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Reply to reviewers’ comments 
We thank the reviewer for the time spent on reviewing this manuscript and for 
providing helpful comments and suggestions. 

 

Reviewer #1 
This manuscript develops and evaluates a ML-based surrogate for the MSKF 
convection scheme in WRF. The text is well written and the approach seems novel. I 
am not an expert on ML, so my comments are all on the atmospheric 
modeling/parameterization side of the work. My major comments are as follows, 

1. Why is the goal to emulate what a conventional convection parameterization does 
in the first place? I ask because the ML scheme presented in the paper seems 
designed and trained to emulate MSKF performance at 5-km resolution. Why not 
just run MSKF directly? What's the need to run this ML-based emulator? Is it 
cheaper? Is it better? Please elaborate a little more on that. 

Response: Conventional convective parameterization (CP) schemes, including 
MSKF scheme, are founded on numerous assumptions and are best with 
considerable uncertainties. The ultimate goal of this research is to develop a 
ML based parameterization scheme, trained on dataset derived either from a 
super-parameterization or a cloud-resolving model. This study represents a 
preliminary exploration into the feasibility of utilizing a ML model as a 
substitute for conventional CP schemes in weather forecasting models. It 
evaluates the model’s performance, both offline and online, in comparison to 
the conventional CP schemes. Additionally, we also investigate the stability of 
the WRF simulation when coupled with such a ML model. This is achieved by 
conducting simulations over extended period, the results of which are shown 
below. 

 

2. Is the performance of MSKF good for the area and cases the authors are interested 
in? If so the authors should provide good evidence for it. 

Response: The performance of MSKF is good for high-resolution forecasts at 
spatial resolution similar to what we used in this paper. We provided evidence 
as follows: 

Zheng et al. (2016) demonstrated that the MSKF scheme, referred to as the 
updated KF scheme in their paper, yielded superior forecast performance in 
high-resolution forecasts, specifically regarding the location and intensity of 
precipitation at spatial resolution of 3 and 9 km.  
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Furthermore, Ou et al. (2020) ran WRF simulations using various CP schemes 
and a control simulation without any CP schemes. The CP schemes evaluated 
include the Grell-3D Ensemble (Grell), New Simplified Arakawa-Schubert 
(NSAS), and MSKF. These simulations underwent comparative analysis against 
both in-situ observations and satellite products. Ou et al. (2020) illustrated in 
their Figure 11 that the MSKF scheme, noted for its scale-awareness, 
outperforms other CP schemes in simulating precipitation, achieving the lowest 
RMSE values. This superiority was particularly evident in terms of mean 
intensity and diurnal cycles of precipitation. Furthermore, the spatial 
distribution of peak precipitation timing across all the experiments, most notably 
in the MSKF experiment, showed enhanced agreement with satellite 
observations. 
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Ou, T., D. Chen, X. Chen, C. Lin, K. Yang, H. W. Lai, and F. Zhang, 2020: 
Simulation of summer precipitation diurnal cycles over the Tibetan Plateau at the 
gray-zone grid spacing for cumulus parameterization. Clim. Dyn., 54, 3525–
3539, https://doi.org/10.1007/s00382-020-05181-x. 

Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: 
Improving high-resolution weather forecasts using the Weather Research and 
Forecasting (WRF) model with an updated Kain-Fritsch scheme. Mon. Weather 
Rev., 144, 833–860, https://doi.org/10.1175/MWR-D-15-0005.1. 

Also, we added the following sentences in the Introduction: 

“To enhance prediction accuracy in the gray zone, researchers have developed 
scale-aware CP schemes. These schemes dynamically parameterize convective 
processes based on the horizontal grid spacing, thus facilitating seamless 
transitions between different spatial scales. A pivotal study by Jeworrek et al. 
(2019) demonstrated that two specific scale-aware CP schemes, Grell-Freitas 
(Grell and Freitas, 2014) and multi-scale Kain-Fritsch (MSKF) (Zheng et al., 
2016), surpassed conventional CP schemes in predicting both the timing and 
intensity of precipitation over the Southern Great Plains of the United States. 
Additionally, Ou et al. (2020) showed that the MSKF scheme outperformed other 
CP schemes, including Grell-3D Ensemble (Grell and Dévényi, 2002) and New 
Simplified Arakawa-Schubert (Han and Pan, 2011), in precipitation simulation. 
This was evidenced by its lower root mean squared error (RMSE) values when 
compared against in-situ observations and satellite data. Despite the increasing 
adoption of these scale-aware schemes due to their superior performance, it is 
crucial to acknowledge that their efficacy also rely on various empirical 
parameters (Villalba-Pradas and Tapiador, 2022). Therefore, developing 
specialized CP schemes for the gray zone in NWP models continues to be a 
significant challenge.” 

Minor comments (mainly on the introduction part, which is 

otherwise quite well-written) follow, 

1. Line 37: "Nevertheless ... These conflicting findings typically...", Did the 
Schwartz paper also use CP in their simulations or not? Either way I don't quite 
see the conflicting part here ... 

Response: Our objective is to convey that although some studies suggest no 
noticeable benefit in employing finer grid spacing, others demonstrate 
enhanced forecast accuracy with increased horizontal resolution. Consequently, 
we have revised the previously ambiguous paragraph to enhance clarity as 
follows: 

“There is ongoing debate regarding the efficacy of employing convection 
parameterization (CP) within the gray zone. Several studies (Chan et al., 2013; 
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Johnson et al., 2013) have found that reducing horizontal grid spacing to less 
than 4 km while using CP scheme, does not enhance and may even degrade, 
precipitation forecast performance. In contrast, other studies (Lean et al., 2008; 
Roberts and Lean, 2008; Clark et al., 2012) showed that forecasts with a 
horizontal grid spacing of 1 km yielded more accurate spatial representation of 
accumulated rainfall over 48 hours when compared to 12 km and 4 km grid 
spacing. This discrepancy in research findings, with some indicating no benefit 
from finer grid spacing and others suggesting improved forecast accuracy, 
seems to stem from the application of the CP at scales beyond its originally 
intended operational range.” 

 

2. Line 102: "Furthermore, all previous studies have predominantly focused on using 
CP schemes in GCM models for climate forecasting. Moreover, the choice of CP 
schemes significantly influences the uncertainty in precipitation forecasts within 
weather forecasting models. The complexity of the CP schemes also surpasses 
those applied in climate models (Arakawa, 2004)." I don't think the last statement 
is generally true. Also the logic doesn't seem to flow among these few sentences. 

Response: According to Arakawa, (2004), formulating cumulus 
parameterization (CP) schemes in high-resolution models presents greater 
challenges than in coarse-resolution models. This complexity arises as 
conventional CP scheme are based, either explicitly or implicitly, on the 
assumption that the horizontal grid size and the time interval for implementing 
physics are significantly larger and longer than the size and lifetime of 
individual moist-convective elements. However, this assumption does not hold 
true for high resolution model. Consequently, CP schemes for high resolution 
models must include dependencies on both horizontal resolution and the time 
interval for implementing physics. To enhance clarity and logic, the previously 
ambiguous paragraph has been revised as follows: 

“The primary focus of previous research has been on focused on replacing CP 
schemes in GCM models with ML models for climate forecasting. However, the 
complexity of CP schemes in weather forecasting models is considerably 
greater than those in GCMs (Arakawa, 2004). Generally, CP schemes in 
GCMs, whether in explicit or implicit form, assume that both the horizontal 
grid size and the temporal intervals for physics implementation are 
significantly larger and longer compared to the grid size and duration of 
individual moist-convective elements. In contrast, CP schemes in high-
resolution models must account for dependencies on both the model’s 
resolution and the time interval for implementing the physics (Arakawa, 2004). 
The ultimate objective is to develop ML models, based on data from super-
parameterization or cloud-resolving models, to replace conventional CP 
schemes in weather forecasting models. This replacement seeks to reduce 
uncertainties and improve the efficacy of ML parameterizations. This study 
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represents an initial effort to use a ML model as an alternative to conventional 
CP schemes in weather forecasting models.” 
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Reviewer #2 
This study provides an ML multiscale Kain-Fritsch convection parameterization and 
applies it into WRF. The results indicate that the ML parameterization yields 
comparable outcomes to the original WRF simulations. However, the motivation 
behind this study is unclear, and the evaluation of the ML parameterization lacks 
thoroughness. As a result, I recommend a major revision to address these issues. 

Major comments: 

3. This study focuses on the development of a new machine learning (ML) 
convection parameterization. However, the training dataset used in this study 
is derived from the WRF simulation, which may not provide significant 
benefits for the ML parameterization. The dataset essentially serves as a 
surrogate for the old parameterization. Instead, a more suitable choice for the 
dataset could be from a super-parameterization or cloud resolve model, as it 
could help reduce uncertainties and enhance the ML parameterization's 
performance. 

Response: We agree with the reviewer’s comment that the ML 
parameterization, trained on a dataset derived from the WRF simulation, 
essentially serves as a surrogate for traditional parameterization. Our 
ultimate objective is to have a ML parameterization scheme trained on 
dataset from either a super-parameterization or a cloud-resolving model. 
This present study represents an initial attempt into the feasibility of 
employing a ML model as an alternative to conventional CP schemes within 
weather forecasting models. Additionally, it examines the stability of the 
WRF simulation coupled with such a ML model over extended period. To 
elucidate this point further, we have expanded the Introduction and 
Conclusion sections with additional sentences: 

“The ultimate objective is to develop ML models, based on data from super-
parameterization or cloud-resolving models, to replace conventional CP 
schemes in weather forecasting models.” 

 “This study demonstrates the feasibility of employing ML models as 
alternatives for conventional CP scheme within the high-resolution weather 
forecasting model. Future efforts will focus on the development of ML 
models, based on data generated by super-parameterization or cloud-
resolving models, to replace conventional CP schemes in weather forecasting 
models. The objective of this substitution is to reduce uncertainties and 
improve performance of weather forecast models.” 
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4. It would be beneficial to conduct a comprehensive evaluation of the ML 
convection parameterization, considering factors beyond just the mean state. 
In addition to assessing the accuracy of tendencies, it is important to evaluate 
the parameterization's ability to accurately represent triggered convection. 
Furthermore, examining the diurnal cycle of precipitation and interpretability 
of the ML parameterization can provide valuable insights. Additionally, when 
coupling machine learning parameterization with dynamics, it is crucial to 
investigate potential issues with simulation stability. Have you tested the 
parameterization for longer simulations to assess its stability over extended 
time periods? 

Response: As suggested by the reviewer, we evaluate the parameterization's 
ability to accurately represent triggered convection by plotting the diurnal 
variation of precipitation and 2-meter temperature. Additionally, we have 
incorporated further analysis as below. 

“Figure 7 provides a comparative analysis of domain-averaged time series 
forecasts from both the original WRF simulations and WRF simulations 
coupled with the ML-based MSKF scheme. This comparison includes 6-hour 
accumulations of RAINC and RAINNC, as well as T2M forecasts. The results 
demonstrate that WRF simulations coupled with the ML-based MSKF 
schemes are in close alignment with the original WRF simulations, 
particularly in capturing the diurnal variations of RAINC, RAINNC, and 
T2M. Notably, the T2M forecasts demonstrate remarkable consistency, 
underscoring the efficacy of the ML-based MSKF scheme in maintaining the 
predictive accuracy of the original scheme.” 
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Also, we conducted 7-day simulations to evaluate the stability of the ML 
based MSK scheme over extended time periods. As a result, we updated the 
original paper by replacing Figure 6 with the revised figure presented here. 
The updated figure illustrates that the difference between the original WRF 
simulations and those coupled with the ML-based MSKF scheme remains 
consistent over time. Notably, the domain-averaged MAD at 168 forecast 
hours is comparable to that observed at 24 forecast hours, indicating no 
significant increase in the difference as the simulation duration extends. 
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5. In this study, the machine learning approach performs multi-task learning, 
simultaneously handling trigger function classification and tendencies 
regression. It would be valuable to conduct an ablation study, where the 
classification and regression tasks are separately evaluated and compared with 
the multi-task learning approach. This analysis can provide insights into the 
individual contributions and effectiveness of each task, helping to further 
understand the benefits and limitations of the multi-task learning approach. 

Response: In the conventional CP scheme, convection tendencies are 
computed at specific grid points where convection is triggered. However, 
models based only on regression can yield inconsistent tendencies, resulting 
in conflicting indications for convection triggering at specific grid points. In 
contrast, models that rely exclusively on classification are also deficient, as 
they do not generate the necessary tendencies for the CP scheme. Therefore, 
a model confined to either classification or regression tasks is inadequate for 
meeting the CP scheme's requirements. To overcome these limitations, we 
have developed a multi-task learning approach. To elucidate this point 
further, we have expanded the subsection “ML model structure” as follows: 
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“Predicting whether convection is triggered as well as modeling convective 
tendencies and precipitation rate are two main tasks in conventional CP 
schemes. Regression-based models alone may produce inconsistent 
tendencies, leading to conflicting signals for triggering convection at specific 
grid points. Similarly, models solely dependent on classification lack the 
capacity to generate essential tendencies for an effective CP scheme. 
Therefore, the development of a ML-based CP scheme necessitates the 
integration of both a binary classification model for the prediction of 
convection trigger and a regression model for convective tendencies. To 
address this, we propose a multi-output Bi-LSTM model capable of 
concurrently conducting regression and classification predictions (Figure 3).” 

 

6. In Figure 4, is it correct that r^2 is the coefficient of determination? It seems 
unusual that although the points in (a) are widely scattered, the r^2 value is 
very high. Also, while the RMSE difference between (a) and (b) is large, their 
r^2 values are quite close. 

Response: Following the reviewer’s suggestions, we have verified that the 
calculation of correlation coefficient depicted in Figure 4 is correct. Figure 4 
utilizes color to represent the proportion of samples across the entire testing 
dataset, with the colorbar values normalized through the application of a 
base 10 logarithm. Therefore, despite the wide scatter of data points in Figure 
4(a), a significant majority of these points remain close to 1:1 line. The 
observed Root Mean Square Error (RMSE) discrepancy between panels (a) 
and (b) can be attributed to the substantial differences in the maximum and 
minimum values of nca and pratec, where nca exhibits a broader range of 
values. 

 

Minor comments:  

1. Line 145:  Could you please explain the rationale for selecting these particular 
variables? 

Response: As suggested by the reviewer, we added the following sentence to 
explain the rationale for selecting these particular variables. 

“Table 1 presents a comprehensive list of the input and output variables used 
in this study, aligning with those utilized in the original MSKF scheme” 

 

2. Line 170: could you explain the trigger condition base on lifting condensation 
level (LCL), convective available potential energy (CAPE), cloud top and base 
heights, and entrainment rates? 
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Response: In order to better explain the trigger condition based on lifting 
condensation level (LCL), convective available potential energy (CAPE), 
cloud top and base heights, and entrainment rates. We added the following 
sentences as below in the subsection “Description of original MSKF module”: 

“In contrast, a "nca" value below this threshold triggers the MSKF scheme 
to employ a one-dimensional cloud model. This model calculates a set of 
variables related to cloud characteristics to evaluate the potential of 
convection triggering. Essential variables include the lifting condensation 
level (LCL), convective available potential energy (CAPE), cloud top and 
base heights, and entrainment rates. The LCL is crucial for determining the 
emergence of potential convective activities, with a lower LCL favoring more 
intense convection. CAPE quantifies the buoyant energy available to an air 
parcel for the formation of deep convective clouds upon reaching its Level of 
Free Convection (LFC) above the LCL, with higher CAPE values signifying a 
greater potential for intense convection. The cloud base is generally at the 
LCL, whereas the cloud top is defined at the altitude where buoyancy 
becomes negligible. Meanwhile, the vertical extent between the cloud base 
and top affect the cloud's growth and precipitation potential. The MSKF 
scheme requires surpassing a specific CAPE threshold to trigger convection. 
Furthermore, it assesses entrainment rates to measure the impact of ambient 
air on the evolution of convective system.” 

 

3. Line 45: ‘hsave’ to ‘have’ 

Response: As suggested by the reviewer, we changed ‘hsave’ to ‘have’. 

 

4. Caption in Figure 1: ‘5’ to ‘5°’ 

Response: As suggested by the reviewer, we changed ‘5’ to ‘5°’ in Caption of 
Figure 1. 

 

5. Line 149: it could be better to add these 4 variables into Table 1. 

Response: As suggested by the reviewer, we added the these 4 variables into 
Table 1. The updated Table 1 is shown below: 
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6. Line 182: remove ‘data’ 

Response: As suggested by the reviewer, we removed the redundant word ‘data’ 


