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Abstract. Modeling and predicting changes in the function and structure of the terrestrial biosphere and its feedbacks to climate 

change strongly depends on our ability to accurately represent interactions of the carbon and water cycles, and energy exchange. 

However, carbon fluxes, hydrological status and energy exchange simulated by process-based terrestrial ecosystem models 

are subject to significant uncertainties, largely due to the poorly calibrated parameters. In this work, an adjoint-based data 20 

assimilation system (Nanjing University Carbon Assimilation System, NUCAS v1.0) was developed, which is capable of 

assimilating multiple observations to optimize process parameters of a satellite data driven ecosystem model—BEPS (Boreal 

Ecosystem ProductivityBiosphere-atmosphere Exchange Process Simulator). Data assimilation experiments were conducted 

to demonstrateinvestigate the robustness of NUCAS, and to investigatetest the feasibility and applicability of NUCAS on seven 

sites by assimilating the carbonyl sulfide (COS) fluxes, which were tightly related from seven sites, to theenhance our 25 

understanding of stomatal conductance and photosynthesis. Results showed that NUCAS is able to achieve a consistent fit to 

COS observations across various ecosystems, including evergreen needleleaf forest, deciduous broadleaf forest, C3 grass and 

C3 crop. Comparing priormodel simulations with validation datasets, we found that the assimilation of assimilating COS 

canfluxes notably improveimproves the model performance in gross primary productivity, sensible heat, latent heat and even 

soil moisture.evapotranspiration, with average root mean square error (RMSE) reductions of 23.54% and 16.96%, respectively. 30 

We also showed that the NUCAS is capable of constraining parameters from multiplethrough assimilating two sites 

simultaneously and achieving a good consistency to thewith single-site assimilation. Our results demonstrate that COS can 

provide strong constraints on parameters relevant to water, energy and carbon processes with the data assimilation system, and 

openopens new perspectives for better understanding of the ecosystem carbon, water and energy exchanges. 

Keywords: Carbonyl sulfide; Data assimilation; Carbon cycle; Satellite-driven; Ecosystem model 35 

1 Introduction 

Overwhelmingly due to anthropogenic fossil fuel and carbonate emissions, as well as land use and land cover change (Arias 

et al., 2021), atmospheric carbon dioxide (CO2) concentrations have increased at an unprecedented rate since the Industrial 

Revolution and the global climate has been profoundly affected. As a key component of earth system, the terrestrial biosphere 

has absorbed about 30% of anthropogenic CO2 emissions since 1850 and has significantly mitigated climate change 40 

mailto:mousongwu@nju.edu.cn


 

2 

 

(Friedlingstein et al., 2022). However, in line with large--scale global warming, the structure and function of the terrestrial 

biosphere have changed rapidly (Grimm et al., 2013; Arias et al., 2021; Moore and Schindler, 2022)(Grimm et al., 2013; Arias 

et al., 2021; Moore and Schindler, 2022). As a consequence, terrestrial carbon fluxes are subject to great uncertainty (Macbean 

et al., 2022). 

Terrestrial ecosystem models have been an important tool used to investigate the net effect of complex feedback loops between 45 

the global carbon cycle and climate change (Zaehle et al., 2005; Fisher et al., 2014; Fisher and Koven, 2020).(Zaehle et al., 

2005; Fisher et al., 2014; Fisher and Koven, 2020). Meanwhile, with the advancement of modern observational techniques, a 

rapidly increasing number of satellite- and ground-based observational datadatasets have played an important role in studying 

the spatiotemporal distribution and mechanisms of the terrestrial ecosystem carbon fluxes (Rodell et al., 2004; Quirita et al., 

2016). Various observationsObservations (Scholze et al., 2017), such as sun-induced chlorophyll fluorescence (Schimel et al., 50 

2015) and soil moisture (Wu et al., 2018), have been used to estimate or constrain carbon fluxes in terrestrial ecosystems. 

Recently, carbonylCarbonyl sulfide (COS) has emerged as a promising proxy for understanding terrestrial carbon uptake and 

plant physiology (Montzka et al., 2007; Campbell et al., 2008) since it is taken up by plants through the same pathway of 

stomatal diffusion as CO2 (Goldan et al., 1988; Sandoval-Soto et al., 2005; Seibt et al., 2010)(Goldan et al., 1988; Sandoval-

Soto et al., 2005; Seibt et al., 2010) and completely removed by hydrolysis without any back-flux in leaves under normal 55 

conditions (Protoschill-Krebs et al., 1996; Stimler et al., 2010).  

Plants control the opening ofopen/close leaf stomata in order to regulate the water and CO2 transit during transpiration and 

photosynthesis (Daly et al., 2004). As an important probe for characterizing stomatal conductance, COS has shown great 

potential to constrain plant photosynthesis and transpiration and to improve understanding of the water-carbon coupling 

(Wohlfahrt et al., 2012).(Wohlfahrt et al., 2012; Asaf et al., 2013; Wehr et al., 2017; Kooijmans et al., 2019; Sun et al., 2022; 60 

Zhu et al., 2024). A number of empirical or mechanistic COS plant uptake models (Campbell et al., 2008; Wohlfahrt et al., 

2012; Berry et al., 2013)(Campbell et al., 2008; Wohlfahrt et al., 2012; Berry et al., 2013) and soil exchange models 

(Kesselmeier et al., 1999; Berry et al., 2013; Launois et al., 2015; Sun et al., 2015; Whelan et al., 2016; Ogée et al., 2016; 

Whelan et al., 2022)(Kesselmeier et al., 1999; Berry et al., 2013; Launois et al., 2015; Sun et al., 2015; Whelan et al., 2016; 

Ogée et al., 2016; Whelan et al., 2022) have been developed to simulate COS fluxes in order to more accurately estimate gross 65 

primary productivity (GPP)), stomatal conductance as well as other key ecosystem variables.transpiration. However, withdue 

to the lack of ecosystem-scale measurements of the COS flux (Brühl et al., 2012; Wohlfahrt et al., 2012; Kooijmans et al., 

2021)(Brühl et al., 2012; Wohlfahrt et al., 2012; Kooijmans et al., 2021), only few studies were conducted to systematically 

assess the ability of COS to simultaneously constrain photosynthesis, transpiration and other related processes in ecosystem 

models. 70 

Data assimilation is an approach that aims at producing physically consistent estimates of the dynamical behaviorbehaviour of 

a model by combining the information in process-based models and observational data (Liu and Gupta, 2007; Law et al., 2015). 

It has been widely applied in geophysics and numerical weather prediction (Tarantola, 2005). In the past few decades, 

substantial efforts have been put into the use of various satellite- (Knorr et al., 2010; Kaminski et al., 2012; Deng et al., 2014; 

Scholze et al., 2016; Norton et al., 2018; Wu et al., 2018)satellite- (Knorr et al., 2010; Kaminski et al., 2012; Deng et al., 2014; 75 

Scholze et al., 2016; Norton et al., 2018; Wu et al., 2018) and ground-based (Knorr and Heimann, 1995; Rayner et al., 2005; 

Santaren et al., 2007; Kato et al., 2013; Zobitz et al., 2014)(Knorr and Heimann, 1995; Rayner et al., 2005; Santaren et al., 

2007; Kato et al., 2013; Zobitz et al., 2014) observational datasets to constrain or optimize the photosynthesis, transpiration 

and energy--related parameters and variables of terrestrial ecosystem models via data assimilation techniques. In 

particularMore specifically, by applying data assimilation methods to process-based models, not only can the observed 80 

dynamics of ecosystems be more accurately portrayed, but also our understanding of ecosystem processes can be deepened, 



 

3 

 

with respect to their responses to climate (Luo et al., 2011; Keenan et al., 2012; Niu et al., 2014)changes (Luo et al., 2011; 

Keenan et al., 2012; Niu et al., 2014). 

In this study, we present the newly developed adjoint-based Nanjing University Carbon Assimilation System (NUCAS) v1.0.). 

NUCAS v1.0 is designed to assimilate multiple observational data streams, including COS flux datafluxes, to improve the 85 

process--based Biosphere-atmosphere Exchange Process Simulator (BEPS) (Liu et al., 1997),(Liu et al., 1997), which has been 

specifically extended for simulating the ecosystem COS flux with the advanced two-leaf model that is driven by satellite 

observations of leaf area index (LAI). 

In this context, the main questions that we aim to answer in this paper are: 

What parameters is the COS simulation sensitive to and how do these parameters change in the assimilation of 90 

ecosystem--scale COS flux datafluxes? 

How effective is the assimilation of COS fluxes in improving the carbon, water and energy balance for different ecosystems 

(including Evergreen needleleaf forest, deciduous broadleaf forest, C3 grass and C3 crop)? 

Which processes are constrained by the assimilation of COS fluxes and what are the mechanisms leading to adjustments of 

the corresponding process parameters? 95 

How robust is the NUCAS when optimizing over single-site and over two sites simultaneously? 

To achieve these objectives, COS flux observations across a wide range of ecosystems (including evergreen needleleaf forest, 

deciduous broadleaf forest, C3 grass and C3 crop) are assimilated into NUCAS to optimize the model parameters using the 

four-dimensional variational (4D-Var) data assimilation approach, and the optimization results are evaluated against in situ 

observations. Specifically, materialsMaterials and methods used in our study are described in Sect.Section 2. In this section,, 100 

such as the BEPS model and our new data assimilation system NUCAS, are introduced, along with the data used to drive BEPS 

and assimilated into NUCAS, and the parameters chosen to be optimized in this study. The results are presented in Sect.Section 

3, including the fit of COS simulations to observations, the variation and impact of parameters on simulated COS, as well as 

the comparison and evaluation of model outputs. Sect.Section 4 discusses the impacts of the COS assimilation on parameters 

and processes related to the water-carbon cycle and energy exchange as well as the influence of uncertainty inputs, in particular 105 

impacts of the LAI driving data on posterior parameters values. In addition, the caveats and implications of assimilating COS 

flux are summarized. Finally, the conclusions are laid out in Sect.Section 5. 

2 Materials and Methods 

2.1 NUCAS data assimilation system 

2.1.1 NUCAS framework 110 

NUCAS is built around the generic satellite data driven ecosystem model BEPS, and applies the 4D-Var data assimilation 

method (Talagrand and Courtier, 1987). The BEPS model uses satellite-derived one-sided LAI to drive the phenology 

dynamics and separates sunlit and shaded leaves in calculating canopy-level energy fluxes and photosynthesis. It further 

features detailed representations of water and energy processes (Figure 1). These features render BEPS more advanced in 

representing ecosystem processes than standard ecosystem models (Richardson et al., 2012) with less parameters to be 115 

calibrated owing to the LAI-driven phenology.  

Data assimilation ifis performed in two sequential steps: Firstfirst, an inversion step adjusts the values of parameters controlling 

photosynthesis, energy balance, hydrology and soil biogeochemical processes to match the observations. Second, the posterior 

parameters obtained in the first step are used as input data for the second step, in which the BEPS model is re-run to obtain the 

posterior model variables. The schematic of the system is shown in Figure 1. 120 
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Considering model and data uncertainties, NUCAS implements a probabilistic inversion concept (Talagrand and Courtier, 

1987; Tarantola, 1987; Tarantola, 2005)(Talagrand and Courtier, 1987; Tarantola, 1987; Tarantola, 2005) by using Gaussian 

probability density functions to combine the dynamic model and observations to obtain an estimate of the true state of the 

system and model parameters (Talagrand, 1997; Dowd, 2007). Hereby, we minimize the following cost function: 

𝐽(𝑥) =
1

2
[(𝑀(𝑥) − 𝑂)𝑇𝐶𝑂

−1
(𝑀(𝑥) − O) + (𝑥 − 𝑥0)𝑇𝐶𝑥

−1(𝑥 − 𝑥0)] (1) 125 

where O and M denote vectors of observations and their modelled counterparts, respectively; 𝑥 and 𝑥0 denotes the control 

parameter vector with current and prior values, respectively. 𝐶𝑂  and 𝐶𝑥  denote the uncertainty covariance matrices for 

observations and prior parameters. Both matrices are diagonal expressing the assumption that observation uncertainties and 

the parameter uncertainties to be independent (Rayner et al., 2005). This definition of the cost function contains both the 

mismatch between modelled and observed COS fluxes and the mismatch between current and prior parameter values (Rayner 130 

et al., 2005).  

To determine an optimal set of parameters which minimizes 𝐽, a gradient-based optimization algorithm (BFGS) performs an 

iterative search (Wu et al., 2020). In each iteration, the gradient of 𝐽 is calculated by applying the adjoint of the model, where 

the model is run backward to efficiently compute the sensitivity of 𝐽 and with respect to 𝑥 (Rayner et al., 2005). The gradient 

of 𝐽 is used to define a new search direction. The adjoint model is an efficient sensitivity analysis tool for calculating the 135 

parametric sensitivities of complex numerical model systems (An et al., 2016). The computational cost of it is independent of 

the number of parameters and is in the current case comparable to 3–4 evaluations of 𝐽. In this study, all derivative code is 

generated from the model code by the automatic differentiation tool TAPENADE (Hascoët and Pascual, 2013). The derivative 

with respect to each parameter was validated against finite differences of model simulations, which showed agreement within 

the accuracy of the finite difference approximation. 140 

 The minimization of the cost function is implemented in a normalized parameter space where the parameter values are 

measured in multiples of their respective standard deviation with Gaussian priors (Kaminski et al., 2012). The model 

parameters are the various constants that are not influenced by the model state. Therefore, while they may change between 

plant function types (PFTPFTs) to reflect different conditions and physiological mechanisms, they will not change in time 

(Rayner et al., 2005). 145 

2.1.2 BEPS basic model 

The BEPS model (Liu et al., 1997; Chen et al., 1999; Chen et al., 2012)(Liu et al., 1997; Chen et al., 1999; Chen et al., 2012) 

is a process-based diagnostic model driven by remotely sensed vegetation data, including LAI, clumping index, and land cover 

type, as well as meteorological and soil data (Chen et al., 2019). With the consideration of coupling among terrestrial carbon, 

water, and nitrogen cycles (He et al., 2021), the BEPS model now consists of photosynthesis, energy balance, hydrological, 150 

and soil biogeochemical modules (Ju et al., 2006; Liu et al., 2015). It stratifies whole canopies into sunlit and shaded leaves to 

calculate carbon uptake and transpiration for these two groups of leaves separately (Liu et al., 2015). For each group of leaves, 

the GPP is calculated by scaling Farquhar's leaf biochemical model (Farquhar et al., 1980) up to canopy-level with a 

newupdated temporal and spatial scaling scheme (Chen et al., 1999), and the stomatal conductance is calculated using a 

modified version of the Ball–Woodrow–Berry (BB) model (Ball et al., 1987; Ju et al., 2006). Evapotranspiration is calculated 155 

as the summation of sunlit leaf and shaded leaf transpirations, evaporation from soil and wet canopy, and sublimation from 

snow storage on the ground surface (Liu et al., 2003). The BEPS model stratifies the soil profile into multiple layers (five were 

used in this study), and simulates temperature and water content from each layer (Ju et al., 2006). The soil water content is 

then used to adjust stomatal conductance considering the water stress impacts (Ju et al., 2010; He et al., 2021). Over the last 
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few decades, the BEPS model has been continuously improved and used for a wide variety of terrestrial ecosystems (Schwalm 160 

et al., 2010; Liu et al., 2015). 

The previous version of BEPS considers a total of six PFTs as well as eleven soil textures (Chen et al., 2012). We use the same 

soil texture but added four PFTs to BEPS in order to better discriminate vegetation types, especially the C4 grass and C4 crop. 

Detailed information on these ten PFTs and eleven soil textures is given in Table S1. 

2.1.3 COS modelling 165 

The ecosystem COS flux, 𝐹𝐶𝑂𝑆,𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚𝐹𝐶𝑂𝑆,𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚, includes both plant COS uptake 𝐹𝐶𝑂𝑆,𝑝𝑙𝑎𝑛𝑡 and soil COS flux exchange 

𝐹𝐶𝑂𝑆,𝑠𝑜𝑖𝑙 (Whelan et al., 2016). In this study, these two components were modelled separately. The canopy-level COS plant 

uptake 𝐹𝐶𝑂𝑆,𝑝𝑙𝑎𝑛𝑡 (pmol m−2 s−1) was calculated by upscaling the resistance analog model of COS uptake (Berry et al., 2013) 

with the upscaling scheme (Chen et al., 1999)., as presented by Berry et al. (2013) with the upscaling scheme recommended 

by Chen et al. (1999). Specifically, considering the different responses of foliage to diffuse and direct solar radiation (Gu et 170 

al., 2002), 𝐹𝐶𝑂𝑆,𝑝𝑙𝑎𝑛𝑡 is calculated as: 

𝐹𝐶𝑂𝑆,𝑝𝑙𝑎𝑛𝑡 = 𝐹𝐶𝑂𝑆,𝑠𝑢𝑛𝑙𝑖𝑡𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡 + 𝐹𝐶𝑂𝑆,𝑠ℎ𝑎𝑑𝑒𝑑𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑 (2) 

𝐹𝑐𝑜𝑠,𝑝𝑙𝑎𝑛𝑡 = 𝐹𝑐𝑜𝑠,𝑠𝑢𝑛𝑙𝑖𝑡𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡 + 𝐹𝑐𝑜𝑠,𝑠ℎ𝑎𝑑𝑒𝑑𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑 (2) 

where 𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡  and 𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑  are the LAI values ( m2 m−2 ) of sunlit and shaded leaves, respectively. 𝐹𝐶𝑂𝑆,𝑠𝑢𝑛𝑙𝑖𝑡  and 

𝐹𝐶𝑂𝑆,𝑠ℎ𝑎𝑑𝑒𝑑 are the leaf-level COS uptake rate (pmol m−2 s−1) of sunlit and shaded leaves, respectively. The leaf-level COS 175 

uptake rate 𝐹𝐶𝑂𝑆,𝑙𝑒𝑎𝑓 is calculated as: 

𝐹𝑐𝑜𝑠,𝑙𝑒𝑎𝑓 = 𝐶𝑂𝑆𝑎 ∗ (
1.94

𝑔𝑠𝑤
+

1.56

𝑔𝑏𝑤
+

1

𝑔𝐶𝑂𝑆
)

−1

(3) 

𝐹𝐶𝑂𝑆,𝑙𝑒𝑎𝑓 = 𝐶𝑂𝑆𝑎 ∗ (
1.94

𝑔𝑠𝑤
+

1.56

𝑔𝑏𝑤
+

1

𝑔𝐶𝑂𝑆
)

−1

(3) 

where 𝐶𝑂𝑆𝑎 is the COS mole fraction in the bulk air. and 𝑔𝑠𝑤 and 𝑔𝑏𝑤 are the stomatal conductance and leaf laminar boundary 

layer conductance to water vapor (H2O).), respectively (Berry et al., 2013). The factors 1.94 and 1.56 account for the smaller 180 

diffusivity of COS with respect to H2O (Seibt et al., 2010; Stimler et al., 2010). 𝑔𝐶𝑂𝑆 denotes theThe apparent conductance for 

COS uptake from the intercellular airspaces, combining is denoted by 𝑔𝐶𝑂𝑆 and combines the mesophyll conductance and the 

biochemical reaction rate of COS and carbonic anhydrase (CA). Independent studies indicate that both CA activity (Badger 

and Price, 1994) and mesophyll conductance (Evans et al., 1994) tend to scale with the photosynthetic capacity or the maximum 

carboxylation rate of Rubisco at 25℃.and mesophyll conductance tend to scale with the photosynthetic capacity or the 185 

maximum carboxylation rate of Rubisco (Badger and Price, 1994; Evans et al., 1994), such that:. 

𝑔𝐶𝑂𝑆 =  α ∗  𝑉𝑐𝑚𝑎𝑥 (4) 

Wherewhere α is a parameter that is calibrated to observations of simultaneous measurements of COS and CO2 uptake (Stimler 

et al., 2012). Analysis of these measurements yield estimates of α of ∼1400 for C3 and ∼7500 for C4 species. With reference 

(Stimler et al., 2012; Haynes et al., 2020). According to the COS modelling scheme of the Simple biosphere model (version 190 

4.2) (Haynes et al., 2020), 𝑔𝐶𝑂𝑆  can be calculated 

as:

𝑔𝐶𝑂𝑆 = 1.4 ∗ 103 ∗ (1.0 + 5.33 ∗ 𝐹𝐶4) ∗ 10−6 ∗ 𝐹𝐴𝑃𝐴𝑅 ∗ 𝑓𝑤 ∗ 𝑉𝑐𝑚𝑎𝑥 (5) 

𝑔𝐶𝑂𝑆 = 1.4 ∗ 103 ∗ (1.0 + 5.33 ∗ 𝐹𝐶4) ∗ 10−6 ∗ 𝐹𝐴𝑃𝐴𝑅 ∗ 𝑓𝑤 ∗ 𝑉𝑐𝑚𝑎𝑥 (5) 

where 𝐹𝐶4 denotes the C4 plant flag, which takes the value of 1 when the vegetation is C4 plants and 0 otherwise. 𝑓𝑤 is a soil 195 

moisture stress factor describing the sensitivity of 𝑔𝑠𝑤 to soil water availability (Ju et al., 2006). 𝐹𝐴𝑃𝐴𝑅 is the scaling factor for 

leaf radiation, calculated as: 
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𝐹𝐴𝑃𝐴𝑅 = 1 − 𝑒(−0.45∗𝐿𝐴𝐼) (6) 

𝐹𝐶𝑂𝑆,𝑠𝑜𝑖𝑙 is taken as the combination of abiotic COS flux 𝐹𝐶𝑂𝑆,𝑎𝑏𝑖𝑜𝑡𝑖𝑐𝐹𝑐𝑜𝑠,𝑎𝑏𝑖𝑜𝑡𝑖𝑐 and biotic COS flux 𝐹𝐶𝑂𝑆,𝑏𝑖𝑜𝑡𝑖𝑐 (Whelan et al., 

2016).  200 

𝐹𝐶𝑂𝑆,𝑠𝑜𝑖𝑙 = 𝐹𝐶𝑂𝑆,𝑎𝑏𝑖𝑜𝑡𝑖𝑐 + 𝐹𝐶𝑂𝑆,𝑏𝑖𝑜𝑡𝑖𝑐 (7) 

𝐹𝐶𝑂𝑆,𝑎𝑏𝑖𝑜𝑡𝑖𝑐  is controlled by abiotic degradation of soil organic matter (Whelan and Rhew, 2015), can be described as an 

exponential function of the temperature of soil 𝑇𝑠𝑜𝑖𝑙 (℃). 

𝐹𝐶𝑂𝑆,𝑎𝑏𝑖𝑜𝑡𝑖𝑐 = 𝑒(𝑎𝑙𝑝ℎ𝑎+𝑏𝑒𝑡𝑎 ∗𝑇𝑠𝑜𝑖𝑙) (8) 

Where 𝑎𝑙𝑝ℎ𝑎 (unitless) and 𝑏𝑒𝑡𝑎 (℃−1) are parameters determined using the least-squares fitting approach. 205 

𝐹𝐶𝑂𝑆,𝑏𝑖𝑜𝑡𝑖𝑐 is calculated according to Behrendt et al. (2014)attributed to CA in microbial communities (Sauze et al., 2017), 

calculated according to Behrendt et al. (2014) and Whelan et al. (2016):  

𝐹𝐶𝑂𝑆,𝑏𝑖𝑜𝑡𝑖𝑐 = 𝐹𝑜𝑝𝑡 (
𝑆𝑊𝐶

𝑆𝑊𝐶𝑜𝑝𝑡
) ∗ 𝑒

−𝑎(
𝑆𝑊𝐶

𝑆𝑊𝐶𝑜𝑝𝑡
−1)

(9) 

which can be rearranged to 

 where a is the curve shape constant, 𝑆𝑊𝐶 is the soil moisture (percent volumetric water content), 𝐹𝑜𝑝𝑡 denotes the optimal 210 

biotic COS uptake (𝑝𝑚𝑜𝑙 𝑚−2 𝑠−1) at optimum soil moisture 𝑆𝑊𝐶𝑜𝑝𝑡. The curve shape constant a can be determined based 

on 𝑆𝑊𝐶𝑜𝑝𝑡, 𝐹𝑜𝑝𝑡, and COS flux (𝐹𝑔) under another soil moisture condition (𝑆𝑊𝐶𝑔, and 𝑆𝑊𝐶𝑔>𝑆𝑊𝐶𝑜𝑝𝑡), as follows: 

𝑎 = 𝑙𝑛 (
𝐹𝑜𝑝𝑡

𝐹𝑆𝑊𝐶𝑔

) ∗ (𝑙𝑛 (
𝑆𝑊𝐶𝑜𝑝𝑡

𝑆𝑊𝐶𝑔
) + (

𝑆𝑊𝐶𝑔

𝑆𝑊𝐶𝑜𝑝𝑡
− 1))

−1

(10) 

Here a is the curve shape constant, 𝑆𝑊𝐶 is the soil moisture (percent volumetric water content). The maximum biotic COS 

uptake 𝐹𝑜𝑝𝑡  and the biotic COS uptake 𝐹𝑆𝑊𝐶𝑔
 are the COS fluxes (𝑝𝑚𝑜𝑙 𝑚−2 𝑠−1) at optimum soil moisture 𝑆𝑊𝐶𝑜𝑝𝑡  and 215 

𝑆𝑊𝐶𝑔, and 𝑆𝑊𝐶𝑔 > 𝑆𝑊𝐶𝑜𝑝𝑡. Here we use the parameterization scheme of soil COS modelling from Whelan et al. (2016) and 

Whelan et al. (2022), see Table S2 and Table S3 for details. Specifically, with reference ofto Abadie et al. (2022) and Whelan 

et al. (2022), the mean modelled soil water content (SWC) and temperature of the top 9 cm of the soil profile in BEPS were 

utilized to drive the COS soil model in this study, and the mean modelled SWC and temperature were calculated through a 

weighted average considering the depth of each soil layer. A more detailed description about the soil hydrology and stomatal 220 

conductance modelling approach of BEPS is provided in the appendix. 

Then ecosystem COS flux 𝐹𝐶𝑂𝑆,𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 can be calculated as the sum of COS plant uptake and the COS soil flux.  

2.2 Model parameters 

Here we optimized a total of NUCAS v1.0 can optimize 76 parameters belonging to BEPS. Of these parameters, some are 

global (i.e., the ratio of photosynthetically active radiation to shortwave radiation (f_leaf)), and others differentiated by PFT 225 

(i.e., maximum carboxylation rate of Rubisco at 25℃ (𝑉𝑐𝑚𝑎𝑥25)), or soil texture class. (i.e., 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟, the scaling factor of 

saturated hydraulic conductivity (Ksat)). The prior values of the parameters are taken as model defaults which have been tuned 

previousin past model in development and validation studies (Kattge et al., 2009; Chen et al., 2012). The prior uncertainty of 

parameters is set based on previous research, i.e., (Chen et al., 2022; Ryu et al., 2018).Ryu et al. (2018) and Chen et al. (2022). 

For a more detailed description of these parameters, see Table S4 in the supplement. 230 

2.3 Site description 

 In this study, NUCAS was operated at seven sites distributed onover the Eurasian and North American continents 

incharacterized as boreal, temperate and subtropical regions (as illustrated in Figure 2) based on field observations collected 
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from several studies. These sites were representative of different climate regions and land cover types (in the model represented 

by PFTs, and soil textures, as depicted in Table 1). They contained 4 of the 10 PFTs used in BEPS and 3 of the 11 soil textures. 235 

The sites comprise AT-Neu, located at an intensively managed temperate mountain grassland near the village of Neustift in 

the Stubai Valley, Austria (Hörtnagl et al., 2011; Spielmann et al., 2020); the Danish ICOS (Integrated Carbon Observation 

System) Research Infrastructure site (DK-Sor), which is dominated by European beech (Braendholt et al., 2018; Spielmann et 

al., 2019); the Las Majadas del Tietar site (ES-Lma) located in western Spain with a Mediterranean savanna ecosystem (El-

Madany et al., 2018; Spielmann et al., 2019)(El-Madany et al., 2018; Spielmann et al., 2019); the Hyytiälä forest Station (FI-240 

Hyy), located in Finland and is dominated by Scots Pine (Bäck et al., 2012; Vesala et al., 2022); an agricultural soybean field 

measurement site (IT-Soy) located in Italy (Spielmann et al., 2019); the Harvard Forest Environmental Monitoring Site (US-

Ha1) which is dominated by red oak and red maple in Petersham, Massachusetts, USA (Urbanski et al., 2007; Wehr et al., 

2017); the Wind River Experimental Forest site (US-Wrc), located within the Gifford Pinchot National Forest in southwest 

Washington state, USA, with 478 ha of preserved old growth evergreen needleleaf forest (Rastogi et al., 2018). For further 245 

information on all sites, see publications listed in Table 1. 

2.4 Data 

The NUCAS system was driven by several temporally and spatially variant and invariant datasets. The CO2 and COS mole 

fractions in the bulk air were assumed to be spatially invariant over the globe and to vary annually. The CO2 mole fraction 

data in this study are taken from the Global Monitoring Laboratory (https://gml.noaa.gov/ccgg/trends/global.html). For the 250 

COS mole fraction, the average of the COS mole fraction observations from sites SPO (South Pole) and MLO (Mauna Loa, 

United States) waswere utilized to drive the model, the data are publicly available on line at: 

https://gml.noaa.gov/hats/gases/OCS.html. The other main inputsinput data include a remotely sensed LAI dataset, a 

meteorological dataset and a soil dataset. Additionally, in order to conduct data assimilation experiments and to evaluate the 

effectiveness of the assimilation of COS fluxes, field observations including the ecosystem-scale (eddy-covariance or gradient-255 

based) COS flux, GPP, sensible heat (H), latent heat (LE) and soil water content (SWC) at these sitesevapotranspiration (ET), 

and SWC collected at the sites were used. 

2.4.1 LAI dataset  

The LAI dataset used here are the GLOBMAP global leaf area index product (Version 3) (see GLOBMAP global Leaf Area 

Index since 1981 | Zenodo), the Global Land Surface Satellite (GLASS) LAI product (Version 3) (acquired from 260 

ftp://ftp.glcf.umd.edu/) and the level-4 MODIS global LAI product (see LP DAAC - MOD15A2H (usgs.gov)). The 

GLOBMAP LAI product represents Leafquantifies leaf area index at a spatial resolution of 8×8 km and a temporal resolution 

of 8-day (Liu et al., 2012). The GLASS LAI product is generated every 8 days at a spatial resolution of 1×1 km (Xiao et al., 

2016). And the MODIS LAI is an 8-day composite dataset with 500×500 m pixel size. As default, we used GLOBMAP 

products for assimilation experiments as much as possible given its good performance in the BEPS applications to various 265 

cases (Chen et al., 2019). The other twoGLASS and MODIS LAI products were used to investigate the effect of the LAI 

products on the parameter optimization results. Also, according to Spielmann et al. (2019), the GLOBMAP product had 

considerably underestimated the LAI at the DK-Sor site in June 2016, and we noticed it was not consistent with the vegetation 

phenology at ES-Lma in May 2016. Therefore, GLASS LAI was used at these two sites and the GLOBMAP product was used 

at the remaining five sites. In addition, thesethe 8-daysday temporal resolution of the LAI data werewas interpolated into daily 270 

values byusing the nearest neighbour method. 

https://gml.noaa.gov/ccgg/trends/global.html
https://gml.noaa.gov/hats/gases/OCS.html
https://zenodo.org/record/4700264#.Y3OZKctBxD8
https://zenodo.org/record/4700264#.Y3OZKctBxD8
ftp://ftp.glcf.umd.edu/
https://lpdaac.usgs.gov/products/mod15a2hv006/
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2.4.2 Meteorological dataset 

Standard hourly meteorological data as input forwas inputted in BEPS, including air temperature at 2 m, shortwave radiation, 

precipitation, relative humidity and wind speed were, taken from the FLUXNET database (for sites: AT-Neu, DK-Sor, ES-

Lma, FI-Hyy and US-Ha1 see https://fluxnet.org), the AmeriFlux database (for sites: US-Ha1, and US-Wrc, see 275 

https://ameriflux.lbl.gov) and the ERA5 dataset (Sitefor Sites: AT-Neu, IT-Soy, US-Ha1 see 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview), respectively. Since the 

experiments were conducted at the site scale, we used the FLUXNET and AmeriFlux data, which contains information about 

the downscaling of meteorological variables of the ERA-Interim reanalysis data product as far as possible, and supplemented 

them with ERA5 reanalysis data (Pastorello et al., 2020) as far as possible, and supplemented them with ERA5 reanalysis data. 280 

Particularly, although. Although AT-Neu is a FLUXNET site, its FLUXNET meteorological data are only available for the 

years 2002-2012 while the measurement of COS was performed in 2015. Therefore, we first performed a linear fit of its ERA5-

Land data and FLUXNET meteorological data for 2002-2012, and then corrected the ERA5 data for 2015 with the fitted 

parameters to obtain downscaling information for the meteorological variables. Additionally, for US-Ha1, we used the 

FLUXNET data in 2012, and AmerifluxAmeriFlux data and ERA5 shortwave radiation data in 2013 to drive the BEPS model, 285 

due to the absence of FLUXNET data in 2013 and the lack of shortwave radiation data of AmerifluxAmeriFlux. 

2.4.3 Assimilation and evaluation datasets 

The hourly ecosystem-scale COS flux observations were used to perform data assimilation experiments and to evaluate the 

assimilation results. They were taken from existing studies (listed in Table 1) and were available for at least a month. Most of 

the ecosystem COS flux observations were obtained using the eddy-covariance (EC) technique, with the exception of US-Ha1 290 

and US-Wrc, where the COS fluxes were derived with the gradient-based approach. (Baldocchi, 2003; Wu et al., 2015; 

Kohonen et al., 2020). The COS soil flux measurements were collected using soil chamber, except at US-Ha1, where a sub-

canopy flux-the gradient-based approach was used to calculate the soil COS flux. Detailed information about the COS 

measurements can be found in the publications listed in Table 1. Specifically, only the measured ecosystem COS flux 

datafluxes of FI-Hyy (Vesala et al., 2022) was utilized in this study. 295 

Since only the raw COS concentration data at different altitudes are provided in Rastogi et al. (2018), while the values of the 

parameters needed to calculate the COS fluxes by the aerodynamic gradient method are not provided, there may be 

considerable biases in our estimates of COS fluxes at US-Wrc. ThereforeUS-Wrc utilises the gradient-based approach to 

measure COS ecosystem flux (Rastogi et al., 2018), however available data is limited to only COS concentration measurements 

and lacking other parameters required, therefore this site risks introducing biases. Hence, a bias correction scheme was 300 

implemented to match the simulated and estimated the ecosystem-scale COS fluxes for the US-Wrc site. The objectives of this 

correction scheme are to obviate the need for accurate values of parameters relevant for COS flux calculations, and to retain 

as much useful information from the COS concentration measurements as possible (Leung et al., 1999; Scholze et al., 2016). 

This was done by using the mean (𝑀̅) and standard deviation (𝜎𝑀) of the simulated COS flux to correct the COS flux 

observations: (𝑂): 305 

F =
𝜎𝑀(𝑂 − 𝑂̅)

𝜎𝑂

+ 𝑀̅ (11) 

where 𝑂 and 𝜎𝑂 are mean and standard deviation of the observed COS flux series. F is the corrected observed COS flux, which 

is matched to the simulated COS flux. 𝑀 and 𝜎𝑀 are mean and standard deviation of the COS simulations, were calculated 

from the simulations using the prior parameters for the time period corresponding to the COS flux observations. 

https://fluxnet.org/
https://ameriflux.lbl.gov/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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 The standard deviation of the ecosystem COS fluxes within 24 hours around each observation was calculated as an estimate 310 

of the observation uncertainty. For the case where there are no other observations within the surrounding 24 hours, the 

uncertainty was taken as the mean of the estimated uncertainties of the whole observation series. 

Due to the coupling between leaf exchange of COS, CO2 and H2O, GPP, and LEET data are selected to evaluate the model 

performance of COS assimilation in this study. In addition, we further explored the ability of COS to constrain SWC as well 

as H simulations since the water dissipated in transpiration originates from theH simulations, since the transpiration contribute 315 

to a decrease in temperature within the leaf (Gates, 1968; Konarska et al., 2016), and the leaf-air temperature gradient is a key 

control factor of H (Monteith and Unsworth, 2013; Dong et al., 2017). Moreover, SWC is used in model evaluation as the key 

role of SWC in modelling 𝐹𝐶𝑂𝑆,𝑏𝑖𝑜𝑡𝑖𝑐 (as shown in Eq. (9)) and that the water dissipated in transpiration originates from soil 

(Berry et al., 2006) and the transpiration contribute to a decrease in temperature within the leaf (so called “cooling effect”) 

(Gates, 1968; Konarska et al., 2016). . A more detailed elaboration will be provided in the discussion.  320 

These data were taken from FLUXNET (DK-Sor, ES-Lma, FI-Hyy and US-Ha1), AmeriFlux (US-Ha1 and US-Wrc) and), 

existing studies (Spielmann et al. (2020), Spielmann et al. (2019) and Rastogi et al. (2018)).) and SMEAR 

(https://smear.avaa.csc.fi/). As only CO2 turbulent flux (FC) data are available for US-Ha1 in 2013 and only net ecosystem 

exchange (NEE) data are available for IT-Soy, a night flux partitioning model was used to estimate ecosystem respiration 

(𝑅𝑒𝑐𝑜) and thus to calculate GPP (Reichstein et al., 2005) was used to estimate ecosystem respiration (𝑅𝑒𝑐𝑜) and thus to 325 

calculate GPP.. The model assumes that nighttime NEE represents ecosystem respiration, and thus partitions FC or NEE into 

GPP and 𝑅𝑒𝑐𝑜 based on the semi-empirical models of respiration, which use air temperature as a driver (Lloyd and Taylor, 

1994; Lasslop et al., 2012). While ET observations are only available at FI-Hyy from https://smear.avaa.csc.fi/, it can be 

derived from latent heat (LE), as the ratio of LE to the latent heat of vaporization (𝐿𝑤) (Pastorello et al., 2020). In this study, 

we use air temperature as a driver to calculated 𝐿𝑤, and subsequently ET (Bolton, 1980).  330 

We hereby note that only the comparison of COS and GPP results before and after assimilation are presented in the main text, 

while the evaluation of the simulated ET (Figure S3 and S4), H (Figure S5 and S6), and SWC (Figure S7) are included in the 

supplement. 

2.5 Experimental design 

Three groups of data assimilation experiments were conducted in this study: (1) 14 model-based twin experiments were 335 

performed to investigate the ability of NUCAS to assimilate COS flux datafluxes in different scenarios; (2) 13 single-site 

assimilation experiments were conducted at all seven sites to obtain the site-specific posterior parameters and the 

corresponding posterior model outputs based on COS flux observations; (3) one two-site assimilation experiment was carried 

out to refine one set of parameters over two sites simultaneously and to simulate the corresponding model outputs. Prior 

simulations using default parameters were also performed in order to investigate the effect of the COS flux assimilation. 340 

Moreover, due to the limitation of the COS observations, all of these experiments were conducted in a one-month time window 

at the peak of the growing season. Detailed information of these experiments is described in the following. 

2.5.1 Twin experiment 

Model-based twin experiments were performed to investigate the model performance of the data assimilation (Irrgang et al., 

2017) at all seven sites considering single-site and two-site scenarios, and under different perturbation conditions.. In each 345 

twin experiment, we first created a pseudo--observation sequence by NUCAS using the prior parameters. The pseudo-

observation time series included the prior simulated ecosystem COS fluxes with its uncertainties, and the latter were estimated 

as the standard deviation of the prior simulated COS fluxes within 24 hours around each simulation. Then, a given perturbation 

https://smear.avaa.csc.fi/
https://smear.avaa.csc.fi/
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ratio was applied to the prior parameters vector, as a starting point for the interactive adjustment of parameter values to match 

the COS flux pseudo--observations. The effectiveness of the data assimilation methodology of NUCAS can be validated if it 350 

successfully restores the control parameters from the pseudo-observations. As a gradient-based optimization algorithm is used 

in NUCAS to tune the control parameters and minimize the cost function, the changes of cost function and gradient over 

assimilation processes can also be used to verify the assimilation performance of the system. In this work, a total of fourteen 

twin experiments were conducted, including thirteen single-site twin experiments and one two-site twin experiment. With 

referenceRegarding the uncertainty of parameters, a perturbation size of 0.2 was utilized in all of the twin experiments. 355 

2.5.2 Real data assimilation experiment 

After the ability of NUCAS to assimilate COS flux datafluxes was confirmed by twin experiments, we could then use the 

system was then utilised to conduct data assimilation experiments with real COS observations under single-site and multi-site 

conditions to optimize the control parameters and state variables of this model, and use the evaluation dataset to test the 

posterior simulations of the state variables. For the single-site case, a total of thirteen data assimilation experiments were 360 

conducted at all of these sites to investigate the assimilation effect of COS flux on optimizing key ecosystem variables. Detailed 

information about those single-site experiments is shown in Table 2. 

Single-site assimilation can fully account for the site-specific information, and thus achieve accurate calibration. However, 

this assimilation approach often yields a range of different model parameters between sites. For large-scale model simulations, 

only one set of accurate and generalized model parameters is required (Salmon et al., 2022). Thus, a two-site assimilation 365 

experiment, that can assimilate COS observations from two sites simultaneously, is necessary to be conducted. Although both 

DK-Sor and US-Ha1 are dominated by deciduous broadleaved forest, and both AT-Neu and ES-Lma are dominated by C3 

grass, none of the COS dataflux observations from these two PFTs overlap in observation time. We therefore selected FI-Hyy 

and US-Wrc, which are both dominated by evergreen needleleaf forest, and conducted a two-site assimilation experiment with 

a one-month assimilation window in August 2014.  370 

2.6 Model evaluation 

For the purpose of demonstrating the process of control parameter vector being continuously adjusted in the normalized 

parameter space in a twin experiment, and quantifying the deviation of the current control vector from the prior, the distance 

(𝐷𝑥) between the parameter vector and the prior parameter vector was calculated. 

𝐷𝑥 = ‖𝑥 − 𝑥0‖ = √∑(𝑥(𝑖) − 𝑥0(𝑖))
2

𝑛

𝑖=1

(12) 375 

where i denotes the i th parameter in the parameter vectors and n denotes the number of parameters in the parameter vector, 

and takes a value of 76.  

With the aim of evaluating the performance of NUCAS in the real data assimilation experiments, we reran the model to obtain 

the posterior model outputs based on the posterior model parameters. Typical statistical metrics including mean bias (MB), 

root mean square error (RMSE) and coefficient of determination (𝑅2 ) are used to measure the difference between the 380 

simulations and in situ observations. They were calculated as: 

𝑀𝐵 =
1

𝑁
∑(𝑀𝑖 − 𝑂𝑖)

𝑁

𝑖=1

= 𝑀 − 𝑂 (13) 
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𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑀𝑖 − 𝑂𝑖)

2

𝑁

𝑖=1

(14) 

𝑅2 = 1 −
∑ (𝑀𝑖 − 𝑂𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 − 𝑂)
2

𝑁
𝑖=1

(15) 

 385 

where 𝑀𝑖 denotes the simulation corresponding to the i th observation 𝑂𝑖 and N is the total number of observations. 

Additionally, in order to investigate the sensitivity of COS assimilation to the model parameters, we also calculated the 

sensitivity index (SI) for each parameter at the prior value based on the sensitivity information provided by the adjoint model. 

SI of i th parameter 𝑥(𝑖) of the parameter vector x was calculated as: 

SI(𝑥(𝑖)) =  
𝜕𝐽/𝜕𝑥(𝑖)

‖𝜕𝐽/𝜕𝑥‖
(16)390 

where ‖𝜕𝐽/𝜕𝑥‖ denotes the norm of the sensitivity vector of the cost function to the model parameters.  

3 Results 

3.1 Twin experiments 

After averaging about 18 and 13 evaluations of the cost function and its gradients, each of the twin experiments was 

successfully performed. Details of those twin experiments are shown in Table S5. In summary, during those assimilations, the 395 

cost function values were substantially reduced by more than sixteenThirteen orders of magnitude, from greater than 50.75 to 

less than 5.09 × 10−13 and the respective gradient values also reduced from greater than 38.81 to less than 1.59 × 10−6, which 

verified the ability of the data assimilation algorithm to correctly complete the assimilation. 

The relative changes of the parameters with respect to the prior values at the ends of the experiments, as well as the initial 

values (𝐷𝑖𝑡𝑖𝑎𝑙) and the maximums (𝐷𝑚𝑎𝑥) and the final values (𝐷𝑓𝑖𝑛𝑎𝑙) of 𝐷𝑥 are reported in Table S5. Results show that the 400 

relative differences of those parameters from the "true" values reached exceedingly small values at the ends of twin 

experiments, with the maximum of the absolute values of the relative changes below 8.55 ∗ 10−9 × 10−9. 𝐷𝑥 was also reduced 

to nearly zero with, where the maximum value was below 6.60 ∗ 10−8 × 10−8, which indicates that all parameters in the 

control parameter vectors were almost fully recovered from the pseudo -observations. In conclusion, these results demonstrate 

that NUCAS has excellent data assimilation capability under various scenarios with different perturbations, and can effectively 405 

perform iterative computations to obtain reliable parameter optimization results during the assimilation process. 

3.2 Single-site assimilation 

With an average of approximately 11392 cost function evaluations, all of the 13 single-site experiments were performed 

successfully. The experiments reduced cost function values substantially, with an average cost function reduction of 24.43 

19.97% (Table 2). However, the cost function reduction of the experiment varies considerably with PFT, site and assimilation 410 

window, ranging from 4.87 2.84% to 69.05 63.73%. The cost function decreased dramatically at US-Ha1, with an average 

decrease of 56.59 53.93%. In contrast, at IT-Soy, the cost function reduction is only 4.87 %. With a same PFT (C3 grass), the 

cost function decreased by a similar degree at AT-Neu and ES-Lma, with the cost function reduction of 16.39 % and 15.70 %. 

The average cost function reduction at FI-Hyy (29.52%) was also similarcomparable to another evergreen needleleaf forest 

site, US-Wrc (27.71%), in 2014. However, the cost function reduction of FI-Hyy varied notably from year to year. In July 415 

2014 and August 2014, the cost function reductionreductions were as high as 40.59 20.17% and 50.94 %,38.86% respectively, 
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while in July of all other years, the cost function reduction arereductions were much lower, ranging from 5.73 2.84% to 18.94 

5.88%. Similar to the single-site twin experiments, only five parameters have been efficiently adjusted in the single site 

experiments (Table 2). 

The mean diurnal cycle and the scatterplots of observed and simulated COS fluxes are presented in Figure 3 and Figure S1, 420 

respectively. Results show that the prior simulations can accurately reflect the magnitude of ecosystem COS fluxes and 

effectively capture the daily variation and the diurnal cycle of COS. On average across all sites, the prior simulated and 

observed ecosystem COS fluxes were remarkably close, with 20.60 pmol m−2 s−1 and 21.0120.04 pmol m−2 s−1 respectively. 

However, there was substantial variability between sites and even between experiments at the same site. At ES-Lma, the prior 

simulated COS fluxes were greatly underestimated by 63.38 %. In contrast, the prior simulated COS fluxes were overestimated 425 

at US-Ha1, with MBs of -10.01 pmol m−2 s−1 and -13.6312.17 pmol m−2 s−1 in July 2012 and July 2013. In general, the 

MBs of COS fluxes are largely determined by the simulations and observations at daytime due to the larger magnitude (Figure 

3). However, the model-observation differences at nighttime are also non-negligible. As shown in Figure 3, the 

underestimation is particularly evident at AT-Neu, ES-Lma and FI-Hyy. 

After the single-site optimizations, both the daily variation and diurnal cycle of COS simulations were improved. This was 430 

reflected in the reduction of mean RMSE between the simulated and the observed COS fluxes from 16.4915.71 pmol m−2 s−1 

in the prior case to 13.8684 pmol m−2 s−1 in the posterior case. Similar to the cost function, theThe RMSEs were also reduced 

in all single-site experiments. Moreover, the assimilation of COS observationsfluxes also effectively corrected the bias between 

prior simulations and observations, with mean absolute MB decreased from 6.94 pmol m−2 s−15.06 to 3.0908 pmol m−2 s−1. 

In contrast, 𝑅2 remained almost unchanged by the optimizations, with its mean value of 0.296730 in both the prior case and 435 

0.2970 in the posterior casecases . Our results also showcase that the model--observation differences of COS fluxes were 

effectively reduced at daytime. However, the remarkable differences between COS flux observations and simulations at 

nightimenighttime, are not effectively corrected in a number of assimilation experiments (i.e., the experiment conducted at FI-

Hyy in July 2013, see Figure 3d). 

3.3 Two-site assimilation 440 

FI-Hyy and US-Wrc have different soil textures, with; sandy loam and loam, respectively. In the two-site assimilation 

experiment, NUCAS took accounted for this difference into accountappropriately and successfully minimized the cost function 

from 495.94499.56 to 365.63358.81 after 6770 evaluations of cost function. The cost function reduction for the experiment 

has a value of 28.29 17%, comparable to the cost function reductions for corresponding single-site assimilation experiments 

at FI-Hyy and US-Wrc (50.94 38.86% and 27.71 %). Furthermore, corresponding to these two soil textures, the texture-445 

dependent parameters 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 yielded two different posterior parameter values, respectively, so that a total of 

seven parameters were optimized in the two-site experiment (Table 3). It can be seen that the two-site optimized results of 

𝑉𝑐𝑚𝑎𝑥25, VJ_slope and f_leaf are similar to that of the single--site optimized results at US-Wrc, as most of the observations of 

the two-site experiment originated from US-Wrc. As for the texture-dependent parameters, they had the same signs and 

comparable magnitudes of the adjustments to that of the corresponding single-site experiment at FI-Hyy and were minutely 450 

adjusted at US-Wrc as in the corresponding single-site experiment. Overall, both the cost function reduction and the parameter 

optimization results of the two-site assimilation experiments were similar to the corresponding single-site experiments, 

demonstrating the ability of NUCAS to correctly perform joint data assimilation from COS observations at two sites 

simultaneously. 

The posterior simulations of COS flux using the two-site posterior parameters, also demonstrated the ability of NUCAS to 455 

correctly assimilate two-site COS fluxes simultaneously (Figure 43 and Figure S2S1). As shown in Figure 43f and Figure 
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3m, the prior COS simulations for both the FI-Hyy site and US-Wrc site were overestimated in the daytime compared to the 

observations. After the two-site COS assimilation, the discrepancies between COS simulations and observations were reduced 

in both FI-Hyy and US-Wrc, with RMSE reductions of 24.75 18.42% and 3.39 23%, achieving similar results to the simulations 

using the single-site posterior parameters.  460 

3.4 Parameter change 

As mentioned before, thereThere were five parameters that have been adjusted during the assimilation of COS flux 

observations by the NUCAS system, whether in twin, single-site or two-site experiments. They are the maximum carboxylation 

rate at 25 ℃ (𝑉𝑐𝑚𝑎𝑥25), the ratio of 𝑉𝑐𝑚𝑎𝑥 to maximum electron transport rate 𝐽𝑚𝑎𝑥 (VJ_slope), the scaling factor (𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 

and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟) of saturated hydraulic conductivity (Ksat) and Campbell parameter (b), and the ratio of PAR to shortwave radiation 465 

(f_leaf). These parameters are strongly linked to the COS exchange processes and it is therefore reasonable that they could be 

optimized by the assimilation of COS flux. Furthermore, these parameters are also closely linked to processes such as 

photosynthesis, transpiration and soil water transport, and therefore the assimilation of COS flux provides an indirect constraint 

for improving the simulation of GPP, LE, H and soil moisture based on the assimilation of COS flux. 

In both single-site and the two-site experiments, 𝑉𝑐𝑚𝑎𝑥25 has been considerably adjusted, with average absolute relative change 470 

of 45.09 42.08% and 41.36 74%, respectively (Figure 5a). 4a). VJ_slope and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 and VJ_slope also varied greatly in the 

single-site experiments, with mean absolute relative changes of 30.92 67% and 21.00 25.55%, respectively. However, in the 

two-site experiment, their mean absolute changes were much smaller, at 4.08 3.36% and 2.96 4.16%. The relative changes of 

𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 are modest in both single-site and two--site experiments, with mean absolute values of 11.65 10.61% and 9.34 

7.24%, respectively. As for f_leaf, the average absolute relative changes are even smaller than that of 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟, at 3.67 % 475 

and 6.28 81% in the single-site and the two-site experiments. In addition, we found that the parameters can be tuned 

considerably in cases where the prior simulations are close to the observations. For example, at IT-Soy, where the prior 

simulations agree well with the observations and the cost function only decrease 4.87 % in the experiment, both 𝑉𝑐𝑚𝑎𝑥25 and 

𝑏𝑠𝑐𝑎𝑙𝑎𝑟 were remarkably tuned, with relative change of 32.55 % and --44.72 %. 

Across all single-site experiments, there are notable differences in the results of parameter optimization, especially in 𝑉𝑐𝑚𝑎𝑥25. 480 

For the single-site experiment at US-Ha1 in July 2013, the posterior value of 𝑉𝑐𝑚𝑎𝑥25 is 62.08 55.28% lower than the prior. In 

contrast, the posterior 𝑉𝑐𝑚𝑎𝑥25 is 127.80 % higher than the prior at ES-Lma. In addition to 𝑉𝑐𝑚𝑎𝑥25, Thethe relative changes 

of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 and VJ_slope also vary considerably, ranging from -78.13 % to 16.84 % and -58.23 65.70% to 35.18 %, respectively. 

On the contrary, the posterior values of f_leaf show less variability, and do not differ from the prior value by more than 10.05%.% 

(note the difference in x-axis scales).  485 

3.5 Parameter sensitivity 

The adjoint-based sensitivity analysis results of the parameters are illustrated in Figure 5b4b. Our results suggest that 𝑉𝑐𝑚𝑎𝑥25 

has a critical impact on the assimilation results, followed by VJ_slope. With absolute SIs ranging from 88.47 87.76% to 

96.41 %, the mean absolute SI of 𝑉𝑐𝑚𝑎𝑥25 is more thanabout three times that of VJ_slope, which are 27.67 29.71%. In contrast, 

the average absolute SIs of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 , f_leaf and 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟  are much lower, with 11.13 54%, 8.30 95% and 2.96 3.05% 490 

respectively.  

Unlike the great variability of the posterior 𝑉𝑐𝑚𝑎𝑥25 and VJ_slope, the SIs of these two parameters are stable, especially at the 

same site. At US-Ha1, for example, the difference between the SIs of 𝑉𝑐𝑚𝑎𝑥25 and VJ_slope in its two experiments were all 

smaller than 0.54 3.05%. Furthermore, 𝑉𝑐𝑚𝑎𝑥25 has the smallest magnitude of variation in SIs among the five parameters with 

the standard deviation of the SIs of 2.25 62%, despite its SIs are of a much larger order of magnitude. With the SIs ranging 495 
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from 20.62 12.05% to 33.78 45.71% and 4.17 0.94% to 11.99 % (with the exception of DK-Sor),14.43%, VJ_slope and f_leaf 

also play important roles in the modelling of COS. As for 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟, their SIs varied considerably across sites 

and even across experiments at the same site. For example, the absolute SIs of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 are as high as 30.80 % and 34.04 % at 

the C3 grass sites AT-Neu and ES-Lma., respectively. On the contrary, the mean absolute SI of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 is only 1.95 2.59% at 

FI-Hyy. Yet, the absolute SIs of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 of FI-Hyy varies considerably across the experiments, ranging from 0.07 06% to 7.99 500 

10.46%.  

Our results also suggest that f_leaf tends to play a more important role in the COS assimilation at the forest sites (except 

DK--Sor, including FI-Hyy, US-Ha1 and US-Wrc) compared to the low-stature vegetation type sites (including AT-Neu, ES-

Lma and IT-Soy), with the mean absolute SIs about two times than that of the latter. With thea mean absolute SIs ranging 

fromSI of 93.00 % to 96.41 44%, 𝑉𝑐𝑚𝑎𝑥25 is also observed to be more sensitive at the forest sites. Specifically, the largest SI 505 

of 𝑉𝑐𝑚𝑎𝑥25 was observed at DK-Sor, while the SIs of VJ_slope and f_leaf of DK-Sor are noticeably lower than that of other 

sites, at 12.05 % and 0.94 %, respectively.  

3.6 Comparison and evaluation of simulated GPP  

For single-site experiments, both the prior and posterior GPP simulations performed well in modelling the daily variation and 

diurnal cycle of GPP, with mean 𝑅2  of 0.8083 and 0.7881, respectively (Figure 65 and Figure S3S2). The discrepancy 510 

between simulations and observations was substantially reduced by the assimilation of COS, from mean RMSE of 7.436.71 

umol m−2 s−1 in the prior case to 5.3402 umol m−2 s−1 in the posterior case. Similar to COS, the mean of prior simulated 

GPP is also generally larger than the observed. With the assimilation of COS, the bias between the observed and simulated 

GPP was effectively corrected, with the reduction in mean absolute MB from 4.313.83 umol m−2 s−1 to 2.2846 umol m−2 s−1. 

In general, the GPP performance was improved for most of the single-site experiments (12 of 13), with RMSE reductions 515 

ranging from 3.81 % to 64.27 58.56%. Across all single-site experiments performed at evergreen needleleaf forest sites, the 

posterior GPP simulations were remarkably improved, with an averaged RMSE reduction of 42.00 37.05%. At the deciduous 

broadleaf forest sites (DK-Sor and US-Ha1), the posterior simulated GPP also achieved a better fit with the GPP derived from 

EC observations, with an averaged RMSE reduction of 20.95 22.16%. However, for experiments conducted on low-stature 

vegetation types (including C3 grass and C3 crop), the assimilation of COS is less effective in constraining the modelled GPP. 520 

At ES-Lma and IT-Soy, the RMSEs of the posterior simulated GPP are slightly lower than the prior, with reduction ratios of 

8.60 % and 3.81 %, respectively. At AT-Neu, the addition of COS observation shifted the GPP simulations away from the 

GPP derived from EC observations, with the RMSE increasing from 3.48 umol m−2 s−1 to 5.97 umol m−2 s−1. (Figure 5a).  

Covering different years or months, the single-site experiments performed at FI-Hyy and US-Ha1 provided an opportunity to 

analyze inter-annual and seasonal variation in the simulated and observed GPP. At US-Ha1, the prior simulations 525 

overestimated GPP in both July 2012 and July 2013, by 21.26 % and 42.02 38.41% respectively. With the assimilation of COS, 

the modelled COS exhibited substantial decreases. In parallel, the model-observation difference of GPP also reduced, by 12.36 % 

and 24.46 28.10%, respectively. However, the posterior simulated GPP appeared to be underestimated. by 20.08%. At FI-Hyy, 

a total of six single-site experiments were conducted between 2013 and 2017, five of them in July and one in August 2014. 

The observed GPP shows little inter-annual variation in July from 2013 to 2017, with the mean ranging from 8.30 530 

umol m−2 s−1 to 9.15 umol m−2 s−1. In August 2014, the GPP observations were noticeably lower than that in July, with a 

mean of 6.43 umol m−2 s−1 . As for simulations, the model tends to overestimate GPP, with MBs ranging from 2.79 

umol m−2 s−124 to 5.253.59 umol m−2 s−1. After the assimilation of COS, the overestimation of the COS simulation for FI-

Hyy were effectively corrected, with the mean absolute MBs of 1.0153 umol m−2 s−1. However, with a low SWC in August 

2014, the prior simulated COS were obviously overestimated by 41.06 37.04%, which led to remarkable downward 535 
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adjustments of 𝑉𝑐𝑚𝑎𝑥25 as well as VJ_slope. Thus, the simulated GPP were also markedly downgraded by 53.54 55.38% in 

August 2014, ultimately resulting in the underestimation of the single-site posterior simulated GPP (Figure 6f5f). 

In the two-site experiment, the model-observation differences of GPP for both FI-Hyy and US-Wrc were reduced by the 

assimilation of COS, (Figure 5f and Figure 5m), with RMSE reductions of 39.90 % and 42.69 96% and 43.11%, respectively. 

These RMSE reductions are even higher than those in the corresponding single-site experiments, by 55.08 35.21% for FI-Hyy 540 

and 16.31 0.13% for US--Wrc. These results suggest that simultaneous assimilation using COS observations from two sites 

can also improve GPP simulations, and the assimilation can be more robust than the single-site assimilation because the 

possibility of over-fit local noise is reduced.  

Overall, the assimilation of ecosystem COS flux datafluxes improved the simulation of GPP in both single-site experiments 

and the two-site experiment. However, the assimilation effects vary considerably for different sites and even for different 545 

periods within the same site. Our results suggest the assimilation of COS is able to provide strong constrain to the modelling 

of GPP at forest sites, with an average RMSE reduction of 36.62 32.58%. In contrast, at the low-stature vegetation type 

(including C3 grass and C3 crop) sites, the assimilation of COS is less effective in constraining the GPP simulations. 

3.7 Comparison and evaluation of simulated LE and H 

In order to verify the impact of COS assimilation on stomatal conductance and energy balance, observations of LE and H were 550 

compared to the prior and posterior model outputs. Results showed that the assimilation of COS is generally able to improve 

both latent and sensible heat, whether in single-site experiments or the two-site experiment (Figure S4-S7). The assimilation 

is more effective in reducing the model-observation difference of LE, with the average RMSE decreasing from 89.55 W m−2 

to 73.94 W m−2, while for H, the average RMSE only decreased from 103.10 W m−2 to 98.02 W m−2. However, the average 

𝑅2of the simulated H increased noticeably from 0.39 in the prior case to 0.46 in the posteriori case, while that of LE slighted 555 

decreased from 0.65 to 0.64. 

Results show that the BEPS model can simulate the daily variations of LE and H as well as the diurnal cycle of LE well, while 

the diurnal cycle of H is relatively poorly simulated. The prior simulation tends to overestimate LE during the daytime, and to 

exhibit short-time fluctuations in H that is not present in the observations. On average across all experiments, the prior 

simulated LE is overestimated by 31.60 W m−2  while the prior simulated H is underestimated by 37.28  W m−2 . The 560 

overestimation of LE and the underestimation of H are particularly apparent at the evergreen needleleaf forest sites (FI-Hyy 

and US-Wrc). At FI-Hyy and US-Wrc, the model-observation biases are more pronounced for H, with an averaged MB of -

66.36 W m−2 than for LE with the averaged MB of 51.09 W m−2. For the deciduous broadleaf forest sites DK-Sor and US-

Ha1, the prior simulations of H both fit well with the observations, with a maximum absolute MB of only 17.88 W m−2. 

However, the prior simulations tend to overestimate LE at US-Ha1, with a mean MB of 47.18 W m−2.  565 

In general, the single-site assimilation of COS effectively corrected the biases in the prior simulations of H and LE, and the 

correction are primarily reflected at daytime. Moreover, the correction was particularly effective for the evergreen needleleaf 

forest sites. On average across the ENF sites, the overestimation of LE and the underestimation of H were effectively corrected 

through the assimilation of COS, by 19.71 W m−2 and 18.38 W m−2, respectively. At the DBF site US-Ha1, the simulation of 

LE increased by 38.07 W m−2 after the assimilation of COS, which considerably corrected the overestimation of the prior LE 570 

simulation. In contrast, the modelled H decreased by an average of 37.56 W m−2, and deviated from the H observations in 

July 2013.  

At US-Wrc, the two-site assimilation of COS effectively corrected the overestimation of LE and the underestimation of H in 

the prior simulations, with RMSE reductions of 17.58 % for LE and 22.33 % for H, which is even larger than that of the single-

site optimization and confirms the robustness of the two-site assimilation. Similar to US-Wrc, the LE and H simulations 575 
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obtained with the two-site posterior parameters are also superior to the prior simulations at FI-Hyy, with the RMSE reductions 

of 19.34 % for LE and 5.90 % for H. 

Overall, the BEPS model performed well in simulating the daily variations and diurnal cycle of LE and H, while it tended to 

overestimate LE during the daytime and underestimate H around midday and sunset. Generally, the assimilation of COS could 

effectively improve the simulation of LE and H, whether the assimilation was conducted at single site or at two sites 580 

simultaneously, and this improvement was particularly noticeable for LE. We also observed that the simulated LE was always 

adjusted in the same direction as the COS, while H was adjusted in the opposite direction.  

3.8 Comparison and evaluation of simulated SWC 

The influence of COS assimilation on the modelling of SWC was assessed by comparing hourly SWC observations with hourly 

simulations of SWC. The assessments were carried out at all sites except US-Ha1, where no soil water observations were 585 

available. Results show the impact of COS assimilation on the modelling of SWC varies considerably by site and by period at 

the same site (Figure S8). Our results also suggested that the assimilation of COS is able to improve the simulation of SWC 

and this improvement is closely linked to the improved simulation of LE. However, with the considerable adjustment of soil 

hydrology related parameters, the posterior simulated SWC also deviated noticeably from observations at several sites, i.e., 

AT-Neu. 590 

Results show that the model can roughly follow the soil moisture trend (Figure S8). However, the simulated SWC exhibited 

a clear diurnal cycle whereas the observed SWC had almost no diurnal fluctuations. In response to the overestimation of LE 

at the ENF sites, the prior simulations underestimated the SWC in most (6/7) of the single-site experiments conducted at ENF 

sites. As the overestimation of LE was effectively corrected by the assimilation of COS, the decline in soil moisture slowed 

down, leading to the posterior SWC simulation being higher than the prior in the majority (6/7) of experiments. This conclusion 595 

was confirmed by the experiment at FI-Hyy in July 2015, in which the soil hydrology-related parameters 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟  and 

𝑏𝑠𝑐𝑎𝑙𝑎𝑟 were adjusted as low as -0.0026 % and -0.0717 %, respectively. On the contrary, the soil hydrology-related parameters 

were considerably adjusted in the single-site experiment at FI-Hyy in July 2016, with relative changes of 18.13 % and -69.86 % 

for 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟, respectively. As a result, the corresponding posterior soil moisture simulations declined rapidly 

and deviated markedly from observations. Similar adjustment results for soil hydrology-related parameters were also observed 600 

at the C3 grass sites (AT-Neu and ES-Lma), with mean relative changes in 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 at these two sites of 26.32 % 

and 71.73 %, respectively. Accordingly, the posterior SWC simulations also show rapid declines and deviated from 

observations. 

4 Discussion 

4.1 Parameter changes  605 

As mentioned before, our results show 𝑉𝑐𝑚𝑎𝑥25  was tuned the most in both the single-site experiments and the two-site 

experiments, with the mean absolute relative change of 44.59 %, followed by VJ_slope and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 and VJ_slope.. This is 

because COS plant fluxes are much larger than COS fluxes of soil in general (Whelan et al., 2016; Whelan et al., 2018) and 

the soil hydrology-related parameters cannot directly influence the COS plant uptake.(Whelan et al., 2016; Whelan et al., 2018; 

Spielmann et al., 2019; Kooijmans et al., 2021; Ma et al., 2021; Maignan et al., 2021; Remaud et al., 2022) and the soil 610 

hydrology-related parameters cannot directly influence the COS plant uptake. Therefore, the assimilation of the COS flux 

mainly changed the parameters related to COS plant uptake rather than texture-dependent parameters that relate to soil COS 
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flux to minimize the cost function. However, the adjustment of soil hydrology related parameters should not be neglected as 

well, as they play an important role in minimizing the discrepancy between COS simulations and observations. 

As shown in Figure 3, the prior simulations underestimated COS fluxes at nighttime for many sites, i.e., FI-Hyy. On the one 615 

hand, this is due to the substantial gap between current modelled COS soil fluxes and observations (Whelan et al., 2022). On 

the other hand, this also stems from the fact that the nighttime stomatal conductance was set to a low and constant value (1 

mmol m−2 s−1 ) in the BEPS model. As a result, the discrepancy between nighttime ecosystem COS simulations and 

observations could not be reduced by adjusting photosynthesis-related parameters to have an effect on stomatal conductance 

modelling. Thus, soil hydrology-related parameters were adjusted to compensate for the differences in both soil and plant 620 

components simultaneously. In this study, the COS soil model proposed by Whelan et al. (2016) and Whelan et al. (2022) was 

utilized, in which the optimal SWC for soil COS biotic uptake was set to 12.5 (%) for both grass and needleleaf forest.. Such 

an optimal SWC value is much lower than the prior simulated SWC, as shown in Figure S8.S7a and Figure S7c. Therefore, 

the soil hydrology-related parameters were considerably tuned at AT-Neu and ES-Lma, resulting in a rapid decline in the 

posterior SWC simulation to a level comparable to the optimum SWC. 625 

COS plant uptake is governed by the hydrolysis reaction of COS destruction (Wohlfahrt et al., 2012), catalysed by carbonic 

anhydraseCA, though it can also be destroyeddegraded by other photosynthetic enzymes, e.g., RuBisCoRuBisco (Lorimer and 

Pierce, 1989)(Lorimer and Pierce, 1989; Ma et al., 2021), and the reaction is not dependent on light (Stimler et al., 2011; 

Whelan et al., 2018). Yet, given that stomatal conductance is simulated from net photosynthetic rate with a modified version 

(Woodward et al., 1995; Ju et al., 2010) of the Ball-Woodrow-Berry (BWB)BB model (Ball et al., 1987) in BEPS, the 630 

adjustment of light reaction related parameters (VJ_slope and f_leaf) can therefore indirectly affect the simulation of COS 

plant uptake by influencing the calculation of stomatal conductance. According to Ryu et al. (2018), f_leaf varies little in 

reality and is usually between 41 % and 53 % on an annual mean scale. In our assimilation experiments, the optimized f_leaf 

values were distributed between 42.50 92% and 51.28 %, consistent with this study. In contrast, the other light reaction related 

parameter VJ_slope, has a much wider range of variation, with relative changes ranging from -58.23 65.70% to 35.18 %. 635 

We noticed remarkably different optimization results for photosynthesis-related parameters in the experiments conducted in 

July 20152013 and July 20172014 at FI-Hyy, especially for 𝑉𝑐𝑚𝑎𝑥25 and VJ_slope. In these two experiments, the difference 

in the relative change in both 𝑉𝑐𝑚𝑎𝑥25 is more than 20%, and that in VJ_slope is as high as 37.04more than 39%. However, 

these different adjustments to the parameter set caused similar impact on COS simulations, leading to the latter being reduced 

by 12.51 13.38% and 10.43 24.22% in July 20152013 and July 20172014, respectively. These results revealed the ‘equifinality’ 640 

(Beven, 1993) of the inversion problem at hand, i.e. the fact that different combinations of parameter values can achieve a 

similar fit to the COS observations. Assimilation of further observational data streams is expected to reduce the level of 

equifinality by differentiating between such combinations of parameter values that achieve a similar fit to COS observations. 

4.2 Parameter sensitivity 

It has been provedproven that photosynthetic capacity simulated by terrestrial ecosystem models is highly sensitive to 𝑉𝑐𝑚𝑎𝑥, 645 

𝐽𝑚𝑎𝑥, and light conditions (Zaehle et al., 2005; Bonan et al., 2011; Rogers, 2014; Sargsyan et al., 2014; Koffi et al., 2015; 

Rogers et al., 2017)(Zaehle et al., 2005; Bonan et al., 2011; Rogers, 2014; Sargsyan et al., 2014; Koffi et al., 2015; Rogers et 

al., 2017). Therefore, it is expected that 𝑉𝑐𝑚𝑎𝑥25, VJ_slope, and f_leaf would markedly affect the optimization results, as these 

parameters ultimately have an impact on the simulation of plant COS uptake by influencing the estimation of photosynthesis 

capacity and stomatal conductance. Specifically, results of Wang et al. (2004), Verbeeck et al. (2006), Staudt et al. (2010), 650 

Han et al. (2020) and Ma et al. (2022) showed that the simulated photosynthetic capacity was generally more sensitive to 𝐽𝑚𝑎𝑥 

and light conditions than to 𝑉𝑐𝑚𝑎𝑥. However, due to the differences in the physiological mechanisms of COS plant uptake and 
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photosynthesis, e.g., the hydrolysis reaction of COS by carbonic anhydraseCA is not dependent on light, the sensitivities of 

the two processes with respect to the model parameters may differ considerably although they are tightly coupled. Indeed, our 

adjoint sensitivity results suggest that the same change of 𝑉𝑐𝑚𝑎𝑥25 is capable to influenceof influencing the assimilation results 655 

to a greater extent than of VJ_slope and f_leaf. This result can be attributed to the model structure that 𝑉𝑐𝑚𝑎𝑥25 not only affects 

the estimation of stomatal conductance through photosynthesis, but is also used to characterize mesophyll conductance and 

CA activity due to their linear relationships with 𝑉𝑐𝑚𝑎𝑥 (Badger and Price, 1994; Evans et al., 1994; Berry et al., 2013).(Badger 

and Price, 1994; Evans et al., 1994; Berry et al., 2013). In addition, such a large sensitivity ofin 𝑉𝑐𝑚𝑎𝑥25 also indicates the 

importance of accurate modelling of the apparent conductance of COS for ecosystem COS flux simulation. 660 

As for 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟, they also play an important role in the assimilation of COS since the SWC simulations of BEPS 

are sensitive to Ksat and b (Liu et al., 2011), and SWC is the primary factor for COS soil biotic flux modelling (Whelan et al., 

2016). However, as the soil COS exchange is generally much smaller than COS plant uptake (Whelan et al., 2018) and the 

parameter scheme provided by Whelan et al. (2022) sets different empirical parameter values (See Table S3 for details) 

depending on the PFTs, the SIs of 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 differs considerably across PFTs, and are overall lower than those 665 

of photosynthesis related parameters. 

In Sect 3.5, we mentioned that the light reactionradiation related parameter f_leaf tend to play more essential roles in the 

assimilation of COS at the forest sites. Actually, similar features were found in the sensitivity of photosynthesis to radiation, 

i.e.Similar findings by Sun et al. (2019) found that the simulated GPP was more sensitive to radiation at forested vegetation 

types and less sensitive at low-stature vegetation types (Sun et al., 2019).. Particularly, the simulated GPP was also found to 670 

be highly sensitive to variations of radiation at low radiation conditions (Koffi et al., 2015). 

4.3 Impacts of COS assimilation on ecosystem carbon, energy and water cycles 

Due to the physiological basis that COS is taken up by plants through the same pathway of stomatal diffusion as CO2, the 

assimilation of COS was expected to optimize the simulation of GPP. It was confirmed by our single-site and the two-site 

experiments conducted in a variety of ecosystems, including evergreen needleleaf forest, deciduous broadleaf forest, C3 grass 675 

and C3 crop. However, limited by many factors, such as the observation errors of the COS fluxes, the assimilation of COS 

does not always improve the simulation of GPP, i.e., at AT-Neu site. 

Similar to the photosynthesis, the transpiration is also coupled with the COS plant uptake through stomatal conductance. But 

the difference is that after CO2 is transported to the chloroplast surface, it continues its journey inside the chloroplast, and is 

eventually assimilated in the Calvin cycle (Wohlfahrt et al., 2012; Kohonen et al., 2022). Based on the BWBBB model, 680 

photosynthesis-related parameters only indirectly influence the calculation of stomatal conductance through photosynthesis in 

our model. Thus, the transpiration related variable LE,ET was not optimized as dramatically as GPP in the assimilation of 

COS. 

 In comparison, the RMSEs of GPP simulations were reduced by an average of 25.37 % within the 23.54% as a result of 

assimilation of COS, while that of LE were reduced% but reducing ET by only 16.27 68%. Moreover, as transpiration rate and 685 

leaf temperature change show a linear relationship (Kümmerlen et al., 1999; Prytz et al., 2003) and surface-air temperature 

difference is a key control factor for sensible heat fluxes (Campbell and Norman, 2000; Arya, 2001; Jiang et al., 

2022)(Campbell and Norman, 2000; Arya, 2001; Jiang et al., 2022), the optimization for transpiration can therefore improve 

the simulation of leaf temperature and consequently improve the simulation of sensible heat flux. 

Driven by the difference in water potential between the atmosphere and the substomatal cavity (Manzoni et al., 2013), the 690 

water is taken up by the roots, flows through the xylem, and exits through the leaf stomata to the atmosphere in the 

soil--plant--atmosphere continuum via evapotranspiration (Daly et al., 2004). Thus, when plants transpire, the water potential 
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next to the roots decreases, driving water from bulk soil towards roots (Carminati et al., 2010) and reducing soil moisture. 

Certainly, soil moisture dynamics are also influenced by soil evaporation and leakage during inter-storm periods under ideal 

conditions (Daly et al., 2004). However, studies have shown that transpiration represents 80 to 90 percent of terrestrial 695 

evapotranspiration (Jasechko et al., 2013) and evaporation is typically a small fraction of transpiration for well-vegetated 

ecosystems (Scholes and Walker, 1993; Daly et al., 2004). Based on current knowledge of leakage, for example the relationship 

between leakage and the behavior of hydraulic conductivity (Clapp and Hornberger, 1978), extremely small adjustments of 

Ksat and b, i.e., with relative changes of -% 0.0026 0057% for 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and -0.0717 057% for 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 in July 2015 at FI-

Hyy, hardly caused any change in leakage. Therefore, our results indicate that the assimilation of COS not only can markedly 700 

improve the modelling of stomatal conductance and transpiration, but it can also ultimately improve SWC predictions. 

However, our results also show that there are remarkableobvious discrepancies between the ecosystem COS flux simulations 

and observations, and that discrepancies cannot be effectively reduced by the adjustment by the photosynthesis related 

parameters duo to the simplification of BPESBEPS for nighttime stomatal conductance modelling. As a result, it was also 

observed that the soil hydrology related parameters were drastically adjusted to minimize the discrepancy of COS simulations 705 

and observations, which instead biased the SWC simulations away from observations, for example, as shown in Figure S7a 

and Figure S7c. 

4.4 Impacts of leaf area index data on parameter optimization 

As an essential input data of the BEPS model, LAI products have been demonstrated to be a source of uncertainty in the 

simulation of carbon and water fluxes (Liu et al., 2018). Therefore, it is necessary to investigate the influence of LAI on our 710 

parameter optimization results, as the LAI is directly related to the simulation of COS and the discrepancy between COS 

simulations and COS observations is an essential part of the cost function. Here we collected three widely used satellite-derived 

LAI products (GLOBMAP, GLASS and MODIS) and the means of in situ LAI during the growing seasons or during the COS 

measurement periods for these sites (see Table 1). These in situ LAI means were used to drive the BEPS model along with 

the other three satellite-derived LAI products, with the assumption that they are representative of the LAI values during the 715 

assimilation periods. The configurations of those assimilation experiments were the same as those listed in Table 2, so that a 

total of 52 single-site experiments were conducted. All experiments were successfully performed, and the results were shown 

in Figure 7 and Figure S9S8. 

We found that the posterior 𝑉𝑐𝑚𝑎𝑥25 significantly correlated with the LAI (𝑅2 = 0.1722, P < 0.01) whilst there was no apparent 

relationship between the optimization results of the other three parameters and the LAI. As mentioned before, the LAI is 720 

directly related to the simulation of COS and thus influences the optimal values of the parameters. Therefore, the correlations 

of LAI with these parameters reflects the robustness of the constraint abilities of COS assimilation with respect to them. These 

results suggest that the assimilation of COS is able to provide strong constraints on 𝑉𝑐𝑚𝑎𝑥25 , while it constrains other 

parameters (VJ_slope, 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟, 𝑏𝑠𝑐𝑎𝑙𝑎𝑟, f_leaf) weakly, although they also considerably changed by the assimilation. In 

conclusion, our results suggest that the uncertainty in satellite-derived LAI not only can exert large impacts on the modelling 725 

of water-carbon fluxes (Wang et al., 2021), but also is an important source of the uncertainty in the parameter optimization 

results when performing data assimilation experiments with ecosystem models driven by LAI. 

4.5 Caveats and implications 

In general, we found that the assimilation of COS can improve the model performance for GPP, LEET and H for both single-

site assimilation and two-site assimilation. Nonetheless, there are currently limitations that affect the use of COS data for the 730 

optimization of parameters, processes and variables related to water-carbon cycling and energy exchange in terrestrial 
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ecosystem models. For SWC, there is a mixed picture. Affected by the substantial downward adjustment of soil moisture to 

the optimal soil moisture at individual sites (i.e., AT-Neu), the RMSE of soil moisture simulations did not improve on average. 

However, in some experiments (especially those where soil hydrological parameters do not change much, such as the 

experiment conducted at FI-Hyy in July 2015), SWC simulations did improve with the assimilation of COS.  735 

The assimilation of COS fluxes relies on the availability and quality of field observations. As both COS plant uptake and COS 

soil exchange are modelled within NUCAS and the data assimilation was performed at the ecosystem scale, a large number of 

accurate measurements of both COS soil flux and COS plant flux are essential for COS assimilation and model evaluation. 

However, at present, we face a serious lack of COS measurements (Brühl et al., 2012; Wohlfahrt et al., 2012). More laboratory 

and field measurements are needed for better understanding of mechanistic processes of COS. Besides, the existing COS flux 740 

datafluxes were calculated based on different measurement methods and data processing steps, which poses considerable 

challenges for comparing COS flux measurements across sites. Particularly, as only raw COS concentrations were provided 

and a correction approach was employed, the estimated COS fluxes at US-Wrc may subject to considerable uncertainties. 

Standardization of measurement and processing techniques of COS is therefore urgently needed (Kohonen et al., 2020) is 

therefore urgently needed..  745 

In this study, the prior uncertainty of observation was estimated by the standard deviation of ecosystem COS fluxes within 24 

hours with the assumption of a normal distribution. However, Hollinger and Richardson (2005) suggested that flux 

measurement error more closely follows a double exponential than a normal distribution. Kohonen et al. (2020) showed that 

the overall uncertainty in the COS flux varies with the sign (uptake or release) as well as the magnitude of the COS flux. 

Furthermore, there is a lack of understanding of the prior uncertainty for certain model parameters, such as VJ_slope, which 750 

makes the uncertainty estimates subject to potentially large errors. In conclusion, we should be more careful in considering the 

distribution and the magnitude of the prior uncertainty of observations and parameters. 

The spatial and temporal variation in atmospheric COS concentrations has a considerable influence on the COS plant uptake 

(Ma et al., 2021) due to the linear relationship between the two (Stimler et al., 2010). The typical seasonal amplitude of 

atmospheric COS concentrations is ∼ 100–200 parts per trillion (ppt) around an average of ∼ 500 ppt (Montzka et al., 2007; 755 

Kooijmans et al., 2021; Hu et al., 2021; Ma et al., 2021; Belviso et al., 2022)(Montzka et al., 2007; Kooijmans et al., 2021; Hu 

et al., 2021; Ma et al., 2021; Belviso et al., 2022). However, in NUCAS, COS mole fractions in the bulk air are currently 

assumed to be spatially invariant over the globe and to vary annually, which may introduce substantial errors into the parameter 

calibration. Kooijmans et al. (2021) has confirmed that modifying the COS mole fractions to vary spatially and temporally 

markedly improved the simulation of ecosystem COS flux. Thus, we suggest to take into account the variation in COS 760 

concentration and their interaction with surface COS fluxes at high spatial and temporal resolution in order to achieve better 

parameter calibration. 

Currently, there are still uncertainties in the simulation of COS fluxes by BEPS, particularly for nighttime COS fluxes. As the 

nighttime COS plant uptake is driven by stomatal conductance (Kooijmans et al., 2021), the nighttime COS fluxes can therefore 

be used to test the accuracy of the model settings for nighttime stomatal conductance (𝑔𝑛). In the BEPS model, a low and 765 

constant value (1mmol1 mmol m−2 s−1) of 𝑔𝑛 was set for all PFTs. Our simulations of nighttime COS flux indicate that in 

BEPS, 𝑔𝑛 is underestimated to different degrees for different sites. This result is also provedSimilar findings by Resco De 

Dios et al. (2019), which foundshowed that the median 𝑔𝑛 in the global dataset was 40 mmol m−2 s−1. Therefore, utilizing 

COS to directly optimize stomatal related parameters should be perused. Cho et al. (2023) has proven the effectiveness of 

optimizing the minimum stomatal conductance as well as other parameters by the assimilation of COS. Besides, with the 770 

argument thatAs different enzymes have different physiological characteristics, Cho et al. (2023) proposed a new temperature 

function for the CA enzyme and showcase the considerate difference in temperature response of enzymatic activities of CA 
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and RuBisCo enzyme, which also provided valuable insights into the modelling and assimilation of COS. In addition, soil 

COS exchange is an important source of uncertainty in the use of COS as carbon-water cycle tracer since carbonic 

anhydraseCA activity occurs in the soil as well (Kesselmeier et al., 1999; Smith et al., 1999; Ogée et al., 2016; Meredith et al., 775 

2019)(Kesselmeier et al., 1999; Smith et al., 1999; Ogée et al., 2016; Meredith et al., 2019). Kaisermann et al. (2018) showed 

that COS hydrolysis rates were linked to microbial C biomass, whilst COS production rates were linked to soil Nnitrogen 

content and mean annual precipitation (MAP). Interestingly, MAP was also suggested to be the best predictor of 𝑔𝑛 inby Yu 

et al. (2019), who found that plants in locations with lower rainfall conditions had higher 𝑔𝑛. Therefore, using the global 

microbial C biomass, soil Nnitrogen content and MAP datasets and, the relationships between these variables, and the 780 

associated COS exchange processes, it is to be expected to achievethat a more accurate modelling of terrestrial ecosystem COS 

fluxes, increase the could be achieved, further increasing our understanding of the global COS budget and facilitate the 

assimilation of COS fluxes. 

5 Conclusions 

Over the past decades, considerable efforts have been made to obtain field observations of COS ecosystem fluxes and to 785 

describe empirically or mechanistically COS plant uptake and soil exchange, which offers the possibility of investigating the 

ability of assimilating ecosystem COS flux to optimize parameters and variables related to the water and carbon cycles and 

energy exchange. In this study, we introduced the NUCAS system, which has been developed based on the BEPS model and 

was designed to have the ability to assimilate ecosystem COS flux datafluxes. In NUCAS, a resistance analog model of COS 

plant uptake and an empirical model of soil COS flux were embedded in the BEPS model to achieve the simulation of 790 

ecosystem COS flux, and a gradient-based 4D-Var data assimilation algorithm was implemented to optimize the internal 

parameters of BEPS.  

Fourteen twin experiments, thirteen single-site experiments and one two-site experiment covering the period from 2012 to 

2017, were conducted to investigate the data assimilation capability of NUCAS to assimilate COS fluxes and the optimization 

effect ofoptimize output parameters and variables of NUCAS for. COS flux observations overfrom a range of ecosystems that 795 

containswere used, including four PFTs and three soil textures. Our results show that NUCAS has the ability to optimize 

parameter vectors, and the assimilation of COS can constrain parameters affecting the simulation of carbon and water cycles 

and energy exchange and thus effectively improve the performance of the BEPS model. We found that there is a tight link 

between the assimilation of COS fluxes and the optimization of LEET, which demonstrates the role of COS as an indicator of 

stomatal conductance and transpiration. The improvement of transpirationET can further improve the model performance for 800 

H and SWC, although the propagation of the optimization effect is subject to some limitations. These results highlight the 

broad perspective of COS as a tracer for improving the simulation of variables related to stomatal conductance. Furthermore, 

we demonstrated that COS can provide a strong constraint on 𝑉𝑐𝑚𝑎𝑥25, whereas the adjustment of parameters related to the 

soil hydrology appears to compensate for weaknesses in the model, i.e., the nighttime stomatal conductance set in BEPS model. 

We also proved the strong impact of LAI on the parameter optimization results, emphasizing the importance of developing 805 

more accurate LAI products for models driven by observed LAI. In addition, we made a number of recommendations for future 

improvement of the assimilation of COS. Particularly, we flagged the need for more observations of COS, suggested better 

characterisation of observational and prior parameter uncertainties, the use of varying COS concentrations and the refinement 

of the model for COS fluxes of soil. Specifically, with the lack of separate COS plant and soil flux data, the ecosystem-scale 

COS flux observations were utilized in this study. However, we believe that assimilating the component fluxes of COS 810 

individually should be pursued in the future as this assimilation approach would provide separate constraints on different parts 
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of the model. We expect the observational information on the partitioning between the two flux components to provide a 

stronger constraint than using just their sum. 

Our two-site setup constitutes a challenge for the assimilation system, the model and the observations. In this setup, the 

assimilation system has to determine a parameter set that achieves a fit to the observations at both sites, and NUCAS passes 815 

this important test. It should be noted that the NUCAS was designed as a platform that integrates multiple data streams to 

provide a consistent map of the terrestrial carbon cycle although only ecosystem COS flux datafluxes were used to evaluate 

the performance of NUCAS in this study. The “two-site” assimilation experiment conducted in this study gives us more 

confidence that the calibrated model will provide a reasonable parameter set and posterior simulation throughout the plant 

functional type. In other words, what we present here is a pre-requisite for applying the model and assimilation system at 820 

regional to global scales.  

We noticed the optimization of model parameters faced the challenge of ‘equifinality’ due to the complexity of the model and 

the limited observation data. However, the ‘equifinality’ can be avoided by imposing additional observational constraints 

(Beven, 2006). Indeed, using several different data streams to simultaneously (Kaminski et al., 2012; Schürmann et al., 2016; 

Scholze et al., 2016; Wu et al., 2018; Scholze et al., 2019)(Kaminski et al., 2012; Schürmann et al., 2016; Scholze et al., 2016; 825 

Wu et al., 2018; Scholze et al., 2019) or step-wise (Peylin et al., 2016) to constrain multiple processes in the carbon cycle is 

becoming a focus area in carbon cycle research. Therefore, it is necessary to combine COS with other observations to constrain 

different ecosystem processes and/or exploit multiple constraints on the same processes in order to achieve better modelling 

and prediction of the ecosystem water-carbon cycle and energy exchange. 
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Code availability. The source code for BEPS is publicly available at https://zenodo.org/doi/10.5281/zenodo.8288750, the 

adjoint code for BEPS is available upon request to the correspondence author (mousongwu@nju.edu.cn).  

 

Data availability. Measured eddy covariance Carboy sulfide fluxes data can be found at https://zenodo.org/records/3993111 

for AT-Neu, https://zenodo.org/record/3406990 for DK-Sor, ES-Lma and IT-Soy, https://zenodo.org/record/6940750 for 835 

FI--Hyy, and from the Harvard Forest Data Archive under record HF214 

(https://portal.edirepository.org/nis/mapbrowse?packageid=knb-lter-hfr.214.4) for US-Ha1.The raw COS concentration data 

of US-Wrc can be obtained at https://zenodo.org/record/1422820. The meteorological data can be obtained from the 

FLUXNET database (https://fluxnet.org/) for AT-Neu, DK-Sor, ES-Lma, FI-Hyy and US-Ha1; from the AmeriFlux database 

(https://ameriflux.lbl.gov/) for US-Ha1 (except shortwave radiation data) and US-Wrc; from the ERA5 dataset 840 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview) for AT-Neu, IT-Soy and 

US--Ha1. The evaluation data can be obtained from the FLUXNET database for DK-Sor, ES-Lma, FI-Hyy and US-Ha1; from 

the AmeriFlux database for US-Ha1 and US-Wrc; from https://zenodo.org/records/3993111 for AT-Neu, from 

https://smear.avaa.csc.fi/ for FI-Hyy, from https://zenodo.org/record/6940750 for IT-Soy and from 

https://zenodo.org/record/1422820 for US-Wrc. The H and LE data of AT-Neu and IT-Soy are provided by Felix M. Spielmann 845 

and Georg Wohlfahrt. The GLOBMAP LAI is available at https://zenodo.org/record/4700264#.YzvSYnZBxD8%2F, the 

GLASS LAI is available at ftp://ftp.glcf.umd.edu/, and the MODIS LAI product is available at 

https://lpdaac.usgs.gov/products/mod15a2hv006/. All datasets used in this study and the model outputs are available upon 

request. 
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Figure 1. Schematic of the Nanjing University Carbon Assimilation System (NUCAS). Left: illustration of a two-leaf model coupling 

stomatal conductance, photosynthesis, transpiration and COS uptake, and an empirical model for simulating soil COS fluxes in NUCAS. 

Right: data assimilation flowchart of NUCAS. Ovals represent input (blue-grey) and output data (green). Boxes and the rhombi represent 

the calculation and judgement steps. The solid black line represents the diagnostic process, the solid blue line represents the prognostic 1255 
process, and the input datasets of BEPS (in the dashed box) are used in both diagnostic process and prognostic process. 
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Figure 2. Locations of the 7 studied sites. Sites sharing the same plant function type are represented with consistent colors. The background 

map corresponds to the “Nature color Ⅰ” map (https://www.naturalearthdata.com). ENF and DBF denote evergreen needleleaf forest and 

deciduous broadleaf forest, respectively. 1260 

https://www.naturalearthdata.com/
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Figure 3. The mean diurnal cycle of observed (blue) and simulated COS flux using prior parameters (red) and single-site posterior parameters 

(blue). The size of the circle indicates the number of observations (ranging from 1 to 31) within each circle, and the error bars depict the 

standard deviations in the mean of observations from the variability within each circle if the number of corresponding observations is greater 1265 
than three. Lines connect the mean values of simulations and pale bands depict the standard deviation in the mean of simulations from the 

variability within each bin.  
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Figure 4. The mean diurnal cycle of observed (blue) and simulated COS flux using prior parameters (red), single-site (blue) and two-site 

(green) posterior parameters. The size of the circle indicates the number of observations (ranging from 1 to 31) within each circle, and the 1270 
error bars depict the standard deviations in the mean of observations from the variability within each circle if the number of corresponding 

observations is greater than three. Lines connect the mean values of simulations and pale bands depict the standard deviation in the mean of 

simulations from the variability within each bin. 
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Figure 5.

 

Figure 4. (a) Relative changes of parameters for single-site experiments (bars) and the multi-site experiment (diamond points). (b) 

Sensitivity indexes of parameters at prior values. For sites where multiple single-site experiments were conducted, the ends of the error bars 

and the bar indicate the maximum, minimum and mean of the relative changes of the parameters, respectively. For those sites lacking multi-1280 
year COS observations, no error bars were plotted. The color of bar is drawn according to PFT/texture. 
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Figure 6. The diurnal cycle of observed (blue) and simulated GPP using prior parameters (red), single-site (green) and multi-site (brown) 

posterior parameters. The size of the circle indicates the number of observations within each circle (ranging from 1 to 31), and the error bars 1285 
depict the standard deviations in the mean of observations from the variability within each circle. Lines connect the mean values of 

simulations and pale bands depict the standard deviation in the mean of simulations from the variability within each bin. 
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Figure 7. Influence of LAI on the posterior 𝑉𝑐𝑚𝑎𝑥25 obtained by the single-site experiments conducted at seven sites and driven by four LAI 1290 
data (GLOBMAP, GLASS, MODIS and in situ). The posterior 𝑉𝑐𝑚𝑎𝑥25 and the LAI were represented by their normalized values 𝑁𝑉𝑐𝑚𝑎𝑥25

 

and 𝑁𝐿𝐴𝐼, respectively. The posterior parameters were normalized by their prior values and the LAI were normalized by the in situ values. 

The linear regression fit line of the posterior parameters obtained based on the satellite-derived LAI (GLOBMAP, GLASS and MODIS) 

with the corresponding LAI data is shown, with 95% confidence interval spread around the line.  

 1295 
Table 1. Site characteristics. Site identification includes the country initials and a three-letter name for each site; locations of the sites are 

provided by the latitude (Lat) and longitude (Lon); PFTs covered by the sites are evergreen needleleaf forest (ENF), deciduous broadleaf 

forest (DBF), C3 grass and C3 crop; Soil texture covered by the sites are sandy loam, slit loam and loam. 

Site name AT-Neu DK-Sor ES-Lma FI-Hyy IT-Soy US-Ha1 US-Wrc 

Lat (°N) 47.12 55.49 39.94 61.85 45.87 42.54 45.82 

Lon (°E) 11.32 11.64 -5.77 24.29 13.08 -72.17 -121.95 

PFT C3 grass DBF C3 grass ENF C3 crop DBF ENF 

Soil texture Sandy loam Sandy loam Sandy loam Sandy loam Slit loam Sandy loam Loam 

LAI* 3.88 5.0 1.82 4.0 2.3 5.0 8.7 

Year 2015 2016 2016 2013-2017 2017 2012-2013 2014 

References 
(Spielmann et 

al., 2020) 

(Spielmann et 

al., 2019) 

(Spielmann et 

al., 2019) 

(Sun et al., 2018; 

Vesala et al., 2022; 

Kohonen et al., 

(Spielmann et 

al., 2019; Abadie 

et al., 2022) 

(Commane et al., 

2015; Wehr et 

al., 2017) 

(Shaw et al., 

2004; Rastogi et 

al., 2018) 
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2022)(Sun et al., 

2018; Vesala et al., 

2022; Kohonen et al., 

2022) 

* Mean one-sided LAI (m2 m−2) during the experimental period 

Table 2. The configuration and the relative changes (%) of the parameters for each single-site assimilation experiment. The cost function 1300 
reduction of each experiment is indicated by the reduction rate between the initial value of cost function (𝐽𝑖𝑛𝑖𝑡𝑖𝑎𝑙) and the final value of cost 

function (𝐽𝑓𝑖𝑛𝑎𝑙), defined as 1 − 𝐽𝑓𝑖𝑛𝑎𝑙 𝐽𝑖𝑛𝑖𝑡𝑖𝑎𝑙⁄ , and 𝑁𝐶𝑂𝑆 denotes the number of ecosystem COS flux observations.  

Site name Assimilation window 𝑁𝐶𝑂𝑆 Cost function reduction (%) 
Relative change (%) of parameters 

𝑉𝑐𝑚𝑎𝑥25 VJ_slope 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 f_leaf 

AT-Neu June 2015 493 16.39  67.69  5.10  15.57  -78.13  -1.01  

DK-Sor June 2016 509 9.46  50.77  -0.47  21.54  14.23  -5.97  

ES-Lma May 2016 445 15.70  127.80  35.18  37.08  -65.33  10.05  

FI-Hyy 

July 2013 506 4.875.88  32.5525.50  13.15-65.70  21.600.37  -44.724.25  -0.947.89  

July 2014 504 7.7420.17  -13.4224.96  -25.4826.39  -1.583.82  0.9016.24  -8.806.12  

August 2014 166 40.5938.86  -41.0924.84  -19.1056.81  4.027.79  16.844.46  -6.211.52  

July 2015 492 50.945.53  -42.446.43  -41.0350.25  8.650.01  5.07-0.06  -1.660.26  

July 2016 430 5.734.37  12.4511.47  -58.2353.16  -0.0017  -0.0763  -0.6537  

July 2017 527 18.942.84  -33.3221.70  -13.4851.74  18.130.01  -69.860.01  -1.606.98  

IT-Soy July 2017 250 6.35  -7.88  -21.20  0.03  -0.45  -4.14  

US-Ha1 
July 2012 333 44.14  -51.89  16.08  12.05  -43.31  -1.44  

July 2013 397 69.0563.73  -62.0858.67  10.0016  15.3916.93  -60.58.33  -1.8271  

US-Wrc August 2014 701 27.71  -42.77  14.52  -1.04  2.45  -3.39  

Table 3. The configuration and the relative changes (%) of the parameters for the multi-site assimilation experiment at FI-Hyy and US-Wrc. 

𝑵𝑪𝑶𝑺 denotes the total number of ecosystem COS flux observations.  

Site name Assimilation window 𝑁𝐶𝑂𝑆 Cost function reduction (%) 
Relative change (%) of parameters 

𝑉𝑐𝑚𝑎𝑥25 VJ_slope 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 f_leaf 

FI-Hyy 
August 2014 867 28.2917  -41.3674 2.963.36 

17.3212.57  5.5657  
-6.2881 

US-Wrc -1.3691  -2.6075  

 1305 

Appendix: Stomatal conductance and soil hydrology modelling in BEPS, including parameters to be optimised 

In the BEPS model, the leaf stomatal conductance to water vapor (𝑔𝑠𝑤 in mol m−2 s−1) is estimated using a modified version 

of Ball-Berry (BB) empirical model (Ball et al., 1987) following Woodward et al. (1995): 

𝑔𝑠𝑤 = 𝑏𝐻2𝑂 + 
 𝑚𝐻2𝑂 𝐴  𝑅ℎ 𝑓𝑤

𝐶𝑎

(A1) 

where 𝑏𝐻2𝑂 is the intercept of the BB model, representing the minimum 𝑔𝑠𝑤 (mol m−2 s−1), 𝑚𝐻2𝑂 is the empirical slope pa-1310 

rameterprameter in the BB model (unitless), 𝑅ℎ is the relative humidity at the leaf surface (unitless), 𝑓𝑤 is a soil moisture stress 

factor describing the sensitivity of 𝑔𝑠𝑤 to soil water availability (Ju et al., 2006), 𝐶𝑎 is the atmospheric CO2 concentration 

(μmol mol−1), and the net photosynthesis rate (A) is calculated using the Farquhar model (Farquhar et al., 1980; Chen et al., 

1999): 

𝐴 = min(𝐴𝑖 , 𝐴𝑗) − 𝑅𝑑  (A2) 1315 

𝐴𝑐 = 𝑉𝑐𝑚𝑎𝑥  
𝐶𝑖 − 𝛤𝑖

∗

𝐶𝑖 + 𝐾𝑐 (1 +
𝑂𝑖

𝐾𝑜
)

 (A3)
 

𝐴𝑗 = 𝐽
𝐶𝑖 − 𝛤𝑖

∗

4(𝐶𝑖 − 2𝛤𝑖
∗)

 (A4) 
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where 𝐴𝑖 and 𝐴𝑗 are Rubisco-limited and RuBP-limited gross photosynthetic rates (μmol m−2s−1), respectively. 𝑅𝑑 is leaf 

dark respiration (μmol m−2s−1). 𝑉𝑐𝑚𝑎𝑥  is the maximum carboxylation rate of Rubisco (μmol m−2s−1); J is the electron 

transport rate ( μmol m−2s−1 ); Ci and Oi are the intercellular carbon dioxide (CO2) and oxygen (O2) concentrations 1320 

(mol mol−1), respectively; Kc and Ko are Michaelis–Menten constants for CO2 and O2 (mol mol−1), respectively. 

The electron transport rate, J, is dependent on incident photosynthetic photon flux density (PPFD, μmol m−2s−1) as: 

J =  
𝐽𝑚𝑎𝑥 𝐼

𝐼 + 2.1𝐽𝑚𝑎𝑥
 (A5) 

where 𝐽𝑚𝑎𝑥  is the maximum electron transport rate (μmol m−2s−1), 𝐼  is the incident PPFD calculated from the incident 

shortwave radiation 𝑅𝑆𝑊 (W m−2): 1325 

𝐼 = 𝛽 𝑅𝑆𝑊 𝑓_𝑙𝑒𝑎𝑓 (A6) 

where 𝛽 = 4.55 is the energy – quanta conversion factor (μmol J−1), f_leaf is the ratio of photosynthesis active radiation to 

the shortwave radiation (unitless).  

The maximum carboxylation rate of Rubisco 𝑉𝑐𝑚𝑎𝑥 was calculated according the Arrhenius temperature function and the max-

imum carboxylation rate of Rubisco at 25 ℃ (𝑉𝑐𝑚𝑎𝑥25). 𝑉𝑐𝑚𝑎𝑥 is generally proportional to leaf nitrogen content. Considering 1330 

both the fractions of sunlit and shaded leaf areas to the total leaf area and the leaf nitrogen content vary with the depth into the 

canopy, the 𝑉𝑐𝑚𝑎𝑥 values of sunlit (𝑉𝑐𝑚𝑎𝑥,𝑠𝑢𝑛) and shaded (𝑉𝑐𝑚𝑎𝑥,𝑠ℎ) leaves can be obtained through vertical integrations with 

respect to leaf area index (Chen et al., 2012): 

𝑉𝑐𝑚𝑎𝑥,𝑠𝑢𝑛𝑙𝑖𝑡 =  𝑉𝑐𝑚𝑎𝑥𝜒𝑛𝑁𝑙𝑒𝑎𝑓

𝑘[1 − 𝑒(𝑘𝑛+𝑘)𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡]

(𝑘𝑛 + 𝑘)(1 − 𝑒−𝑘𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡)
 (A7) 

𝑉𝑐𝑚𝑎𝑥,𝑠ℎ𝑎𝑑𝑒𝑑 =  𝑉𝑐𝑚𝑎𝑥𝜒𝑛𝑁𝑙𝑒𝑎𝑓

1
𝑘𝑛

[1 − 𝑒−𝐾𝑛𝐿] −
1

𝑘𝑛 + 𝑘
[1 − 𝑒(𝑘𝑛+𝑘)𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑]

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑 −
1
𝑘

(1 − 𝑒−𝑘𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑)
(A8) 1335 

where 𝜒𝑛 (m2 g−1) is the relative change of 𝑉𝑐𝑚𝑎𝑥 to leaf nitrogen content; 𝑁𝑙𝑒𝑎𝑓 (g m−2) is the leaf nitrogen content at the top 

of the canopy; 𝑘𝑛 (unitless) is the leaf nitrogen content decay rate with increasing depth into the canopy, taken as 0.3; 𝑘 is 

calculated as: 

𝑘 = 𝐺(𝜃)𝛺 𝑐𝑜𝑠(𝜃) (A9) 

where G(𝜃) is the projection coefficient, taken as 0.5, 𝛺 is the clumping index, and 𝜃 is the is the solar zenith angle. 1340 

After 𝑉𝑐𝑚𝑎𝑥 values for the representative sunlit and shaded leaves are obtained, the maximum electronic transport rate for the 

sunlit and shaded leaves are obtained from Medlyn et al. (1999): 

𝐽𝑚𝑎𝑥 =  𝑉𝐽_𝑠𝑙𝑜𝑝𝑒 𝑉𝑐𝑚𝑎𝑥 − 14.2 (A10) 

Soil water availability factor 𝑓𝑤,𝑖 in each layer i is calculated as: 

𝑓𝑤,𝑖 =  
1.0

𝑓𝑖(𝜓𝑖)𝑓𝑖(𝑇𝑠,𝑖)
 (A11) 1345 

where 𝑓𝑖(𝜓𝑖) is a function of matrix suction 𝜓𝑖 (m) (Zierl, 2001), 𝑓𝑖(𝑇𝑠,𝑖) is a function describing the effect of soil temperature 

(𝑇𝑠,𝑖 in ℃) on soil water uptake (Bonan, 1991).  

To consider the variable soil water potential at different depths, the scheme of Ju et al. (2006) was employed to calculate the 

weight of each layer (𝑤𝑖) to 𝑓𝑤: 

𝑤𝑖 =  
𝑅𝑖𝑓𝑤,𝑖

∑ 𝑅𝑖𝑓𝑤,𝑖
𝑛
𝑖=1

(A12) 1350 

where n is the number of soil layer (five were used in this study) of the BEPS model, 𝑅𝑖 is the root fraction in layer i, calculated 

as: 
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𝑅𝑖 = {

1 − 𝑟𝑑𝑒𝑐𝑎𝑦 
100𝑐𝑑𝑖                                        𝑖 = 1

𝑟𝑑𝑒𝑐𝑎𝑦 
100𝑐𝑑𝑖−1 − 𝑟𝑑𝑒𝑐𝑎𝑦 

100𝑐𝑑𝑖         1 < 𝑖 < 𝑛

𝑟𝑑𝑒𝑐𝑎𝑦 
100𝑐𝑑𝑖−1                                             𝑖 = 𝑛

 (A13) 

where 𝑐𝑑𝑖 is the cumulative depth (m) of layer i. In this study, each soil layer depth (from top to bottom) of the BEPS model 

is 0.05 m, 0.10 m, 0.20 m, 0.40 m and 1.25 m, respectively. 1355 

The overall soil water availability 𝑓𝑤 is then calculated as:  

𝑓𝑤 =  ∑ 𝑓𝑤,𝑖𝑤𝑖

𝑛

𝑖=1

 (A14) 

The hydraulic conductivity of each soil layer 𝐾𝑖 (m s−1) is expressed as: 

𝐾𝑖 = 𝐾𝑠𝑎𝑡𝑖 (
𝑠𝑤𝑐𝑖

𝜃𝑠,𝑖
)

2𝑏𝑖+3

 (A15) 

where 𝐾𝑠𝑎𝑡𝑖 is the saturated hydrological conductivity of soil layer i (m s−1); 𝑆𝑊𝐶𝑖 is the volumetric liquid soil water content 1360 

of soil layer i (m s−1); 𝜃𝑠,𝑖 is the porosity of soil layer i (unitless); 𝑏𝑖 is the Campbell parameter for soil layer i, determining 

the change rate of hydraulic conductivity with SWC (unitless). In this study, 𝐾𝑠𝑎𝑡𝑖 and 𝑏𝑖 are expressed as: 

 𝐾𝑠𝑎𝑡𝑖 =  𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟𝐾𝑠𝑎𝑡𝑑𝑓,𝑖 (A16) 

𝑏𝑖 = 𝑏𝑠𝑐𝑎𝑙𝑎𝑟𝑏𝑑𝑓,𝑖 (A17) 

where 𝐾𝑠𝑎𝑡𝑑𝑓,𝑖 and 𝑏𝑑𝑓,𝑖 are the default values of 𝐾𝑠𝑎𝑡𝑖 and 𝑏𝑖 respectively. 1365 


