomes
::::::::
transitions

::::
from

:::::
being

::::::::::
completely

:::::::::
unresolved

::
to partially resolved. In theory, unless

:::::::::::
Theoretically,

:::
the

:::::::
accurate

::::::::::::
representation

::
of

::::
the

:::::::
smallest

::::::::
turbulent

::::::
scales,

:::::::::
achievable50

::::
only

::::::
through

:
Direct Numerical Simulation (DNS) is used to accurately capture the smallest turbulent scales with a resolution

of
::
at

:::::::::
resolutions

::::
from

:
millimeters to centimeters (Jeworrek et al., 2019),

:::
still

:::::::
requires

:::
the

:::
use

::
of parameterization of turbulence

or convection remains necessary for
:
in

:
weather modeling. Nevertheless, there is controversy about whether

:::::
There

::
is

:::::::
ongoing

:::::
debate

::::::::
regarding

::::
the

::::::
efficacy

:::
of

:::::::::
employing

:
convection parameterization (CP) should be used in

:::::
within

:
the gray zone. Some

previous studies (Chan et al., 2013; Johnson et al., 2013) reducing the
::::::
Several

::::::
studies

:::::::::::::::::::::::::::::::::
(Chan et al., 2013; Johnson et al., 2013)55

::::
have

:::::
found

::::
that

::::::::
reducing horizontal grid spacing to below 4 km while using CP schemedoes not yield any improvement,
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and in some cases even worsens
:
,
::::
does

:::
not

:::::::
enhance

::::
and

::::
may

::::
even

::::::::
degrade,

:
precipitation forecast performance. In contrast,

Schwartz (2014)
::::
other

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::
(Lean et al., 2008; Roberts and Lean, 2008; Clark et al., 2012) showed that forecasts with a hor-

izontal grid spacing of 1 kmprovide a
:
,
:::::
where

::::::::::
convection

:
is
:::::::::

explicitly
:::::::
resolved,

:::::::
yielded

:
more accurate spatial representation

of accumulated rainfall over 48 hours compared to forecasts with
:::::
using

::
12

::::
km

:::
and

:
4 km grid spacing. These conflicting60

findingstypically arise when the CP scheme is applied at scales outside of its designed scales or when it is abruptly disabled

at a resolution of approximately 3-5 km
:::::::
spacings.

:::::
This

::::::::::
discrepancy

::
in

:::::::
research

:::::::
findings,

::::
with

:::::
some

:::::::::
indicating

::
no

::::::
benefit

:::::
from

::::
finer

::::
grid

::::::
spacing

::::
and

:::::
others

:::::::::
suggesting

:::::::::
improved

:::::::
forecast

::::::::
accuracy,

:::::
seems

::
to
:::::
stem

::::
from

:::
the

::::::::::
application

::
of

:::
the

:::
CP

::
at
::::::
scales

::::::
beyond

::
its

:::::::::
originally

:::::::
intended

::::::::::
operational

::::
range. Therefore, it remains unclear if utilizing any CP schemes in the gray zone is

effective for predicting localized warm-sector heavy rainfall.65

To enhance simulations
::::::::
prediction

::::::::
accuracy in the gray zone, researchers hsave

::::
have

:
developed scale-aware CP schemes.

These schemes dynamically parameterize convective processes based on the horizontal grid spacingand ensure a smooth

transition across
:
,
::::
thus

:::::::::
facilitating

:::::::
seamless

:::::::::
transitions

:::::::
between

:::::::
different spatial scales. A study conducted by (Jeworrek et al., 2019)

:::::
pivotal

:::::
study

:::
by

::::::::::::::::::
Jeworrek et al. (2019) demonstrated that two

::::::
specific scale-aware CP schemes, namely Grell-Freitas (Grell and

Freitas, 2014) and multi-scale Kain-Fritsch (MSKF) (Zheng et al., 2016), outperform
:::::::
surpassed

:
conventional CP schemes in70

terms of precipitation
::::::::
predicting

::::
both

::::
the timing and intensity

::
of

:::::::::::
precipitation over the Southern Great Plains of the United

States. Despite the growing use
:::::::::::
Additionally,

:::::::::::::
Ou et al. (2020)

:::::::
showed

:::
that

:::
the

::::::
MSKF

::::::
scheme

::::::::::::
outperformed

::::
other

:::
CP

::::::::
schemes,

::::::::
including

:::::::
Grell-3D

::::::::
Ensemble

::::::::::::::::::::::
(Grell and Dévényi, 2002)

:::
and

::::
New

:::::::::
Simplified

:::::::::::::::
Arakawa-Schubert

:::::::::::::::::
(Han and Pan, 2011)

:
,
::
in

::::::::::
precipitation

:::::::::
simulation.

::::
This

:::
was

:::::::::
evidenced

::
by

::
its

:::::
lower

::::
root

:::::
mean

::::::
squared

:::::
error

:::::::
(RMSE)

:::::
values

:::::
when

::::::::
compared

::::::
against

::::::
in-situ

::::::::::
observations

:::
and

:::::::
satellite

:::::
data.

:::::::
Despite

:::
the

:::::::::
increasing

::::::::
adoption

:
of these scale-aware schemes due to their superior performance, it is75

important to note that they also depend
:::::
crucial

::
to

:::::::::::
acknowledge

::::
that

::::
their

:::::::
efficacy

::::
also

::::
rely

:
on various empirical parameters

(Villalba-Pradas and Tapiador, 2022). Hence, the development of CP schemes specific to
::::::::
Therefore,

:::::::::
developing

::::::::::
specialized

:::
CP

:::::::
schemes

:::
for the gray zone in NWP models still presents significant challenges

::::::::
continues

::
to

:::
be

:
a
:::::::::
significant

::::::::
challenge.

In recent years, there has been a growing
::
an

:::::::::
increasing number of studies investigating

:::
have

::::::::::
investigated

:
the use of machine

learning (ML) models as an alternative
:::::::::
alternatives to conventional physics-based CP schemes.

:::::
These ML-based parameterization80

schemes have the potential to be effective at
:::::::
schemes

::::
have

:::::::::::
demonstrated

::::::::
potential

:::
for

::::::
efficacy

::::::
across various horizontal resolu-

tionsbecause they are trained using data generated from models with ,
:::::::::
benefiting

::::
from

:::::
being

::::::
trained

:::
on

::::
data

::::
from

::::::::::
simulations

:::
that

::::::
operate

:::
at varying grid resolutions (Yuval and O’Gorman, 2020). Unlike conventional CP schemes, which

::::
often

:
rely on

assumptions like
::::
such

::
as

:
convective quasi-equilibrium (Arakawa, 2004), ML-based parameterization schemes do not depend

on
:::::
require

:
such assumptions. Random

::::::
Notably,

:::::::
random

:
forests (RFs) and fully-connected (FC) neural networks (NNs) have85

been the two most frequently employed
::::::
become

:::::::::::
predominant

:
ML models for convective parameterization (CP ) schemes in

prior research. RFs automatically impose
:::
CP

:::::::
schemes

::
in

::::::::
previous

::::::
studies.

::::
RFs

:::::
offer

:::
the

:::::::::
advantages

:::
of

::::::::
inherently

:::::::::
enforcing

physical constraints, including
::::
such

::
as

:
energy conservation and non-negative surface precipitation, which are crucial for

:::::::
essential

:::
for

::::::::::
maintaining

:
stable simulations. O’Gorman and Dwyer (2018) demonstrated that RFscan maintain stability and

accurately reproduce essential climate statistics by training them to mimic the moist convection of
::::
RFs’

:::::::::
capability

::
to

:::::::
emulate90

::::
moist

::::::::::
convection

::
in

:
an aquaplanet general circulation model (GCM). More recently,

:::::::::::
maintaining

:::::::
stability

::::
and

:::::::::
effectively
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::::::::::
reproducing

:::
key

:::::::
climate

::::::::
statistics.

::::::::::
Furthermore, Yuval and O’Gorman (2020) employed the coarse-grained output of

::::
from

:
a

high-resolution three-dimensional (3D) GCM model, simulated on an idealized equatorial beta plane, to train the RF parame-

terization. They showed that the RF parameterization is capable of reproducing the climate of the high-resolution simulation

when used at coarse resolution
::
at

::::::
coarser

::::::::::
resolutions. However, FC NNs offer several advantages over RFs, such as the po-95

tential for higher accuracy and reduced
:::::
lower memory requirements. In their pioneering work, Krasnopolsky et al. (2013)

formulated
:::::::::::::::::::::
Krasnopolsky et al. (2013)

:::::::::
introduced

:
a stochastic CP scheme using an ensemble of 3-layer NNs, which were

trained using
::::::
trained

::::
with data generated by a cloud-resolving model (CRM) over a small area in the tropical Pacific Ocean

during a four-month period of
:::::
during the TOGA-COARE 1 . The results revealed that the NN-based parameterization yielded

reasonable and promising
:::::::::
experiment,

::::::::::::
demonstrating

:::
its

:::::::
capacity

:::
for

:::::::::
generating

:::::::::
reasonable decadal climate simulations across100

a broader tropical Pacific region when incorporated into the National Center of Atmospheric Research (NCAR) Community

Atmospheric Model (CAM). Gentine et al. (2018) utilized
::::::::
Similarly,

::::::::::::::::::
Gentine et al. (2018)

:::::::
leveraged

:::::
deep

:::
NN

:::::::
(DNN)

::::::
trained

::
on

:
data from idealized

:::
and

:::::::::
aquaplanet

:
simulations performed using the SuperParameterized Community Atmosphere Model

(SPCAM)over an aquaplanet to train a deep NN (DNN). The DNN predicts temperature and moisture tendencies influenced

by
:::
due

::
to

:
convection and clouds, along with

:
as
:::::

well
::
as

:
the cloud liquid and ice water contents. Additionally, Rasp et al.105

(2018) successfully incorporated
:::::::::::
implemented an NN-based parameterization into

::
in a global GCM on an aquaplanet. They

conducted
:
,
:::::::::
conducting

:
stable prognostic simulations for multiple years , accurately reproducing

:::
over

::::::::
multiple

:::::
years

::::
that

::::::::
accurately

::::::::::
reproduced

:
the climatology of SPCAM and capturing crucial aspects of variability, including extreme precipita-

tion and realistic tropical waves. However, Rasp (2020) also found that minor modifications
:::::::
changes

:
to the configuration

rapidly led to unpredictable blow-ups in simulation . Therefore, addressing the instability of NN parameterization in GCMsis110

necessary
::::::::
simulation

:::::::::::
instabilities,

:::::::::::
underscoring

:::
the

::::
need

::
to

:::::::
address

:::
the

:::::::::
robustness

::
of

::::
NN

:::::::::::::::
parameterizations

::
in

::::::
GCMs. Yuval

et al. (2021) developed a FC NN to that predicts the subgrid fluxes instead of tendencies, incorporating the physical constraints

from coarse-grained high-resolution atmospheric simulation in an idealized domain. Brenowitz and Bretherton (2018, 2019)

proposed a novel loss function that minimizes the
:::::::
designed

::
to

::::::::
minimize

:
accumulated prediction error over multiple time steps

instead of a single one. They further ensured
:
to

:::::::
enhance

:
long-term stability and accuracy

:
,
:
by excluding upper atmospheric115

humidity and temperature from the inputs. However
:::::
input.

::::::::::
Nonetheless, the approach of removing particular

:::::
certain

:
variables

from the inputs
::::
input is relatively rudimentary, demanding additional research to enhance the stability of NN-based parameter-

izations when integrated into the model.

In addition, previous studies have mainly
:::::::
Previous

::::::
studies

::::
have

::::::::::::
predominantly used FC NNs to emulate convection. However,

there exist other
:
,
:::::
while

::::
more

:
advanced NN structures that have the potential to achieve higher accuracy. In a recent

:::::::::
pioneering120

study, Han et al. (2020) made an initial attempt to employ
:::::::
explored

:::
the

:::
use

:::
of a deep residual convolutional NN (ResNet)

(He et al., 2016) for emulating
::
the

:::::::::
emulation

::
of

:
convection and cloud parameterization in the SPCAM model using a real-

istic configuration. They compared the performance of ResNet with other
:::::
various

:
NN architectures, such as

:::::::
including

:
a FC

1TOGA-COARE is an acronym for Tropical Ocean Global Atmospheres/Coupled Ocean Atmosphere Response Experiment. It is an international research

program that investigates the interaction or coupling of the ocean and atmosphere in the western Pacific warm pool region from November 1992 to February

1993, encompassing 120 days of field experiments involving the deployment of oceanographic ships, moorings, drifters, and Doppler radars (ship, land, air).
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DNN, a DNN with skip connections, and a convolutional NN (CNN) without skip connections. The results of their comparison

demonstrated that both ResNet and CNN
::::::
revealed

::::
that

::::::
ResNet

::::
and

:::::
CNNs

:
without skip connections outperformed the FC NN125

and the DNN
::
FC

:::::
NNs

:::
and

::::::
DNNs

:
with skip connections in terms of accuracy, with the performance of ResNet and CNN

::::::
ResNet

:::
and

::::::
CNNs without skip connections exhibiting similar

:::::::
showing

::::::::::
comparable performance. This finding highlights the

crucial
::::::::
significant

:
role of convolutions in achieving higher accuracy. Another study conducted by Yao et al. (2023) compared

various
:::::::::
enhancing

::::::::
accuracy.

:::::::::::
Furthermore,

::::::::::::::
Yao et al. (2023)

::::::::
evaluated

:::::::
multiple ML model structures for emulating

:::::::::
simulating

atmospheric radiative transfer processes, including
:::::::::::
encompassing

:
FC NNs, CNNs, bidirectional recurrent-based NNs (RNNs),130

transformer-based NNs (Vaswani et al., 2017), and Fourier Neural Operators (FNO (Li et al., 2020)). Their results revealed that

models with ability to preceive
:::::::
indicated

::::
that

::::::
models

:::::::
capable

::
of

:::::::::
preceiving

:
global context of the entire atmospheric column

::::::::::
significantly

:
outperformed FC NNs and CNNs. Particularly, the bidirectional long short-term memory (Bi-LSTM) achieved

the highest
::::
levels

:::
of accuracy. Similar to radiative transfer modeling, Han et al. (2020) also emphasized the importance of

ML having a global perspective of the entire atmospheric column for ML models in convection modeling. Modifying
::::
They135

:::::::::::
demonstrated

:::
that

:::::::::
increasing

:
the depths of CNNs from 4 to 22 layers led to an increase in model accuracy. This improvement

is
::::::::::
significantly

::::::::
improved

:::::
model

::::::::
accuracy,

::
a
::::::
benefit primarily attributed to the expansion of the receptive field in deeper CNN

layers. Thus
::::::::
Therefore, ML models that integrate both global and local perception capabilities are better suited for developing

ML-based CP schemes.

Furthermore, all previous studies have predominantly focused on using
:::::::
Previous

:::::::
research

:::::
have

::::::
mostly

::::::
focused

:::
on

::::::::
replacing140

CP schemes in GCM models
::::
with

:::
ML

:::::::
models for climate forecasting. Moreover, the choice

:::
The

::::::::::
complexity

:
of CP schemes

significantly influences the uncertainty in precipitation forecasts within
::
in weather forecasting models . The complexity of

the CP schemes also surpasses those applied in climate models (Arakawa, 2004). This study employs ML models to simulate

convective processes for weather forecasting . We generate our datasetby running
:::::::
surpasses

::::
that

::
in

::::::
GCMs

::::::::::::::
(Arakawa, 2004)

:
.

::::::::
Generally,

:::
CP

:::::::
schemes

::
in

::::::
GCMs,

:::::::
whether

::
in

:::::::
explicit

::
or

::::::
implicit

:::::
form,

::::::
assume

::::
that

::::
both

::
the

:::::::::
horizontal

::::
grid

:::
size

:::
and

:::
the

::::::::
temporal145

:::::::
intervals

:::
for

::::::
physics

::::::::::::::
implementation

:::
are

::::::::::
significantly

:::::
larger

::::
and

::::::
longer

::::::::
compared

::
to

:::
the

::::
grid

::::
size

:::
and

::::::::
duration

::
of

:::::::::
individual

::::::::::::::
moist-convective

::::::::
elements.

::
In

::::::::
contrast,

:::
CP

::::::::
schemes

::
in

:::::::::::::
high-resolution

::::::
models

:::::
must

:::::::
account

:::
for

::::::::::::
dependencies

::
on

:::::
both

:::
the

::::::
model’s

:::::::::
resolution

:::
and

:::
the

:::::
time

::::::
interval

:::
for

::::::::::::
implementing

:::
the

:::::::
physics

::::::::::::::
(Arakawa, 2004).

::::
The

:::::::
ultimate

::::
goal

::
is

::
to

:::::::
develop

::::
ML

::::::
models,

:::::
based

:::
on

::::
data

::::
from

:::::::::::::::::::
super-parameterization

::
or

:::::::::::::
cloud-resolving

:::::::
models,

::
to

::::::
replace

:::::::::::
conventional

:::
CP

:::::::
schemes

::
in

:::::::
weather

:::::::::
forecasting

:::::::
models.

::::
This

::::::::::
replacement

:::::
seeks

:::
to

::::::
reduce

::::::::::
uncertainties

::::
and

:::::::
improve

:::
the

:::::::
efficacy

:::
of

:::
ML

::::::::::::::::
parameterizations.

::::
This150

::::
study

:::::::::
represents

:::
an

:::::
initial

:::::
effort

::
to

::::::
employ

::
a
::::
ML

:::::
model

::
as

:::
an

:::::::::
alternative

::
to

:::::::::::
conventional

:::
CP

:::::::
schemes

::
in

:::::::
weather

::::::::::
forecasting

::::::
models.

::::
For

:::
our

::::::
dataset,

:::
we

:::::
used the Weather and Research Forecasting (WRF) (Skamarock et al., 2021) model with the

:::
that

:::::
covers

:::
the

:::::
South

:::::
China

::::::
region,

:::::::::::
incorporating

:::
the

:
scale-aware MSKF scheme employed as the CP scheme. Developed as a means

to mitigate the precipitation overestimation associated with the original KF scheme, the MSKF schemeserves as
:::
The

::::::
MSKF

::::::
scheme,

:
an improved version of the Kain-Fritsch (KF) scheme (Kain and Fritsch, 1990, 1993; Kain, 2004). The KF scheme155

often initiates convection prematurely, which leads to an overprediction of precipitation
:
,
::::
aims

::
to

:::::::
mitigate

:::
the

:::::::::::::
overestimation

::
of

:::::::::::
precipitation,

:::::::
address

:::
the

:::::::::
premature

:::::::::
convection

::::::
trigger

::::::
issue,

:::::::::
particularly

:::::::
evident

::
in

:::::::::::::
overestimating

:::::::::::
precipitation

:
during

summer. To address these issues, the MSKF incorporates a scale-dependent capability, such as modifying the formulation of

5



the convective adjustment timescale. This vital parameterdefines
:
,
:::::
which

::::::::::
determines the intensity and duration of convection,

and the MSKF scheme made it dynamic and grid resolution dependent (Zhang et al., 2021). The WRF model covers the South160

China region.
::
has

:::::
been

:::::
made

:::::::
dynamic

::::
and

:::::::::
dependent

:::
on

:::
grid

:::::::::
resolution

:::::::::::::::::
(Zhang et al., 2021).

:
Furthermore, we utilize a Bi-

LSTM model to emulate the convective processes and couple it with the WRF model using
::::::
through

:
the WRF-ML coupler

developed by Zhong et al. (2023a). The performance of the ML-based CP scheme is evaluated in both offline and online

settings.

The paper is structured as follows. Section 2 provides a description of the WRF model for data generation, as well as the165

input and output data of the ML model. In Section 3, the original and the ML-based MSKF scheme is introduced. The results

for both offline and online testing of the ML-based MSKF scheme are presented in Section 4. Finally, Section 5 presents the

summary and conclusion.

2 Data

2.1 Data generation170

The dataset was generated by running the WRF model version 4.3 (Skamarock et al., 2019, 2021). The following subsections

provide a comprehensive explanation of the WRF model configurations, as well as the input and output variables employed in

the development of the ML-based CP scheme.

The WRF model is compiled using the GNU Fortran (gfortran version 7.5.0) compiler with the "dmpar" option. The WRF

model is run using the domain configuration illustrated in Figure 1. The WRF model is configured with a single domain175

consisting of 44000 grid points, with a horizontal grid spacing of 5 km and dimensions of 220 × 200 grid points in the west-

east and north-south directions. The model consists of 45 vertical levels (i.e., 44 vertical layers), with a model top at 50 hPa.

Additionally, the WRF model is configured with physics schemes, including WSM 6-class graupel scheme (Hong and Lim,

2006) for microphysics, Bougeault-Lacarrère (BouLac) scheme (Bougeault and Lacarrère, 1989) for planetary boundary layer

(PBL) mixing, the Monin-Obukhov (Janjic) surface layer scheme (Janjic, 1996), the Unified Noah model (Livneh et al., 2011)180

for land surface, RRTMG for both shortwave and longwave radiation (Iacono et al., 2008), and MSKF (Zheng et al., 2016) for

cumulus. The time step used for all WRF simulations is set to 15 seconds.

The initial and boundary conditions
::
for

:::
this

:::::
work

:
were derived from the ERA5 reanalysis dataset, which was provided by

the European Centre for Medium-range Weather Forecast (ECMWF) (Hersbach et al., 2020). The ERA5 reanalysis dataset

used in this study has a horizontal resolution of 0.25◦ and consists of 29 pressure levels below 50 hPa. To create a dataset for185

developing the ML model, the WRF simulations were initialized at 12 UTC and conducted 9 times every 2 days, specifically

from May 20th, 2022 to June 5th, 2022. Throughout the simulations, the MSKF scheme was called every 5 model minutes,

generating outputs at each call. The simulations ran for 36 hours each time, with the first 24 hours used for training and the

6



Figure 1. Digital evaluation data of the single WRF domain with horizontal resolution at 5.
::
5◦.

:
Red lines are the province borderlines, and

black lines are the city borderlines.

last 12 hours for validation. Therefore, the total number of training samples is 114,444,000 2 while the offline validation set

contains 57,024,000 3 samples.190

Furthermore, considering that the offline performance might not necessarily reflect its performance in online setting
:::::
given

:::
the

:::::::
possible

::::::::::
discrepancy

:::::::
between

::::::
offline

::::::::::
performance, we conducted experiments by coupling

:::
that

:::::::
coupled

:
the ML-based MSKF

scheme with WRF modeland comparing the results to the original WRF simulations to evaluate the online performance
:
.
::::
This

:::::::
coupling

::::
aims

::
at

:::::::::
evaluating

:::
the

:::::
online

:::::::
efficacy of the ML-based MSKF scheme . The simulations were conducted

::
by

:::::::::
comparing

:
it
::::
with

:::
the

:::::::
original

:::::
WRF

::::::::::
simulations.

:::::
These

::::::::::
simulations

::::
were

:::::::::
performed 4 times every 2 days, each lasting 36 hours

::::
with

::::
each195

::::::::
simulation

:::::::::
extending

::::
over

:
a
::::::
period

::
of

::::
168

:::::
hours

::
(7

:::::
days). The initialization days spanned from June 12th, 2022 to June 18th,

2022.

2.2 Input and output data

Table 1 presents a comprehensive list of the input and output variables used in this study
:
,
::::::::
consistent

::::
with

:::::
those

:::::::
utilized

::
in

:::
the

::::::
original

::::::
MSKF

:::::::
scheme. There are 13

::
17

:
variables exclusively used as input, while 9 variables serve as both input and output.200

The output
::::::::::
Specifically,

:::
the

::::::
output

:::::::
variable

::::::::
"raincv",

::::::::::
representing

:::
the

:
time-step precipitation due to convection("raincv")

:
, is

calculated through multiplying
::
the

:
precipitation rate by the model

::
’s time step. Out of

::::::
Among

:
all the variables, 5 are two-

2114,444,000 = 44000 × 9 × (24 × 60 / 5 + 1)
357,024,000 = 44000 × 9 × 12 × 60 / 5
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dimensional (2D) surface variables, while the remaining ones are 3D variables characterized by 44-layer vertical profiles.

Additionally
::::::::
Moreover, the ML model used in this study incorporates 4 derived variables as input. These variables consist

of a 2D Boolean variable indicating convection triggering based on the values of "nca" , pressure difference between each205

::::::
values,

:::
the

:::::::
pressure

:::::::::
difference

:::::
across

:
adjacent vertical levels,

::
the

:
saturated water vapor mixing ratio, and relative humidity.

Furthermore, the output "w0avg", which depends on vertical wind component (w) and input "w0avg", is also included as an

input to model. In total, the ML model utilizes 27 input variables.

The variable "nca" represents the cloud relaxation time and must be an integer multiple of the model time step. For all WRF

model simulations conducted in this study, a fixed time step of 15 seconds is used. Thus, "nca" is expected to be evenly
::::::
exactly210

divisible by 15. To eliminate dependence on the specific model time step, "nca" is divided by the model time step before

normalization is applied during model training. Moreover, within the MSKF scheme, "nca" plays a crucial role in determining

the triggering of convection. Convection is triggered when "nca" is greater than or equal to
::::
equal

::
to

::
or
:::::::

exceeds
:

half of the

model time step.

To ensure consistency with the dimensions of the 3D variables, the surface variables are padded by duplicating the values of215

the surface layer for all layers before feeding them into the model. Prior to utilizing the variables in the Bi-LSTM model for

training and validation, normalization is applied to ensure uniformity in the magnitudes of all the variables. Each variable is

divided by the maximum absolute value in the atmospheric column (for 3D variables) or at the surface (for surface variables).
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Table 1. Definition of all the input and output variables, and whether they are surface or 3D variables and their corresponding units. There

are 44 model layers.

Type Variable name Definition type Unit

Input u meridional wind component 3D m/s

v zonal wind component 3D m/s

w vertical wind component 3D m/s

t temperature 3D K

qv
Water

::::
water vapor mixing ratio

3D kg/kg

p pressure 3D Pa

th potential temperature 3D K

dz8w layer thickness 3D m

rho air density 3D kg/m3

pi Exner function, which is dimensionless pressure and can be defined as:

( p
p0
)Rd/cp

hfx upward heat flux at surface surface W/m2

ust u∗ in similarity theory surface W/m2

pblh planetary boundary layer height surface m

::::::
Derived

::::
Input

: ::::
pdiff:

::::::
pressure

::::::::
difference

::::::
between

:::::::
adjacent

::::
levels

:

::
3D

::
Pa

::::
qvsat:

::::::
saturated

:::::
water

::::
vapor

::::::
mixing

::::
ratio

::
3D

::::
kg/kg

::
rh

:::::
relative

:::::::
humidity

:

::
3D -

:::::
trigger

::::::
boolean

:::::
trigger

::::::::
indicating

::::::::
convection

:::::::
triggering

:

:::::
surface

:
-

Input and Output rthcuten potential temperature tendency due to cumulus parameterization 3D K/s

rqvcuten water vapor mixing ratio tendency due to cumulus parameterization 3D kg/kg/s

rqccuten cloud water mixing ratio tendency due to cumulus parameterization 3D kg/kg/s

rqrcuten rain water mixing ratio tendency due to cumulus parameterization 3D kg/kg/s

rqicuten cloud ice mixing ratio tendency due to cumulus parameterization 3D kg/kg/s

rqscuten snow mixing ratio tendency due to cumulus parameterization 3D kg/kg/s

w0avg average vertical velocity 3D m/s

nca counter of the cloud relaxation time 3D s

pratec precipitation rate due to cumulus parameterization surface mm/s

Output raincv precipitation due to cumulus paramterization surface mm

9



3 Method

This section describes the flow chart of original MSKF scheme for determining convection trigger, ML model structures and220

training, and the evaluation methods.

3.1 Description of original MSKF module

The MSKF scheme is a scale-aware adaptation of the KF CP scheme, which was originally
::::::
initially

:
developed by Kain and

Fritsch (1990, 1993) and later modified
::::::
further

::::::
refined

:
by Kain (2004). The flow chart illustrating

:::::
Figure

::
2
:::::::::
illustrates the

convection trigger process in the original MSKF schemeis illustrated in Figure 2
:::::
within

:::
the

::::::
MSKF

:::::::
scheme. At the beginning225

of each call, the
:::::::::
simulation

::::
step,

:::
the

:::::::
scheme

::::::::
evaluates

:::
the

:
variable "nca" is examined to determine if exceeds or equals a

threshold equal to half of the model
::
to

::::::::
ascertain

:::::::
whether

::
it

:::::
equals

:::
or

::::::::
surpasses

:
a
:::::::::
threshold,

::::::
defined

:::
as

:::
half

::::
the

:::::::
model’s time

step (dt). If
:::::
Should

:
"nca" is greater than or equal to

::::
equal

::
or

::::::
exceed

:::
the

:
half of dt, the convective tendencies and precipitation

rate do not require updating since convectionis still active. If
::::
there

::
is

:::
no

::::
need

::
to

::::::
update

:::::::::
convective

:::::::::
tendencies

::
or

:::::::::::
precipitation

::::
rates

:::
due

::
to
:::::::
ongoing

::::::::::
convection.

::
In

::::::::
contrast,

:
a
:
"nca" is smaller than the specified threshold , a 1-D cloud model within

:::::
value230

:::::
below

:::
this

::::::::
threshold

:::::::
triggers

:
the MSKF scheme is used to calculate various

:
to
:::::::

employ
:
a
::::::::::::::

one-dimensional
:::::

cloud
:::::::

model.
::::
This

:::::
model

:::::::::
calculates

:
a
:::
set

::
of

:
variables related to cloud properties in order to determine whether convective should be triggered.

These
::::::::::::
characteristics

::
to

:::::::
evaluate

::::
the

:::::::
potential

:::
of

:::::::::
convection

:::::::::
triggering.

::::::::
Essential

:
variables include the lifting condensation

level (LCL), convective available potential energy (CAPE), cloud top and base heights, and entrainment rates. If convection is

activated for a particular grid point, the MSKF scheme computes the convective tendencies and precipitation rate. On the other235

hand, if convection is not
:::
The

:::::
LCL

::
is

::::::
crucial

:::
for

::::::::::
determining

:::
the

::::::::::
emergence

::
of

:::::::
potential

::::::::::
convective

::::::::
activities,

::::
with

::
a

:::::
lower

::::
LCL

:::::::
favoring

:::::
more

::::::
intense

::::::::::
convection.

::::::
CAPE

::::::::
quantifies

::::
the

:::::::
buoyant

::::::
energy

:::::::
available

:::
to

::
an

:::
air

::::::
parcel

:::
for

:::
the

::::::::
formation

:::
of

::::
deep

:::::::::
convective

:::::
clouds

:::::
upon

:::::::
reaching

:::
its

::::
Level

:::
of

::::
Free

:::::::::
Convection

::::::
(LFC)

:::::
above

:::
the

::::
LCL,

::::
with

::::::
higher

::::::
CAPE

:::::
values

:::::::::
signifying

:
a
::::::
greater

::::::::
potential

:::
for

::::::
intense

::::::::::
convection.

::::
The

:::::
cloud

::::
base

::
is
:::::::::

generally
::
at

:::
the

:::::
LCL,

:::::::
whereas

:::
the

:::::
cloud

::::
top

::
is

::::::
defined

:::
at

:::
the

::::::
altitude

:::::
where

:::::::::
buoyancy

:::::::
becomes

:::::::::
negligible.

::::::::::
Meanwhile,

:::
the

:::::::
vertical

:::::
extent

:::::::
between

:::
the

:::::
cloud

::::
base

:::
and

:::
top

:::::
affect

:::
the

:::::::
cloud’s240

::::::
growth

:::
and

:::::::::::
precipitation

::::::::
potential.

::::
The

::::::
MSKF

::::::
scheme

::::::::
requires

:::::::::
surpassing

:
a
:::::::
specific

::::::
CAPE

::::::::
threshold

::
to

::::::
trigger

::::::::::
convection.

::::::::::
Furthermore,

::
it
:::::::
assesses

::::::::::
entrainment

:::::
rates

::
to

:::::::
measure

:::
the

::::::
impact

::
of

:::::::
ambient

::
air

:::
on

:::
the

::::::::
evolution

::
of

:::::::::
convective

::::::
system.

:::
At

::::
grid

:::::
points

:::::
where

:::::::::
convection

::
is
:
triggered, the

:::::
MSKF

:::::::
scheme

::::::::
calculates

::::
both

:
convective tendencies and precipitation rate remain at

0.
::::
rates;

:::::::::
otherwise

::::
these

::::::
values

:::
are

::
set

::
to

:::::
zero. However, the variable "w0avg" is always updatedregardless whether convection

is triggered or not. As long as the convection remains active,
::::::::::
consistently

:::::::
updated,

:::::::::
regardless

:::
of

:::::::::
convection

::::::
status.

::::::
Active245

:::::::::
convection

::::
leads

:::
to

:
a
:::::::::

decrement
:::

in "nca" is decremented by one model time step at each WRF model’s time step
::
for

:::::
each

:::::::
iteration

:::::
within

:::::
WRF

::::::
model

::::
cycle.

3.2 Description of ML-based MSKF scheme

In the original MSKF scheme, the atmospheric column is
:::::::::
atmospheric

::::::::
columns

:::
are

:
processed sequentially, one at a time,

until all horizontal grid points within the domain have been processed. In contrast, the ML-based MSKF scheme performs250

10



Figure 2. A flow chart outlining convection trigger process in the original MSKF scheme.
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Figure 3. The architecture of the multi-output Bi-LSTM model for combined classification and regression predictions.

calculations on a batch (Bon Figure 3) of data
::::::::
processes

::::
data

::
in

::::::::
batches,

::
as

::::::::
indicated

:::
by

:::
"B"

:::
in

::::::
Figure

:
3, consisting of 44

features and 27
::::::
features

::::::
across

:::
44 vertical layers. As a result, the input data has dimensions of B × 27 × 44. Before being

fed into the ML model, the input data data undergoes pre-processing through a module incorporating a 1-dimensional (1D)

convolutional layer. This module increases
:::::::
expands the feature dimension from 27 to 64. The subsequent

::::::::
following sections

provide a comprehensive description of the structures of the ML model.255

3.2.1 ML model structure

Predicting whether convection is triggered as well as modeling convective tendencies and precipitaion rate
::::::::::
precipitation

:::::
rates

are two main tasks in conventional CP schemes.
::::::::::::::
Regression-based

::::::
models

:::::
alone

::::
may

:::::
result

::
in

::::::::::
inconsistent

:::::::::
tendencies,

:::::::
leading

::
to

:::::::::
conflicting

::::::
signals

:::
for

:::::::::
triggering

:::::::::
convection

::
at
:::::::

specific
::::
grid

::::::
points.

:::::::::
Similarly,

::::::
models

::::::
solely

:::::::::
dependent

:::
on

:::::::::::
classification

:::
lack

:::
the

:::::::::
capability

::
to

:::::::
generate

:::::::
essential

:::::::::
tendencies

:::
for

:::
an

:::::::
effective

:::
CP

:::::::
scheme. Therefore, the development of a ML-based CP260

scheme requires
:::::::::
necessitates

:::
the

:::::::::
integration

:::
of both a binary classification model for predicting

::
the

:::::::::
prediction

::
of

:
convection

trigger and a regression model for modeling convective tendencies. Accordingly
::
To

::::::
address

::::
this, we propose a multi-output

Bi-LSTM model that can simultaneously perform
::::::
capable

::
of

:::::::::::
concurrently

:::::::::
conducting

:
regression and classification predictions

(Figure 3). Our proposed model consists of a shared Bi-LSTM layer for learning features, a classification subnetwork, and

a regression subnetwork. The shared Bi-LSTM layer includes three repeated Bi-LSTM blocks, with each block containing a265

forward and a backward layer that have a feature dimension of 32. The classification subnetwork is composed of a 1× 1 1D

convolutional layer, a FC layer, and a Sigmoid activation layer. The output of the Sigmoid layer represents the probability

distribution of the convection trigger. The binary cross-entropy loss function is employed as the cost function for this classifi-

cation task. Meanwhile, the regression subnetwork incorporates a FC layer to output precipitation rate, "nca", and convective

tendencies. Finally, the output of both subnetworks passes
::::::
outputs

::::
from

::::
both

:::::::::::
subnetworks

:::
are

:::
the

:::::::::
processed through a post-270

processing module to ensure physical consistency. The post-processing module is introduced in more detail in the following

::::
their

:::::::
physical

::::::::::
consistency,

::::
with

::::::
further

::::::
details

:::::::
provided

::
in

:::
the

::::::::::
subsequent subsection.
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3.2.2 Post-processing module

The post-processing module is designed to ensure physical consistency of all variables. The
::
To

:::::::
achieve

::::
this,

:::
the

:
following

rules are applied: 1) For
::
At

:
grid points where the input "nca" is greater than or equal to half

::::
equal

:::
to

::
or

::::::
greater

::::
than

::::
half

:::
the275

::::
value

:
of dt, all other variables remain unchanged as they are still within the convection lifetime. 2) The output "nca" must be

an integer. 3) For
::
At

:
grid points where convection is predicted to be inactive, all other

::::::::::::
corresponding output variables are set

::::::
default to zero. In addition, the

:::::::::
calculation

::
of

:
time-step convective precipitation (raincv) is calculated as described

::::::
follows

:::
the

:::::::::::
methodology

:::::::
outlined in the previous section 2.2.

3.2.3 Model training280

As our model incorporates both classification and regression tasks, we optimize its performance by minimizing a multi-task

loss function (Ren et al., 2016). The loss function is defined as the sum of the binary cross entropy loss for the convection trigger

and a weighted combination of the L1 loss for all output variables from the regression subnetwork. The specific formulation

of the loss function is as follows:

L=
1

Ncls

∑
i,j

Lcls(pi,j ,p
gt
i,j)+

∑
c

λc
1

Nreg

∑
i,j

pgti,jL1c (1)285

Here, i and j denote the grid points in the domain. pi,j represents the probability of convection being triggered. The ground-

truth label pgti,j takes a value of 1 if convection is triggered and 0 otherwise. The classification loss Lcls is calculated using

the binary cross entropy loss. For the regression loss of different variables c, λc functions as a weight that balances the output

variables by considering their respective magnitudes. The term pgti,jL1c indicates that the L1 regression loss is activated only

for triggered grid points (pgti,j = 1) and is disabled otherwise (pgti,j = 0). Both loss terms are normalized by Ncls and Nreg ,290

which correspond to the total number of grid points and the number of triggered grid points, respectively.

Adam optimizer (Kingma and Ba, 2014) is used with an initial learning rate of 0.003 update the parameters of the model.

Furthermore, the plateau scheduler is implemented to decrease the learning rate by a factor of 0.5 when the loss fails to decrease

for five epochs. The model is trained for 150 epochs using a batch size of 44000.

3.3 Evaluation methods295

The ML-based MSKF scheme is evaluated in both offline and online settings. The offline performance of the ML-based MSKF

scheme is evaluated by comparing it against the outputs of the original MSKF scheme using validation dataset, including

rthcuten, rqvcuten, rqccuten, rqrcuten, nca, and pratec. The overall model performance metrics include root mean squared

error (RMSE )
:::::
RMSE

:
and correlation coefficient. The mean absolute error (MAE) and mean bias error (MBE) per vertical

layer were were calculated using the equation below:300

MAEl =
1

N

N∑
i=1

|YML(i, l)−Y (i, l)| (2)
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MBEl =
1

N

N∑
i=1

YML(i, l)−Y (i, l) (3)

where Y (i, l) and YML(i, l) represent the outputs from the original MSKF scheme and ML-based MSKF scheme, respectively.

Here, i denotes the horizontal grid point of a vertical profile, N is the number of the horizontal grid points in the domain, l

represents the vertical layer index.305

4 Results

4.1 Offline validation of the ML-based MSKF scheme

The offline validation was conducted using data that was not used during the training process. Figure 4 compares the cloud

relaxation time (nca), precipitation rate (pratec), and convective tendencies predicted by both the original MSKF scheme

and the ML-based MSKF scheme, respectively.To facilitate the comparison, the
::::
units

::
of

:
precipitation rate and temperature310

tendencies were multiplied by a factor of 86,400 (24 × 3600) to convert from
::::::::
converted

::
to

:
mm·s

:
d−1 and K·s

:
d−1 to

::::
from

mm·ds−1 and K·d
:
s−1, respectively

:
,
::
by

::::::::
applying

:
a
:::::::::
conversion

:::::
factor

::
of

::::::
86,400

::::
(24

::
×

:::::
3600). Similarly, the water vapor mixing

ratio (rqvcuten), cloud water mixing ratio (rqccuten), and rain water mixing ratio (rqrcuten) resulting from
:::
due

::
to
:

convection

were multiplied by 86,400,000 (24 × 3600 × 1000) to convert from kg·kg−1·s−1 to g·kg−1·d−1. Among the output variables

listed in Table 1,
:::
the

:::::::
variable w0avg,

:
is excluded as it is calculated using an equation with the ground truth as input in this315

offline validation. Hence, evaluating w0avg in the offline evaluation is unnecessary.

Among all the variables illustrated in Figure 4, the variable "nca" exhibits a significantly higher RMSE of 4.32, and its data

points appear scattered
:::
with

::::
data

:::::
points

::::::
widely

::::::::
dispersed across a wide range of values. This suggests that accurately predicting

convection poses a considerable challenge. Prior to plotting and performing statistical calculations
::
To

::::::::
eliminate

:::
the

::::::::::
dependency

::
on

::::
time

:::::
steps, "nca" is divided by the model

:
’s
:
time step of 15 to eliminate the time step dependence

:::::::
seconds

:::::
before

::::::::::
proceeding320

::::
with

::::::
plotting

::::
and

::::::::
statistical

:::::::::
evaluations. The precipitation rate demonstrates the highest correlation coefficient and the smallest

spread
:::::::
minimal

:::::::::
variability, as most data points cluster closely around the 1:1 line. In the case of

:::::
While

:
temperature and the

four moisture tendencies , the data also displays some dispersion, but a majority of the data points remain close
::::::
exhibit

:::::
some

:::::
degree

::
of

:::::::::
variability,

:::
the

::::::::
majority

::
of

:::
data

::::::
points

::::
align

::::::
closely

:
to the 1:1 line.

:::
The

:::::::::
correlation

:::::::::
coefficient

::
of

:::::::::
convection

::::::
trigger

::
is

::::
0.91,

:::
not

::::::
shown

::
in

:::::
Figure

::
4.
:
Overall, the ML-based MSKF scheme shows a strong correlation with the original MSKF scheme325

for all the
::::::::
examined variables, with correlation coefficients consistently higher than 0.91. This indicates that the the ML-based

MSKF scheme has the potential to replace the original scheme.

To gain
:::::
obtain a comprehensive understanding of the vertical distribution of errors, Figure 5 illustrates

::::::
presents

:
the vertical

profiles of statistics in
::::
error

::::::::
statistics

::::::::
associated

:::::
with convective tendencies. The solid and dotted lines in the figure represent

the MAE and MBE of tendencies at each vertical layer, respectively. Additionally, the shaded area corresponds to the 5th330

and 95th percentiles of differences between tendencies predicted by the ML-based MSKF predicted scheme and the original

14



MSKF scheme, respectively. The vertical error distribution
::::::::::
distribution

::
of

:::::::
vertical

:::::
errors

:
in all tendencies is quite similar

::::::
exhibits

::
a
::::::
notable

::::::::::
uniformity,

:
with higher variance observed among

:::::
within

:
the pressure layers between 800 and 1,000 hPa.

These pressure layers corresponds
:::::::::
correspond

:
to the atmospheric layer where convection occurs most frequently. Due to the

significantly lower cloud and rain content compared to water vapor in the atmosphere, the error magnitudes for rqccuten and335

rqrcuten are considerably smaller than those
::::
lower

::::
than

:::::
those

::::::::
observed for rqvcuten.

15



Figure 4. Comparison of the predicted (y axis) and true (x axis) nca, pratec, rthcuten (first column), rqvcuten (second column), rqccuten

(third column), and rqrcuten for using validation data in the offline setting.
:::::
Colors

::::::
indicate

::
the

::::::::
proportion

::
of

::::::
samples

:::::
across

:::
the

:::::
entire

:::::
testing

:::::
dataset,

::::
with

:::::
values

::
on

:::
the

::::::
colorbar

:::::::::
normalized

::::::
through

:::
the

::::::::
application

::
of

:
a
::::::::
logarithm

:::
base

:::
10.
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Figure 5. Vertical profiles of the statistics in rthcuten (first column), rqvcuten (second column), rqccuten (third column), and rqrcuten (fourth

column) using validation data in the offline setting data using ML-based emulators. The solid and dotted lines show the MAE and MBE

profile, respectively, and the shaded area indicates the 5th and 95th percentile of differences (prediction—target) at each layer.
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4.2 Prognostic validation

This subsection presents the performance of the ML-based MSKF scheme in the online setting.

The ML-based MSKF scheme was integrated as a replacement
:::
into

::::
the

::::
WRF

::::::
model

::
as

::
a
::::::::
substitute

:
for the original MSKF

scheme in the WRF model to model convective effects. The
:
to

:::::::
simulate

:::::::::
convective

:::::::::
processes.

::::::::
Utilizing

:::
the WRF-ML coupler340

(Zhong et al., 2023a)was used to incorporate the
:
,
::::
this

:::::
novel ML-based MSKF scheme

::::
was

:::::::::
seamlessly

:::::::::::
incorporated

:
into

the WRF model. Both
::::::::::
framework.

::
A

::::::::::
comparative

::::::::
analysis

::::
was

:::::::::
conducted

::
by

::::::::::
initializing

::::
both

:
the modified WRF model,

incorporating
:::::
which

:::::::::::
incorporates the ML-based scheme, and the original WRF model were initialized on June 12, 14, 16, and

18, 2022, and run for 36
::
for

::::::::::
simulations

::::::::
extending

::::
over

::::
168

:
hours. It is worth mentioning that this runtime was completely

independent
::::
these

::::::::::
simulations

:::::
were

:::::::::
performed

::::::::::::
independently of the training dataset,

::::::::
ensuring

:::
the

:::::::::
evaluation

::
of

:::
the

::::::::
scheme’s345

:::::::::::
generalization

:::::::::
capability.

In Figure 6 ,
:::::
Figure

::
6
:::::::
presents

:
the averaged spatial forecasts of the 4-day prediction from the

:::
for

:::::::::
predictions

:::::::::
generated

::
by

:::
the

:
original WRF modelare presented. These results include accumulation of convective

:
.
:::::
These

:::::::
forecast

::::::
results

:::::::
include

::
the

:::::::::::::
accumulations

::
of

::::
both

:::::::::
convective

:::::::::::
precipitation

:::::::::
(RAINC)

:
and non-convective precipitation

::::::::::
(RAINNC)

:
over a 12-hour

period, as well as
:::::
along

::::
with the 2-meter temperature at 12,

::::::
(T2M )

::
at

:
24, and 36

:::
72,

::::
120,

:::
and

::::
168

:
hours. The figure also350

illustrate
:::::::::::
demonstrates the mean absolute difference (MAD) between the WRF simulations coupled with the ML-based MSKF

scheme and those using
:::::::
utilizing

:
the original MSKF scheme. The

:::::
Within

:::
the

::::::
spatial

::::::::
forecasts,

:
red and blue patterns in the

spatial forecasts represent the
:::::
signify

::::
the magnitudes of the forecast values. In the spatial difference, red and blue patterns

reveal
::::::::
forecasted

::::::
values,

:::::::
whereas

:::
in

:::
the

::::::
spatial

::::::::::
differences,

:::::
these

::::::
colors

::::::
denote

:
the positive and negative biases of

::
in the

ML-based simulations, respectively. while green patterns suggest little to no difference compared to
:::::
Green

:::::::
patterns

:::::::
suggest355

:::::::
minimal

::::::::
deviation

::::
from

:
the original WRF simulations. Additionally,

:::::::::::
Furthermore,

:::
we

:::::::
calculate

:
a domain-averaged MAD is

calculated to evaluate the overall performance of the ML-based scheme in prognostic simulations. Generally, the difference

is smallsuggesting that the
:::::::::
differences

:::
are

:::::
small,

::::::::
indicating

:::::
good

:::::::::
agreement

:::::::
between

:
WRF simulations coupled with

:::
the ML-

based MSKF scheme agree well with the origianl
:::
and

:::
the

:::::::
original WRF simulations. Also, the difference does not increase as

the simulation time progresses, as there is
:::::::
Notably,

:::
the

:::::::::
differences

:::
do

:::
not

:::::::
increase

::::
with

:::
the

::::::::::
progression

::
of

:::::::::
simulation

:::::
time,

::
as360

::::::::
evidenced

:::
by a comparable domain-averaged MAD at 36

:::
168 forecast hours compared to that at 12

::
24

:
forecast hours. These

findings indicate
::::::
suggest that the ML-based MSKF scheme achieves stable prognostic simulations.
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Figure 6. Spatial map of the average WRF simulations using the original MSKF scheme (in the first, third, and fifth rows) along with the

average MAD between WRF simulations coupled with the ML-based MSKF scheme and WRF simulation with the original MSKF scheme

(in the second, fourth and sixth rows). The simulations are shown for the 12-hour accumulated convective precipitation (RAINC) in the

first and second rows, the 12-hour accumulated non-convective precipitation (RAINNC) in the third and fourth rows, and the 2-meter

temperature (T2M ) at forecast lead times of 12
::
24 hours (first column), 24

::
72

:
hours (second column), and 36

:::
120 hours (third column)

:
,
:::
and

:::
168

::::
hours

::::::
(fourth

::::::
column).
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:::::
Figure

::
7

:::::::
provides

:
a
:::::::::::

comparative
:::::::
analysis

::
of

::::::::::::::
domain-averaged

::::
time

:::::
series

::::::::
forecasts

::::
from

::::
both

:::
the

:::::::
original

:::::
WRF

::::::::::
simulations

:::
and

:::::
WRF

:::::::::
simulations

:::::::
coupled

::::
with

:::
the

::::::::
ML-based

::::::
MSKF

:::::::
scheme.

::::
This

::::::::::
comparison

:::::::
includes

::::::
6-hour

::::::::::::
accumulations

::
of

::::::::
RAINC

:::
and

::::::::::
RAINNC,

::
as

::::
well

::
as

::::::
T2M

::::::::
forecasts.

:::
The

::::::
results

::::::::::
demonstrate

::::
that

:::::
WRF

:::::::::
simulations

:::::::
coupled

::::
with

:::
the

:::::::::
ML-based

::::::
MSKF365

:::::::
schemes

:::
are

::
in

::::
close

:::::::::
alignment

::::
with

:::
the

::::::
original

:::::
WRF

::::::::::
simulations,

::::::::::
particularly

::
in

::::::::
capturing

:::
the

::::::
diurnal

::::::::
variations

::
of

:::::::::
RAINC,

::::::::::
RAINNC,

:::
and

::::::
T2M .

::::::::
Notably,

:::
the

:::::
T2M

::::::::
forecasts

:::::::::::
demonstrate

:::::::::
remarkable

:::::::::::
consistency,

:::::::::::
underscoring

:::
the

:::::::
efficacy

:::
of

:::
the

::::::::
ML-based

::::::
MSKF

:::::::
scheme

::
in

::::::::::
maintaining

:::
the

::::::::
predictive

::::::::
accuracy

::
of

:::
the

:::::::
original

:::::::
scheme.
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Figure 7.
:::::::::
Comparison

::
of

:::::::::::::
domain-averaged

:::::::
forecasts

:::::
derived

::::
from

:::
the

::::::
original

::::
WRF

:::::::::
simulations

:::::
(black

::::
lines)

::::
and

::::
WRF

:::::::::
simulations

::::::
coupled

:::
with

:::
the

::::::::
ML-based

:::::
MSKF

::::::
scheme

::::
(light

:::::
green

::::
lines)

::
of

::::::
6-hour

:::::::::
accumulated

:::::::
RAINC

::::
(first

::::
row)

:::
and

:::::::::
RAINNC

::::::
(second

:::::
row),

::::
along

::::
with

::::
T2M

:::::
(third

::::
row).
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5 Conclusions

In this paper, we proposed a multi-output Bi-LSTM model to developing
::::::
develop

:
a ML-based MSKF scheme for predicting370

convection trigger and reproducing the convective process in the gray zone. The model is trained using data generated from
::
on

:::
data

:::::::::
generated

::
by

:
the WRF simulations at a spatial resolution of 5 km, covering the South China region. The output variables

of the ML-based MSKF scheme are identical to those of the original MSKF scheme, which include
::::::::::::
encompassing cloud

relaxation time ("nca"), precipitation rate ("pratec"), time-step convective precipitation ("raincv"), and convective tendencies.

In the
::::
This ML-based scheme , the

::::::
ensures physical consistency among all output variables is considered and encoded as

::
by375

:::::::::::
incorporating a post-processing module to refine the output from the Bi-LSTM model. Offline validation demonstrates the

excellent performance of the ML-based MSKF scheme. Furthermore, the ML-based MSKF scheme is coupled with the WRF

model using WRF-ML coupler. The WRF simulations coupled with the ML-based MSKF scheme is compared against the

WRF simulation with the original MSKF scheme. Results shows that the ML-based scheme can generate forecasts similar to

the original ML scheme in online settings, showing the potential substitution of the MSKF scheme by ML models in gray-zone.380

::::
This

:::::
study

:::::::::::
demonstrates

:::
the

:::::::::
feasibility

::
of

::::::::::
employing

:::
ML

:::::::
models

::
as

::::::::::
substitutes

:::
for

:::::::::::
conventional

:::
CP

:::::::
scheme

::::::
within

:::
the

::::::::::::
high-resolution

:::::::
weather

:::::::::
forecasting

::::::
model.

::::::
Future

:::::
efforts

::::
will

:::::
focus

::
on

:::
the

::::::::::
development

::
of

::::
ML

::::::
models,

:::::
based

:::
on

::::
data

::::::::
generated

::
by

:::::::::::::::::::
super-parameterization

::
or

:::::::::::::
cloud-resolving

:::::::
models,

::
to

::::::
replace

:::::::::::
conventional

:::
CP

:::::::
schemes

::
in

:::::::
weather

:::::::::
forecasting

:::::::
models.

::::
The

:::::::
objective

::
of

::::
this

::::::::::
substitution

:
is
:::
to

:::::
reduce

:::::::::::
uncertainties

:::
and

::::::::
improve

::::::::::
performance

::
of

:::::::
weather

:::::::
forecast

:::::::
models.
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