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Abstract.

Reducing methane (CH4) emissions from the oil and gas (O&G) sector is key to mitigating climate change in the near-term.

MethaneSAT is an upcoming satellite mission designed to monitor basin-wide O&G emissions globally, providing estimates of

emission rates and helping identify the underlying processes leading to methane release to the atmosphere. MethaneSAT data

will help advocacy and policy efforts to help track methane reduction commitments and targets made by countries and industry.5

Here we introduce the CH4 retrieval algorithm for MethaneSAT based on the CO2 proxy method. We apply the algorithm

to observations from the maiden campaign of MethaneAIR, an airborne precursor to the satellite with similar instrument

specifications. The campaign was conducted during winter 2019 and summer 2021 over three major US oil and gas basins.

Analysis of the MethaneAIR data shows that measurement precision is typically better than 2% for 20× 20 m2 pixel res-

olution, with no strong dependence on geophysical variables such as surface reflectance. We show that detector focus drifts10

over the course of each flight likely due to thermal gradients that develop across the optical bench. The impacts of this drift

on retrieved CH4 can mostly be mitigated by including a parameter that squeezes the laboratory tabulated instrument spec-

tral response function in the spectral fit. Validation against coincident EM27/SUN retrievals shows that MethaneAIR values

are generally within 1%. MethaneAIR retrievals were also intercompared with those of TROPOMI; The mean bias between

instruments is 2.5 ppb, and the latitudinal gradients for the two datasets are in good agreement.15
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We evaluate the accuracy of MethaneAIR estimates of point source emissions using observations made over the Permian

O&G basin, based on the integrated mass enhancement approach coupled with a plume-masking algorithm based on total

variational denoising. We estimate that the median point source detection threshold is 100-150 kg h−1 at the aircraft’s nominal

12km above-surface observation altitude, based on an ensemble of WRF large eddy simulations used to mimic the campaign

conditions with the threshold for quantification about 2× the detection threshold. Retrievals from repeated basin surveys20

indicate the presence of both persistent and intermittent sources, and we highlight an example from each case. For the persistent

source we infer emissions from a large O&G processing facility, and estimate a leak rate between 1.6 and 2.1 %, higher than

any previously-reported emission from a facility of its size. We also identify a ruptured pipeline that alone would constitute

2 % of estimated basin emissions, two weeks before it was found by its operator, highlighting the importance of regular

monitoring from the future satellite mission. The results showcase the capability of MethaneAIR to make highly accurate,25

precise measurements of methane dry-air mole fractions in the atmosphere, with fine spatial resolution (∼ 20×20 m2) mapped

over large swaths (∼ 100× 100 km2) in a single flight. The results provide confidence that MethaneSAT can make such

measurements at unprecedentedly fine scales from space (∼ 130× 400 m2 pixel size over ∼ 200× 200 km2 target area),

thereby delivering quantitative data on basin-wide methane emissions.

1 Introduction30

Methane (CH4) is the second most important human-influenced greenhouse gas (GHG), with a radiative forcing one third the

magnitude of carbon dioxide (CO2) (Etminan et al., 2016). Recently there has been considerable policy focus on reducing

anthropogenic methane emissions, culminating in over 100 nations agreeing during the COP26 meeting in Glasgow in 2021

to a 30 % reduction of 2020 levels by 2030 (Malley et al., 2023). These reductions are expected to be driven in large part

by tightened emission controls on the O&G sector (White House Climate Policy Office, 2021), owing mostly to their cost-35

effectiveness relative to other major anthropogenic sources (UNEP, 2021). Improved monitoring is required to help companies

and regulators understand where and why methane emissions occur, to quantify emission rates in large oil and gas production

regions, and to ensure that both nations and major O&G producers meet their stated commitments.

MethaneSAT, launched in March 2024, is a satellite mission designed with the primary goal of quantifying all CH4 emissions

from major O&G production basins at high spatial resolution with regular revisits. It is funded by private philanthropy and is40

managed by MethaneSAT LLC, a wholly-owned subsidiary of the Environmental Defense Fund. In preparation for Methane-

SAT’s launch, an airborne precursor called MethaneAIR has been constructed (Staebell et al., 2021), with near-identical in-

strument specifications (Table S1, Chulakadaba et al. (2023)). Here we use MethaneAIR observations from its maiden flight

campaign to validate the MethaneSAT CO2-proxy CH4 algorithm used to retrieve dry-air column averaged CH4 mole-fractions

(XCH4 ), and report on the accuracy of emission rate determinations using this sensor.45

Remote-sensed CH4 observations are the most efficient way for mapping methane emissions at large scale. Satellites have

been monitoring CH4 globally since the launch of SCIAMACHY in 2002 (Frankenberg et al., 2006). TROPOMI, the most re-

cent of this class of global CH4 mappers, was launched in 2017. It has 5.5×7 km2 spatial resolution with daily global coverage,
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producing observations with pixels∼ 90× smaller than SCIAMACHY, and covering the globe 6× faster (Hu et al., 2018). This

class of sensors, in particular GOSAT (Parker et al., 2020), have been used to regionally constrain methane emissions (Monteil50

et al., 2013; Turner et al., 2015; Maasakkers et al., 2019; Lu et al., 2021; Zhang et al., 2021; Qu et al., 2022), and thus proven

useful for identifying drivers of global CH4 trends (Deng et al., 2022; Janardanan et al., 2020; Worden et al., 2022). Currently

TROPOMI has been less used in global inversions due to region-specific retrieval biases (Qu et al., 2021; Jacob et al., 2022),

but its high spatiotemporal coverage makes it the first global mapper capable of constraining total O&G basin CH4 emissions,

and its retrievals have been used to reveal large emissions underestimates for multiple basins (Schneising et al., 2020; Zhang55

et al., 2020; Shen et al., 2021, 2022). However, reliable basin-wide emissions estimates require months of TROPOMI data

due to the low 3% retrieval success rate, a result of unfavorable scene conditions (reflectance/cloud/aerosol), and the limited

robustness of the full-physics approach (Jacob et al., 2022). The CO2-proxy approach has proven more robust under moderate

aerosol conditions (Parker et al., 2015), with the GOSAT CO2-Proxy retrieval showing a 24% success rate (Parker et al., 2020).

Here aerosol scattering is implicitly accounted for by normalizing the retrieved CH4 column against a CO2 column retrieved60

from the same spectral region. The CO2-Proxy approach is not possible with TROPOMI as there is no nearby CO2 absorption

in the targeted 2.3 µm CH4 band.

Recently instruments designed to detect high concentrations of CH4 in individual methane plumes have been deployed

on aircraft (AVIRIS-Thorpe et al. (2012), AVIRIS-NG-Thorpe et al. (2016), HySpex-Hochstaffl et al. (2023)) and satellites

(Sentinel 2-Varon et al. (2021), GHGSat-Jervis et al. (2021), CarbonMapper-Shivers et al. (2021), PRISMA-Guanter et al.65

(2021), EnMAP-Roger et al. (2024)) to estimate emission rates from point sources. Such instruments have increased pixel

resolution (O(1-10 m) length scale) at the expense of spectral resolution (O(10 nm) vs O(0.1 nm) for global mappers). At

these spatial scales CH4 concentrations from plumes originating from point sources can be much higher than the atmospheric

background, loosening the retrieval accuracy requirement. They have proven particularly useful for monitoring emissions from

O&G infrastructure where emissions from individual facilities follow heavy-tailed distributions (Brandt et al., 2016; Zavala-70

Araiza et al., 2015; Frankenberg et al., 2016; Cusworth et al., 2021), however it is not possible to determine what fraction of

emissions within a basin are measured by observing a small number of detectable superemitters, and such measurements can

miss a substantial proportion of emissions from smaller sources.

In fact, recent work has suggested these smaller sources represent a significant fraction of total O&G methane emissions.

From a statistical survey of observed site-level O&G well emissions, Omara et al. (2022) estimated that low-production wells75

contribute over 50% of all US oil and gas production-related methane emissions, due to their high production-normalized

leak-rates (> 10% on average) and prevalence (81% of all producing wells). However because emissions from individual low-

producing wells are small (95% of sites emit less than 7 kg/h), they will be invisible to current and future satellite methane point-

source instruments, which have detection limits at least an order of magnitude larger *. Aircraft sensors such as Airborne Visible

InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG) have plume detection limits down to 10 kg/h (Thorpe et al.,80

2016), enabling detection of the highest-emitting low-production wells. However these reported detection limits correspond

*Carbon Mapper has the best reported point source detection limit (50-150 kg/h) of any current and future planned satellite methane point-source observer

(Carbon Mapper, Inc., 2023)
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to ground pixel sizes of ∼0.5m, requiring observations to be made close to the surface (0.5-1km). To map a basin in such a

manner would require many days of flying. Recently Cusworth et al. (2022) conducted a large survey of US O&G basins with

the AVIRIS-NG instrument, flying at flight altitudes more reasonable for large-scale surveying (3-5 km). Through comparisons

with basin emissions inferred from TROPOMI, they estimate they were able to constrain about 35% of total emissions from85

oil and gas infrastructure, missing about two thirds of basin emissions. The ability of these sensors to assign sources to specific

infrastructure provides some insight into the specific practices and activities contributing to the basin total emissions by large

point sources. However, a complete monitoring strategy requires this type of sensor to be used in combination with sensors

capable of regularly measuring total basin emissions and the spatial distribution of diffuse emissions.

MethaneSAT has been designed to fill the gap between space-borne global flux mappers and point-source imaging instru-90

ments. It contains a pair of 2-D grating spectrometers with a similar spectral resolution to TROPOMI, covering the 1.27 µm

O2 singlet delta (a1∆g←X3Σ−
g ) and 1.65 µm (2ν3) CH4 bands. Rather than acquiring a broad swath to achieve daily global

coverage like TROPOMI and upcoming missions such as CO2M (Sierk et al., 2019), it is maneuverable and built to target

scenes at the approximate scale of an O&G production basin (200× 200 km2 at nadir, for a 30 s collect). By concentrating

pixels onto the smaller acquisition area it achieves a pixel size of 130×400 m2 in its nominal operational mode, enabling CH495

to be retrieved at the accuracy of a TROPOMI like instrument (Jacob et al., 2022), but with a spatial resolution capable of

imaging individual plumes from point sources. The unique combination of high spatial resolution, measurement precision, and

a wide swath will enable both the estimation of point-source emissions from high emitting facilities, whilst also quantifying and

mapping the entire basin source via the inversion of an emissions field, representing the sum of sources individually below the

plume detection threshold. MethaneSAT will acquire an average of 30 scenes per day enabling at least 10-20 revisits to major100

O&G basins per year. Targets will be prioritized based on production rates of oil and gas, and scheduled based on favorable

meteorological forecast conditions (low cloud cover, steady winds) for both the retrieval and emissions inversion, maximizing

the utility of each acquisition (Benmergui, 2019).

Here we present results from the maiden flight campaign of MethaneAIR using the operational MethaneSAT CO2-proxy

XCH4 retrieval. This is expected to be the primary XCH4 product used in subsequent emissions inversions †. The CO2-105

Proxy method was first used from an airborne platform by the MAMAP instrument (Krings et al., 2011; Gerilowski et al.,

2011), which provided the first remote-sensed estimates of CH4 and CO2 point/small-area sources (Krautwurst et al., 2017;

Krings et al., 2018). MethaneAIR builds on this heritage by substantially increasing the sensors spatial coverage rate, mapping

approximately 490× the area per unit time relative to MAMAP: This is achieved by its higher nominal operating altitude (12

km vs 1.25 km), faster aircraft speed/exposure time (720 vs. 200 km h−1/ 0.1s vs. 0.6s), and its configuration as a push-broom110

scanner (983 vs. 1 across-track pixels). This allows complete mapping of a typical sized oil and gas basin in a few hours of

flight time.

The road map for the rest of the paper is as follows; Section 2 describes the flight campaign, and Section 3 the retrieval

methodology. Section 4 describes the method used for retrieval bias correction, needed due to drifts caused by impact of cabin

temperature changes during flight. The MethaneAIR observations are validated against ground-based (EM27/Sun) and satellite115

†We are also exploring alternate approaches for targets containing expected CO2 enhancements (Section S2.2)
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(TROPOMI) retrievals in Section 5. The results of this validation are used to estimate the MethaneAIR detection limit for point

sources, and further discuss challenges for the CH4 emissions inversion problem at fine spatial scales based on the observations

(Section 6). We highlight some case-studies from observations in the Permian in Section 7. Lastly, in Section 8 we discuss the

implications for MethaneSAT.

2 First Flight Campaign120

The first two MethaneAIR flights took place in November 2019 on board the NSF/NCAR High-performance Instrumented

Airborne Platform for Environmental Research (HIAPER) GV aircraft (UCAR/NCAR-Earth Observing Laboratory, 2005).

The remaining 8 flights were performed during July-August 2021, delayed initially by aircraft issues, and later by the COVID-

19 pandemic. Figure 1 shows the flight path for the first 9 flights, where the instrument was operating in nadir viewing mode.

For the final flight the instrument orientation was flipped to zenith orientation to observe oxygen airglow in the early evening.125

The first 3 flights (RF01-RF03) were performed for engineering assessment and instrument function. These were conducted

around the Colorado front range region near the project base airport in Broomfield CO, and were intended to avoid major

CH4 emission sources to provide background conditions for evaluating instrument performance. In RF02 a linear-polarizer

was placed in front of the instrument at 3 different angles to test polarization sensitivity. However it also induced an additional

defocusing effect from lensing making evaluation of the impact of polarization difficult. The remaining 6 nadir viewing flights130

focused on mapping XCH4 in the Permian Basin (RF04-RF07), Uintah Basin/ Salt Lake City (RF08) and Bakken Formation

(RF09). In RF04 and RF05, the plane also made several overpasses over a controlled CH4 release in Midland TX.

CH4 and CO2 mole fractions were retrieved for validation using EM27/SUN FTIR spectrometers for the duration of the

campaigns (Gisi et al., 2012; Frey et al., 2019; Alberti et al., 2022). In 2019 two instruments (instrument IDs HA, HC) were

concurrently operated 1 km apart east of Fort Collins, CO (40.809◦N 104.777◦W and 40.806◦N 104.756◦W respectively), to135

evaluate the observing system’s ability to measure XCH4 gradients. In 2021 the observations were performed from a single

instrument located on the roof of the NOAA ESRL building in Boulder CO (instrument ID KB, 39.991◦N 105.261◦W). All

EM27/SUN retrievals shown here were processed using the latest version of the TCCON retrieval code (GGG2020, Laughner

et al., 2023b). In-situ CH4 and CO2 were made on the aircraft using a Picarro G2401-mc cavity ring-down spectrometer. The

aircraft performed a series of missed runway approaches to enable the in-situ data to be used to evaluate the a priori gas140

profiles.

3 Methane Retrieval

The MethaneAIR instrument consists of two Offner spectrometers (Headwall Photonics), covering 1237–1319 nm and 1592–

1697 nm wavelength ranges, recorded with InGaAs detectors (Princeton IR Technologies). For this paper we focus on the

longer wavelength spectrometer, which records gas absorption from both the P and R branches of the 1.6 µm CO2 band, and145

the 2ν3 CH4 band at ∼ 0.28 nm Full Width at Half Maximum (FWHM) resolution. This enables the use of the CO2 proxy
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Figure 1. Aircraft flight paths for the 9 nadir-viewing research flights from the first campaign, overlaid against total oil and gas emissions

(Scarpelli et al., 2020). Black stars indicate locations of the EM27/SUN spectrometers used for validation.

method (Frankenberg et al., 2005, 2006; Krings et al., 2011) for retrieving total column-averaged dry-air mole fractions of CH4

(XCH4 ). The instrument operates in pushbroom mode through an anti-reflective coated nadir port in the aircraft, with a focal

plane array (FPA) of 1024 spectral × 1280 spatial pixels. In practice the output dimensions of MethaneAIR data products are

1024 × 983, because the projected slit image does not fully illuminate the entire FPA cross-track width. At the nominal 12 km150

flight altitude, the swath width is ∼ 5 km. For the majority of results presented here we aggregate the cross-track pixels by a

factor of 5 for computation expediency and to increase the signal-to-noise ratio, yielding a ground pixel size of ∼ 20× 20 m2.

A more detailed description of the instrument, aircraft integration, and calibration is presented in Staebell et al. (2021). The

operational Level 0–1 processor to produce radiometrically calibrated and geolocated radiance is described in Conway et al.

(2023).155
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H2O
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Figure 2. Example transmission spectra for a typical MethaneAIR observation (0.3 Lambertian albedo, 30◦ solar zenith angle). Transparent

and solid lines show spectra before and after convolution with the MethaneAIR instrument line shape respectively. The signal-to-noise ratio

for a typical measurement is also indicated. Windows 1 and 2 indicate the spectral regions to retrieve CO2 and CH4 respectively.

XCH4 is retrieved using the Smithsonian PLanetary ATmosphere retrieval (SPLAT), a new flexible optimal-estimation

retrieval developed at the Harvard-Smithsonian Center for Astrophysics for use in both Earth and other planetary atmosphere

inverse problems. Here we use SPLAT to infer the CH4 and CO2 vertical column densities (NCH4
and NCO2

respectively).

The proxy-derived XCH4 is

XCH4 =
NCH4

NCO2

XCO2,0 (1)160

7



where XCO2,0 is an a priori estimate of the column averaged dry-air CO2 mole fraction. To derive NCO2
and NCH4

we target wavelength windows 1595–1618 nm and 1629–1654 nm respectively (Figure 2). Although MethaneSAT can only

observe the part of the R branch above 1597 nm, here we leverage MethaneAIR’s broader spectral window and include data

up to 1595 nm to increase the retrieval CO2 precision. For MethaneSAT, the cost of not observing the full R branch will be

partially offset by its higher spectral resolution, with a lineshape FWHM ∼ 30 % narrower. An additional set of weaker CO2165

lines overlap with the CH4 R-branch, potentially providing a better light path constraint, but are likely too weak to provide

a good retrieval of NCO2
alone. For the CH4 window, the 1654 nm upper limit has been constrained by the InGaAs detector

quantum efficiency, which begins rolling off from 70 % below 1650 nm to 26 % by 1670 nm. The mercury–cadmium– telluride

(MCT) detectors used in MethaneSAT do not show this roll off, which may enable a wider fit window.

3.1 Spectroscopy170

We model CH4, CO2, and H2O absorption using cross section lookup tables computed from the GGG2020 spectral database

used operationally in TCCON retrievals (Wunch et al., 2011a; Toon, 2022b, a). These include speed-dependent Voigt line

shapes with line mixing for CO2 (Mendonca et al., 2016) and CH4 (Mendonca et al., 2017). We opt to use GGG2020 to

leverage the previous validation work evaluating the TCCON retrievals against profiles constructed from in-situ aircraft and

balloon observations (Wunch et al., 2010; Messerschmidt et al., 2011; Geibel et al., 2012). We scale the retrieved XCH4 by175

the ratio of the TCCON GGG2020 airmass-independent correction factors for CO2 and CH4 (1.0101/1.0031). This is intended

to account for the bias induced by the collective effect of GGG2020 line strength errors across the CO2 and CH4 bands.

In actuality the factor for MethaneAIR may differ slightly since there are vertical sensitivity differences between it and the

TCCON retrievals from which the correction factors are derived. We plan to revisit the question of absolute scaling when we

have accumulated more ground-validation overpasses in future campaigns.180

3.2 Retrieval Configuration

NCO2
and NCH4

are derived through optimization of a state vector (x) that minimizes the following cost function J(x).

J(x) = (y−F(x))TSo
−1(y−F(x)) + γ−2(x−xa)TSa

−1(x−xa) (2)

The above minimizes a balance between the fit residuals between the observations y and forward model F(x), and departure

of x from it’s a priori estimate xa. The balance of both terms is controlled by the observation (So) and a priori (Sa) covariance185

matrices. γ is an additional regularization parameter that scales the a priori covariance. For retrievals on the 5× 1 aggregated

pixels we select γ2 = 10, guided by an L-curve analysis (Hansen, 1993), and the fact that it produces near-unity sensitivity to

CH4 in the boundary layer (see Section S1). Based on the same analysis we found the need to reduce the regularization for

retrievals at the native pixel resolution (γ2 = 50).

y contains radiances from both windows. The initial rationale for their joint optimization is that the weaker CO2 band at190

1.645 µm may improve the light path constraint due to its overlap with the target CH4 band. In practice we have found little
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difference compared to optimizing the windows independently. Since the proxy method accounts for aerosols via normaliza-

tion against NCO2
as the light path constraint, F(x) does not consider scattering and is modeled analytically (Frankenberg

et al., 2005). This allows for significantly faster processing compared to the "full-physics" approach, which explicitly includes

aerosols in the state vector. MethaneAIR generates approximately 30 million spectra per flight hour at native spatial resolution,195

making speed a significant consideration. The fastest full-physics CH4 retrievals have processing times of ∼ 10 s (Hu et al.,

2018), whereas the proxy retrieval is an order of magnitude faster (∼ 1 s per pixel). Thus the CO2 proxy approach will likely

be the backbone for the future MethaneSAT operational processing, with a full-physics algorithm additionally applied at a

aggregated resolution, or for selective cases where the a priori CO2 is expected to be unreliable (e.g. for urban targets).

Table 1. MethaneAIR Level 2 algorithm fit settings

State Vector Element A Priori Uncertainty (1σ)

CH4 Profile [19 Layers] GGG2020 Priori Profile Software1 UoL GOSAT Proxy Covariance2

CO2 Profile [19 Layers] GGG2020 Priori Profile Software1 UoL GOSAT Proxy Covariance2

H2O Column GEOS-FP3 0.02 v/v

Temperature Profile Shift GEOS-FP3 5 K

Surface Pressure GEOS-FP3 4 hPa

Albedo4 MethaneAIR Radiance6 100%

Radiance Offset5 0.0 5× 1014 photons cm−2 s−1 sr−1 nm−1

Wavelength Offset 0.0 nm 0.01 nm

ISRF squeeze 1.0 0.2

1 Laughner et al. (2022, 2023a)
2 Covariance matrix from University of Leicester GOSAT Proxy retrieval (Parker et al., 2020)
3 Rienecker et al. (2008)
4 A third order Chebyshev polynomial is used to parameterize albedo for each window
5 A first order Chebyshev polynomial is used to parameterize the radiance offset for each window
6 Albedo estimated from 5-wavelength-pixel average centered at 1622.5 nm.

Table 1 summarizes the state vector used in the retrieval. A fuller description of how the state vector is implemented is200

provided in the supplement (Section S1). The settings are mostly consistent with similar GHG retrievals (O’Dell et al., 2012;

Schepers et al., 2012; Parker et al., 2020). CH4 and CO2 profiles are optimized on a 19 layer vertical grid, consisting of 13

evenly spaced pressure layers from the surface to the tropopause, with a set of fixed pressure levels above. We also tested scaling

the CH4 and CO2 columns, however this tends to overestimate column XCH4 for cases with large surface enhancements
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because absorption near the surface is more efficient due to increased pressure broadening encroaching on more transparent205

regions of the spectrum. Scaling the column artificially adds more CH4 to higher altitudes where CH4 absorbs mostly in

the saturated part of the line, which requires more CH4 to be added to fit the observed radiance over regions with surface

enhancements.

Initial analysis of the first MethaneAIR flight data made apparent that the instrument spectral response function (ISRF)

was drifting during the course of each flight. The instrument’s low F-number (3.5) means that small perturbations to the210

instrument, such as changes in spectrometer optical bench temperature or the mechanical stresses at the interface between

the spectrometer and camera can lead to significant impacts on light focus on the detector. In order to account for this, two

additional ISRF squeeze parameters (xsqz) have been included in the state vector to model the ISRF change over both fit

windows. The changing width of the ISRF is modeled by squeezing the original wavelength grid from the laboratory-derived

tabulated ISRF (ΓTAB(λ))215

Γ(λ) = ΓTAB(xsqzλ) (3)

From Equation 3, xsqz values below/above unity correspond to stretching/squeezing the tabulated ISRF respectively. Figure

3 shows the impact of including the ISRF correction on the spectral fit over a flat background region from the plane’s return

transit to Colorado from the Midland basin in RF05. When the ISRF squeeze parameter is not included, the fit residuals are

significantly larger than expected from the laboratory-derived ISRF (Figure 3, middle panel). Including the ISRF squeeze220

brings the residuals within the expected noise level, and leads to a significant reduction in the XCH4 cross-track bias. In

this case the retrieved scaling factors (xsqz) show up to 30 % changes in the ISRF width compared to laboratory calibrations.

Improvements to the thermal housing of the instrument are planned to improve its stability in upcoming campaigns.

3.3 A Priori State

The Goddard Earth Observing System - Forward Processing (GEOS-FP) reanalysis (Rienecker et al., 2008) is used as the225

primary dataset for the construction of the prior. Profiles of pressure, temperature, and water vapor (H2O) are sampled directly

from GEOS-FP. Model-observation height differences computed using digital elevation tiles from Amazon Web Services (Lar-

rick et al., 2020) are used to adjust the GEOS-FP surface pressures to the MethaneAIR ground pixel locations. CO2 and CH4

a priori profiles are calculated using the TCCON GGG2020 profile construction tool (Laughner et al., 2022), using GEOS-FP

meteorology as inputs ‡. The a priori Lambertian surface albedo for each pixel is computed using the transparent region of230

the observed radiance at 1622 nm, assuming a non-scattering atmosphere. The a priori uncertainties for most state vector ele-

ments are based on OCO-2 ACOS algorithm (O’Dell et al., 2012). The profile CH4 and CO2 covariance matrices are from the

University of Leicester (UoL) GOSAT Proxy retrieval (Parker et al., 2020).
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XCH4 for retrievals with and without squeeze factor. Middle: Corresponding fit residual root mean square errors. "L1 Prediction" cor-

responds to the residual RMS expected from the radiance uncertainty in the L1 product. Bottom: Retrieved squeeze factors for the CO2

(1595–1618 nm) and CH4 (1629–1654 nm) windows.
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validated smoothed spline values. The a priori values are also shown in gray.

3.4 Cloud Screening

Cloud-impacted observations have been rejected using a cloud screening algorithm modeled on the OCO2 A-Band Preprocessor235

(Taylor et al., 2016). Here surface pressure is retrieved from the instrument’s O2 band assuming a cloud-free atmosphere. In this

case large deviations from the a priori pressure can be interpreted as due to clouds. The algorithm similarly uses retrieved CO2

and CH4 vertical column densities to screen out clouds with high optical depths, which cause distinct decreases relative to their

priors (Figure 4). The screening flags are combined with the oxygen-band retrieval using a naive Bayes classifier (Heidinger

et al., 2012), which also enables the screening algorithm to work where there is no overlapping oxygen-band data. More details240

will be provided in a manuscript currently in preparation.

‡This will yield slightly different a priori profiles to the operational TCCON retrieval, which uses GEOS-FPIT, a frozen version of the GEOS-FP reanalysis
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4 Cross-track bias correction for ISRF drift

4.1 Evidence of time-dependent cross-track bias

1592-1618 nm

(1) ISRF Squeeze Factor (2) XCH4 Cross-Track Bias

x10

PC 2 [11.5%]
PC 1 [64.6%]PC 2 [0.13%] PC 1 [99.8%](a1)

(b1) (c1) (b2)

(a2)

(c2)1629-1654 nm [ppb][xsqz]

Figure 5. Relationship between retrieved ISRF squeeze factors and cross-track XCH4 bias during RF05 (3rd August 2021). The contour

plots show the time evolution of the ISRF squeeze factors for each retrieval window (c1) and XCH4 cross-track bias derived from the small

area approximation (c2). Top panels (a1) and (a2) show the first two principal components for the combined ISRF squeeze parameters and

XCH4 bias respectively, and the corresponding component scores are shown in panels (b1) and (b2).

In the previous section it was shown that the in-flight ISRF can differ significantly from the table derived from on-ground

laser calibration measurements, with up to 30 % changes in FWHM (Figure 3). This change slowly evolves over the course of245

a flight. Figure 5(c1) shows the time-evolution of the ISRF squeeze factors for each spectral fit window retrieved from RF05.

Early into the flight the ISRF squeeze factors (xsqz) are close to 1, indicating the ISRF is close to the nominal calibration. As

the flight continues, the ISRF width gradually narrows (xsqz > 1), with the effect more pronounced at the side of the detector

corresponding to the lower cross-track indices. Similar ISRF squeeze changes were observed during the other flights.

In order to better understand the temporal evolution of the ISRF, we performed a Principal Component Analysis (PCA) on250

the ISRF squeeze factors on both CO2 and CH4 fit windows simultaneously. PCA is a common dimensionality reduction tech-

nique that reconstructs a multidimensional dataset from a smaller number of principal components. Let s(ti) ∈ R2n represent

the vector containing the ISRF squeeze factors from both windows, each with n cross-track pixels, at the tthi time. s(ti) is

reconstructed using the npc principal components (pj ∈ R2n), scaled by the scores cj(ti).

s(ti) = s̄+

npc∑
j=1

cj(ti)pj (4)255
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s̄ is the mean ISRF squeeze at each cross-track pixel. The first principle component p1 is chosen to account for the largest

possible variance in the dataset, and each succeeding component accounts for the highest possible variance under the constraint

that it is orthogonal to the previous ones.

lag [hours]

Pe
ar
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n 
r

Figure 6. Comparison of the time-series of the first principal component of the ISRF squeeze factor (see text) and spectrometer temperature

from RF05. Here spectrometer temperature refers to that recorded by a probe outside the instrument but within the thermal housing isolating

the spectrometer from the plane cabin. The lag-correlation between the two variables is shown in the inset, defined as the Pearson r value

computed between the spectrometer temperature (Tspec(t)) and the ISRF principal component shifted by the lag value (c1(t+ tlag))

.

Figure 5(a1) and (b1) shows the first two principal components and their scores respectively for the ISRF squeeze factors.

The first principal component explains almost all the variance in the ISRF squeeze factors (99.8%). It is also highly correlated260

with the temperature of the environment surrounding the instrument (Figure 6). This strong relationship suggests that the ISRF

changes are being caused by the cooling of critical spectrometer optical components, such as the foreoptic lens adjacent to

the cold viewport window glass. These temperature changes can defocus light at the FPA leading to the observable changes in

ISRF width. The fact that the ISRF changes lag the temperature by ∼ 0.75 h also support this hypothesis (Figure 6 inset), as

this would be expected due to the thermal inertia of the optical components.265

It is unlikely that squeezing the tabulated laboratory ISRF fully accounts for the change in ISRF shape induced by defocusing.

The gradual drift in instrument focus may lead to a time-dependent XCH4 cross-track bias, which we attempt to derive using

a "small area approximation" (O’Dell et al., 2018). This assumes XCH4 over a small area is constant. In this case we derive

the background XCH4 for every cross-track by computing its median value over consecutive 10 s (∼ 2 km) intervals. The

segment interval is chosen to be short enough so that the sequence of retrieved squeeze values captures temporal changes270

in the cross-track bias pattern, whilst long enough to reduce the impact of plumes, but not so long as to entrain topographic
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gradients. Let XCH4,g(ix, it) be the retrieved XCH4 for 10 s segment g at cross/along track index ix and it respectively. The

cross-track bias at cross-track ix for the granule (Bg(ix)) is estimated as follows:

XCHmed
4,g (ix) = med(XCH4,g(ix, :)) (5)

Bg(ix) =XCHmed
4,g (ix)−mean

(
XCHmed

4,g (:)
)

(6)275

In the above med and mean denote the median and mean respectively, and : denotes the array axis in which the operation is

taken over. TheXCH4 cross-track bias for RF05 is shown in Figure 5(c2), as well as its PCA decomposition (Figure 5(a2,b2)).

The derived bias pattern shows a temporally constant set of index-to-index cross-track stripes over the course of the flight, with

an additional slowly-evolving bias pattern smoothed over the entire detector array. The relatively constant pattern is likely due

to instrument slit inhomogeneities, and is a common feature of other 2D grating spectrometers (e.g. MODIS: Rakwatin et al.280

(2007), OMI: Boersma et al. (2011), and TROPOMI: Borsdorff et al. (2019)).

The temporal evolution of the broader bias pattern strongly correlates to the change in ISRF width. This can be seen more

clearly from the ISRF squeeze and XCH4 cross-track bias patterns PCA scores (Figure 5(b1,b2)). The scores of the leading

ISRF and XCH4 bias PC are highly correlated in time (Pearson r = 0.76). Although the second ISRF PC explains very little

of the total ISRF variability (0.13%), its scores are highly correlated with the first two XCH4 bias PCs (Pearson r values of285

0.77 and 0.69 respectively). This suggests that subtle ISRF changes captured by the less-dominant PCs could contain valuable

information for modeling the XCH4 bias.

4.2 MethaneAIR cross-track bias correction algorithm

Since there is an underlying physical connection between the XCH4 cross-track bias and ISRF squeeze parameters, errors

associated with the small area approximation can be further reduced by constructing a regression model relating the two290

retrieved quantities. As the noise in retrieved ISRF squeeze parameters is lower than the retrieved XCH4 , this will also

improve the precision of cross-track bias prediction compared to direct application of the values in Figure 5 (c2). Here we

create a linear model of the cross-track bias (n pixels) from a total number of t segments, each containing 10 s of observations.

We predict the XCH4 biases (the "response" variables) derived from the small-area approximation B ∈ Rt×n against the

retrieved ISRF squeeze factors (the "predictor" variables) combined from both windows S ∈ Rt×2n.295

B = Sβ (7)

β, the transformation between S and B, is determined using partial least squares (PLS) regression (Wold et al., 2001). In

this case an ordinary multiple least squares regression is not appropriate as it assumes there be no correlation between the

squeeze factors at different cross-track positions. One possible way around this is to create a multiple regression model using

a truncated set of principal components (e.g. those shown in Figure 5), but the principal components that are omitted from300

the regression could still contain valuable information for explaining variation between the response and predictor variables.
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Figure 7. XCH4 cross-track bias estimate with the small area approximation (left) and subsequently refined using the PLS regression

model (right). The PLS regression model (Equation 7) uses the retrieved ISRF squeeze factors to predict the data in the left panel, in order to

preserve only sources of variability related to the temperature-induced defocusing effects.

Indeed, the strong correlation between the scores of the second ISRF PC with those from the XCH4 bias dataset previously

discussed suggest this may not be the appropriate method.

PLS overcomes this PCA truncation issue by finding component-pairs between the predictor and target datasets that max-

imize covariance between them. This is in contrast to PCA regression where they are independently chosen to maximize305

their own explained variance. The algorithm works iteratively, by first finding the covariance-maximizing predictor/response

component-pair, the variation captured by these is subtracted from the datasets, and the process repeated. The process is ideally

terminated after a sufficient number of components is included so as to explain the true variation in the response dataset. Here

we determine this component number using k-fold cross validation.

Figure 7 compares cross-track bias derived from the small-area approximation to that predicted by the regression model. It310

can be seen that the regression model reduces the noise in the original dataset, and removes some spurious features that extend

over multiple cross-track positions that are likely due to realXCH4 enhancements. The updated bias estimate is also less noisy,

due to the higher precision of the retrieved ISRF squeeze factors relative to XCH4 used in the small-area approximation.

Figure 8 compares the MethaneAIR XCH4 retrievals over the Midland basin from RF05 before and after the stripe correc-

tion is applied. We have applied the bias correction for a given observation by temporally interpolating the PLS-derived bias315

(Figure 7, right panel) to the time of observation. In principle, the retrieved ISRF at the observation time could also be directly

input into the regression model (Equation 7). In practice, we found the former method performed better because (1) ISRF

varied smoothly in time and (2) the latter method induced additional noise due to the 10× lower precision of the single-pixel

ISRF values compared to the 10s averages used in the PLS model. Figure 8 shows that the bias correction is able to remove the
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Figure 8. Retrieved XCH4 during RF05 (3rd August 2021) gridded at 20x20 m2 resolution prior to (left) and after (right) destriping

correction is applied. Here the aircraft is traveling in a clockwise loop, with the northern segments overlapping to target a controlled release.

cross-track striping apparent in the uncorrected data whilst preserving observations of plumes from O&G infrastructure within320

the basin and at the controlled release site.

5 Validation

5.1 EM27/SUN Ground Validation

Surveying CH4 across an O&G basin requires 2-3 hours of MethaneAIR observations at its nominal 12km above-ground

observation altitude. It is critical that the retrieved XCH4 is free of significant systematic drifts which could yield artifi-325

cial gradients within the mapped areas and ultimately reduce the accuracy of emissions inversion. Such drifts are certainly

possible given the changes in the ISRF shown in the previous section, and can be quantified using the aircraft overpasses

of the EM27/SUN spectrometer sites made over the course of the campaign. Figure 9 shows the comparison between the

MethaneAIR and EM27/SUN retrievals for the five flights that intersected the ground sites. For each EM27/SUN overpass

we colocate MethaneAIR retrievals within a 0.05 degree latitude/longitude box of the site location. To remove the influence330

of the GGG2020 CO2 prior from the comparison, we use the XCO2 observed by the EM27/SUN in place of GGG2020 a

priori XCO2 when calculating the MethaneAIR XCH4 from the retrieved vertical column densities (XCO2,0,Equation 1). To

reduce MethaneAIR and EM27/SUN retrieval differences caused by differences in their respective a priori CH4 profiles and

averaging kernels, we adjust MethaneAIR to the EM27/SUN prior and smooth the EM27/SUN observation by the MethaneAIR
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Figure 9. Left: Comparison of colocated MethaneAIR and EM27/SUN retrievals of XCH4 (see text for colocation criteria). Error bars

represent the 1σ cross-track XCH4 variability within the 0.05 deg colocation region (since there are > 3000 pixels for each MethaneAIR

average, the XCH4 random error is negligible). HA and HC refer to the two EM27/SUN spectrometers used in the first flight campaign.

±20 ppb dashed lines indicate approximate 1% accuracy level. The MethaneAIR XCH4 values have been adjusted to EM27/SUN CH4

profile and the EM27/SUN retrievals smoothed with the MethaneAIR CH4 averaging kernels following Wunch et al. (2011b). Right: The

series of the relative XCH4 drift between the MethaneAIR (black dots) and EM27/SUN retrievals (colored lines) after the first overpass

for flights with multiple overpasses. The colored squares indicate the EM27/SUN retrievals smoothed with the MethaneAIR CH4 averaging

kernels. The XCH4 value at the time of the first overpass is subtracted from each dataset to visualize the relative drift.

averaging kernel, following Wunch et al. (2011b) (Appendix A). Furthermore, we restrict the comparison to retrievals whose a335

priori surface pressure falls within 10 hPa of the pressure measured at the EM27/SUN location, This is more important for the

NCAR-Boulder site used for the summer campaign, where there is significant topographic variation associated with the Rocky

Mountains immediately west. MethaneAIR retrievals are also screened for poor spectral fits §, and low signal by rejecting

pixels where CO2 and CH4 retrieval degrees of freedom for signal (DoFS) drop below 1, indicating a poor column constraint.

Cloud-contaminated pixels are filtered using the algorithm in Section 3.4.340

In general there is good absolute agreement between the MethaneAIR and EM27/SUN retrievals. The mean bias from the

winter flights was 2 ppb, with little drift in MethaneAIRXCH4 for the 5 overpasses over a 70 min interval (Figure 9 right). The

mean bias for the summer campaign increased to 13 ppb. This could be partially due to the different EM27/SUN spectrometers

used for the summer and winter campaigns, though instrument-to-instrument variations have been shown to be within 0.3%

(∼6 ppb) (Alberti et al., 2022). The summer observations were also influenced by visible haze from intense fires in the western345

US. However the same haze was not visible from greyscale imagery generated from MethaneAIR data, and there is no evidence

of strong correlations between retrieved XCH4 and surface albedo, a typical indicator of aerosol presence (Butz et al., 2010).

Thus the size-distribution of the smoke aerosols present was likely small enough to not produce strong scattering in the SWIR.

§Values where the fit residual RMS is greater than 2% are excluded. This is at least 4 standard deviations from the median fit residual of properly converged

results thus keeping the majority of good data, whilst removing excluding data from situations where the retrieval is expected to fail, such as over cloud

shadows
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Figure 10. MethaneAIR and EM27/SUN column averaging kernels for the two MethaneAIR overpasses from RF08. The MethaneAIR

kernels are computed from the average of the retrievals colocated to the EM27/SUN site.

Differences in the vertical sensitivity of the MethaneAIR and EM27/SUN retrievals could explain the flight-to-flight differ-

ences in the summer campaign. Figure 10 shows the column averaging kernels for the two sensors for the RF08 overpasses,350

which are representative of observations made at a high (57◦) and low (28◦) solar zenith angle. The MethaneAIR retrieval is

less sensitive to the airmass above the aircraft, as the solar light returned to the sensor only traverses the layer above once. In

contrast, the EM27/SUN retrieval shows a greater sensitivity to stratospheric differences. The uncertainties in the background

GGG2020 CH4 profiles are largest in the stratosphere, as demonstrated by in-situ, balloon-borne AirCore (Karion et al., 2010)

profile comparisons which produce ∼ 30 ppb RMSE errors at the tropopause, peaking at ∼ 80 ppb at ∼ 100 hPa (Laughner355

et al., 2023a). This translates to at least a ∼ 5 ppb 1σ variability induced by the different stratospheric instrument sensitivities

in Figure 10, by taking the minimum 30 ppb GGG2020 error, and assuming that it is correlated at all stratospheric altitudes.

The summer flights showed a consistent positive XCH4 drift relative to the EM27/SUN retrievals, ranging from 1.0 ppb/h

for RF09 to 3.2 ppb/h for RF08 (Figure 9, right panel). This drift correlates with the temperature-induced changes in the

ISRF shown in the previous section (Figure 5). The drift is likely induced by the ISRF not being perfectly modeled by the360

ISRF squeeze factor. Since the time-evolution of the ISRF squeeze factors showed a similar pattern each flight, this could also
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explain why the sign of the drift was always positive. Efforts are currently being made to improve the temperature-stability

of the instrument in flight for future campaigns. For now we note that for drifts at these levels it should be possible to infer

emissions from diffuse CH4 sources, since the total drift over the time it takes to map a target area (1-2 hours) is approximately

an order of magnitude lower than the XCH4 gradients typically observed (see Section 7).365

5.2 Intercomparison with TROPOMI
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Figure 11. Comparison of colocated MethaneAIR and TROPOMI XCH4 retrievals during RF06. Left: TROPOMI XCH4 retrievals (or-

bit 19769), filtered with quality assurance values > 0.5, destriped using the algorithm described in Liu et al. (2021). The overlapping

MethaneAIR flight path within 1-hour of the TROPOMI overpass is shown in red. Right: Comparison with MethaneAIR retrievals averaged

to overlapping TROPOMI pixels. The inset figure shows the scatterplot of the matched retrievals, with reduced major axis regression fit (red).

To evaluate a wider subset of MethaneAIR retrievals, we also took advantage of the greater coverage provided by the

TROPOMI satellite instrument (Hu et al., 2018). Figure 11 compares TROPOMI XCH4 retrievals from the standard V1

product (Hu et al., 2018) to those from MethaneAIR during RF06, which have been averaged to overlapping TROPOMI pixels

within a ±1 hour time interval. The TROPOMI data have been destriped using the median filter method described by Liu370

et al. (2021). The overlapping retrievals extend from the Permian O&G basin, and along the transit back to the base airfield in

Broomfield CO. MethaneAIR captures the Permian hotspot and the large-scale latitudinal gradient observed by TROPOMI.

The correlation between retrievals is high (RMA regression r2 = 0.83) and absolute mean bias small (5.8 ppb mean bias).

The offset between retrievals can be accounted for by the MethaneAIR XCH4 bias induced by the CO2 prior used in the

proxy normalization, with uncertainties of ∼ 1 % in the troposphere, translating to XCH4 retrieval uncertainty of ∼ 14 ppb.375

The slope of the regression from the colocated retrievals is 1.01, which is within the uncertainty of the linear regression. Since

the enhancement over the Permian basin drives the regression slope, the near unity slope indicates both would yield similar

total-basin emission estimates.
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Figure 12. Dependence of XCH4 on surface albedo. Relationship between the XCH4 bias as a function of albedo derived using small

area approximation (see text) over the return leg of RF06 between 34.8-40◦N. The albedo is computed from the radiance at 1622 nm under

clear-sky conditions. The XCH4 bias (y-axis) is derived by subtracting the mean XCH4 for albedos between 0.19–0.21. Grey points are

those excluded by the cloud-screening algorithm and retrieval quality flags. The grey and red lines show the binned averages computed in

0.02 albedo increments before and after cloud screening respectively, with dashed lines indicating 2σ bin sample-mean uncertainty. The

cumulative distribution function of albedo is shown above the main plot (grey and blue lines all- and cloud-screened-data respectively).

5.3 Evaluation against Surface Albedo

GHG retrievals typically correlate with other geophysical parameters, with surface reflectance usually having the strongest380

correlation (O’Dell et al., 2018; Lorente et al., 2021). The correlation arises due to biases induced by light path modifications

from aerosol scattering, which strongly depend on the underlying surface (Butz et al., 2010). For instance, aerosol layers over

dark surfaces will tend to shield radiation from penetrating below them, whilst a layer over a bright surface may act to enhance

the mean photon path below the layer due to multiple scattering between the surface and aerosol layer. Following Lorente et al.

(2021), we investigate the correlation between XCH4 and albedo by analyzing retrievals over small background regions. We385

divide the return leg of RF06 between 34.8 and 40 degrees latitude into 3 minute (∼ 30-40 km) segments, small enough to

assume XCH4 is constant across the segment (see Figure 11). For the albedo we use the a priori reflectance estimate obtained

from the observed radiance at 1622 nm. TheXCH4 bias in each segment due to surface reflectance is derived by subtracting the
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averageXCH4 computed from a 0.02 width bin centered at an albedo of 0.2. This value was chosen as it typically corresponds

to where aerosol-induced biases are at a minimum (Aben et al., 2007; Guerlet et al., 2013).390

Figure 12 shows the XCH4 albedo-induced biases derived from the return leg. Here the data have been screened using

the cloud algorithm described in Section 5.1. For the screened data there is almost no albedo dependence over the albedo

range 0.2–0.4, corresponding to 90 % of the total observations. The bias then slowly creeps to 5 ppb from 0.2 to 0.1 albedo,

possibly due to residual cloud contamination. This is in contrast to the TROPOMI full-physics retrievals, which show a bias

increase of 1.5 % (∼ 28 ppb) over this range (Lorente et al., 2021, 2023). The stronger dependence in TROPOMI may be395

due to the spectral separation of the oxygen A band (757–774 nm) used as the light path constraint from the target CH4 band

(2305–2385 nm), which increases the susceptibility to errors induced from retrieval aerosol optical property assumptions.

Nevertheless, the albedo dependence for MethaneAIR is lower than anticipated, given that during the campaign, observations

were often over regions blanketed by haze from long-range transport of smoke from fires in the Western United States and

Canada. Since a large fraction of this may be in drier air in the free troposphere, the size distribution may be small enough for400

the aerosol optical depth to be insignificant at 1600 nm.

Figure 12 also demonstrates the importance of the cloud screening. Below 0.2 albedo the XCH4 bias increases, peaking at

9 ppb at 0.05 albedo. This bias is due to cloud shadows, as well as other low-signal scenes such as those over water, where the

retrieved XCH4 is heavily influenced by the a priori information. The peak is due to the fact there is less spectral information

for constraining CO2, and as a result it tends towards its prior value at a higher albedo than CH4. This can be clearly seen by405

the profile DoFS in both species (Figure S3), which drop below 1 at albedos of 0.18 and 0.06 for CO2 and CH4 respectively.

In general the sign and magnitude of this bias will be scene dependent, determined by the a priori profile bias along with

additional light-path modifications induced by aerosol scattering. In practice since the degree of regularization is dependent on

radiance, the albedo threshold will also depend on the location and time of measurement. To a first order this will largely be

a function of solar zenith angle (SZA), assuming most surfaces are approximately Lambertian. For the scene shown here the410

SZAs ranged from 22-24◦, 90 % of the radiance expected for SZA=0◦, and the cloud screening and quality filtering remove

points below about 0.1 albedo. Thus we expect the regularization threshold to roughly follow 0.09/cos(SZA), corresponding

to albedo thresholds of 0.13 and 0.18 at 45◦ and 60◦ respectively. In practice if these thresholds are too high, the regularization

parameter (γ, Equation 2) can be re-tuned at the cost of worsening the measurement precision. The choice here has been

optimized to induce no regularization biases over the primary observation targets for this campaign (see Section S1).415

6 Implications for Plume Identification

6.1 Plume Mask Algorithm Description

The previous section showed that the main error in the flight retrievals is random noise. We estimate the precision of the 5× 1

aggregated retrievals of 35 ppb, by taking the standard deviation of the XCH4 retrieved over background locations used in

Figure 12. This value is consistent with our estimate for the native resolution of MethaneSAT (Section S2.1), which has similar420

SNR to the 5× 1 aggregated MethaneAIR retrieval. These noise levels reduce MethaneAIR’s ability to detect small-scale
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XCH4 gradients. To reduce random noise, we apply the Chambolle total variance denoising (TV) filter (Chambolle, 2004)

to the retrieved XCH4 images. The TV filter works by minimizing the following cost function between the original (f ) and

smoothed (g) images:

ĝ = arg min
g

E(f,g) +λV (g) (8)425

E(f,g) =
∑
i

∑
j

(g(i, j)− f(i, j))
2 (9)

V (g) =
∑
i

∑
j

√
(g(i+ 1, j)− g(i, j))

2
+ (g(i, j)− g(i, j+ 1))

2 (10)

(11)

The cost function penalizes departure from the original image measured by the least squares difference E(f,g). Smoothing

is controlled by V (g), which measures the adjacent pixel differences in the image. The degree of smoothing is controlled by the430

smoothing parameter λ. The filter was chosen for its favorable properties, such that the resulting smoothed XCH4 fields could

be used to estimate CH4 point source emissions (Q) without inducing additional bias. Here and for MethaneSAT, the integrated

mass enhancement (IME) method (Frankenberg et al., 2016; Varon et al., 2018) is the primary method used to estimate Q:

Q=
ueff

L
IME (12)

Here the IME is the integrated CH4 mass of the plume. The effective wind speed ueff and plume length scale L are435

parameters that account for impacts of turbulent diffusion on the observed plume extent. L is estimated by taking the square

root of the plume area. In practice ueff is determined from an ensemble of large eddy simulations as a function of the 10m wind

horizontal wind speed (u10). For MethaneAIR, u10 is itself determined by a LES simulation of the target scene at the time of

observation (Chulakadaba et al., 2023). The TV filter has some important properties for unbiased estimation of Q. First, it is

conservative, implying that the smoothing will not bias the IME estimate. Second, it is edge preserving, which means that it440

will not bias the estimate of L.

The IME method also requires an algorithm for plume masking. Figure 13 shows the approach adopted here. First the TV

filter is applied to the noisy image. The background XCH4 ([XCH4]bg) is then estimated by taking the 3σ iteratively clipped

mean of the denoised image. An initial mask is computed by flagging mole fractions that are two standard deviations above this

background. The final plume mask is computed by discarding flagged pixel clusters that contain less than a threshold number445

of pixels (nmin). This threshold depends on the degree of smoothing by the TV filter.

To optimize the choice of λ and pixel threshold we applied the TV filter to a set of 300 plume-free synthetic noisy re-

trievals, generated from gaussian random noise at the 35 ppb MethaneAIR precision corresponding to the 5× 1 aggregated

pixel resolution. Figure 14 (left panel) shows the falsely detected plume mass as a function of the pixel cluster threshold for

various levels of smoothing. As smoothing increases, the random artifacts in the image spread in area and decrease in XCH4450
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Figure 13. Schematic for the plume masking procedure. The left panel shows a synthetic 20× 20 m2 retrieval at MethaneAIR precision of

a plume from a 200 kg/h point source simulated with WRF-LES. A Chambolle TV image filter is then applied to the retrieved XCH4 map

(middle left). Next a threshold XCH4 is determined from the trimmed mean/standard deviation of the TV filtered image to generate a raw

plume mask (middle right). The threshold here is chosen to be 2 standard deviations above the mean. Finally small clusters of pixels (artifacts

of the random error in the image) are removed to yield the final masked plume (right).

Figure 14. Determination of plume mask parameters from plume-free synthetic MethaneAIR retrievals. The left panel shows the falsely

detected plume mass for different levels of TV smoothing as a function of the minimum pixel cluster threshold. The right panel shows the

minimum pixel threshold required to exclude all falsely detected plume mass as a function of smoothing weight (blue line). The plume

XCH4 threshold versus smoothing weight is also shown (orange line).

, lowering the XCH4 detection threshold. As a result, lower levels of smoothing require a higher nmin in order to filter the

falsely identified mass. The smallest such threshold to fully eliminate the falsely-identified plume mass is shown in Figure 14

(right panel), along with XCH4 detection threshold determined from the variance of the filtered image. At low smoothing

levels (λ < 45) XCH4 detection threshold decreases sharply with only small increases in nmin. Beyond this the pixel threshold

limit continues to increase with little improvement in the XCH4 threshold. We thus set the plume detection parameters at455

the inflexion point(λ= 45, nmin=160), which appears to strike a reasonable balance between lowering the XCH4 detection

threshold without unnecessary increased smoothing. We repeated the same analysis at the native spatial resolution (4× 20m2

pixel size,80 ppb precision). The curves look qualitatively similar (Figure S4), with the inflexion point occurring at double the

5× 1 smoothing (plume masking parameters: λ= 90, nmin=130).
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6.2 Application of plume masking algorithm to MethaneAIR460

XCH4 [ppb]

~ 1km

controlled  
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unlit  
flare

unlit  
flarecontrolled  

release
controlled  
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unlit  
flare

XCH4 [ppb]XCH4 [ppb]

Figure 15. Example plume mask applied to MethaneAIR data over controlled release site during RF04. The left and middle panels show

the MethaneAIR XCH4 retrievals before and after the Chambolle TV Filter is applied. The right panel shows the masked XCH4 overlaid

on a greyscale image derived from the MethaneAIR radiance at 1622 nm. The plume mask detects the O(100 kg/h) plume at the controlled

release site as well as a much larger O(1000 kg/h) emission from an unlit flare near the release site.

To see whether the synthetically-tuned filter above works in practice, Figure 15 shows an example of the plume masking

procedure applied to real MethaneAIR retrievals at native resolution from RF04. The segment shown occurs over a controlled

release site that is being used to validate point source estimation from MethaneAIR. The plume masking procedure successfully

masks the emission from the known source, as well as a much larger unexpected source adjacent to the controlled release site

from an unlit flare. We estimate a release rate of∼1500 kg/h based on the IME method following Varon et al. (2018), consistent465

for a source of this type. The full details of the IME approach used here are provided in Chulakadaba et al. (2023).

The masking algorithm detects emissions from the flare up to five kilometers downwind. Whilst this shows that the retrieval

performs well, it presents a conundrum: instruments such as AVIRIS-NG (Thorpe et al., 2016) have high XCH4 detection

limits but very fine spatial resolution, which enables compact plumes to be detected close to the source. For MethaneAIR the

plume XCH4 gradients are smeared out near the source, but detectable over large distances downwind. Thus for retrievals470

over complex emission fields there is potential for multiple plumes to overlap, complicating point source inversions.

The plume mask 2σ XCH4 thresholds derived from real data such as in Figure 15 tend to be up to 30 % higher (∼ 1.4 ppb)

than what we derived from the plume-free synthetic noisy retrievals. Although a portion of this could be explained by as-yet

unidentified retrieval biases, meteorological drivers may also play an important role. For instance, the XCH4 retrievals from

the EM27/SUN spectrometers during the winter campaign over a relatively clean background region show ∼ 1 ppb amplitude475
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Figure 16. Left: Location of the two EM27/SUN Sun spectrometers (HA, HC) used in the winter campaign, overlaid on GMTED2010 digital

elevation map (Danielson and Gesch, 2011), Middle: Dry-air mole fraction anomalies of CH4, CO2 and H2O measured by EM27/SUN

instruments HA and HC during RF01 (8 November, 2019). HC was located approximately 1 km downwind of HA (see main text). The

anomalies were derived by subtracting data smoothed using a 1-hour moving window from data smoothed with a 5-minute boxcar running

window. Right: Correlation between the anomaly time series for different time shifts to the HC time grid, for the segment of HA between

18-20 UTC.

oscillations (Figure 16). In this case the two sites were separated zonally by ∼ 1 km, with westerly prevailing surface winds.

From the EM27 data, the XCH4 lag-correlation peaks at 6 minutes, and similar values are observed for H2O and CO2. Such

correlations are consistent with the eastward propagation of gravity waves driven by orographic forcing by the mountains to

the west of the sites, which could generate the XCH4 anomalies by varying the height of the planetary boundary layer. We

can only expect such meteorological sources of variability to be larger in regions like O&G basins, amplified due to higher480

boundary layer CH4 mole fractions.

Another source of the higher XCH4 variability in the actual MethaneAIR data could be short-timescale emission variation,

which is supported from the observations. Figure 17 shows one such example during RF05, where a plume emanating from a

compressor station was observed on the approach to the controlled release site at regular (∼18 minute) intervals. In this instance

a large flash release was observed during the second overpass. Although the flash release had ceased by the third overpass, the485

remnants of the initial plume are clearly detectable multiple kilometers downwind of the compressor station. Without the

context of the earlier observation these pulse releases can be challenging to interpret, and they represent a real source of

variation in the data. We identified similar plumes not immediately adjacent to O&G infrastructure during the flights mapping

the Permian basin, suggesting source intermittency at time scales less than an hour is common, and highlights that they must

be considered in the emissions inversion of MethaneAIR/SAT data. We see here that they are observable by MethaneAIR and490

should be detectable by MethaneSAT, based on the size of the observed enhancement and the spatial resolution and precision

of both sensors.

6.3 Estimation of MethaneAIR’s Point Source Detection Limit

Now that we have characterized the instrument performance and defined a plume detection method, the point-source detection

limit for MethaneAIR can be estimated. To do so we use a WRF large-eddy simulation for the meteorological conditions of the495
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Figure 17. XCH4 retrieved over an intermittent source (compressor station) during RF05 (03/08/2021). The title of each panel indicates

the observation time in UTC, with the white x marking the source location. The rightmost panel shows a satellite image of the compressor

station (©Google Earth), overlaid with locations of pipelines (orange lines) and compressors (red triangles) from Oil and Gas Infrastructure

Mapping database (OGIM) (Omara et al., 2023).

controlled release for RF04 (Figure 15), used for the IME calculations. The simulation was performed at 100x100 m2 spatial

resolution over a 5.6x5.6 km2 domain, and then interpolated to the 5x1 pixel resolution (∼ 20× 20 m2). Note that the lower

resolution of the simulation will likely lead to an overly pessimistic estimate of the detection limit. We allow the simulation to

spin up for 3 h, and then simulate the transport of 5 point sources within the domain for the next 4 h. The mean wind speed

during this period was 2.4 ms−1. The simulated XCH4 fields are saved every minute, yielding 1200 plume samples.500

A simple estimate of the detection limit can be determined by scaling each plume sample to the minimum criteria where it

would be flagged by the plume masking algorithm. From this we determined a median point source emission rate of 93 kg/h

(81-109 kg/h interquartile range) for the 5x1 retrieval, using the thresholds corresponding to a TV smoothing parameter λ= 75.

As previously discussed, natural atmospheric variability not due to the plume likely increases the backgroundXCH4 threshold.

If we assume that the 30 % higher threshold found for the real RF04 case is representative, then the median detection limit505

becomes 121 kg/h (106-141 kg/h interquartile range). This simple bottom up estimate of the detection limit is consistent with

the 200 kg/h quantification limit we have determined independently by assessing the performance of the IME method against

the controlled release experiments from RF04/RF05 (Chulakadaba et al., 2023). The difference arises in part because here we

are referring to detection vs. quantification, as well as differences in the approach used for plume masking in Chulakadaba

et al. (2023).510

In order to estimate the accuracy of a point source emission inversion of the MethaneAIR data a full-circle observing

system simulation experiment (OSSE) is required, whereby the synthetic MethaneAIR retrievals are created using the WRF-

LES and then inverted via the IME method. Varon et al. (2018) performed a comprehensive set of OSSEs for a 50× 50 m2

resolution instrument at various precision levels. At this coarser spatial resolution the precision of MethaneAIR corresponds
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approximately to their 1 % precision case, which yielded an emissions uncertainty of 70 kg h−1 + 5% of the IME emissions515

estimate. Note that there is additional uncertainty due to using a reanalysis wind product for ueff estimation, which was

estimated to be 15-50 % depending on wind speed. Overall this suggests MethaneAIR is capable of detecting 75 % of US

O&G CH4 emissions as point sources, based on estimates from the US Greenhouse Gas Reporting Program (USGGRP) (Jacob

et al., 2016; Varon et al., 2018). Whilst there is considerable uncertainty in the USGGRP estimates, the point-source detection

rate can be found from the MethaneAIR data alone, as it can also be used to constrain total basin emissions via flux inversions.520

7 Permian Basin Case Study

RF06 XCH4 [20210806]

RF06 Only 
RF07 Only 

RF06+RF07

[ppb] [ppb]

RF07 XCH4 [20210809]

Plume Mask Plume CH4 IME CDF

RF06RF07

Fitted Lognormal

MiVida Gas Plant

Pipeline 
Leak

Figure 18. Retrievals of XCH4 over the Delaware Basin from two successive research flights. Top panels show gridded XCH4 at 15 m

spatial resolution. The gridded plume masks from both flights from the algorithm described in Section 6 is shown in the bottom left panel,

with regions detected by one or both flights also indicated. The cumulative distribution of the IMEs derived from the plume masks for both

flights are shown in the bottom right panel.
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Here we show a case study typical of the flights. Fig 18 shows retrievals made over the O&G infrastructure of the Delaware

sub-basin of the larger Permian Basin from RF06 and RF07 (6/9 August, 2021). As the flights were 3 days apart, this provides

an opportunity to observe the spatial and temporal variability of sources over a major production region. The flight pattern

was the same for both days, with the plane approaching from the north of the basin, before repeating a clockwise oval pattern525

over the basin that gradually translated northeast each loop (see Figure 1 bottom right). For both days the basin was mapped

over an approximately two hour period between 10:00-12:00 local time. The transport patterns for both days are evident from

the plumes in the retrieved XCH4 maps, generally south easterly and south westerly for RF06 and RF07 respectively. During

RF06, the emissions were clustered around the south of the basin, whereas RF07 shows large sources to the north not present

in RF06. In RF07 there is an increase in the XCH4 background over the course of the monitoring period, evident from the530

discontinuity in XCH4 along the line oriented northwest to southeast through the center of the image.

The sources identified on both flights are shown in the plume mask, verifying that the detected emitters in the basin are

highly variable in space and time. The cumulative distribution function for the IMEs from both the flights is also shown in Fig

18, and are heavily tailed as seen in many previous studies (Zavala-Araiza et al., 2015; Brandt et al., 2016; Frankenberg et al.,

2016; Cusworth et al., 2021). Despite the spatiotemporal sources being different in RF06 and RF07, their basin-wide point-535

source probability distributions are similar. If it holds that mean basin-wide emissions are steadier in time, this could allow a

reduction in frequency of target monitoring by MethaneSAT, which in turn would allow an expansion of the operational list of

targets flagged for regular monitoring.

We now take a closer look at two of the largest emitters identified from the Delaware survey. First we examine the MiVida

gas processing plant, where we observed persistent large CH4 plumes for both flights. The plant is located in the southern end of540

the basin as indicated by Figure 18 (Top left). A total of 9 overpasses were made allowing good characterization of the source

(Figure 19) using the IME method. The estimated emissions were persistent and large, ranging from 1858–2518 kg/h upon

excluding RF06 16:15 and RF07 17:11 due to poor observational coverage of the target site. Approximately 190 Million cubic

feet per day (MMcfd) of gas is processed by the plant according to the US DHS Homeland Infrastructure Foundation-Level

Database. With a reported CH4 mole fraction of 0.77 (U.S. EPA Greenhouse Gas Reporting Program (GHGRP)), this implies545

a leak rate of 1.6–2.1 %. This rate is higher than any of those observed from a comprehensive survey of gas plants (Marchese

et al., 2015), and thus suggests a large source of unintended emissions at the plant. From the observed plumes we identified 3

source locations, indicated on the left panel of Figure 19. The largest contributor, indicated by the pink cross, is close to a flare

stack and compressor engine shed. The CH4 reported to the EPA GHG reporting program sent to the flares is about half the

observed emission (1121 kg/h), indicating that there are other large sources within the plant. There is also a contribution from550

a set of condensate storage tanks, absorption columns and liquid-gas separators (green cross, Figure 19 left), clearly visible

from the corresponding XCH4 enhancement seen in the first pass of RF06. This is consistent with previous surveys of O&G

gathering and processing facilities, which observed that venting from tanks tends to be an important source for high emitting

sites (Mitchell et al., 2015; Lyon et al., 2016). Finally there is an intermittent source to the south of the plant nearby another

set of compressor engines, most clearly visible from the last 3 RF07 overpasses.555
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Figure 19. XCH4 retrievals from repeated overpasses of the MiVida gas processing plant during RF06/RF07. The left figure shows the

©Google Earth image of the plant, with the approximate location of the three sources contributing to the observed plume within the plant

based on the XCH4 retrievals also indicated. The main infrastructure with potentially significant emissions is also labeled. The observed

XCH4 plumes from each overpass are shown in the right figure, with the color-coded infrastructure locations shown by arrows in the middle

right panel. Dashed lines indicate the edge of the aircraft swath. The emission rates computed using the IME method (Chulakadaba et al.,

2023) are also indicated, along with the 2.5-97.5 percentile confidence interval in square brackets. The IME method currently does not

account for the impact of partially observed plumes; Such cases will lead to emission underestimates.

The second case described here occurred during RF07, where a large plume extending over 20 km was observed at the north-

ern edge of the Delaware basin (Figure 20 (Top right)). The origin of the plume occurred precisely over an O&G gathering

pipeline. The IME-based emission estimate is ∼ 6100 kg/h (5700-6500)(Chulakadaba et al., 2023), a considerable size for a

single source. For comparison (Zhang et al., 2020) estimated Permian emissions of ∼ 2.7 Tg a−1 from TROPOMI, making

the pipeline leak 2% the size of average annual emissions from the entire basin. On the 24th of August, 15 days after RF07,560

an incident report by the pipeline operator was filed (Lucid Energy Delaware, 2021), reporting a rupture along a pipeline weld

caused by high line pressure. Based on the operator report on the volume and duration of natural gas vented, we estimated a

methane emission rate of 8200 kg h−1, which is consistent in magnitude with that observed by MethaneAIR. This case demon-

strates that even large-magnitude leaks can go undetected for long periods of time, and suggests that through regular O&G

basin monitoring, MethaneSAT will provide an important addition to the existing network of satellites capable of detecting565

large methane leaks (Irakulis-Loitxate et al., 2022), and help contribute to their mitigation through international activities such

as the Methane Alert and Response System (UNEP, 2023).
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Figure 20. Retrieval of a large plume caused by a pipeline leak during RF07, gridded at 100× 100 m2 resolution and overlaid on ©Google

Earth imagery.
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8 Conclusions and implications for MethaneSAT

Here we have described theXCH4 retrieval algorithm designated for MethaneSAT based on the CO2 proxy retrieval approach,

and applied it to observations from the first campaign of MethaneAIR, an airborne spectrometer with similar specifications to570

the future satellite.

Analysis of the flight observations revealed temperature-induced drifts in instrument focus over the course of the flight,

typically changing ISRF widths by 10-30 %. We show these can be mostly corrected by fitting a squeeze factor to the tabulated

ISRF. We present a PLS-regression based method to remove cross-track biases induced from imperfect modeling of the ISRF

defocus using the retrieved squeeze factors. Subsequent validation against ground-based EM27/SUN and TROPOMI retrievals575

show the instrument is typically accurate to within ∼ 1 %

Based on the flight retrievals we find the instrument precision is typically around 35 ppb (∼ 1.9 %) per 20× 20 m2 pixel

(5× 1 pixel aggregate), which we estimate translates to a median point source detection limit of 121 kg/h absent clouds and

low albedo pixels, and is in line with the 200 kg/h quantification limit determined by Chulakadaba et al. (2023).

Importantly, we find no strong dependence on surface reflectance in the MethaneAIR results. This was a key untested as-580

sumption in the early emissions inversions observing system simulation experiments that were used to inform the MethaneSAT

instrument requirements (Benmergui, 2019). In those original experiments the assumed precision of MethaneSAT was 0.15%

at 1× 1 km2 resolution. In follow up experiments it was found that the satellite could meet its emission constraint goals with

that precision at a scale of 5× 5 km2. We expect MethaneSAT to have a similar per-pixel precision as MethaneAIR (35 ppb,

Section S2.1). At these levels the 0.15% target precision will be achieved at a scale of ∼ 3× 3 km2¶, well within the pre-585

cision requirement. Although the instruments are at different spatial resolution, we do not find a large difference in cloud

contamination (Section S2.3.1), or biases caused by sub-pixel inhomogeneities in illumination (Section S2.3.2) and methane

concentration (Section S2.3.3) between the two instruments.

The pixel precision/accuracy combination demonstrated here also highlights MethaneAIR’s uniqueness in the current set of

aircraft sensors, capable of making retrievals at TROPOMI like precision/accuracy at scales of∼ 100×100 m2. At these scales590

new features, such as disconnected CH4 plumes from intermittent sources and XCH4 gradients driven by diffuse sources

and boundary layer structures become measurable. As such MethaneAIR provides a valuable testbed to develop new emission

inversion approaches accounting for these observable features prior to MethaneSAT’s launch.

Code and data availability. The L2 retrieval code is available upon request. L2 data is available through the NCAR/UCAR EOL data archive

at https://data.eol.ucar.edu/project/MethaneAIR595
¶Calculation based on central limit theorem. 0.15% translates to 2.85 ppb assuming a 1900 ppb XCH4 . The precision of the sample mean reaches the

requirement for ∼ 150 pixels, which translates to ∼ 3× 3 km2, assuming a 140× 400 m2 native pixel size
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