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Abstract. Ice fractures when subject to stress that exceeds the material failure strength. Previous studies have found that a

von Mises failure criterion, which places a bound on the second invariant of the deviatoric stress tensor, is consistent with

empirical data. Other studies have suggested that a scaling effect exists, such that larger sample specimens have a substantially

lower failure strength, implying that estimating material strength from laboratory-scale experiments may be insufficient for

glacier-scale modelling. In this paper, we analyze the stress conditions in crevasse onset regions to better understand the failure5

criterion and strength relevant for large-scale modelling. The local deviatoric stress is inferred using surface velocities and

reanalysis temperatures, and crevasse onset regions are extracted from a remotely sensed crevasse density map. We project

the stress state onto the failure plane spanned by Haigh–Westergaard coordinates, showing how failure depends on mode of

stress. We find that existing crevasse data is consistent with a Schmidt–Ishlinsky failure criterion that places a bound on the

absolute value of the maximal principal deviatoric stress, estimated to be (158± 44) kPa. Although the traditional von Mises10

failure criterion also provides an adequate fit to the data with a von Mises strength of (265± 73) kPa, it depends only on

stress magnitude and is indifferent to the specific stress state, unlike Schmidt–Ishlinsky failure which has a larger shear failure

strength compared to tensile strength. Implications for large-scale ice-flow and fracture modelling are discussed.

1 Introduction

Understanding the mechanics of ice fracture is important for predicting the stability of ice sheets and glaciers, since fractures15

lead to crevassing, calving, and moulins (Colgan et al., 2016): calving is a major component of the mass budget of ice sheets and

a potential source of rapid unstable retreat; crevassed and damaged ice is expected to flow more readily (Borstad et al., 2013;

MacAyeal et al., 1986; Albrecht and Levermann, 2014; Sun et al., 2017); moulins couple basal conditions to surface conditions

(Das et al., 2008) by channeling warmer surface melt water through the englacial system and potentially accelerating rates

of ice loss (cryohydrologic warming; e.g. Phillips et al. (2010); Solgaard et al. (2022)). Yet in spite of the broad literature on20

glacier ice, important material properties that constrain ice fracturing remain under-studied.

In classical failure theory, fractures form when an appropriate measure of the internal stress magnitude exceeds a critical

value (material failure strength). Fracturing leads to a rapid elastic response with a redistribution of the internal stress, tending
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to concentrate near material defects and crack tips. Fracture propagation, and, therefore, ultimately the size of crevasses, is

controlled by how the local stress field evolves in the presence of a crack. This kind of propagation has previously been25

modelled using linear elastic fracture mechanics that relies on material parameters such as the fracture toughness (van der

Veen, 1998; Petrovic, 2003; Albrecht and Levermann, 2014).

There is, however, considerable discrepancy between failure strength estimates derived from lab experiments (Hawkes and

Mellor, 1972; Haynes, 1978; Petrovic, 2003) and field data (Kehle, 1964; Ambach, 1968; Vaughan, 1993; Petrovic, 2003). Lab

experiments found the tensile strength of ice to be 1.7MPa to 3.2MPa for temperatures above −37 ◦C, whereas estimates30

inferred from field measurements are an order of magnitude smaller, 90 kPa to 320 kPa (Vaughan, 1993). While such difference

could be partly due to material differences like crystal fabric, grain size distribution, or impurity content, it is more likely the

result of sample size affecting failure strength: larger samples have substantially reduced tensile strength compared to smaller

samples (Dempsey, 1996; Dempsey et al., 1999) which has been attributed to how the probability of weakest-links scale with

volume (Petrovic, 2003). Specifically, a factor 10 increase in the characteristic length scale has been found to reduce the35

apparent tensile strength by a factor three (Dempsey et al., 1999).

Several failure criteria have been proposed in the literature. Vaughan (1993) used failure maps to justify that both Coulomb

and von Mises failure criteria conform well with empirical crevasse data. Lab experiments have meanwhile found that the

compressive strength is an order of magnitude greater than the tensile strength (Haynes, 1978; Petrovic, 2003), which is

in apparent contradiction to von Mises failure theory. Furthermore, the von Mises criterion is independent of pressure, but40

Nadreau and Michel (1986) found that failure stresses increase with hydrostatic pressure.

In summary, there is a discrepancy between the failure strength inferred from laboratory and field observations, and multiple

distinct failure criteria have been proposed. In this paper, we use a large data set of Greenland crevasses to estimate a macro-

scale failure criterion for naturally occurring glacier ice, relevant for large-scale modelling.

2 Data45

Chudley et al. (2021) derived a Greenland Ice Sheet wide crevasse map by processing high resolution elevation data from

the ArcticDEM v3 mosaic (Porter et al., 2022), which in turn is based on remote sensing data collected over the period from

2007-2015. In this paper, we use the 200m resolution crevasse density data set (fig. 1) which contains the area fraction of

2x2m pixels that has been classified as crevassed (Chudley, 2022). This optically-derived data set is insensitive to snow-filled

crevasses and it therefore likely underestimates the crevasse extent at higher elevations (Chudley et al., 2021).50

Strain rates are derived from ice velocity measurements from the Greenland Ice Sheet Velocity Mosaic (Joughin et al.,

2016, 2018) which is a multi-mission velocity average spanning the years from 1995 to 2015 (fig. 2). Surface air temperatures

at 2.5km resolution are taken from the CARRA reanalysis data (Schyberg et al., 2021) averaged over the period from 1991-2020

(fig. 2).

We compare the calculated von Mises stress to BedMachine v5 ice thickness (H) (Morlighem, 2022), ArcticDEM ice sheet55

elevation (z) (Porter et al., 2022), along flow acceleration since 1985 (v̇) (Grinsted et al., 2022; Grinsted, 2022), and the
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Figure 1. The spatial distribution of crevasses in Greenland from Chudley et al. (2021) is shown in semitransparent lavender blue. The

crevasse onset regions along the upstream edge of crevasse fields are shown in magenta. The hatched region in the interior of the ice sheet

has been excluded from the analysis.

seasonal amplitude in ice velocities (Vpeak/Vwinter) derived from PROMICE Sentinel-1 ice velocities (Solgaard and Kusk,

2021; Solgaard et al., 2021).

3 Methods

Our aim is to relate crevassing to the local stress environment where crevasses initiate. Evidence suggests that most crevasses60

initiate at a depth of 15-30m (Colgan et al., 2016), which in a Greenland context can be considered near surface. We will

therefore assume that the horizontal velocities at initiation depth are equal to surface velocities. We furthermore assume that

vertical shear components are neglible and write the strain rate tensor as

ϵ̇=


ϵ̇xx ϵ̇xy 0

ϵ̇xy ϵ̇yy 0

0 0 ϵ̇zz

 , (1)

where the horizontal components (ϵ̇xx, ϵ̇xy , ϵ̇yy) are calculated from the observed surface velocities (Joughin et al., 2016).65

Crevasses tend to form at lower elevations where temperatures are warmer and firn densities increase more quickly with

depth. Theoretical arguments suggest that crevasses initiate below the firn as greater stresses are possible in ice (van der
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Figure 2. Average surface air temperatures from CARRA (left), Ice velocities from MEAsUREs (middle), and near surface von Mises stress

calculated assuming solid ice rheology (right).

Veen, 1998). Indeed, this is supported by observations of crevasses initiating from refrozen melt layers (Scott et al., 2010;

Christoffersen et al., 2018). We therefore assume that fractures initiate in the solid ice and hence that incompressibility applies,

ϵ̇zz =−ϵ̇xx − ϵ̇yy. Finally, we disregard the effect of pressure on the failure envelope (Nadreau and Michel, 1986) following70

Vaughan (1993) since only surface crevasses are considered here; that is, crevasse formation subject to relatively small ice

pressure.

Glen’s flow law for solid ice relates the strain-rate tensor to the deviatoric stress tensor (τij) as

ϵ̇ij =A(T )τn−1
e τij , (2)

where A is a temperature-dependent rate factor, n is the flow exponent, τe =
√
I2 =

√
τijτij/2 is the effective deviatoric75

stress, and I2 is the second invariant of the deviatoric stress tensor. We calculate τe from the effective shear strain rate ϵ̇e using

τe = [ϵ̇e/A(T )]1/n. Here, we take the canonical value for the flow exponent, n= 3, and set the rate factor following Cuffey

and Paterson (2010). For simplicity we assume that the temperature at the crevasse initiation depth can be approximated by the

CARRA annual average surface air temperature. With these assumptions, we can calculate the deviatoric stress tensor and the

corresponding von Mises stress80

τvM =
√

3I2 =

√
(τ1 − τ2)2 +(τ2 − τ3)2 +(τ3 − τ1)2

2
, (3)

where τ1, τ2 and τ3 are the principal deviatoric stresses.
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3.1 π plane

The stress conditions where failure occurs can be represented by a three-dimensional threshold surface, spanned by the three

principal stress components. For pressure-insensitive materials, the threshold surface must be reflection symmetric along the85

hydrostatic axis (σ1 = σ2 = σ3). This symmetry implies that the threshold surface can, without ambiguity, conveniently be

represented on a two-dimensional subspace (plane) by a threshold curve (or ’failure envelope’). A popular choice is the so-

called π-plane view which corresponds to a plane perpendicular to the hydrostatic axis.

In the following, we will determine the failure criteria of ice by plotting principal deviatoric stresses in the π-plane and

search for a match with hypothesized polygon profiles representing different failure criteria (Kolupaev, 2018). The π-plane90

is the plane spanned by the Haigh–Westergaard coordinates ξ2 and ξ3, related to the principal deviatoric stresses through the

transformation

ξ2 =
1√
2
(τ1 − τ3) (4)

ξ3 =
1√
6
(−τ1 +2τ2 − τ3). (5)

In this plane, the von Mises failure criterion appears as a circle with radius r =
√

2/3τvM since95

ξ22 + ξ23 =
(τ1 − τ2)

2 +(τ2 − τ3)
2 +(τ3 − τ1)

2

3
=

2

3
τ2vM, (6)

where τvM is the material failure strength (critical stress).

An alternative visualization (Kolupaev, 2018, ch3.4), common in the glaciological literature, is to focus on the plane where

σ3 = 0 (i.e. plot σ1 vs σ2) (Vaughan, 1993, e.g.). In this plane, the von Mises envelope appears as an ellipse tilted 45 degrees.

However, Glen’s flow law is concerned with τij , not σij , so it is common to plot τ1 versus τ2 instead, calculated from horizontal100

velocities (Chudley et al., 2021, e.g.). In this case, results must be considered carefully to avoid misinterpretations: the approach

implicitly assumes that τ3 = 0, which is not valid for horizontally diverging flows. If τ3 = 0 is not fulfilled we cannot expect

points to fall on a von Mises ellipse even if generated by a von Mises failure process. We therefore advocate for the π-plane

visualization as it is independent of pressure (i.e. plots for σ or τ gives the same result) and, importantly, takes all principal

stress components into consideration.105

3.2 Regions of interest

Crevasses are transported with the flow, and so not all crevasses are a product of the local stress conditions. As we are interested

in the failure strength, we create a mask to select locations where crevasses have recently opened. These are defined as being

located on the uphill edge of large-scale crevasse patches. We therefore apply a smoothed Sobel edge detection filter to a

binary representation of the crevasse density map, and select the upstream edge by requiring that the along-flow crevasse110

density gradient to increase. We further require the crevasse density to be smaller than 5%. We label these as crevassing onset

regions.
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The high-elevation ice sheet interior has been excluded from the analysis, using a manually traced polygon (Grinsted, 2024),

as we gauge that the false positive rate in the crevasse product is greatest there (see fig. 1). Regions where the ice thickness is

below 200m are also excluded due to concerns of whether the velocity product has sufficient spatial resolution to resolve the115

local strain rate.

Strain rates and stresses are calculated from long-term average ice velocities. This may not accurately reflect the conditions

under which crevasses were formed since trends or seasonal variability in ice flow are unaccounted for (Grinsted et al., 2022;

Solgaard et al., 2022) (elaborated on below). We therefore separately examine onset regions with steady flow, defined as

fulfilling Vpeak/Vwinter < 2 and v̇ < 2ma−2.120

4 Results

The spatial distribution of crevasses and the automatic detection of crevasse onset regions are shown in fig. 1. Maps over the

calculated von Mises stress, the ice velocity, and the surface temperature are shown in fig. 2. Calculated von Mises stresses are

found to be greater in onset regions compared to crevassed regions in general, and over the ice sheet as a whole (fig. 3). Onset

regions with steady flow are characterized by even greater von Mises stresses, τvM = (265± 73)kPa (fig. 3). The regional125

differences in the von Mises stress distribution is shown in the appendix (fig. A1). The distribution of principal stresses in onset

regions with steady flow are shown in figure 4. A similar plot for the distribution of strain rates is shown in fig. B1. In fig. A2,

we show how the von Mises stress in onset regions relates to other field variables.

Figure 3. The von Mises stress distribution over different subsets of the ice sheet. The counts per bin are all normalized to have the same

peak height. Horizontal bars show the 5%, 50% and 95% percentiles of the distribution.
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Figure 4. Empirical failure map showing a π-plane density map of stresses in crevasse onset regions with steady flow. The grey color scale

is linear in the counts per bin. The empirical median in 5◦ windows is shown in black; The median von Mises stress is shown as a pink

circle; And the Schmidt–Ishlinsky median maximum absolute deviatoric stress is shown as a green hexagon. Tensile, Compressive and Shear

directions have been labelled with T, C, and S.

5 Discussion

5.1 Uncertainties130

Stresses are calculated assuming that ice temperatures, at the depth of crevasse initiation, can be approximated by surface air

temperature as simulated by the CARRA regional reanalysis (fig. 2). It is, however, not clear whether this model is accurate,

and there will likely be regional biases in the modelled temperature. Further, ice temperatures at depth may deviate from

surface temperatures due to advection and redistribution of energy via melt and refreezing (Løkkegaard et al., 2022; Harrington

et al., 2015). We gauge the sensitivity of our stress estimates to temperature by calculating (A(T1)/A(T2))
1/n (see eqn. 2),135

suggesting that a 1◦C change in temperature may result in inferred deviatoric stresses changing by 4% to 8%. Note that

canonical parameters for Glen’s flow law were here assumed that disregard the effect of impurities or crystal fabric on ice

rheology.

We find that crevasse onset regions are characterized by larger stresses than in crevasse fields in general (fig. 3). This is

not surprising as many crevasses have been transported with the flow after being formed upstream. It is therefore clear that140

the von Mises stress distribution in crevasse fields does not, in general, accurately reflect the failure stress. We moreover

find substantial regional differences in the onset von Mises stress distributions (fig. A1). Ideally, the estimated failure stress

should be independent of region, so this suggests that we are not accurately estimating the in-situ stress everywhere. We look
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for clues that might explain regional discrepancies by examining the how the onset region stress co-varies with a range of

local conditions (fig. A2), finding a strong anti-correlation between the von Mises stress and the seasonal amplitude in ice145

velocities (Rank correlation of −0.59). We interpret this as our method systematically underestimating the failure stress in

regions with strong seasonal variations in near surface strain rates, and therefore argue that onset regions with steady flow

more accurately represent the failure stress. Excluding regions with non-steady flow results in a narrower stress distribution

that has an improved separation from the stress distribution over ice sheet as a whole (fig. 3). We therefore estimate the failure

stress to be τvM = (265± 73)kPa from onset regions with steady flow. This separation is not as clear in Chudley et al. (2021)150

which is based on a regional analysis of the same crevasse dataset but does not exclude areas with non-steady flow.

We note that not every location where estimated stresses exceed the failure stress appear to be crevassed (fig. 2). This may

be due to limitations in the crevasse dataset which is insensitive to snow-filled crevasses, or because exceeding the failure

criterion is a necessary but not sufficient condition for crevasse formation – conditions must also favour crack propagation.

Furthermore, in some interior locations, cracks may initiate in the firn pack, thus requiring a failure criterion for firn and a155

compressible rheology (e.g. Gagliardini and Meyssonnier, 1997; Petrovic, 2003).

5.2 Failure criterion

The empirical failure map in fig. 4 shows that in steady onset regions, crevasses predominantly open when subject to large

shear or tension, and much less so compression. This does not necessarily reflect the relative failure strength of the different

modes, but may simply reflect that the greatest surface stresses occur in shear zones. We therefore estimate the empirical failure160

envelope as the median of the data in 5◦ windows in the π-plane (Solid black line in fig. 4). The empirical envelope shows that

ice in tensile and compressive deformation is nearly equally strong, with the tensile failure strength only being 4% greater than

the compressive strength (see fig. 4). The empirical envelope compares reasonably well with the von Mises failure criterion

which appears as a circle in the π-plane. However, the data clearly has a hexagonal pattern which we compared against a library

of common failure criteria (Kolupaev, 2018, ch.3). The hexagonal shape, with corners in the shear directions, strongly suggests165

that glacier ice follows a Schmidt–Ishlinsky failure criterion (Burzynski, 1928; Schmidt, 1932; Yu, 1983; Kolupaev, 2018).

In the Schmidt–Ishlinsky hypothesis, it is the largest principal deviatoric stress, rather than the magnitude of the second

invariant, that defines the failure criterion:

τSI =max(|τ1|, |τ2|, |τ3|), (7)

where the material failure strength (critical stress) is derived from the inscribed radius r of the hexagon profile in the π-170

plane using τSI =
√
2/3r = (158± 44)kPa. The exscribed radius, corresponding to the shear failure strength is given by

R=
√

4/3r, i.e. the Schmidt–Ishlinsky criterion implies that ice is 15% stronger in shear relative to tensile stresses. Other

polycrystalline materials—such as mild steel, copper, nickel alloy, titanium, stainless steel—have been found to have Schmidt-

Ishlinsky like behaviour (see Kolupaev, 2018, table 2.1).

Alternative criteria have also been proposed in the literature, such as the Coulomb criterion and the maximum strain-energy175

dissipation criterion (MacAyeal et al., 1986; Vaughan, 1993), but are inconsistent with our data as they imply that ice is
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weakest for shear. We quantify the misfit between previously-proposed theoretical failure criteria and the empirical envelope

by calculating the root mean square log deviation (logRMS). Glen’s flow law allows for only deviatoric stress to be estimated,

so we are prevented from considering (calculating misfits of) pressure-dependent criteria. The pressure invariant version of

the Coulomb criterion is known as the Tresca criterion. We find that the Schmidt–Ishlinsky fits the data best with a logRMS180

error of 0.02. For comparison, the von Mises and Tresca criteria have logRMS errors of 0.04, and 0.08 respectively. Further,

measurement noise acts as to blur the octahedral failure profile, thus softening the corners of the hexagonal profile. We therefore

argue that the Schmidt–Ishlinsky criterion is an even better failure model for glacier ice than it appears from the empirical

envelope.

In the maximum strain energy dissipation criterion (Vaughan, 1993), it is the rate of deformational work (P = ϵ̇ijτji/2) which185

is hypothesized to be limited, rather than the stress state that can be withstood by the material. Vaughan (1993) uses Glens flow

law (eqn. 2) to calculate τ corresponding to a ϵ̇. Unfortunately, estimating the τ failure envelope corresponding to a given

threshold value for P becomes ambiguous as there will be a separate failure curve for every temperature. We can therefore not

evaluate the fit using the same logRMS metric we used for the other criteria. However, we calculate the standard deviation of

log(P ) to be 1.2 in crevasse onset regions with steady flow. This large spread indicates that there is not a single threshold value190

for P , and we therefore have little confidence in relevance of the maximum strain energy dissipation criterion. For comparison,

the log-standard deviations of the estimated threshold values for the von Mises and the Schmidt–Ishlinsky criteria, both have

log-standard deviations of 0.3, and thus are much better fits to the data.

We find that ice thickness correlates positively with the von Mises stress (fig. A2), contrary to expectations based on the

established volume scaling effect. We speculate that the failure strength might approach a limiting value for large ice sample195

sizes as predicted by e.g. the multi-fractal scaling law (Carpinteri et al., 1995; Dempsey et al., 1999). This would imply that

our reported critical stress values can be used in large-scale ice sheet models without adjustment for the scale effect.

5.3 Modelling crevasse fields

The von Mises and Schmidt–Ishlinsky failure envelopes do not deviate strongly from each other, but, for a given stress magni-

tude, the failure criterion might be fulfilled in one case and not the other depending on the stress state: the von Mises criterion200

is indifferent to the stress state, whereas the Schmidt–Ishlinsky criterion favors failure by tension or compression for a given

stress magnitude; that is, glacier ice appears stronger when subject to shear as opposed to tensile stresses (see fig. 4).

The choice of failure criterion may therefore impact where crevasses are formed in large-scale models. A popular approach

is to model the evolution of the crevasse density field (or damage phase field) as a function of local conditions and couple

it back into ice viscosity (e.g. Albrecht and Levermann, 2012, 2014; Borstad et al., 2016; Sun et al., 2017; Kachuck et al.,205

2022). In such models, crevasse density evolution is represented as a production–healing process, where production depends

on a scalar measure of the local stress state, which, if exceeding some critical value, is taken to grow proportionally to the local

principal spreading rate (strain rate). Our results are therefore directly applicable to such modelling efforts: we provide both

the failure criterion (7) and critical value τSI = (158± 44)kPa. We leave it for future work to test whether modelled crevasse

density fields using the Schmidt–Ishlinsky criterion in fact provide the best fit with observations.210

9



5.4 Third stress-tensor invariant

The Schmidt–Ishlinsky criterion implies that the failure of ice depends not only on the second, but also the third invariant of

the deviatoric stress, I3 = τijτjkτki/3, since eqn. (7) can equivalently be written as (Yu, 1983)

(
I3 + I2τSI − τ2SI

)(
I3 − I2τSI + τ2SI

)
= 0. (8)

The plastic behaviour and failure of materials are often linked, which suggests that the third invariant should be included215

in the flow law for ice; a dependency that has previously been proposed (Glen, 1958; Veen and Whillans, 1990; Morland

and Staroszczyk, 2019; Baker, 1987). Indeed, Steinemann (1954) found that ice deforms slower in shear than expected from

uniaxial deformation tests (Glen, 1958), and suggested that deformation data are not consistent with Glen’s canonical co-axial

flow law with a dependence on only I2, but should depend on I3, too. Although this seems to be consistent with the Schmidt–

Ishlinsky failure pattern found here (fig. 4), constraining the stress response functions in a flow law depending on both I2220

and I3 has proven difficult from available data (Morland and Staroszczyk, 2019; Staroszczyk and Morland, 2022). On that

note, Staroszczyk and Morland (2022) recently showed that a quadratic (non-coaxial) flow law depending only on I2 can also

be constructed to improve the fit with deformation experiments. Nonetheless, we believe it is worth considering whether the

failure criterion might, too, inform on the form of the flow law in addition to correlating with deformation data.

6 Conclusions225

We automatically identified crevasse onset regions from a dataset of Greenland crevasses (fig. 1), where we argue local stress

conditions must have exceeded the failure stress. We inferred the local stress conditions using Glen’s flow law combined with

observed ice velocities and average surface air temperatures (fig. 2), disregarding regions with seasonally variable ice flow. We

estimated the failure strength of glacier ice to be τvM = (265±73)kPa in crevasse onset regions with steady flow (fig. 3). This

is compatible with the 90 kPa to 320 kPa tensile strength estimated by Vaughan (1993). The corresponding π-plane failure230

map (fig. 4) suggests, however, that the mechanical failure of glacier ice is best modelled using the Schmidt–Ishlinsky failure

criterion, where failure occurs once the maximum absolute deviatoric stress exceeds (158± 44) kPa. While we argue that the

a Schmidt–Ishlinsky criterion is the better model for ice failure, we note that the deviations to the von Mises criterion are quite

small (fig. 4). It may therefore still be a good approximation to model ice failure with a von Mises criterion on average. This,

however, disregards the effect that the mode of deformation has on the failure strength, where the Schmidt–Ishlinsky criterion235

implies that ice is 15% stronger in shear relative to tensile stresses.

This study is, to our knowledge, the first to propose a Schmidt–Ishlinsky failure criterion for glacier ice. More work is needed

to validate this hypothesis using e.g. forward modelling.
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Figure A1. The calculated von Mises stress for opening crevasses varies substantially between different basins of the ice sheet. The counts

per bin are all normalized to have the same peak height. Horizontal bars show the 5%-50%-95% percentiles of the distribution.

Appendix A: Regional von Mises stress

The failure strength of ice should largely be independent of location. We therefore plot the onset von Mises stress distribution240

by region (Zwally et al., 2012). We find that there is substantial variability between regions (fig. A1). To illuminate the source

of the scatter we examine how the onset von Mises stress varies with other fields in a pair plot (fig. A2. We transform variables

which have a long tailed distributions with either a logarithm or hyperbolic tangent function prior to visualization. We find that

the von Mises stress anti-correlates with seasonal velocity amplitudes. This suggests that the von Mises stress, calculated from

long-term average velocities, are biased low in some regions as it does not capture the seasonal peak stress which may drive245

crevasse formation.
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Figure A2. Pair plot showing the relationships between various quantities extracted over regions where crevasses are opening. The variables

plotted are: the von Mises stress (τvM ); the seasonal peak velocity relative to the winter velocity (Vpeak/Vwinter); the mean velocity from

MEAsUREs (v); the long term acceleration in the along-flow direction (A); the surface temperature (Tsurf ); and the ice thickness (Thick.).

Some variables with long-tailed distributions have been transformed using logarithms or hyperbolic tangent.
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Appendix B: Critical strain rates

In this paper, we focus on the stress conditions that result in failure of glacier ice. We do not observe the stress state, but infer

it from observed strain rates and our understanding of the mechanical properties of ice. In this section, we present the raw

strain rate data. To investigate the how the critical strain rate depends on the mode of deformation we define strain rate π-plane250

coordinates in an equivalent way to eqn. 4, but using the three invariants of ϵ̇ij rather than τij . Figure B1 shows the observed

strain rates in crevasse onset regions with steady flow. Vaughan (1993) found that there is a strong impact on temperature on

the critical strain rate, which can largely be accounted for by the rate factor in Glen’s flow law (eqn. 2). We therefore calculate

empirical failures envelopes in three different temperature intervals (fig. B1), and find that the critical strain rate varies by an

order of magnitude between them. This is reflected in a long-tailed strain rate distribution. All three empirical failure envelopes255

show a similar flower-like pattern where the critical strain rate is greater for shear than for tensile and compressive deformation.

Figure B1. Empirical failure map showing a π-plane density map of strain rates in crevasse onset regions with steady flow. π-plane coordi-

nates are calculated from strain rates rather than deviatoric stresses. The color scale is linear in the counts per bin. The empirical median in

10◦ windows for different temperature intervals is shown in thick lines; Tensile, Compressive and Shear directions have been labelled with

T, C, and S.
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