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Abstract. Modeling and predicting changes in the function
and structure of the terrestrial biosphere and its feedbacks
to climate change strongly depends on our ability to ac-
curately represent interactions of the carbon and water cy-
cles and energy exchange. However, carbon fluxes, hydro-5

logical status, and energy exchange simulated by process-
based terrestrial ecosystem models are subject to significant
uncertainties, largely due to the poorly calibrated parame-
ters. In this work, an adjoint-based data assimilation sys-
tem (Nanjing University Carbon Assimilation System; NU-10

CAS v1.0) was developed, which is capable of assimilat-
ing multiple observations to optimize process parameters of
a satellite-data-driven ecosystem model – the Biosphere–
atmosphere Exchange Process Simulator (BEPS). Data as-
similation experiments were conducted to investigate the ro-15

bustness of NUCAS and to test the feasibility and applicabil-
ity of assimilating carbonyl sulfide (COS) fluxes from seven
sites to enhance our understanding of stomatal conductance
and photosynthesis. Results showed that NUCAS is able to
achieve a consistent fit to COS observations across various20

ecosystems, including evergreen needleleaf forest, deciduous
broadleaf forest, C3 grass, and C3 crop. Comparing model

simulations with validation datasets, we found that assimilat-
ing COS fluxes notably improves the model performance in
gross primary productivity and evapotranspiration, with av- 25

erage root-mean-square error (RMSE) reductions of 23.54 %
and 16.96 %, respectively. We also showed that NUCAS is
capable of constraining parameters through assimilating ob-
servations from two sites simultaneously and achieving a
good consistency with single-site assimilation. Our results 30

demonstrate that COS can provide constraints on parame-
ters relevant to water, energy, and carbon processes with the
data assimilation system and opens new perspectives for bet-
ter understanding of the ecosystem carbon, water, and energy
exchanges. 35

1 Introduction

Overwhelmingly due to anthropogenic fossil fuel and car-
bonate emissions, as well as land use and land cover change
(Arias et al., 2021), atmospheric carbon dioxide (CO2) con-
centrations have increased at an unprecedented rate since 40

the Industrial Revolution, and the global climate has been

1
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profoundly affected. As a key component of the Earth sys-
tem, the terrestrial biosphere has absorbed about 30 % of
anthropogenic CO2 emissions since 1850 (Friedlingstein et
al., 2022). However, in line with large-scale global warm-
ing, the structure and function of the terrestrial biosphere5

have changed rapidly (Grimm et al., 2013; Arias et al., 2021;
Moore and Schindler, 2022). As a consequence, terrestrial
carbon fluxes are subject to great uncertainty (MacBean et
al., 2022).

Terrestrial ecosystem models have been an important tool10

used to investigate the net effect of complex feedback loops
between the global carbon cycle and climate change (Za-
ehle et al., 2005; Fisher et al., 2014; Fisher and Koven,
2020). Meanwhile, with the advancement of modern obser-
vational techniques, a rapidly increasing number of satellite-15

and ground-based observational datasets have played an
important role in studying the spatiotemporal distribution
and mechanisms of the terrestrial ecosystem carbon fluxes
(Rodell et al., 2004; Quirita et al., 2016). Observations,
such as sun-induced chlorophyll fluorescence (Schimel et al.,20

2015) and soil moisture (Wu et al., 2018), have been used to
estimate or constrain carbon fluxes in terrestrial ecosystems
(Scholze et al., 2017). Carbonyl sulfide (COS) has emerged
as a promising proxy for understanding terrestrial carbon up-
take and plant physiology (Montzka et al., 2007; Campbell25

et al., 2008), since it is taken up by plants through the same
pathway of stomatal diffusion as CO2 (Goldan et al., 1988;
Sandoval-Soto et al., 2005; Seibt et al., 2010) and completely
removed by hydrolysis without any back-flux in leaves under
normal conditions (Protoschill-Krebs et al., 1996; Stimler et30

al., 2010).
Plants open/close leaf stomata in order to regulate the wa-

ter and CO2 transit during transpiration and photosynthesis
(Daly et al., 2004). As an important probe for characterizing
stomatal conductance, COS has shown great potential to con-35

strain plant photosynthesis and transpiration and to improve
understanding of the water–carbon coupling (Wohlfahrt et
al., 2012; Asaf et al., 2013; Wehr et al., 2017; Kooijmans
et al., 2019; Sun et al., 2022; Zhu et al., 2024). A number of
empirical or mechanistic COS plant uptake models (Camp-40

bell et al., 2008; Wohlfahrt et al., 2012; Berry et al., 2013)
and soil exchange models (Kesselmeier et al., 1999; Berry
et al., 2013; Launois et al., 2015; Sun et al., 2015; Whelan
et al., 2016; Ogée et al., 2016; Whelan et al., 2022) have
been developed to simulate COS fluxes in order to more ac-45

curately estimate gross primary productivity (GPP), stom-
atal conductance, transpiration. However, due to the lack of
ecosystem-scale measurements of the COS flux (Brühl et al.,
2012; Wohlfahrt et al., 2012; Kooijmans et al., 2021), only a
few studies were conducted to systematically assess the abil-50

ity of COS to simultaneously constrain photosynthesis, tran-
spiration, and other related processes in ecosystem models.

Data assimilation is an approach that aims at producing
physically consistent estimates of the dynamical behavior of
a model by combining information in process-based mod-55

els and observational data (Liu and Gupta, 2007; Law et al.,
2015). It has been widely applied in geophysics and numer-
ical weather prediction (Tarantola, 2005). In the past few
decades, substantial efforts have been put into the use of
satellite- (Knorr et al., 2010; Kaminski et al., 2012; Deng 60

et al., 2014; Scholze et al., 2016; Norton et al., 2018; Wu
et al., 2018) and ground-based (Knorr and Heimann, 1995;
Rayner et al., 2005; Santaren et al., 2007; Kato et al., 2013;
Zobitz et al., 2014) observational datasets to constrain or op-
timize the photosynthesis-, transpiration-, and energy-related 65

parameters and variables of terrestrial ecosystem models via
data assimilation techniques. More specifically, by applying
data assimilation methods to process-based models, not only
can the observed dynamics of ecosystems be more accurately
portrayed, but our understanding of ecosystem processes can 70

also be deepened with respect to their responses to climate
changes (Luo et al., 2011; Keenan et al., 2012; Niu et al.,
2014).

In this study, we present the newly developed adjoint-
based Nanjing University Carbon Assimilation System (NU- 75

CAS v1.0). NUCAS v1.0 is designed to assimilate multiple
observational data streams, including COS fluxes, to improve
the process-based Biosphere–atmosphere Exchange Process
Simulator (BEPS) (Liu et al., 1997), which has been specif-
ically extended for simulating the ecosystem COS flux with 80

the advanced two-leaf model that is driven by satellite obser-
vations of leaf area index (LAI).

In this context, the main questions that we aim to answer
in this paper are as follows:

– What parameters is the COS simulation sensitive to, and 85

how do these parameters change in the assimilation of
observed ecosystem-scale COS fluxes?

– How effective is the assimilation of COS fluxes in im-
proving the carbon, water, and energy balance for differ-
ent ecosystems (including evergreen needleleaf forest, 90

deciduous broadleaf forest, C3 grass, and C3 crop)?

– Which processes are constrained by the assimilation of
COS fluxes, and what are the mechanisms leading to
adjustments of the corresponding process parameters?

– How robust is NUCAS when optimizing over a single 95

site and over two sites simultaneously?

To achieve these objectives, COS flux observations across
a wide range of ecosystems (including evergreen needleleaf
forest, deciduous broadleaf forest, C3 grass, and C3 crop) are
assimilated into NUCAS to optimize the model parameters 100

using the four-dimensional variational (4D-Var) data assim-
ilation approach, and the optimization results are evaluated
against in situ observations. Materials and methods used in
our study are described in Sect. 2, which introduces the BEPS
model and NUCAS, along with the data used to drive BEPS 105

or for assimilation into NUCAS, and the parameters cho-
sen to be optimized in this study. The results are presented
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in Sect. 3, including the fit of COS simulations to observa-
tions, the variation and impact of parameters on simulated
COS, and the comparison and evaluation of model outputs.
Section 4 discusses the impacts of the COS assimilation on
parameters and processes related to the water–carbon cycle5

and energy exchange and discusses the influence of uncertain
inputs, in particular, impacts of LAI on posterior parameter
values. In addition, caveats and implications of assimilating
COS flux are summarized. Finally, conclusions are laid out
in Sect. 5.10

2 Materials and methods

2.1 NUCAS data assimilation system

2.1.1 NUCAS framework

NUCAS is built around the generic satellite-data-driven
ecosystem model BEPS and applies the 4D-Var data assim-15

ilation method (Talagrand and Courtier, 1987). The BEPS
model uses satellite-derived one-sided LAI to drive the phe-
nology dynamics and separates sunlit and shaded leaves in
calculating canopy-level energy fluxes and photosynthesis.
It further features detailed representations of water and en-20

ergy processes (Fig. 1). These features render BEPS more
advanced in representing ecosystem processes than standard
ecosystem models (Richardson et al., 2012) with fewer pa-
rameters to be calibrated owing to the LAI-driven phenology.

Data assimilation is performed in two sequential steps:25

firstly, an inversion step adjusts the values of parameters con-
trolling photosynthesis, energy balance, hydrology, and soil
biogeochemical processes to match the observations. Sec-
ondly, the posterior parameters obtained in the first step are
used as input data for the second step, in which the BEPS30

model is re-run to obtain the posterior model variables. The
schematic of the system is shown in Fig. 1.

Considering model and data uncertainties, NUCAS im-
plements a probabilistic inversion concept (Talagrand and
Courtier, 1987; Tarantola, 1987, 2005) by using Gaussian35

probability density functions to combine the dynamic model
and observations to obtain an estimate of the true state of
the system and model parameters (Talagrand, 1997; Dowd,
2007). Hereby, we minimize the following cost function:

J (x)=
1
2

[
(M (x)−O)T C−1

O (M (x)−O)+ (x− x0)
T C−1

x (x− x0)
]
, (1)40

where O and M denote vectors of observations and their
modeled counterparts, respectively, and x and x0 denote the
control parameter vector with current and prior values, re-
spectively. CO and Cx denote the uncertainty covariance
matrices for observations and prior parameters. Both ma-45

trices are diagonal, expressing the assumption that observa-
tion uncertainties and parameter uncertainties are indepen-
dent (Rayner et al., 2005). This definition of the cost function
contains both the mismatch between modeled and observed

COS fluxes and the mismatch between current and prior pa- 50

rameter values (Rayner et al., 2005).
To determine an optimal set of parameters which mini-

mizes J , a gradient-based optimization algorithm performs
an iterative search (Wu et al., 2020). In each iteration, the gra-
dient of J is calculated by applying the adjoint of the model, 55

where the model is run backward to efficiently compute the
sensitivity of J and with respect to x (Rayner et al., 2005).
The gradient of J is used to define a new search direction.
The adjoint model is an efficient sensitivity analysis tool for
calculating the parametric sensitivities of complex numerical 60

model systems (An et al., 2016). The computational cost of it
is independent of the number of parameters and is in the cur-
rent case comparable to three to four evaluations of J . In this
study, all derivative code is generated from the model code by
the automatic differentiation tool TAPENADE (Hascoët and 65

Pascual, 2013). The derivative with respect to each parameter
was validated against finite differences of model simulations,
which showed agreement within the accuracy of the finite
difference approximation. The minimization of the cost func-
tion is implemented in a normalized parameter space where 70

the parameter values are measured in multiples of their re-
spective standard deviations with Gaussian priors (Kaminski
et al., 2012). The model parameters are the various constants
that are not influenced by the model state. Therefore, while
they may change between plant function types (PFTs) to re- 75

flect different conditions and physiological mechanisms, they
will not change in time (Rayner et al., 2005).

2.1.2 BEPS basic model

The BEPS model (Liu et al., 1997; Chen et al., 1999, 2012) is
a process-based diagnostic model driven by remotely sensed 80

vegetation data, including LAI, clumping index, and land
cover type, as well as meteorological and soil data (Chen
et al., 2019). With the consideration of coupling among ter-
restrial carbon, water, and nitrogen cycles (He et al., 2021),
the BEPS model now consists of photosynthesis, energy bal- 85

ance, hydrological, and soil biogeochemical modules (Ju et
al., 2006; Liu et al., 2015). It stratifies whole canopies into
sunlit and shaded leaves to calculate carbon uptake and tran-
spiration for these two groups of leaves separately (Liu et
al., 2015). For each group of leaves, the GPP is calculated 90

by scaling Farquhar’s leaf biochemical model (Farquhar et
al., 1980) up to canopy level with an updated temporal and
spatial scaling scheme (Chen et al., 1999), and the stomatal
conductance is calculated using a modified version of the
Ball–Berry (BB) model (Ball et al., 1987; Ju et al., 2006). 95

Evapotranspiration (ET) is calculated as the summation of
sunlit leaf and shaded leaf transpiration, evaporation from
soil and wet canopy, and sublimation from snow storage on
the ground surface (Liu et al., 2003). The BEPS model strat-
ifies the soil profile into multiple layers (five were used in 100

this study) and simulates temperature and water content from
each layer (Ju et al., 2006). The soil water content is then
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Figure 1. Schematic of the Nanjing University Carbon Assimilation System (NUCAS). (a) Illustration of a two-leaf model coupling stomatal
conductance, photosynthesis, transpiration, and COS uptake and an empirical model for simulating soil COS fluxes in NUCAS. (b) Data
assimilation flowchart of NUCAS. Ovals represent input (blue-gray) and output (green) data. The boxes and rhombi represent the calculation
and judgment steps. The solid black line represents the diagnostic process, the solid blue line represents the prognostic process, and the input
datasets of BEPS (in the dashed box) are used in both the diagnostic process and the prognostic process.

used to adjust stomatal conductance considering the water
stress impacts (Ju et al., 2010; He et al., 2021). Over the
last few decades, the BEPS model has been continuously im-
proved and used for a wide variety of terrestrial ecosystems
(Schwalm et al., 2010; Liu et al., 2015).5

The previous version of BEPS considers a total of 6 PFTs
and 11 soil textures (Chen et al., 2012). We use the same soil
texture but added 4 PFTs to BEPS in order to better discrim-
inate vegetation types, especially the C4 grass and C4 crop.
Detailed information on these 10 PFTs and 11 soil textures10

is given in Table S1.

2.1.3 COS modeling

The ecosystem COS flux, FCOS,ecosystem, includes both plant
COS uptake FCOS,plant and soil COS flux exchange FCOS,soil
(Whelan et al., 2016). In this study, these two components15

were modeled separately. The canopy-level COS plant up-
take FCOS,plant (pmol m−2 s−1) was calculated by upscaling
the resistance analog model of COS uptake, as presented by
Berry et al. (2013) with the upscaling scheme recommended
by Chen et al. (1999). Specifically, considering the different20

responses of foliage to diffuse and direct solar radiation (Gu
et al., 2002), FCOS,plant is calculated as

FCOS,plant = FCOS,sunlitLAIsunlit+FCOS,shadedLAIshaded, (2)

where LAIsunlit and LAIshaded are the LAI values (m2 m−2)
of sunlit and shaded leaves, respectively. FCOS,sunlit25

and FCOS,shaded are the leaf-level COS uptake rate
(pmol m−2 s−1) of sunlit and shaded leaves, respectively. The
leaf-level COS uptake rate FCOS,leaf is calculated as

FCOS,leaf = COSa×

(
1.94
gsw
+

1.56
gbw
+

1
gCOS

)−1

, (3)

where COSa is the COS mole fraction in the bulk air and 30

gsw and gbw are the stomatal conductance and leaf laminar
boundary layer conductance to water vapor (H2O), respec-
tively (Berry et al., 2013). The factors 1.94 and 1.56 account
for the smaller diffusivity of COS with respect to H2O (Seibt
et al., 2010; Stimler et al., 2010). The apparent conductance 35

for COS uptake from the intercellular airspaces is denoted by
gCOS and combines the mesophyll conductance and the bio-
chemical reaction rate of COS and carbonic anhydrase (CA).
Independent studies indicate that both CA activity and mes-
ophyll conductance tend to scale with the photosynthetic ca- 40

pacity or the maximum carboxylation rate of Rubisco (Bad-
ger and Price, 1994; Evans et al., 1994), such that

gCOS = α× Vcmax, (4)

where α is a parameter that is calibrated to observations of
simultaneous measurements of COS and CO2 uptake (Stim- 45

ler et al., 2012). Analysis of these measurements yields esti-
mates of α of∼1400 for C3 and∼7500 for C4 species (Stim-
ler et al., 2012; Haynes et al., 2020). According to the COS
modeling scheme of the Simple Biosphere Model (version
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4.2) (Haynes et al., 2020), gCOS can be calculated as

gCOS = 1.4× 103
×
(
1.0+ 5.33×FC4

)
× 10−6

×FAPAR× fw×Vcmax, (5)

where FC4 denotes the C4 plant flag, which takes the value of
1 when the vegetation is C4 plants and 0 otherwise. fw is a
soil moisture stress factor describing the sensitivity of gsw to5

soil water availability (Ju et al., 2006). FAPAR is the scaling
factor for leaf radiation, calculated as

FAPAR = 1− e(−0.45×LAI). (6)

FCOS,soil is taken as the combination of abiotic COS flux
FCOS,abiotic and biotic COS flux FCOS,biotic (Whelan et al.,10

2016).

FCOS,soil = FCOS,abiotic+FCOS,biotic (7)

FCOS,abiotic is controlled by abiotic degradation of soil or-
ganic matter (Whelan and Rhew, 2015) and can be described
as an exponential function of the temperature of soil Tsoil15

(°C).

FCOS,abiotic = e
(alpha+beta×Tsoil), (8)

where alpha (unitless) and beta (°C−1) are parameters deter-
mined using the least-squares fitting approach.
FCOS,biotic is attributed to CA in microbial communities20

(Sauze et al., 2017) and calculated according to Behrendt et
al. (2014) and Whelan et al. (2016):

FCOS,biotic = Fopt

(
SWC

SWCopt

)
× e
−a
(

SWC
SWCopt

−1
)
, (9)

where a is the curve shape constant, SWC is the soil mois-
ture (percent volumetric water content), and Fopt denotes the25

optimal biotic COS uptake (pmol m−2 s−1) at optimum soil
moisture SWCopt. The curve shape constant a can be deter-
mined based on SWCopt, Fopt, and COS flux (Fg) under an-
other soil moisture condition (SWCg and SWCg >SWCopt)
as follows:30

a = ln

(
Fopt

FSWCg

)
×

(
ln
(

SWCopt

SWCg

)
+

(
SWCg

SWCopt
− 1

))−1
.

(10)

Here we use the parameterization scheme of soil COS mod-
eling from Whelan et al. (2016, 2022); see Tables S2 and S3
for details. Specifically, with reference to Abadie et al. (2022)
and Whelan et al. (2022), the mean modeled soil water con-35

tent (SWC) and temperature of the top 9 cm of the soil pro-
file in BEPS were utilized to drive the COS soil model in this
study, and the mean modeled SWC and temperature were cal-
culated through a weighted average considering the depth of
each soil layer. A more detailed description about the soil40

hydrology and stomatal conductance modeling approach of
BEPS is provided in the Appendix.

2.2 Model parameters

NUCAS v1.0 can optimize 76 parameters belonging to
BEPS. Of these parameters, some are global (i.e., the ratio 45

of photosynthetically active radiation to shortwave radiation
(f_leaf)) and others are differentiated by PFT (i.e., maximum
carboxylation rate of Rubisco at 25 °C (Vcmax25)) or soil tex-
ture class (i.e., Ksatscalar, the scaling factor of saturated hy-
draulic conductivity (Ksat)). The prior values of the param- 50

eters are taken as model defaults which have been tuned in
past model development and validation studies (Kattge et al.,
2009; Chen et al., 2012). The prior uncertainty of parameters
is set based on previous research, i.e., Ryu et al. (2018) and
Chen et al. (2022). For a more detailed description of these 55

parameters, see Table S4 in the Supplement.

2.3 Site description

In this study, NUCAS was operated at seven sites distributed
over the Eurasian and North American continents character-
ized as boreal, temperate, and subtropical regions (Fig. 2) 60

based on field observations collected from several studies.
These sites were representative of different climate regions
and land cover types (in the model represented by PFTs and
soil textures, as depicted in Table 1). They contained 4 of the
10 PFTs used in BEPS and 3 of the 11 soil textures. The 65

sites comprise AT-Neu, located at an intensively managed
temperate mountain grassland near the village of Neustift
in the Stubai Valley, Austria (Hörtnagl et al., 2011; Spiel-
mann et al., 2020a); the Danish ICOS (Integrated Carbon
Observation System) research infrastructure site (DK-Sor), 70

which is dominated by European beech (Braendholt et al.,
2018; Spielmann et al., 2019a); the Las Majadas del Tié-
tar site (ES-Lma) located in western Spain with a Mediter-
ranean savanna ecosystem (El-Madany et al., 2018; Spiel-
mann et al., 2019a); the Hyytiälä Forest Station (FI-Hyy) 75

located in Finland and dominated by Scots Pine (Bäck et
al., 2012; Vesala et al., 2022); an agricultural soybean field
measurement site (IT-Soy) located in Italy (Spielmann et al.,
2019a); the Harvard Forest Environmental Monitoring Site
(US-Ha1) which is dominated by red oak and red maple in 80

Petersham, Massachusetts, USA (Urbanski et al., 2007; Wehr
et al., 2017); and the Wind River Experimental Forest site
(US-Wrc), located within the Gifford Pinchot National For-
est in southwestern Washington state, USA, with 478 ha of
preserved old-growth evergreen needleleaf forest (Rastogi et 85

al., 2018a). For further information on all sites, see publica-
tions listed in Table 1.

2.4 Data

NUCAS was driven by several temporally and spatially vari-
ant and invariant datasets. The CO2 and COS mole fractions 90

in the bulk air were assumed to be spatially invariant over
the globe and to vary annually. The CO2 mole fraction data
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Figure 2. Locations of the seven studied sites. Sites sharing the same plant function type are represented with consistent colors. The back-
ground map corresponds to the “Nature Earth I” map (https://www.naturalearthdata.com, last access: November 2023). ENF and DBF denote
evergreen needleleaf forest and deciduous broadleaf forest, respectively.

in this study are taken from the Global Monitoring Labo-
ratory (https://gml.noaa.gov/ccgg/trends/global.html, last ac-
cess: July 2022). For the COS mole fraction, the aver-
age of the COS mole fraction observations from sites SPO
(South Pole) and MLO (Mauna Loa, United States) was uti-5

lized to drive the model, and the data are publicly available
online at https://gml.noaa.gov/hats/gases/OCS.html (last ac-
cess: July 2022). The other input data include a remotely
sensed LAI dataset, a meteorological dataset, and a soil
dataset. Additionally, in order to conduct data assimilation10

experiments and to evaluate the effectiveness of the as-
similation of COS fluxes, field observations including the
ecosystem-scale (eddy-covariance or gradient-based) COS
flux, GPP, sensible heat (H ), ET, and SWC collected at the
sites were used.15

2.4.1 LAI dataset

The LAI dataset used here comprises the GLOBMAP
global leaf area index product (Version 3) (see
GLOBMAP global leaf area index since 1981; Zen-
odo (https://doi.org/10.5281/zenodo.4700264, Liu20

et al., 2021)), the Global Land Surface Satellite
(GLASS) LAI product (Version 3) (acquired from
https://doi.org/10.12041/geodata.GLASS_LAI_MODIS(0.05
D).ver1.dbTS1, Xiao et al., 2016), and the level-4 MODIS
global LAI product (see LP DAAC – MOD15A2H25

(https://doi.org/10.5067/MODIS/MOD15A2H.006, Myneni
et al., 2015)). The GLOBMAP LAI product quantifies
leaf area index at a spatial resolution of 8× 8 km and a
temporal resolution of 8 d (Liu et al., 2012). The GLASS
LAI product is generated every 8 d at a spatial resolution of30

1× 1 km (Xiao et al., 2016), and the MODIS LAI is an 8 d
composite dataset with 500× 500 m pixel size. As a default,
we used GLOBMAP products for assimilation experiments
as much as possible given their good performance in the
BEPS applications to various cases (Chen et al., 2019). The35

GLASS and MODIS LAI products were used to investigate
the effect of the LAI products on the parameter optimization
results. Also, according to Spielmann et al. (2019a), the
GLOBMAP product had considerably underestimated the

LAI at the DK-Sor site in June 2016, and we noticed it was 40

not consistent with the vegetation phenology at ES-Lma in
May 2016. Therefore, GLASS LAI was used at these two
sites, and the GLOBMAP product was used at the remaining
five sites. In addition, the 8 d temporal resolution of the LAI
data was interpolated into daily values using the nearest 45

neighbor method.

2.4.2 Meteorological dataset

Standard hourly meteorological data were inputted into
BEPS, including air temperature at 2 m, shortwave radia-
tion, precipitation, relative humidity, and wind speed, taken 50

from the FLUXNET database (for sites AT-Neu, DK-Sor,
ES-Lma, FI-Hyy, and US-Ha1; see https://fluxnet.org, last
access: June 2022), the AmeriFlux database (for sites US-
Ha1 and US-Wrc; see https://ameriflux.lbl.gov, last access:
June 2022), and the ERA5 dataset (for sites AT-Neu, IT-Soy, 55

and US-Ha1; see https://doi.org/10.24381/cds.adbb2d47,
Hersbach et al., 2023), respectively. Since the experiments
were conducted at the site scale, we used as far as possi-
ble the FLUXNET and AmeriFlux data, which contain infor-
mation about the downscaling of meteorological variables of 60

the ERA-Interim reanalysis data product, and supplemented
them with ERA5 reanalysis data (Pastorello et al., 2020). Al-
though AT-Neu is a FLUXNET site, its FLUXNET meteoro-
logical data are only available for the years 2002–2012, while
the measurement of COS was performed in 2015. Therefore, 65

we first performed a linear fit of its ERA5-Land data and
FLUXNET meteorological data for 2002–2012 and then cor-
rected the ERA5 data for 2015 with the fitted parameters to
obtain downscaling information for the meteorological vari-
ables. Additionally, for US-Ha1, we used the FLUXNET 70

data in 2012 and the AmeriFlux data and ERA5 shortwave
radiation data in 2013 to drive the BEPS model due to the
absence of FLUXNET data in 2013 and the lack of short-
wave radiation data of AmeriFlux.

2.4.3 Assimilation and evaluation datasets 75

The hourly ecosystem-scale COS flux observations were
used to perform data assimilation experiments and to eval-

https://www.naturalearthdata.com
https://gml.noaa.gov/ccgg/trends/global.html
https://gml.noaa.gov/hats/gases/OCS.html
https://doi.org/10.5281/zenodo.4700264
https://doi.org/10.12041/geodata.GLASS_LAI_MODIS(0.05D).ver1.dbTS1
https://doi.org/10.12041/geodata.GLASS_LAI_MODIS(0.05D).ver1.dbTS1
https://doi.org/10.12041/geodata.GLASS_LAI_MODIS(0.05D).ver1.dbTS1
https://doi.org/10.5067/MODIS/MOD15A2H.006
https://fluxnet.org
https://ameriflux.lbl.gov
https://doi.org/10.24381/cds.adbb2d47
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uate the assimilation results. They were taken from existing
studies (listed in Table 1) and were available for at least 1
month. Most of the ecosystem COS flux observations were
obtained using the eddy-covariance (EC) technique, with the
exception of US-Ha1 and US-Wrc, where the COS fluxes 5

were derived with the gradient-based approach (Baldocchi,
2003; Wu et al., 2015; Kohonen et al., 2020). The COS
soil flux measurements were collected using soil chambers,
except at US-Ha1, where the gradient-based approach was
used. Detailed information about the COS measurements can 10

be found in the publications listed in Table 1. Specifically,
only the measured ecosystem COS fluxes of FI-Hyy (Vesala
et al., 2022) were utilized in this study.

US-Wrc utilizes the gradient-based approach to measure
COS ecosystem flux (Rastogi et al., 2018a). However, avail- 15

able data are limited to only COS concentration measure-
ments and lack other parameters required; therefore this site
risks introducing biases. Hence, a bias correction scheme
was implemented to match the simulated and estimated
ecosystem-scale COS fluxes for US-Wrc. The objectives of 20

this correction scheme are to obviate the need for accurate
values of parameters relevant for COS flux calculations and
to retain as much useful information from the COS con-
centration measurements as possible (Leung et al., 1999;
Scholze et al., 2016). This was done by using the mean (M) 25

and standard deviation (σM ) of the simulated COS flux to
correct the COS flux observations (O):

F=
σM

(
O −O

)
σO

+M, (11)

where O and σO are the mean and standard deviation of the
observed COS flux series. F is the corrected observed COS 30

flux, and the COS simulations were calculated using the prior
parameters for the time period corresponding to the COS flux
observations. The standard deviation of the ecosystem COS
fluxes within 24 h around each observation was calculated
as an estimate of the observation uncertainty. For the case 35

where there are no other observations within the surrounding
24 h, the uncertainty was taken as the mean of the estimated
uncertainties of the whole observation series.

Due to the coupling between leaf exchange of COS, CO2
and H2O, GPP, and ET data are selected to evaluate the 40

model performance of COS assimilation in this study. In ad-
dition, we further explored the ability of COS to constrain
H simulations, since the transpiration contributes to a de-
crease in temperature within the leaf (Gates, 1968; Konarska
et al., 2016), and the leaf–air temperature gradient is a key 45

control factor of H (Monteith and Unsworth, 2013; Dong et
al., 2017). Moreover, SWC is used in model evaluation be-
cause it plays a key role in modeling FCOS,biotic (as shown in
Eq. 9) and because the water dissipated in transpiration orig-
inates from the soil (Berry et al., 2016). More detail will be 50

provided in the Discussion (Sect. 4.3).
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These data were taken from FLUXNET (DK-Sor, ES-
Lma, FI-Hyy, and US-Ha1), AmeriFlux (US-Ha1 and US-
Wrc), existing studies (Spielmann et al., 2020a, 2019a, and
Rastogi et al., 2018a), and SMEAR (https://smear.avaa.csc.
fi/, last access: May 2024). As only CO2 turbulent flux (FC)5

data are available for US-Ha1 in 2013 and only net ecosys-
tem exchange (NEE) data are available for IT-Soy, a night
flux partitioning model was used to estimate ecosystem res-
piration (Reco) and thus to calculate GPP (Reichstein et al.,
2005). The model assumes that nighttime NEE represents10

ecosystem respiration and thus partitions FC or NEE into
GPP and Reco based on the semi-empirical models of res-
piration, which use air temperature as a driver (Lloyd and
Taylor, 1994; Lasslop et al., 2012). Since ET observations
are only available from FI-Hyy at https://smear.avaa.csc.fi/15

(last access: May 2024), ET is derived from latent heat (LE)
as the ratio of LE to the latent heat of vaporization (Lw) (Pa-
storello et al., 2020). In this study, we use air temperature as
a driver to calculate Lw and subsequently ET (Bolton, 1980).

We hereby note that only the comparisons of COS and20

GPP results before and after assimilation are presented in the
main text, while the evaluations of the simulated ET (Figs. S3
and S4), H (Figs. S5 and S6), and SWC (Fig. S7) are in-
cluded in the Supplement.

2.5 Experimental design25

Three groups of data assimilation experiments were con-
ducted in this study: (1) 14 model-based twin experiments
were performed to investigate the ability of NUCAS to as-
similate COS fluxes in different scenarios; (2) 13 single-site
assimilation experiments were conducted at all seven sites30

to obtain the site-specific posterior parameters and the cor-
responding posterior model outputs based on COS flux ob-
servations; and (3) 1 two-site assimilation experiment was
carried out to refine one set of parameters over two sites si-
multaneously and to simulate the corresponding model out-35

puts. Prior simulations using default parameters were also
performed in order to investigate the effect of the COS flux
assimilation. Moreover, due to the limitation of the COS ob-
servations, all of these experiments were conducted in a 1-
month time window at the peak of the growing season. De-40

tailed information of these experiments is described in the
following.

2.5.1 Twin experiment

Model-based twin experiments were performed to investigate
the model performance of the data assimilation (Irrgang et45

al., 2017) at all seven sites considering single-site and two-
site scenarios. In each twin experiment, we first created a
pseudo-observation sequence by NUCAS using the prior pa-
rameters. The pseudo-observation time series included the
prior simulated ecosystem COS fluxes with its uncertainties,50

and the latter were estimated as the standard deviation of the

prior simulated COS fluxes within 24 h around each simu-
lation. Then, a given perturbation ratio was applied to the
prior parameters vector as a starting point for the interac-
tive adjustment of parameter values to match the COS flux 55

pseudo-observations. The effectiveness of the data assimi-
lation methodology of NUCAS can be validated if it suc-
cessfully restores the control parameters from the pseudo-
observations. As a gradient-based optimization algorithm is
used in NUCAS to tune the control parameters and minimize 60

the cost function, the changes of cost function and gradient
over assimilation processes can also be used to verify the as-
similation performance of the system. In this work, a total of
14 twin experiments were conducted, including 13 single-site
twin experiments and 1 two-site twin experiment. Regarding 65

the uncertainty of parameters, a perturbation size of 0.2 was
utilized in all of the twin experiments.

2.5.2 Real data assimilation experiment

After the ability of NUCAS to assimilate COS fluxes was
confirmed by twin experiments, the system was then utilized 70

to conduct data assimilation experiments with real COS ob-
servations under single-site and two-site conditions to opti-
mize the control parameters and state variables of this model,
and the evaluation dataset was used to test the posterior sim-
ulations of the state variables. For the single-site case, a to- 75

tal of 13 data assimilation experiments were conducted at
all sites to investigate the assimilation effect of COS flux
on optimizing key ecosystem variables. Detailed information
about these single-site experiments is shown in Table 2.

Single-site assimilation can fully account for the site- 80

specific information and thus achieve accurate calibration.
However, this assimilation approach often yields a range
of different model parameters between sites. For large-scale
model simulations, only one set of accurate and generalized
model parameters is required (Salmon et al., 2022). Thus, it 85

is necessary to conduct a two-site assimilation experiment
that can assimilate COS observations from two sites simulta-
neously. Although both DK-Sor and US-Ha1 are dominated
by deciduous broadleaved forest and both AT-Neu and ES-
Lma are dominated by C3 grass, none of the COS flux ob- 90

servations from these two PFTs overlap in observation time.
We therefore selected FI-Hyy and US-Wrc, which are both
dominated by evergreen needleleaf forest, and conducted a
two-site assimilation experiment with a 1-month assimilation
window in August 2014. 95

2.6 Model evaluation

For the purpose of demonstrating the process of the control
parameter vector being continuously adjusted in the normal-
ized parameter space in a twin experiment and quantifying
the deviation of the current control vector from the prior, the 100

distance (Dx) between the parameter vector and the prior pa-

https://smear.avaa.csc.fi/
https://smear.avaa.csc.fi/
https://smear.avaa.csc.fi/
https://smear.avaa.csc.fi/
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Table 2. The configuration and the relative changes (%) of the parameters for each single-site assimilation experiment. The cost function
reduction of each experiment is indicated by the reduction rate between the initial value of the cost function (Jinitial) and the final value of
the cost function (Jfinal), defined as 1− Jfinal/Jinitial, and NCOS denotes the number of ecosystem COS flux observations.

Site name Assimilation window NCOS Cost function reduction (%) Relative change (%) of parameters

Vcmax25 VJ_slope Ksatscalar bscalar f_leaf

AT-Neu June 2015 493 16.39 67.69 5.10 15.57 −78.13 −1.01

DK-Sor June 2016 509 9.46 50.77 −0.47 21.54 14.23 −5.97

ES-Lma May 2016 445 15.70 127.80 35.18 37.08 −65.33 10.05

FI-Hyy July 2013 506 5.88 25.50 −65.70 0.37 4.25 −7.89
July 2014 504 20.17 −24.96 −26.39 3.82 16.24 −6.12
August 2014 166 38.86 −24.84 −56.81 7.79 4.46 −1.52
July 2015 492 5.53 6.43 −50.25 0.01 −0.06 0.26
July 2016 430 4.37 11.47 −53.16 −0.17 −0.63 −0.37
July 2017 527 2.84 21.70 −51.74 0.01 0.01 −6.98

IT-Soy July 2017 250 6.35 −7.88 −21.20 0.03 −0.45 −4.14

US-Ha1 July 2012 333 44.14 −51.89 16.08 12.05 −43.31 −1.44
July 2013 397 63.73 −58.67 10.16 16.93 −58.33 −1.71

US-Wrc August 2014 701 27.71 −42.77 14.52 −1.04 2.45 −3.39

rameter vector was calculated.

Dx = ‖x− x0‖ =

√∑n

i=1
(x (i)− x0 (i))

2, (12)

where i denotes the ith parameter in the parameter vectors
and n denotes the number of parameters in the parameter
vector and takes a value of 76.5

With the aim of evaluating the performance of NUCAS in
the real data assimilation experiments, we re-ran the model
to obtain the posterior model outputs based on the posterior
model parameters. Typical statistical metrics including mean
bias (MB), root-mean-square error (RMSE), and coefficient10

of determination (R2) are used to measure the difference be-
tween the simulations and in situ observations. They were
calculated as

MB=
1
N

N∑
i=1

(Mi −Oi)=M −O (13)

RMSE=

√√√√ 1
N

N∑
i=1

(Mi −Oi)
2 (14)15

R2
= 1−

∑N
i=1(Mi −Oi)

2∑N
i=1
(
Oi −O

)2 , (15)

where Mi denotes the simulation corresponding to the ith
observation Oi and N is the total number of observations.

Additionally, in order to investigate the sensitivity of COS
assimilation to the model parameters, we also calculated the20

sensitivity index (SI) for each parameter at the prior value
based on the sensitivity information provided by the adjoint

model. The SI of ith parameter x (i) of the parameter vector
x was calculated as

SI(x (i))=
∂J/∂x(i)

‖∂J/∂x‖
, (16) 25

where ‖∂J/∂x‖ denotes the norm of the sensitivity vector of
the cost function to the model parameters.

3 Results

3.1 Twin experiments

After averaging about 18 and 13 evaluations of the cost func- 30

tion and its gradients, each of the twin experiments was suc-
cessfully performed. Details of these twin experiments are
shown in Table S5. In summary, during those assimilations,
the cost function values were substantially reduced by more
than 13 orders of magnitude from greater than 50.75 to less 35

than 5.09× 10−13, and the respective gradient values were
also reduced from greater than 38.81 to less than 1.59×10−6,
which verified the ability of the data assimilation algorithm
to correctly complete the assimilation.

The relative changes of the parameters with respect to the 40

prior values at the ends of the experiments are reported in
Table S5, along with the initial values (Ditial), the maximum
values (Dmax), and the final values (Dfinal) of Dx . Results
show that the relative differences of these parameters from
the “true” values reached exceedingly small values at the 45

ends of twin experiments, with the maximum of the absolute
values of the relative changes below 8.55× 10−9. Dx was
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also reduced to nearly zero, where the maximum value was
below 6.60×10−8, which indicates that all parameters in the
control parameter vectors were almost fully recovered from
the pseudo-observations. In conclusion, these results demon-
strate that NUCAS has excellent data assimilation capability5

under various scenarios and can effectively perform iterative
computations to achieve reliable parameter optimization.

3.2 Single-site assimilation

With an average of approximately 92 cost function evalua-
tions, all of the 13 single-site experiments were performed10

successfully. The experiments reduced cost function val-
ues substantially, with an average cost function reduction of
19.97 % (Table 2). However, the cost function reduction of
the experiment varies considerably with PFT, site, and as-
similation window, ranging from 2.84 % to 63.73 %. The cost15

function decreased dramatically at US-Ha1, with an average
decrease of 53.93 %. In contrast, at IT-Soy, the cost func-
tion reduction is only 4.87 %. With the same PFT (C3 grass),
the cost function decreased by a similar degree at AT-Neu
(16.39 %) and ES-Lma (15.70 %). The average cost function20

reduction at FI-Hyy (29.52 %) was also comparable to an-
other evergreen needleleaf forest site, US-Wrc (27.71 %), in
2014. However, the cost function reduction of FI-Hyy varied
notably from year to year. In July 2014 and August 2014,
the cost function reductions were 20.17 % and 38.86 %, re-25

spectively, while in July of all other years the cost function
reductions were much lower, ranging from 2.84 % to 5.88 %.
Similarly to the single-site twin experiments, only five pa-
rameters have been efficiently adjusted in the single-site as-
similation of real observations (Table 2).30

The mean diurnal cycle and the scatterplots of observed
and simulated COS fluxes are presented in Figs. 3 and
S1, respectively. On average across all sites, the prior sim-
ulated and observed ecosystem COS fluxes were remark-
ably close, with 20.60 and 20.04 pmol m−2 s−1, respectively.35

However, there was substantial variability between sites and
even between experiments at the same site. At ES-Lma,
the prior simulated COS fluxes were greatly underestimated
by 63.38 %. In contrast, the prior simulated COS fluxes
were overestimated at US-Ha1, with MBs of −10.01 and40

−12.17 pmol m−2 s−1 in July 2012 and July 2013. In general,
the MBs of COS fluxes are largely determined by the simula-
tions and observations in the daytime due to the larger mag-
nitude (Fig. 3). However, the model–observation differences
at nighttime are also non-negligible. As shown in Fig. 3, the45

underestimation is particularly evident at AT-Neu, ES-Lma,
and FI-Hyy.

After the single-site optimizations, both the daily vari-
ation and the diurnal cycle of COS simulations were im-
proved. This was reflected in the reduction of the mean50

RMSE between the simulated and observed COS fluxes from
15.71 pmol m−2 s−1 in the prior case to 13.84 pmol m−2 s−1

in the posterior case. The RMSEs were also reduced in all

single-site experiments. Moreover, the assimilation of COS
fluxes also effectively corrected the bias between prior sim- 55

ulations and observations, with the mean absolute MB de-
creased from 5.06 to 3.08 pmol m−2 s−1. In contrast, R2

remained almost unchanged by the optimizations, with its
mean value of 0.30 in both the prior and the posterior cases.
Our results also showcase that the model–observation differ- 60

ences in COS fluxes were effectively reduced during the day-
time. However, the remarkable differences between COS flux
observations and simulations at nighttime are not effectively
corrected in a number of assimilation experiments (i.e., the
experiment conducted at FI-Hyy in July 2013; see Fig. 3d). 65

3.3 Two-site assimilation

FI-Hyy and US-Wrc have different soil textures: sandy loam
and loam, respectively. In the two-site assimilation exper-
iment, NUCAS accounted for this difference appropriately
and successfully minimized the cost function from 499.56 to 70

358.81 after 70 evaluations of cost function. The cost func-
tion reduction for the experiment has a value of 28.17 %,
comparable to the cost function reductions for corresponding
single-site assimilation experiments at FI-Hyy and US-Wrc
(38.86 % and 27.71 %). Furthermore, corresponding to these 75

two soil textures, the texture-dependent parameters Ksatscalar
and bscalar yielded two different posterior parameter values,
respectively, so that a total of seven parameters were opti-
mized in the two-site experiment (Table 3). It can be seen
that the two-site optimized results of Vcmax25, VJ_slope, and 80

f_leaf are similar to those of the single-site optimized results
at US-Wrc, as most of the observations of the two-site exper-
iment originated from US-Wrc. As for the texture-dependent
parameters, they had the same signs and comparable magni-
tudes of the adjustments as those of the corresponding single- 85

site experiment at FI-Hyy and were minutely adjusted at US-
Wrc as in the corresponding single-site experiment. Overall,
both the cost function reduction and the parameter optimiza-
tion results of the two-site assimilation experiments were
similar to the corresponding single-site experiments, demon- 90

strating the ability of NUCAS to correctly perform joint data
assimilation from COS observations at two sites simultane-
ously.

The posterior simulations of COS flux using the two-site
posterior parameters also demonstrated the ability of NU- 95

CAS to correctly assimilate two-site COS fluxes simultane-
ously (Figs. 3 and S1). As shown in Figs. 3f and 3m, the prior
COS simulations for both the FI-Hyy site and US-Wrc site
were overestimated in the daytime compared to the observa-
tions. After the two-site COS assimilation, the discrepancies 100

between COS simulations and observations were reduced in
both FI-Hyy and US-Wrc, with RMSE reductions of 18.42 %
and 3.23 %, achieving similar results to the simulations using
the single-site posterior parameters.



H. Zhu et al.: Assimilation of COS fluxes with NUCAS v1.0 11

Figure 3. The diurnal cycle of observed (gray) and simulated COS flux using prior parameters (red) and single-site (blue) and two-site
(green) posterior parameters. The size of the circle indicates the number of observations (ranging from 1 to 31) within each circle, and the
error bars depict the standard deviations in the mean of observations from the variability within each circle if the number of corresponding
observations is greater than 3. Lines connect the mean values of simulations, and pale bands depict the standard deviation in the mean of
simulations from the variability within each bin.

Table 3. The configuration and the relative changes (%) of the parameters for the two-site assimilation experiment at FI-Hyy and US-Wrc.
NCOS denotes the total number of ecosystem COS flux observations.

Site name Assimilation window NCOS Cost function reduction (%) Relative change (%) of parameters

Vcmax25 VJ_slope Ksatscalar bscalar f_leaf

FI-Hyy
August 2014 867 28.17 −41.74 3.36

12.57 5.57
−6.81

US-Wrc −1.91 2.75
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3.4 Parameter change

There are five parameters that were adjusted during the as-
similation of COS flux observations by NUCAS, whether in
twin, single-site, or two-site experiments. They are the maxi-
mum carboxylation rate at 25 °C (Vcmax25), the ratio of Vcmax5

to the maximum electron transport rate Jmax (VJ_slope), the
scaling factor (Ksatscalar and bscalar) of saturated hydraulic
conductivity (Ksat) and the Campbell parameter (b), and the
ratio of PAR to shortwave radiation (f_leaf). These parame-
ters are strongly linked to the COS exchange processes, and10

it is therefore reasonable that they could be optimized by the
assimilation of COS flux. Furthermore, these parameters are
also closely linked to processes such as photosynthesis, tran-
spiration, and soil water transport; therefore, the assimilation
of COS flux holds the promise of improving the simulation15

of GPP, ET, H , and SWC.
In both the single-site and the two-site experiments,

Vcmax25 was considerably adjusted, with average abso-
lute relative changes of 42.08 % and 41.74 %, respectively
(Fig. 4a). VJ_slope and bscalar also varied greatly in the20

single-site experiments, with mean absolute relative changes
of 30.67 % and 25.55 %, respectively. However, in the two-
site experiment, their mean absolute changes were much
smaller at 3.36 % and 4.16 %. The relative changes of
Ksatscalar are modest in both the single-site and two-site ex-25

periments, with mean absolute values of 10.61 % and 7.24 %,
respectively. As for f_leaf, the average absolute relative
changes are even smaller than those of Ksatscalar, at 3.67 %
and 6.81 % in the single-site and two-site experiments. In ad-
dition, we found that the parameters can be tuned consid-30

erably in cases where the prior simulations are close to the
observations. For example, at IT-Soy, where the prior simu-
lations agree well with the observations and the cost func-
tion only decreases 4.87 % in the experiment, both Vcmax25
and bscalar were remarkably tuned, with relative changes of35

32.55 % and −44.72 %.
Across all single-site experiments, there are notable dif-

ferences in the results of parameter optimization, especially
in Vcmax25. For the single-site experiment at US-Ha1 in
July 2013, the posterior value of Vcmax25 is 55.28 % lower40

than the prior. In contrast, the posterior Vcmax25 is 127.80 %
higher than the prior at ES-Lma. In addition to Vcmax25, the
relative changes of bscalar and VJ_slope also vary consider-
ably, ranging from −78.13 % to 16.84 % and −65.70 % to
35.18 %, respectively. On the contrary, the posterior values of45

f_leaf show less variability and do not differ from the prior
value by more than 10.05 % (note the difference in x-axis
scales).

3.5 Parameter sensitivity

The adjoint-based sensitivity analysis results of the parame-50

ters are illustrated in Fig. 4b. Our results suggest that Vcmax25
has a critical impact on the assimilation results, followed

Figure 4. (a) Relative changes of parameters for single-site ex-
periments (bars) and for the two-site experiment (diamond points).
(b) Sensitivity indexes of parameters at prior values. For sites where
multiple single-site experiments were conducted, the ends of the er-
ror bars and the bar indicate the maximum, minimum, and mean of
the relative changes of the parameters, respectively. For those sites
lacking multi-year COS observations, no error bars were plotted.
The color of each bar indicates the PFT/texture.

by VJ_slope. With absolute SIs ranging from 87.76 % to
96.41 %, the mean absolute SI of Vcmax25 is about 3 times
that of VJ_slope, which is 29.71 %. In contrast, the average 55

absolute SIs of bscalar, f_leaf, and Ksatscalar are much lower,
with 11.54 %, 8.95 % and 3.05 %, respectively.

Unlike the great variability in the posterior Vcmax25 and
VJ_slope, the SIs of these two parameters are stable, espe-
cially at the same site. At US-Ha1, for example, the dif- 60

ferences between the SIs of Vcmax25 and VJ_slope in its
two experiments were all smaller than 3.05 %. Furthermore,
Vcmax25 has the smallest magnitude of variation in SIs among
the five parameters, with the standard deviation of the SIs
being 2.62 %, despite the fact that its SIs are of a much 65

larger order of magnitude. With the SIs ranging from 12.05 %
to 45.71 % and 0.94 % to 14.43 %, VJ_slope and f_leaf
also play important roles in the modeling of COS. As for
Ksatscalar and bscalar, their SIs varied considerably across sites
and even across experiments at the same site. For example, 70

the absolute SIs of bscalar are as high as 30.80 % and 34.04 %
at the C3 grass sites AT-Neu and ES-Lma, respectively. On
the contrary, the mean absolute SI of bscalar is only 2.59 % at
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FI-Hyy. However, the absolute SIs of bscalar at FI-Hyy vary
considerably across the experiments, ranging from 0.06 % to
10.46 %.

Our results also suggest that f_leaf tends to play a more
important role in the COS assimilation at the forest sites (in-5

cluding FI-Hyy, US-Ha1, and US-Wrc but not DK-Sor) com-
pared to the sites with low-stature vegetation type (AT-Neu,
ES-Lma, and IT-Soy), with the mean absolute SIs about 2
times those of the latter. With a mean absolute SI of 93.44 %,
Vcmax25 is also observed to be more sensitive at the forest10

sites. Specifically, the largest SI of Vcmax25 was observed at
DK-Sor, while the SIs of VJ_slope and f_leaf of DK-Sor are
noticeably lower than those of other sites, at 12.05 % and
0.94 %, respectively.

3.6 Comparison and evaluation of simulated GPP15

For single-site experiments, both the prior and posterior GPP
simulations performed well in modeling the daily variation
and diurnal cycle of GPP, with mean R2 values of 0.83
and 0.81, respectively (Figs. 5 and S2). The discrepancy be-
tween GPP simulations and observations was substantially20

reduced by the assimilation of COS, from a mean RMSE
of 6.71 umol m−2 s−1 in the prior case to 5.02 umol m−2 s−1

in the posterior case. Similarly to COS, the mean of the
prior simulated GPP is also generally larger than that of the
observed GPP. With the assimilation of COS, the bias be-25

tween the observed and simulated GPP was effectively cor-
rected, with the reduction in mean absolute MB from 3.83 to
2.46 umol m−2 s−1.

In general, the GPP performance was improved for most
of the single-site experiments (12 of 13), with RMSE reduc-30

tions ranging from 3.81 % to 58.56 %. Across all single-site
experiments performed at evergreen needleleaf forest sites,
the posterior GPP simulations were remarkably improved,
with an averaged RMSE reduction of 37.05 %. At the de-
ciduous broadleaf forest sites (DK-Sor and US-Ha1), the35

posterior simulated GPP also achieved a better fit with the
GPP derived from EC observations, with an averaged RMSE
reduction of 22.16 %. However, for experiments conducted
on low-stature vegetation types (including C3 grass and C3
crop), the assimilation of COS is less effective in constrain-40

ing the modeled GPP. At ES-Lma and IT-Soy, the RMSEs
of the posterior simulated GPP are slightly lower than those
of the prior, with reduction ratios of 8.60 % and 3.81 %, re-
spectively. At AT-Neu, the assimilation of COS observations
shifted the GPP simulations away from the GPP derived from45

EC observations, with the RMSE increasing from 3.48 to
5.97 umol m−2 s−1 (Fig. 5a).

Covering different years or months, the single-site experi-
ments performed at FI-Hyy and US-Ha1 provided an oppor-
tunity to analyze inter-annual and seasonal variations in the50

simulated and observed GPP. At US-Ha1, the prior simula-
tions overestimated GPP in both July 2012 and July 2013 by
21.26 % and 38.41 %, respectively. With the assimilation of

COS, the modeled COS exhibited substantial decreases. In
parallel, the model–observation difference in GPP also re- 55

duced by 12.36 % and 28.10 %, respectively. However, the
posterior simulated GPP appeared to be underestimated by
20.08 %. At FI-Hyy, a total of six single-site experiments
were conducted between 2013 and 2017, five of them in
July and one in August 2014. The observed GPP shows lit- 60

tle inter-annual variation in July from 2013 to 2017, with
the mean ranging from 8.30 to 9.15 umol m−2 s−1. In Au-
gust 2014, the GPP observations were noticeably lower than
that in July, with a mean of 6.43 umol m−2 s−1. As for sim-
ulations, the model tends to overestimate GPP, with MBs 65

ranging from 2.24 to 3.59 umol m−2 s−1. After the assimi-
lation of COS, the overestimation of the COS simulation for
FI-Hyy was effectively corrected, with mean absolute MBs
of 1.53 umol m−2 s−1. However, with a low SWC in Au-
gust 2014, the prior simulated COS was obviously overes- 70

timated by 37.04 %, which led to remarkable downward ad-
justments of Vcmax25 and VJ_slope. Thus, the simulated GPP
was also markedly downgraded by 55.38 % in August 2014,
ultimately resulting in the underestimation of the single-site
posterior simulated GPP (Fig. 5f). 75

In the two-site experiment, the model–observation differ-
ences in GPP for both FI-Hyy and US-Wrc were reduced
by the assimilation of COS (Fig. 5f and m), with RMSE re-
ductions of 42.96 % and 43.11 %, respectively. These RMSE
reductions are even higher than those in the corresponding 80

single-site experiments, by 35.21 % for FI-Hyy and 0.13 %
for US-Wrc. These results suggest that simultaneous assim-
ilation using COS observations from two sites can also im-
prove GPP simulations, and the assimilation can be more ro-
bust than the single-site assimilation because the possibility 85

of overfitting local noise is reduced.
Overall, the assimilation of ecosystem COS fluxes im-

proved the simulation of GPP both in single-site experiments
and in the two-site experiment. However, the assimilation ef-
fects vary considerably for different sites and even for dif- 90

ferent periods within the same site. Our results suggest the
assimilation of COS is able to provide strong constraint to
the modeling of GPP at forest sites, with an average RMSE
reduction of 32.58 %. In contrast, at the sites with low-stature
vegetation type (including C3 grass and C3 crop), the assim- 95

ilation of COS is less effective in constraining the GPP sim-
ulations.

4 Discussion

4.1 Parameter changes

As mentioned before, our results show Vcmax25 was tuned 100

the most in both the single-site experiments and the two-
site experiment, followed by VJ_slope and bscalar. This is
because COS plant fluxes are much larger than COS fluxes
of soil in general (Whelan et al., 2016, 2018; Spielmann et
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Figure 5. The diurnal cycle of observed (gray) and simulated GPP using prior parameters (red) and single-site (blue) and two-site (green)
posterior parameters. The size of the circle indicates the number of observations within each circle (ranging from 1 to 31), and the error
bars depict the standard deviations in the mean of observations from the variability within each circle. Lines connect the mean values of
simulations, and pale bands depict the standard deviation in the mean of simulations from the variability within each bin.

al., 2019a; Kooijmans et al., 2021; Ma et al., 2021; Maig-
nan et al., 2021; Remaud et al., 2022) and because the soil-
hydrology-related parameters cannot directly influence the
COS plant uptake. Therefore, the assimilation of the COS
flux mainly changed the parameters related to COS plant up-5

take rather than texture-dependent parameters that relate to
soil COS flux to minimize the cost function. However, the
adjustment of soil-hydrology-related parameters should not
be neglected as well, as they play an important role in mini-

mizing the discrepancy between COS simulations and obser- 10

vations.
As shown in Fig. 3, the prior simulations underestimated

COS fluxes at nighttime for many sites, e.g., FI-Hyy. On the
one hand, this is due to the substantial gap between current
modeled COS soil fluxes and observations (Whelan et al., 15

2022). On the other hand, this also stems from the fact that
the nighttime stomatal conductance was set to a low and con-
stant value (1 mmol m−2 s−1) in the BEPS model. As a re-
sult, the discrepancy between nighttime ecosystem COS sim-
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ulations and observations could not be reduced by adjusting
photosynthesis-related parameters to have an effect on stom-
atal conductance modeling. Thus, soil-hydrology-related pa-
rameters were adjusted to compensate for the differences in
both soil and plant components simultaneously. In this study,5

the COS soil model proposed by Whelan et al. (2016, 2022)
was utilized, in which the optimal SWC for soil COS bi-
otic uptake was set to 12.5 % for grass. Such an optimal
SWC value is much lower than the prior simulated SWC,
as shown in Fig. S7a and c. Therefore, the soil-hydrology-10

related parameters were considerably tuned at AT-Neu and
ES-Lma, resulting in a rapid decline in the posterior SWC
simulation to a level comparable to the optimum SWC. COS
plant uptake is governed by the hydrolysis reaction of COS
(Wohlfahrt et al., 2012), catalyzed by CA, though it can also15

be degraded by other photosynthetic enzymes, e.g., Rubisco
(Lorimer and Pierce, 1989; Ma et al., 2021), and the reac-
tion is not dependent on light (Stimler et al., 2011; Whelan
et al., 2018). However, given that stomatal conductance is
simulated from net photosynthetic rate with a modified ver-20

sion (Woodward et al., 1995; Ju et al., 2010) of the BB model
(Ball et al., 1987) in BEPS, the adjustment of light-reaction-
related parameters (VJ_slope and f_leaf) can therefore indi-
rectly affect the simulation of COS plant uptake by influenc-
ing the calculation of stomatal conductance. According to25

Ryu et al. (2018), f_leaf varies little in reality and is usually
between 41 % and 53 % on an annual mean scale. In our as-
similation experiments, the optimized f_leaf values were dis-
tributed between 42.92 % and 51.28 %, consistent with this
study. In contrast, the other light-reaction-related parameter,30

VJ_slope, has a much wider range of variation, with relative
changes ranging from −65.70 % to 35.18 %.

We noticed remarkably different optimization results for
photosynthesis-related parameters in the experiments con-
ducted in July 2013 and July 2014 at FI-Hyy, especially for35

Vcmax25 and VJ_slope. In these two experiments, the differ-
ence in the relative change in both Vcmax25 and VJ_slope is
more than 39 %. However, these different adjustments to the
parameter set caused a similar impact on COS simulations,
leading to the latter being reduced by 13.38 % and 24.22 % in40

July 2013 and July 2014, respectively. These results revealed
the “equifinality” (Beven, 1993) of the inversion problem at
hand, i.e., the fact that different combinations of parameter
values can achieve a similar fit to the COS observations. As-
similation of further observational data streams is expected45

to reduce the level of equifinality by differentiating between
such combinations of parameter values that achieve a similar
fit to COS observations.

4.2 Parameter sensitivity

It has been proven that photosynthetic capacity simulated50

by terrestrial ecosystem models is highly sensitive to Vcmax,
Jmax, and light conditions (Zaehle et al., 2005; Bonan et al.,
2011; Rogers, 2014; Sargsyan et al., 2014; Koffi et al., 2015;

Rogers et al., 2017). Therefore, it is expected that Vcmax25,
VJ_slope, and f_leaf would markedly affect the optimization 55

results, as these parameters ultimately have an impact on the
simulation of plant COS uptake by influencing the estima-
tion of photosynthesis capacity and stomatal conductance.
Specifically, the results of Wang et al. (2004), Verbeeck et
al. (2006), Staudt et al. (2010), Han et al. (2020), and Ma et 60

al. (2022) showed that the simulated photosynthetic capac-
ity was generally more sensitive to Jmax and light conditions
than to Vcmax. However, due to the differences in the physio-
logical mechanisms of COS plant uptake and photosynthesis,
e.g., the hydrolysis reaction of COS by CA is not dependent 65

on light, the sensitivities of the two processes with respect
to the model parameters may differ considerably although
they are tightly coupled. Indeed, our adjoint sensitivity re-
sults suggest that the same change in Vcmax25 is capable of
influencing the assimilation results to a greater extent than 70

a change in VJ_slope and f_leaf would. This result can be
attributed to the model structure of Vcmax25 that not only af-
fects the estimation of stomatal conductance through photo-
synthesis but is also used to characterize mesophyll conduc-
tance and CA activity due to their linear relationships with 75

Vcmax (Badger and Price, 1994; Evans et al., 1994; Berry et
al., 2013). In addition, such a large sensitivity to Vcmax25 also
indicates the importance of accurate modeling of the appar-
ent conductance of COS for ecosystem COS flux simulation.

As for Ksatscalar and bscalar, they also play an important 80

role in the assimilation of COS, since the SWC simulations
of BEPS are sensitive to Ksat and b (Liu et al., 2011) and
SWC is the primary factor for COS soil biotic flux modeling
(Whelan et al., 2016). However, as the soil COS exchange
is generally much smaller than COS plant uptake (Whelan 85

et al., 2018) and the parameter scheme provided by Whe-
lan et al. (2022) sets different empirical parameter values
(see Table S3 for details) depending on the PFTs, the SIs
of Ksatscalar and bscalar differ considerably across PFTs and
are overall lower than those of photosynthesis-related param- 90

eters.
In Sect. 3.5, we mentioned that the radiation-related pa-

rameter f_leaf tends to play a more essential role in the as-
similation of COS at the forest sites. Similar findings by Sun
et al. (2019) found that the simulated GPP was more sensitive 95

to radiation at forested vegetation types and less sensitive at
low-stature vegetation types. In particular, the simulated GPP
was also found to be highly sensitive to variations in radia-
tion at low-radiation conditions (Koffi et al., 2015).

4.3 Impacts of COS assimilation on ecosystem carbon, 100

energy, and water cycles

Due to the physiological basis that COS is taken up by plants
through the same pathway of stomatal diffusion as CO2, the
assimilation of COS was expected to optimize the simula-
tion of GPP. It was confirmed by our single-site and two-site 105

experiments conducted in a variety of ecosystems, including
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evergreen needleleaf forest, deciduous broadleaf forest, C3
grass, and C3 crop. However, as it is limited by many factors,
such as the observation errors of the COS fluxes, the assim-
ilation of COS does not always improve the simulation of
GPP, e.g., at AT-Neu site.5

Similarly to photosynthesis, transpiration is also coupled
with the COS plant uptake through stomatal conductance.
The difference is that, after CO2 is transported to the chloro-
plast surface, it continues its journey inside the chloroplast
and is eventually assimilated in the Calvin cycle (Wohlfahrt10

et al., 2012; Kohonen et al., 2022a). Based on the BB model,
photosynthesis-related parameters only indirectly influence
the calculation of stomatal conductance through photosyn-
thesis in our model. Thus, ET was not optimized as dramat-
ically as GPP in the assimilation of COS. In comparison,15

the RMSEs of GPP simulations were reduced by an aver-
age of 23.54 % as a result of the assimilation of COS, but ET
was reduced by only 16.96 %. Moreover, as the transpiration
rate and leaf temperature change show a linear relationship
(Kümmerlen et al., 1999; Prytz et al., 2003) and surface–20

air temperature difference is a key control factor for sensible
heat fluxes (Campbell and Norman, 2000; Arya, 2001; Jiang
et al., 2022), the optimization for transpiration can therefore
improve the simulation of leaf temperature and consequently
improve the simulation of sensible heat flux.25

Driven by the difference in water potential between the at-
mosphere and the substomatal cavity (Manzoni et al., 2013),
the water is taken up by the roots, flows through the xylem,
and exits through the leaf stomata to the atmosphere in
the soil–plant–atmosphere continuum via evapotranspiration30

(Daly et al., 2004). Thus, when plants transpire, the water
potential next to the roots decreases, driving water from bulk
soil towards roots (Carminati et al., 2010) and reducing soil
moisture. Certainly, soil moisture dynamics are also influ-
enced by soil evaporation and leakage during inter-storm pe-35

riods under ideal conditions (Daly et al., 2004). However,
studies have shown that transpiration represents 80 % to 90 %
of terrestrial evapotranspiration (Jasechko et al., 2013) and
that evaporation is typically a small fraction of transpiration
for well-vegetated ecosystems (Scholes and Walker, 1993;40

Daly et al., 2004). Based on current knowledge of leakage,
for example, the relationship between leakage and the behav-
ior of hydraulic conductivity (Clapp and Hornberger, 1978),
extremely small adjustments of Ksat and b (i.e., with relative
changes of 0.0057 % for Ksatscalar and −0.057 % for bscalar45

in July 2015 at FI-Hyy) hardly caused any change in leak-
age. Therefore, our results indicate that the assimilation of
COS can not only markedly improve the modeling of stom-
atal conductance and transpiration, but it can also ultimately
impact SWC predictions. However, our results also show50

that there are obvious discrepancies between the ecosystem
COS flux simulations and observations and that discrepan-
cies cannot be effectively reduced by the adjustment of the
photosynthesis-related parameters due to the simplification
of BEPS for nighttime stomatal conductance modeling. As55

a result, it was also observed that the soil-hydrology-related
parameters were drastically adjusted to minimize the discrep-
ancy of COS simulations and observations, which instead bi-
ased the SWC simulations away from observations, for ex-
ample, as shown in Figs. S7a and c. 60

4.4 Impacts of leaf area index data on parameter
optimization

As essential input data of the BEPS model, LAI products
have been demonstrated to be a source of uncertainty in
the simulation of carbon and water fluxes (Liu et al., 2018). 65

Therefore, it is necessary to investigate the influence of LAI
on our parameter optimization results, as the LAI is directly
related to the simulation of COS, and the discrepancy be-
tween COS simulations and COS observations is an essen-
tial part of the cost function. Here we collected three widely 70

used satellite-derived LAI products (GLOBMAP, GLASS,
and MODIS) and the means of the in situ LAI during the
growing seasons or during the COS measurement periods for
these sites (see Table 1). These in situ LAI means were used
to drive the BEPS model along with the other three satellite- 75

derived LAI products, with the assumption that they are rep-
resentative of the LAI values during the assimilation periods.
The configurations of these assimilation experiments were
the same as those listed in Table 2 so that a total of 52 single-
site experiments were conducted. All experiments were suc- 80

cessfully performed, and the results are shown in Figs. 6 and
S8.

We found that the posterior Vcmax25 significantly corre-
lated with the LAI (R2

= 0.22, P<0.01), while there was
no apparent relationship between the optimization results of 85

the other three parameters and the LAI. As mentioned before,
the LAI is directly related to the simulation of COS and thus
influences the optimal values of the parameters. Therefore,
the correlations of LAI with these parameters reflect the ro-
bustness of the constraint abilities of COS assimilation with 90

respect to them. These results suggest that the assimilation of
COS is able to provide strong constraints on Vcmax25, while it
constrains other parameters (VJ_slope, Ksatscalar, bscalar, and
f_leaf) weakly, although they are also considerably changed
by the assimilation. In conclusion, our results suggest that the 95

uncertainty in satellite-derived LAI can not only exert large
impacts on the modeling of water–carbon fluxes (Wang et
al., 2021), but it is an important source of uncertainty in the
parameter optimization results when performing data assim-
ilation experiments with ecosystem models driven by LAI. 100

4.5 Caveats and implications

In general, we found that the assimilation of COS can im-
prove the model performance for GPP, ET, and H for both
the single-site assimilation and the two-site assimilation.
Nonetheless, there are currently limitations that affect the use 105

of COS data for the optimization of parameters, processes,
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Figure 6. Influence of LAI on the posterior Vcmax25 obtained by
the single-site experiments conducted at seven sites and driven by
four LAI datasets (GLOBMAP, GLASS, MODIS, and in situ). The
posterior Vcmax25 and the LAI were represented by their normal-
ized values, NVcmax25 and NLAI, respectively. The posterior param-
eters were normalized by their prior values, and the LAI was nor-
malized by the in situ values. The best-fit linear regression line of
the posterior parameters obtained based on the satellite-derived LAI
(GLOBMAP, GLASS, and MODIS) with the corresponding LAI
data is shown, with the 95 % confidence interval spread around the
line.

and variables related to water–carbon cycling and energy ex-
change in terrestrial ecosystem models.

The assimilation of COS fluxes relies on the availability
and quality of field observations. As both COS plant uptake
and COS soil exchange are modeled within NUCAS and the5

data assimilation was performed at the ecosystem scale, a
large number of accurate measurements of both COS soil
flux and COS plant flux are essential for COS assimilation
and model evaluation. However, at present, we face a serious
lack of COS measurements (Brühl et al., 2012; Wohlfahrt10

et al., 2012). More laboratory and field measurements are
needed for better understanding of the mechanistic processes
of COS. Besides, the existing COS fluxes were calculated
based on different measurement methods and data processing
steps, which poses considerable challenges for comparing15

COS flux measurements across sites. In particular, as only
raw COS concentrations were provided and a correction ap-
proach was employed, the estimated COS fluxes at US-Wrc
may be subject to considerable uncertainties. A standardiza-
tion of the measurement and processing techniques of COS20

is therefore urgently needed (Kohonen et al., 2020).
In this study, the prior uncertainty of observation was esti-

mated by the standard deviation of ecosystem COS fluxes

within 24 h with the assumption of a normal distribution.
However, Hollinger and Richardson (2005) suggested that 25

flux measurement error more closely follows a double ex-
ponential than a normal distribution. Kohonen et al. (2020)
showed that the overall uncertainty in the COS flux varies
with the sign (uptake or release) and the magnitude of the
COS flux. Furthermore, there is a lack of understanding of 30

the prior uncertainty for certain model parameters, such as
VJ_slope, which makes the uncertainty estimates subject to
potentially large errors. In conclusion, we should be more
careful in considering the distribution and the magnitude of
the prior uncertainty of observations and parameters. 35

The spatial and temporal variation in atmospheric COS
concentrations has a considerable influence on the COS plant
uptake (Ma et al., 2021) due to the linear relationship be-
tween the two (Stimler et al., 2010). The typical seasonal
amplitude of atmospheric COS concentrations is ∼ 100– 40

200 parts per trillion (ppt) around an average of ∼ 500 ppt
(Montzka et al., 2007; Kooijmans et al., 2021; Hu et al.,
2021; Ma et al., 2021; Belviso et al., 2022). However, in
NUCAS, COS mole fractions in the bulk air are currently
assumed to be spatially invariant over the globe and to vary 45

annually, which may introduce substantial errors into the pa-
rameter calibration. Kooijmans et al. (2021) confirmed that
modifying the COS mole fractions to vary spatially and tem-
porally markedly improved the simulation of ecosystem COS
flux. Thus, we suggest taking into account the variations in 50

COS concentration and their interaction with surface COS
fluxes at high spatial and temporal resolution in order to
achieve better parameter calibration.

Currently, there are still uncertainties in the simulation of
COS fluxes by BEPS, particularly for nighttime COS fluxes. 55

As the nighttime COS plant uptake is driven by stomatal
conductance (Kooijmans et al., 2021), nighttime COS fluxes
can therefore be used to test the accuracy of the model set-
tings for nighttime stomatal conductance (gn). In the BEPS
model, a low and constant value (1 mmol m−2 s−1) of gn was 60

set for all PFTs. Our simulations of nighttime COS flux in-
dicate that, in BEPS, gn is underestimated to different de-
grees for different sites. Similar findings by Resco De Dios
et al. (2019) showed that the median gn in the global dataset
was 40 mmol m−2 s−1. Therefore, the utilization of COS to 65

directly optimize stomatal-related parameters should be in-
vestigated. Cho et al. (2023) proved the effectiveness of op-
timizing the minimum stomatal conductance and other pa-
rameters by the assimilation of COS. As different enzymes
have different physiological characteristics, Cho et al. (2023) 70

proposed a new temperature function for the CA enzyme
and showcased the considerable difference in temperature re-
sponse of enzymatic activities of CA and Rubisco, which
provided valuable insights into the modeling and assimila-
tion of COS. In addition, soil COS exchange is an impor- 75

tant source of uncertainty in the use of COS as a carbon–
water cycle tracer, since CA activity occurs in the soil as
well (Kesselmeier et al., 1999; Smith et al., 1999; Ogée et
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al., 2016; Meredith et al., 2019). Kaisermann et al. (2018)
showed that COS hydrolysis rates were linked to microbial C
biomass, whilst COS production rates were linked to soil ni-
trogen content and mean annual precipitation (MAP). Inter-
estingly, MAP was also suggested to be the best predictor of5

gn by Yu et al. (2019), who found that plants in locations with
lower rainfall conditions had higher gn. Therefore, by using
the global microbial C biomass, soil nitrogen content, and
MAP datasets; the relationships between these variables; and
the associated COS exchange processes, it is to be expected10

that a more accurate modeling of terrestrial ecosystem COS
fluxes could be achieved, further increasing our understand-
ing of the global COS budget and facilitating the assimilation
of COS fluxes.

5 Conclusions15

Over the past decades, considerable efforts have been made
to obtain field observations of COS ecosystem fluxes and
to describe empirically or mechanistically COS plant uptake
and soil exchange, which offer the possibility of investigat-
ing the ability of assimilating ecosystem COS flux to opti-20

mize parameters and variables related to the water and car-
bon cycles and to energy exchange. In this study, we intro-
duced NUCAS, a system which was developed based on the
BEPS model and was designed to have the ability to assim-
ilate ecosystem COS fluxes. In NUCAS, a resistance analog25

model of COS plant uptake and an empirical model of soil
COS flux were embedded in the BEPS model to achieve the
simulation of ecosystem COS flux, and a gradient-based 4D-
Var data assimilation algorithm was implemented to optimize
the internal parameters of BEPS.30

A total of 14 twin experiments, 13 single-site experiments,
and 1 two-site experiment covering the period from 2012 to
2017 were conducted to investigate the capability of NU-
CAS to assimilate COS fluxes and to optimize input param-
eters and simulated variables. COS flux observations from35

a range of ecosystems were used, including four PFTs and
three soil textures. Our results show that NUCAS has the
ability to optimize parameter vectors and that the assimila-
tion of COS can constrain parameters affecting the simula-
tion of carbon and water cycles and of energy exchange and40

thus effectively improve the performance of the BEPS model.
We found that there is a tight link between the assimilation of
COS fluxes and the optimization of ET which demonstrates
the role of COS as an indicator of stomatal conductance and
transpiration. The improvement of ET can further improve45

the model performance for H , although the propagation of
the optimization effect is subject to some limitations. These
results highlight the broad perspective of COS as a tracer
for improving the simulation of variables related to stom-
atal conductance. Furthermore, we demonstrated that COS50

can provide a strong constraint on Vcmax25, whereas the ad-
justment of parameters related to the soil hydrology appears

to compensate for weaknesses in the model, i.e., the night-
time stomatal conductance set in the BEPS model. We also
proved the strong impact of LAI on the parameter optimiza- 55

tion results, emphasizing the importance of developing more
accurate LAI products for models driven by observed LAI. In
addition, we made a number of recommendations for future
improvement of the assimilation of COS. In particular, we
flagged the need for more observations of COS and suggested 60

better characterization of observational and prior parameter
uncertainties, the use of varying COS concentrations, and the
refinement of the model for COS fluxes of soil. Specifically,
with the lack of separate COS plant and soil flux data, the
ecosystem-scale COS flux observations were utilized in this 65

study. However, we believe that assimilating the component
fluxes of COS individually should be pursued in the future,
as this assimilation approach would provide separate con-
straints on different parts of the model. We expect the ob-
servational information on the partitioning between the two 70

flux components to provide a stronger constraint than using
just their sum.

Our two-site setup constitutes a challenge for the assimi-
lation system, the model, and the observations. In this setup,
the assimilation system has to determine a parameter set 75

that achieves a fit to the observations at both sites, and NU-
CAS passes this important test. It should be noted that NU-
CAS was designed as a platform that integrates multiple data
streams to provide a consistent map of the terrestrial car-
bon cycle, although only ecosystem COS fluxes were used to 80

evaluate the performance of NUCAS in this study. The two-
site assimilation experiment conducted in this study gives us
more confidence that the calibrated model will provide a rea-
sonable parameter set and posterior simulation throughout
the plant functional type. In other words, what we present 85

here is a pre-requisite for applying the model and assimila-
tion system at regional to global scales.

We noticed the optimization of model parameters faced the
challenge of equifinality due to the complexity of the model
and the limited observation data. However, the equifinality 90

can be avoided by imposing additional observational con-
straints (Beven, 2006). Indeed, using several different data
streams to simultaneously (Kaminski et al., 2012; Schür-
mann et al., 2016; Scholze et al., 2016; Wu et al., 2018;
Scholze et al., 2019) or step-wise (Peylin et al., 2016) con- 95

strain multiple processes in the carbon cycle is becoming a
focus area in carbon cycle research. Therefore, it is necessary
to combine COS with other observations to constrain differ-
ent ecosystem processes and/or exploit multiple constraints
on the same processes in order to achieve better modeling 100

and prediction of the ecosystem water–carbon cycle and en-
ergy exchange.
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Appendix A: Stomatal conductance and soil hydrology
modeling in BEPS, including parameters to be optimized

In the BEPS model, the leaf stomatal conductance to water
vapor (gsw in mol m−2 s−1) is estimated using a modified ver-
sion of the BB empirical model (Ball et al., 1987) following5

Woodward et al. (1995):

gsw = bH2O+
mH2OA Rh fw

Ca
, (A1)

where bH2O is the intercept of the BB model, representing
the minimum gsw (mol m−2 s−1);mH2O is the empirical slope
parameter in the BB model (unitless); Rh is the relative hu-10

midity at the leaf surface (unitless); fw is a soil moisture
stress factor describing the sensitivity of gsw to soil water
availability (Ju et al., 2006); and Ca is the atmospheric CO2
concentration (µmol mol−1). The net photosynthesis rate (A)
is calculated using the Farquhar model (Farquhar et al., 1980;15

Chen et al., 1999):

A=min
(
Ai,Aj

)
−Rd (A2)

Ac = Vcmax
Ci −0

∗

i

Ci +Kc

(
1+ Oi

Ko

) (A3)

Aj = J
Ci −0

∗

i

4(Ci − 20∗i )
, (A4)

where Ai and Aj are Rubisco-limited and RuBP-limited20

gross photosynthetic rates (µmol m−2 s−1), respectively. Rd
is leaf dark respiration (µmol m−2 s−1). Vcmax is the max-
imum carboxylation rate of Rubisco (µmol m−2 s−1); J is
the electron transport rate (µmol m−2 s−1); Ci and Oi are
the intercellular carbon dioxide (CO2) and oxygen (O2) con-25

centrations (mol mol−1), respectively; and Kc and Ko are
Michaelis–Menten constants for CO2 and O2 (mol mol−1),
respectively.

The electron transport rate, J, is dependent on incident
photosynthetic photon flux density (PPFD; µmol m−2 s−1) as30

J =
Jmax I

I + 2.1Jmax
, (A5)

where Jmax is the maximum electron transport rate
(µmol m−2 s−1) and I is the incident PPFD calculated from
the incident shortwave radiation RSW (W m−2):

I = β RSW f_leaf , (A6)35

where β = 4.55 is the energy–quanta conversion factor
(µmol J−1) and f_leaf is the ratio of photosynthetically active
radiation to the shortwave radiation (unitless).

The maximum carboxylation rate of Rubisco Vcmax was
calculated according to the Arrhenius temperature function40

and the maximum carboxylation rate of Rubisco at 25 °C
(Vcmax25). Vcmax is generally proportional to leaf nitrogen
content. Considering that the fractions of both sunlit and

shaded leaf areas to the total leaf area and the leaf nitrogen
content vary with the depth into the canopy (L), the Vcmax 45

values of sunlit (Vcmax,sun) and shaded (Vcmax,sh) leaves can
be obtained through vertical integrations with respect to L
(Chen et al., 2012):

Vcmax,sunlit = VcmaxχnNleaf
k
[
1− e(kn+k)L

]
(kn+ k)

(
1− e−kL

) (A7)

Vcmax,shaded = VcmaxχnNleaf

×

1
kn

[
1− e−KnL

]
−

1
kn+k

[
1− e(kn+k)L

]
L− 1

k

(
1− e−kL

) , (A8) 50

where χn (m2 g−1) is the relative change in Vcmax to leaf
nitrogen content; Nleaf (g m−2) is the leaf nitrogen content
at the top of the canopy; and kn (unitless) is the leaf nitro-
gen content decay rate with increasing depth into the canopy,
taken as 0.3. k is calculated as 55

k =G(θ)�cos(θ) , (A9)

where G(θ) is the projection coefficient, taken as 0.5; � is
the clumping index; and θ is the solar zenith angle.

After Vcmax values for the representative sunlit and shaded
leaves are obtained, the maximum electronic transport rate 60

for the sunlit and shaded leaves is obtained from Medlyn et
al. (1999):

Jmax = VJ_slopeVcmax− 14.2 . (A10)

The soil water availability factor fw,i in each layer i is cal-
culated as 65

fw,i =
1.0

fi (ψi)fi
(
Ts,i

) , (A11)

where fi(ψi) is a function of matrix suction ψi (m) (Zierl,
2001) and fi(Ts,i) is a function describing the effect of soil
temperature (Ts,i in °C) on soil water uptake (Bonan, 1991).

To consider the variable soil water potential at different 70

depths, the scheme of Ju et al. (2006) was employed to cal-
culate the weight of each layer (wi) to fw:

wi =
Rifw,i∑n
i=1Rifw,i

, (A12)

where n is the soil layer number (five were used in this study)
of the BEPS model and Ri is the root fraction in layer i, 75

calculated as

Ri =


1− r100cdi

decay i = 1

r
100cdi−1
decay − r

100cdi
decay 1< i < n

r
100cdi−1
decay i = n

, (A13)

where cdi is the cumulative depth (m) of layer i. In this study,
each soil layer depth (from top to bottom) of the BEPS model
is 0.05, 0.10, 0.20, 0.40, and 1.25 m, respectively. 80
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The overall soil water availability fw is then calculated as

fw =

n∑
i=1

fw,iwi . (A14)

The hydraulic conductivity of each soil layer Ki (m s−1) is
expressed as

Ki = Ksati

(
SWCi
θs, i

)2bi+3

, (A15)5

where Ksati is the saturated hydrological conductivity of soil
layer i (m s−1); SWCi is the volumetric liquid soil water con-
tent of soil layer i (m s−1); θs, i is the porosity of soil layer
i (unitless); and bi is the Campbell parameter for soil layer
i, determining the change rate of hydraulic conductivity with10

SWC (unitless). In this study, Ksati and bi are expressed as

Ksati = KsatscalarKsatdf,i (A16)
bi = bscalarbdf,i , (A17)

where Ksatdf,i and bdf,i are the default values of Ksati and
bi , respectively.15

Code availability. The source code for BEPS is publicly available
at https://doi.org/10.5281/zenodo.10667005 (Wu, 2023), and the
adjoint code for BEPS is available upon request from the corre-
spondence author (mousongwu@nju.edu.cn).

Data availability. Measured eddy-covariance carbonyl sulfide20

flux data can be found at https://doi.org/10.5281/zenodo.3993111
(Spielmann et al., 2020b) for AT-Neu; https://doi.org/10.5281/
zenodo.3406990 (Spielmann et al., 2019b) for DK-Sor, ES-Lma,
and IT-Soy; https://doi.org/10.5281/zenodo.6940750 (Kohonen
et al., 2022b) for FI-Hyy; and from the Harvard Forest Data25

Archive under record HF214 (https://doi.org/10.6073/pasta/
7ed7b4d1fc7ad303998e76143a3b279a; Commane et al., 2016)
for US-Ha1.The raw COS concentration data of US-Wrc can
be obtained at https://doi.org/10.5281/zenodo.1422820 (Ras-
togi et al., 2018b). The meteorological data can be obtained30

from the FLUXNET database (https://fluxnet.org/, last access:
June 2022) for AT-Neu (https://doi.org/10.18140/FLX/1440121,
Georg et al., 2020; Pastorello et al., 2020), DK-Sor
(https://doi.org/10.18140/FLX/1440155, Andreas and Kim, 2020),
ES-Lma (https://doi.org/10.18160/FDSD-GVRS, Migliavacca et35

al., 2020), FI-Hyy (https://doi.org/10.18140/FLX/1440158, Ivan et
al., 2020), and US-Ha1 (https://doi.org/10.18140/FLX/1440071,
Harvard University, 2020); from the AmeriFlux database
(https://ameriflux.lbl.gov/, last access: June 2022) for US-Ha1
(https://doi.org/10.17190/AMF/1871137, Munger, 2022) and US-40

Wrc (https://doi.org/10.17190/AMF/1246114, Wharton, 2016); and
from the ERA5 dataset (https://doi.org/10.24381/cds.adbb2d47;
Hersbach et al., 2023) for AT-Neu, IT-Soy, and US-Ha1.
The evaluation data can be obtained from the FLUXNET
database for DK-Sor, ES-Lma, FI-Hyy, and US-Ha1; from45

the AmeriFlux database for US-Ha1 and US-Wrc; from

https://doi.org/10.5281/zenodo.3993111 (Spielmann et al., 2020b)
for AT-Neu; from https://smear.avaa.csc.fi/ (last access: May 2024)
for FI-Hyy; from https://doi.org/10.5281/zenodo.6940750
(Kohonen et al., 2022b) for IT-Soy; and from https: 50

//doi.org/10.5281/zenodo.1422820 (Rastogi et al., 2018b) for
US-Wrc. The H and LE data of AT-Neu and IT-Soy are provided
by Felix M. Spielmann and Georg Wohlfahrt. The GLOBMAP
LAI is available at https://doi.org/10.5281/zenodo.4700264
(Liu et al., 2021), the GLASS LAI is available at 55

https://doi.org/10.12041/geodata.GLASS_LAI_MODIS(0.05D).ver
1.db (Xiao et al., 2016), and the MODIS LAI product is available
at https://doi.org/10.5067/MODIS/MOD15A2H.006 (Myneni et
al., 2015). All datasets used in this study and the model outputs are
available upon request. 60

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/gmd-17-1-2024-supplement.
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