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Reply to reviewers’ comments 
We thank the reviewer for the time spent on reviewing this manuscript and for 
providing helpful comments and suggestions. 

Reviewer #2 
Thank you to the authors for thoroughly addressing the comments. However, further 
emphasis on the study's contribution to the community would strengthen the 
manuscript. 

1. The authors acknowledge the comment regarding the ultimate goal of developing 
an ML parameterization trained from superparameterization or cloud-resolved 
models. An ML parameterization offers two potential advantages: first, it can help 
reduce uncertainty. Second, it can reduce the computational cost compared to 
running superparameterization or high-resolution models directly. However, this 
study presents an ML model as a surrogate for an existing microphysics scheme 
rather than training it on high-fidelity data, which cannot reduce uncertainty. In 
order to highlight the contribution, the authors could present the computational 
efficiency. To better evaluate the ability to reduce costs, the authors could 
estimate the computational requirements of superparameterization or high-
resolution runs to directly compare against the ML model performance. This 
would strengthen the case for ML as a lower-cost alternative to traditional 
parameterization approaches. 

Response: As suggested by the reviewer, we added the following sentence in the 
appendix. 

Khairoutdinov et al. (2009) employed Large-Eddy Simulation (LES) to model 
deep tropical convection over an area of approximately 205 km x 205 km, 
focusing particularly on maritime regions. They conducted a benchmark 
simulation spanning 24 hours, with a spatial resolution of 100m and 256 
vertical levels. This benchmark simulation utilized 2048 processors and took 
approximately 6 days of wall-clock time to complete. Additionally, we 
attempted a cloud-resolving simulation, covering a domain of 600 km x 500 km 
domain with a grid spacing of 500 m (resulting in a grid of 1200 x 1000 points) 
and employing 45 vertical levels. The wall-clock time for this simulation was 
approximately 40 times the forecast time (dt = 2 seconds). For a single 36-hour 
simulation, the computational time is around 60 days, which far exceeds our 
current computational resources. Therefore, implementing machine learning-
based parameterization would offer a significant advantage in reducing 
computational costs when replacing the super-parameterization scheme or 
cloud-resolving model. 
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2. This study presents a novel multi-task ML approach for both trigger function 
classification and tendency regression. This multi-faceted application of ML could 
be emphasized as another key contribution of the work. Previous studies have 
applied ML either to trigger function classification alone (Zhang et al., 2021) or 
tendencies regression independently (Brenowitz & Bretherton, 2019; Rasp et al., 
2018; Wang et al., 2022). As the authors point out that "models based only on 
regression can yield inconsistent tendencies, resulting in conflicting indications 
for convection triggering at specific grid points. In contrast, models that rely 
exclusively on classification are also deficient, as they do not generate the 
necessary tendencies for the CP scheme". To further validate this assertion, 
ablation experiments removing each individual task (i.e. classification-only vs 
regression-only models) could demonstrate the benefits of the proposed multi-task 
framework. Such an analysis would help substantiate the value of the multifaceted 
ML approach over single-task baselines, strengthening the novel aspects 
highlighted in this work. 

Response: As suggested by the author, we added the following sentences to 
strengthen the novel aspects of multi-output ML model over single-task 
baselines.  

First, we added the following sentence in the abstract: 

“This multi-output Bi-LSTM model is capable of simultaneously predicting the 
convection trigger while also modeling the associated convective tendencies and 
precipitation rates with high performance.” 

Secondly, we added the following sentence in the subsection “ML model 
structure”: 

“Previous studies have applied ML models to address these objectives, with 
some dedicated solely to the classification task of convection trigger (Zhang et 
al., 2021a), while others have independently pursued the regression of 
convective tendencies (Rasp et al., 2018; Brenowitz and Bretherton, 2019; 
Wang et al., 2022).” 

 

More importantly, we followed the review’s suggestion and conducted the 
ablation experiments by removing each individual task (i.e. classification-only 
vs regression-only models), and demonstrated the benefits of the proposed 
multi-task framework. We added the following sentences and figures in the 
appendix. 

“Two separate Bi-LSTM models were trained with slight modifications to the 
multi-output Bi-LSTM model illustrated in Figure 3. The first model aimed to 
predict convection triggers alone, termed Bi-LSTM-trigger, while the second 
model aimed to predict convective tendencies, termed Bi-LSTM-tendency. In 
predicting convection trigger, both the Bi-LSTM-trigger model and the multi-
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output Bi-LSTM model demonstrated comparable accuracy, as observed in 
Figures A1 and A2. However, while the convection trigger predicted by the Bi-
LSTM-trigger model were indistinguishable from those of the multi-output Bi-
LSTM model, the former failed to accurately predict corresponding convective 
tendencies. Consequently, it cannot serve as a replacement for convection 
schemes within NWP models. 

Figures A3 and A4 present snapshots of rthcuten and rqvcuten predicted by the 
Bi-LSTM-tendency model. These figures reveal that the Bi-LSTM-tendency 
model predicts non-zero values across nearly the entire domain. Since the Bi-
LSTM-tendency model exclusively focuses on predicting convective tendencies, 
convection trigger are derived using certain threshold values.The spatial 
distribution of these triggers is notably influenced by the choice of threshold 
values, and the patterns of convection trigger derived from rthcuten and 
rqvcuten exhibit considerable discrepancies. This confirms that models based 
solely on regression yield inconsistent tendencies. In contrast, the multi-output 
Bi-LSTM model does not encounter the aforementioned issues of the Bi-LSTM-
tendency model and generates a more consistent spatial pattern of rthcuten and 
rqvcuten (see Figures A5 and A6).” 
 

 
Figure A1. Snapshot example of convection trigger, with the left column showing the ground 
truth (GT), and the right column showing the difference between convection trigger as predicted 
by the Bi-LSTM-trigger model and ground truth values, for the 25-hour WRF simulation 
initialized at 12UTC on May 20th, 2021. 
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Figure A2. Snapshot example of convection trigger, with the left column showing the ground 
truth (GT), and the right column showing the difference between convection trigger as predicted 
by the multi-output Bi-LSTM model and ground truth values, for the 25-hour WRF simulation 
initialized at 12UTC on May 20th, 2021. 
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Figure A3. Snapshot examples of rthcuten summed along the vertical direction, with the top left 
panel showing the GT values and the top right panel showing the rthcuten predicted by the Bi-
LSTM-tendency model, for the 25-hour WRF simulation initialized at 12UTC on May 20th, 2021. 
Similarly, snapshot examples of trigger, with the GT shown in the middle left panel, and the 
predictions from the Bi-LSTM-tendency model using varying threshold values of rthcuten shown 
in the middle right column, bottom left panel, and bottom right panel, respectively. 
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Figure A4. Snapshot examples of rqvcuten summed along the vertical direction, with the top left 
panel showing the GT values and the top right panel showing the rqvcuten predicted by the Bi-
LSTM-tendency model, for the 25-hour WRF simulation initialized at 12UTC on May 20th, 2021. 
Similarly, snapshot examples of trigger, with the GT shown in the middle left panel, and the 
predictions from the Bi-LSTM-tendency model using varying threshold values of rqvcuten shown 
in the middle right column, bottom left panel, and bottom right panel, respectively. 
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Figure A5. Snapshot examples of rthcuten summed along the vertical direction, with the top left 
panel showing the GT values and the top right panel showing the rthcuten predicted by the multi-
output Bi-LSTM model, for the 25-hour WRF simulation initialized at 12UTC on May 20th, 2021. 
Similarly, snapshot examples of trigger, with the GT shown in the bottom left panel, and the 
predictions from the multi-output Bi-LSTM model using a threshold value of 0 shown in the 
bottom right panel. 
 



 8 

 
Figure A6. Snapshot examples of rqvcuten summed along the vertical direction, with the top left 
panel showing the GT values and the top right panel showing the rqvcuten predicted by the multi-
output Bi-LSTM model, for the 25-hour WRF simulation initialized at 12UTC on May 20th, 2021. 
Similarly, snapshot examples of trigger, with the GT shown in the bottom left panel, and the 
predictions from the mult-ioutput Bi-LSTM model using a threshold value of 0 shown in the 
bottom right panel. 
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