
This study investigates residual circulation in the Peral River estuary using the 

Lagrangian residual velocity. It evaluated the contribution of each component of the 

Lagranigian residual velocity and in particular analyzed the four components of 

turbulent mean component. The results are interesting. I have few concerns and hope 

they can be clarified before publication of this manuscript in OS. 

Response: We extend our sincere appreciation for your dedicated and insightful review 

of our manuscript. Your meticulous examination and thoughtful comments have been 

invaluable in refining and strengthening our work. 

1. The decomposition of Lagrangian residual velocity 

The decomposition method basically is to use the Coriolis term in momentum balance 

in which each term is divided by the Coriolis parameter. Because the velocity in the 

Coriolis term is cross correspondence, i.e. u is in the momentum balance of v, and v is 

in the momentum balance of u. Thus, the physical meaning of each velocity component 

is hard to explain. For example, the baroclinic pressure gradient component of u is 

related to density gradient in y direction. That doesn’t make sense. Furthermore, if there 

is no Coriolis force, how do you decompose the velocity? 

Response: Thank you for your professional comments on this research and also thanks 

for providing this opportunity to explain our work.  

The decomposition method has physical meaning when the Coriolis force is 

important. The Pearl River Estuary (PRE) features a relatively wide expanse, measuring 

20–60 km in width in the middle and lower regions, away from the river discharge input 

nodes, and extending over a length of 70 km. The Rossby number is approximately 0.2 



in the Pearl River Estuary (PRE), similar to that calculated by Li et al. (2023), signifying 

the prominence of the Coriolis force in the region's dynamics. The baroclinic Rossby 

deformation radius is estimated to be approximately 12–16 km, a range similar to the 

findings of Pan et al. (2014), suggesting the necessity to account for the rotational effect 

of the Earth. Lai et al. (2018) highlighted that the influence of the Coriolis force in the 

PRE is substantial with its effect extending to the bottom layer when compared to 

vertical mixing, and baroclinic and barotropic momentum when analyzing the Eulerian 

average momentum equation. Chen et al. (2019) indicated that in the depth-integrated 

momentum balance prior to a storm in the PRE, local momentum balance primarily 

involves the pressure gradient force, the Coriolis force, and bottom stress. Synthesizing 

current and prior research, it becomes apparent that the Coriolis force is a predominant 

factor influencing the dynamics of the PRE. The aforementioned discussion accentuates 

the criticality and practicality of employing decomposition methods in such analytical 

contexts. 

The physical dynamics within the Pearl River Estuary (PRE) can be elucidated as 

follows: the cross-estuary Lagrangian mean momentum equation is characterized by 

quasi-geostrophic balance, whereas the along-estuary Lagrangian mean momentum 

equation conforms to a blend of quasi-geostrophic and Ekman balances. That is because 

the cross-estuary Lagrangian Residual Velocity (LRV) is predominantly influenced by 

the interplay of barotropic and baroclinic pressure gradient components, alongside eddy 

viscosity components. Conversely, the along-estuary LRV is chiefly propelled by 

barotropic and baroclinic pressure gradient components. The aggregate of local 



acceleration, horizontal nonlinear advection, and vertical nonlinear advection terms 

make a lesser and inverse contribution to the overall LRV. The input from the horizontal 

diffusion component is minimal, verging on negligible, as demonstrated in Fig. A1. 

Consequently, the Lagrangian mean momentum equations can be approximately 

simplified as follows: 
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where The symbol <> represents the Lagrangian mean, the terms on the left-hand side 

of Eqs. (A1) and (A2) denote the Lagrangian mean Coriolis force. Conversely, the first 

and second terms on the right-hand side of these equations correspond to the Lagrangian 

mean barotropic and baroclinic pressure gradient forces, respectively. Furthermore, the 

third term on the right-hand side of Eq. (A2) represents the Lagrangian mean eddy 

viscosity term. 

 

 



 

Figure A1 Bar charts for the magnitudes of individual components of uL and vL. The notation M(·) 

corresponds to the mean of absolute values for the components discussed in Section C. Specifically, 

M(uLba) quantifies the mean of the absolute values for the barotropic component, M(uLgr) for the 

baroclinic component, and M(uLtu) for the eddy viscosity component. Additionally, 

M(uLac+uLadh+uLadv) aggregates the mean of absolute values for the combined local acceleration, 

horizontal advection, and vertical advection components. M(uLho) calculates the mean of the 

absolute values for the horizontal diffusion component. Corresponding measurements for along-

estuary components, namely M(vLba), M(vLgr), M(vLtu), M(vLac+vLadh+vLadv), and M(vLho), are 

analogously defined and follow a similar interpretative framework.  

Analogous decomposition methodologies have been implemented in prior studies, 

notably in the research conducted by Wu et al. (2018). Their investigation delineated 

that a pivotal premise of Eq. (6) hinges on the assumption of a minimal Rossby number, 

thereby emphasizing the paramount importance of Coriolis forces within the framework 



of Eulerian residual transport dynamics analysis. The equation for VR (Wu et al., 2018) 

is as follows:  
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where 𝑉𝑅 represents the north-south component of Eulerian residual transport, and the 

angle brackets denote the Eulerian mean. The first two terms on the right side of 

equation (6) represent local acceleration and the nonlinear advection components, 

respectively; the third and fourth terms correspond to the pressure gradient forcing; the 

fifth and sixth terms represent surface wind stress and bottom friction forcing, 

respectively; the seventh term encompasses other components.  

The decomposition methodologies present distinct advantages for elucidating the 

dynamics of Lagrangian Residual Velocity (LRV) within generally or weakly nonlinear 

systems. This significance stems from the absence of comprehensive analytical 

solutions and definitive governing equations for LRV in generally nonlinear contexts, 

coupled with the constraints of analytical solutions in weakly nonlinear frameworks 

(Jiang and Feng, 2014; Cui et al., 2019; Chen et al., 2020).  

In scenarios where the Coriolis force is negligible, the Lagrangian mean 

momentum equations remain applicable for primary momentum balance analysis. 

However, these equations are inadequate for the detailed dissection of each LRV 

component. Notably, in circumstances where the Coriolis effect is minimally impactful, 

the methodologies employed for LRV decomposition may demonstrate variability, 

contingent upon the dominant momentum balances. This underscores the necessity for 

expanded investigation in future scholarly endeavors.  



The relative contents have been added to the revised manuscript (lines 697–715; 

lines 765–776): “The Pearl River Estuary (PRE) features a relatively wide expanse, 

measuring 20–60 km in width in the middle and lower regions, away from the river 

discharge input nodes, and extending over a length of 70 km. The Rossby number is 

approximately 0.2 in the Pearl River Estuary (PRE), similar to that calculated by Li et 

al. (2023), signifying the prominence of the Coriolis force in the region's dynamics. The 

baroclinic Rossby deformation radius is estimated to be approximately 12–16 km, a 

range similar to the findings of Pan et al. (2014), suggesting the necessity to account 

for the rotational effect of the Earth. Lai et al. (2018) highlighted that the influence of 

the Coriolis force in the PRE is substantial with its effect extending to the bottom layer 

when compared to vertical mixing, and baroclinic and barotropic momentum when 

analyzing the Eulerian average momentum equation. Chen et al. (2019) indicated that 

in the depth-integrated momentum balance prior to a storm in the PRE, local 

momentum balance primarily involves the pressure gradient force, the Coriolis force, 

and bottom stress. Synthesizing current and prior research, it becomes apparent that 

the Coriolis force is a predominant factor influencing the dynamics of the PRE. This 

assertion is corroborated by Wu et al. (2018), who contend that the decomposition 

approach to Eulerian residual transport assumes particular significance in scenarios 

marked by a notable presence of Coriolis forces, as evidenced by a small Rossby 

number. The aforementioned discussion accentuates the criticality and practicality of 

employing decomposition methods in such analytical contexts.” “The decomposition 

methodologies present distinct advantages for elucidating the dynamics of Lagrangian 



Residual Velocity (LRV) within generally or weakly nonlinear systems. This 

significance stems from the absence of comprehensive analytical solutions and 

definitive governing equations for LRV in generally nonlinear contexts, coupled with 

the constraints of analytical solutions in weakly nonlinear frameworks (Jiang and Feng, 

2014; Cui et al., 2019; Chen et al., 2020). In scenarios where the Coriolis force is 

negligible, the Lagrangian mean momentum equations remain applicable for primary 

momentum balance analysis. However, these equations are inadequate for the detailed 

dissection of each LRV component. Notably, in circumstances where the Coriolis effect 

is minimally impactful, the methodologies employed for LRV decomposition may 

demonstrate variability, contingent upon the dominant momentum balances. This 

underscores the necessity for expanded investigation in future scholarly endeavors.” 

2. The decomposition of eddy viscosity component (i.e. section 2.1) 

How do you decompose the velocity and eddy viscosity into tidal average and tidal 

oscillation parts? Is the tidal average Eulerian or Lagrangian average? If it is Eulerian 

average, what is the physical meaning of the decomposed terms? If it is Lagrangian 

average, terms 2 and 3 on the right hand side of Eqs. 1 and 2 should be zero. 

Response: The velocity and eddy viscosity have been decomposed into tidal averages 

and tidal oscillations utilizing the Eulerian mean method, for the following reasons: 

Firstly, it is important to emphasize that the Eulerian mean method and the 

Lagrangian mean method are two mathematical approaches, both of which are 

inherently valid. However, they yield different types of residual currents—Eulerian 

residual currents and Lagrangian residual currents. To be considered as representations 



of residual flow fields, these currents must adhere to the characteristics of the flow field. 

As Lamb (1975) has indicated, any flow field must satisfy the principle of conservation 

of material surfaces. Eulerian residual currents do not adhere to the conservation of 

material surfaces, whereas Lagrangian residual currents do, which are suitable for 

describing long-term material transport. 

Secondly, the momentum equation used in this study for physical oceanography 

is expressed in the Eulerian framework. The physical variables are obtained at each 

fixed location in the study domain. Initially described by Simpson et al. (1990), the 

process of tidal straining induces periodic stratification (SIPS), where tidal straining in 

the density field renders water columns unstable during flood tides and vice versa 

during ebb tides. This leads to enhanced small-scale turbulence and increased vertical 

mixing during flood tides, while vertical mixing is suppressed during ebb tides. Jay and 

Musiak (1994) demonstrated that this asymmetric mixing during the tidal cycle is the 

primary mechanism for generating residual currents. It is worth noting that the 

asymmetry in tidal mixing, as defined, is considered for each spatial point and is defined 

within the Eulerian framework. Therefore, in this study, we initially employed the 

Eulerian averaging method to obtain the four subcomponents of eddy viscosity 

components, which all meet momentum balance at each time and at each spatial point. 

Thirdly, when investigating the dynamics of tidal straining-induced residual 

currents, earlier studies primarily applied Eulerian averaging method to all momentum 

terms, including tidal straining, in the momentum equation, resulting in the derivation 

of tidal straining-induced Eulerian residual circulation (e.g., Burchard et al., 2011), later 



referred to as asymmetric turbulent mixing (ATM)-induced exchange flow (e.g., Cheng 

et al., 2011, 2013), and subsequently termed eddy viscosity–shear covariance (ESCO) 

flow (Dijkstra et al., 2017). In contrast, tidal straining-induced Lagrangian residual 

currents have not been extensively explored in previous research. Therefore, in this 

study, we applied Lagrangian averaging to all momentum terms, including tidal 

straining, in the momentum equation. The physical interpretation of this approach is 

that it considers the integrated effect of tidal straining at each point along the trajectory 

of particle motion. 

Finally, when employing the Lagrangian averaging method to separate velocity 

and eddy viscosity into tidal averages and tidal oscillations, defining tidal asymmetry 

during flood and ebb tides poses a challenge. This is because particles pass through 

different spatial points at various times along their trajectory, rendering it challenging 

to establish a consistent concept of asymmetric tidal mixing that corresponds to 

previous definitions. 

The tidal straining is represented by the ESCO, i.e. the eddy viscosity-shear covariance 

that is the tidal average of the product of tidal oscillations of velocity and eddy viscosity. 

Hence, tidal straining term is the fourth term rather than the second term in Eqs. 1 and 

2. 

Response: In the current manuscript, we express the horizontal velocities u and v as the 

sum of two components: u=u0+u1 and v=v0+v1, namely u0 and v0 representing the tidal 

periodic oscillation currents, “which are referred to as the zero-order terms. These zero-

order terms are equivalent in meaning to u' and v' as defined in prior studies (Burchard 



and Hetland, 2010; Burchard et al., 2011, 2014; Cheng, 2014). The terms u1 and v1 

correspond to the first-order terms and represent the tidal average current” (lines 211–

214). Similarly, the eddy viscosity coefficient vh (vh = vh0 + vh1) is decomposed into vh0, 

representing the tidal average eddy viscosity “as the zero-order term”, and “vh1, 

representing the tidal periodic oscillation of the eddy viscosity as the first-order 

term”(lines 214–216). Therefore, the third term in Eqs. (1) and (2) corresponds to the 

tidal straining circulation. 
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components of the LRV, corresponding to the third term in Eqs. (1) and (2). These 

components reflect the covariance between the oscillation of eddy viscosity and 

velocity shear, arising specifically due to the fact that vh1, u0, and v0 are all oscillatory 

terms. 

The total water depth, D also changes with time, and needs to be decomposed in the 

same way as the velocity and eddy viscosity do. 

Response: Applying a first-order Taylor expansion, the approximation of 1/D2 can be 

expressed as 1/H2 –2ζ/H3 (Cheng, 2014), where H represents the mean depth, ζ denotes 

sea surface elevation. The four subcomponents of the eddy viscosity component, as 

delineated in Eqs. (1) and (2) in the revised manuscript, are further decomposed into 

eight distinct terms, detailed in Eqs. (A3) and (A4). 
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In the majority of the Pearl River Estuary, the ratio of maximum sea surface 

elevation (ζmax ) to mean water depth (H) is less than 0.2 during neap tides, except in 

the nearshore areas. The terms related to –2ζ/H3, including the fifth to eighth terms in 

Eqs. (A3) and (A4), are so minimal that they can be considered negligible during neap 

tides (Fig. A2a3–j3). Conversely, the terms related to 1/H2, comprising the first to fourth 

terms (Fig. A2a2–j2) in Eqs. (A3) and (A4), demonstrate a notable congruence with the 

terms related to1/D2 in structure and magnitude during neap tides (Fig. A2a1–j1). 

During spring tides, although the ratio of ζmax to H is slightly larger than those during 

neap tides, the terms associated with 1/H2 (Fig. A3a2–j2) continue to predominate in 

both structure and magnitude over the components related to 1/D2 (Fig. A3a1–j1). 

Additionally, while the terms associated with –2ζ/H3 (Fig. A3a3–j3) are greater during 

spring tides than during neap tides, their contribution to the total components remains 

significantly less than those related to 1/H2. Given that D is approximately equal to H, 

D is not decomposed further in the manuscript. The relevant content has already been 

included in the text. “Employing a first-order Taylor expansion, the approximation of 

1/D2 is represented as 1/H2–2ζ/H3 (Cheng, 2014), where H signifies the mean depth 

and ζ corresponds to the sea surface elevation. Within the vast majority of the Pearl 

River Estuary, the ratio of ζmax to H remains below 0.2 during neap tides, with an 

exception in nearshore areas, where ζmax is the maximum of tidal elevations during a 

tidal period. The ratio during spring tides is slightly bigger than that during neap tides. 



But whether during spring or neap tides, the terms associated with 1/H2 exhibit a close 

correspondence to those related to 1/D2 in Eqs. (1) and (2) (not shown). The terms 

pertaining to – 2ζ/H3 are sufficiently minor to be negligible. Consequently, considering 

D is approximately equivalent to H, further decomposition of D in the manuscript is not 

undertaken.” (lines 217–226) 

 

Figure A2 Vertical profiles of each subcomponent of the eddy viscosity during neap tides. (a1–j1) terms 

related to 1/D2, (a2–j2) terms related to 1/H2, (a3–j3) terms related to –2ζ/H3. For cross-estuary direction: 



(a1, a2, a3) total eddy viscosity component related to 1/ D2, 1/H2 and –2ζ/H3, respectively; (b1, b2, b3) 

coupled component of the tidal-average eddy viscosity and velocity gradient oscillation (uLk0u0) related 

to1/D2, 1/H2 and –2ζ/H3; (c1, c2, c3) turbulent mean component (uLk0u1) related to 1/D2, 1/H2 and –2ζ/H3, 

(d1, d2, d3) tidal straining component (uLk1u0) related to 1/D2, 1/H2 and –2ζ/H3; (e1, e2, e3) coupled 

component of eddy viscosity oscillation and the tidal-average velocity gradient (uLk1u1) related to 1/D2, 

1/H2 and –2ζ/H3, respectively. (f1–j1; f2–j2; f3–j3) Corresponding along-estuary subcomponents related 

to 1/D2, 1/H2 and –2ζ/H3.  

 

Figure A3 Same as Fig. A2, but for spring tides. 

 



 

Fig. 4 b, line 280-282. Why does the barotropic component have a vertical two-layer 

structure? 

Response: To elucidate the two-layer structure of the barotropic component of LRV as 

depicted in Fig. A4a, we conducted an integration of the barotropic pressure gradient 

forcing (BPG) along the particle's trajectory throughout a tidal cycle, denominated as 

Lagrangian integrated BPG. This methodology encompasses the cumulative effects at 

each point traversed by the particle. Distinct trajectories undertaken by surface and 

bottom particles result in divergent outcomes with different magnitudes and opposing 

signs for the Lagrangian integrated BPG across the upper and lower layers, as illustrated 

in Fig. A4b–c. The Lagrangian integrated BPG at the final step, divided by one tidal 

period, yields the Lagrangian mean BPG. Consequently, the corresponding Lagrangian 

residual velocity is characterized by a vertically sheared two-layer structure with 

opposite flow directions. Contrastingly, the Eulerian mean BPG, averaged at fixed 

spatial points, exhibits a homogeneous vertical profile (Fig. A5a). Notably, 

discrepancies are also observed between Lagrangian integrated and Eulerian mean 

baroclinic pressure gradient forcings, expounded upon in Fig. A4d–f and Fig. A5b. The 

related explanation has been added in the manuscript (lines 341–344). “The two-layer 

structure of uLba arises from the distinct trajectories of particles in the upper and lower 

layers. The integration results along these different trajectories produce varying 

magnitudes and opposite directions of uLba components in both layers.” 



 

Figure A4 (a) The cross-estuary barotropic component of the Lagrangian Residual Velocity (LRV), with 

two red nodes (nodes 1 and 2) in the deep channel indicating locations of eastward and westward flow, 

respectively. (b, c) Lagrangian-integrated barotropic pressure gradient along the trajectories of particles 

at nodes 1 and 2, respectively. The green star marks the starting location, while the red star denotes the 

ending location. The particle trajectories are traced with blue lines. (d–f) Same as (a–c), but for the 

baroclinic component of LRV at nodes 3 and 4, respectively. 



 

Figure A5 Vertical profiles of the Eulerian mean (a) barotropic and (b) baroclinic pressure gradient 

forcing in Section C. 
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