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We would like to thank both reviewers for their detailed and insightful comments. These 

comments have helped improve and clarify the submitted manuscript. Below we reply to each 

comment point by point, showing the reviewers’ comments in black and our responses in blue. 

Changes to the original manuscript are highlighted in bold blue. Note that the line numbers in 

the response are updated based on the revised manuscript, which we provide with our response.. 

 

We note already here that we reran all our numerical experiments, in response to two comments 

of Reviewer #2, one on the processing of COS flux observations and one on the prior 

uncertainty specified for the parameter f_leaf and to one comment by reviewer # 1 on the size 

of the perturbation for the starting point of the twin experiments. 

 

Reviewer #1 

The paper by Zhu et al. presents an interesting study of data assimilation of carbonyl sulfide 

(COS) using the BEPS model. They used adjoint method to assimilate the COS fluxes as 

NUCAS v1.0. This is a new model tool to the modelling science and is useful for study of 

carbon cycle. The novelty of the model is that it assimilates COS flux to improve the model 

performance of GPP and other model parameters. Therefore, the research is within the scope of 

GMD and could be considered as publishable. However, there are some issues the authors 

should address before publication. 

Response: We thank the reviewer for this comment. We will address these issues in order to 

make this paper publishable in GMD. 

First of all, the adjoint code used in this paper is based on the automatic differentiation tool 

TAPENADE (Hascoët and Pascual, 2013). Yet, the authors did not validate the adjoint method 

or did not write it clearly. The question is: how do you justify that the adjoint codes will produce 

correct optimization? 

Response: We extended the text as follows "In this study, all derivative code is generated from 

the model code by the automatic differentiation tool TAPENADE (Hascoët and Pascual, 2013). 

The derivative with respect to each parameter was validated against finite differences of 

model simulations, which showed agreement within the accuracy of the finite difference 

approximation.” (Line 125-127) 

Secondly, the logic of the paper is lost in some places. Section 3.7 and 3.8 showed results of 

comparison and evaluation of simulated H and LE, and SWC. But it is unclear how data 

assimilation of COS flux can impact those parameters, and the performance is less satisfactory 

than evaluations of COS fluxes and GPP. The question: is there causality between assimilation 

of COS fluxes and H, LE, and SWC? What is your hypothesis that COS fluxes are linked to H, 

LE and SWC? Consider adding details in Section 2.  

Response: Since the leaf exchange of COS, carbon dioxide (CO2) and water vapor are tightly 

coupled though stomata, COS has been proved as a useful tracer of photosynthesis, stomatal 

conductance and transpiration (Sandoval-Soto et al., 2005; Wohlfahrt et al., 2012). 

Transpiration is closely linked to soil moisture because the water it dissipates originates from 

the soil (Berry et al., 2006). This process of water turning from liquid to vapor requires energy, 
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and that energy is a crucial part of the ecosystem latent heat (LE) (Gupta et al., 2018). The 

energy is obtained from the surrounding leaf cells, leading to a decrease in temperature within 

the leaf (so called “cooling effect”) (Gates, 1968; Gupta et al., 2018). Thus, the sensible heat 

(H) can be linked to transpiration since the leaf-to-air temperature gradient is a key control 

factor of it (Monteith and Unsworth, 2013; Dong et al., 2017). Therefore, our hypothesis is that 

the assimilation of COS is expected to improve the modelling of LE, H and SWC due to the 

ability of COS to indicate transpiration and the mechanism of transpiration (i.e. the 

corresponding energy transfer, cooling effect and water source).  

We have added detailed in Section 2.3: “Due to the coupling between leaf exchange of COS, 

CO2 and 𝐇𝟐𝐎, GPP and LE data are selected to evaluate the model performance of COS 

assimilation in this study. In addition, we further explored the ability of COS to constrain 

SWC as well as H simulations since the water dissipated in transpiration originates from 

the soil (Berry et al., 2006) and the transpiration contribute to a decrease in temperature 

within the leaf (so called “cooling effect”) (Gates, 1968; Konarska et al., 2016).” (Line 276-

279) 

Another recent paper By Cho et al. is worthy of a comparison and discussion: Cho, A., 

Kooijmans, L. M. J., Kohonen, K.-M., Wehr, R., and Krol, M. C.: Optimizing the carbonic 

anhydrase temperature response and stomatal conductance of carbonyl sulfide leaf uptake in 

the Simple Biosphere model (SiB4), Biogeosciences, 20, 2573–2594, 

https://doi.org/10.5194/bg-20-2573-2023, 2023 

Response: Based on previous studies on the temperature response of carbonic anhydrase (CA), 

Rubisco enzyme and LRU, Cho et al. (2023) proposed a new COS plant uptake scheme for CA 

with the argument that different enzymes have different physiological characteristics. Through 

data assimilation, they combined COS and GPP observations with the Simple Biosphere model 

(SiB4) simulations to optimize stomatal conductance parameters b0 and b1, empirical 

parameter a, and CA enzyme optimum temperature, and thus improved the model performance 

of stomatal conductance, ‘interior’ conductance, and COS leaf uptake. This study provides new 

insights into achieving accurate modeling of COS plant uptake, which is worthy of comparison 

and discussion. 

Firstly, precise modeling of carbonyl sulfide (COS) is fundamental for the utility of COS 

observations in optimizing model parameters associated with COS. The remarkable 

contribution of Cho et al. (2023) to COS modeling would undoubtedly benefit the work in 

utilizing COS as a probe to explore the ecological processes such as water-carbon exchange 

and energy flow within ecosystems. 

Secondly, while the study by Cho et al. (2023) focused on optimizing COS-related and 

stomatal-related parameters, our investigation concentrates on refining parameters associated 

with photosynthesis and soil hydrology. Although the parameters optimized in our study 

influence stomatal modeling, our results reveal that the optimization of transpiration-related 

variables (LE, H, SWC) is comparatively less successful than that of COS and GPP. The 

insights gained from Cho et al. (2023)'s work underscore the potential for achieving improved 

optimization of transpiration-related variables by utilizing COS to directly constrain parameters 

associated with stomatal conductance.  
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Thus, we extended the text as follows: “This result is also proved by Resco De Dios et al. (2019), 

which found that the median 𝑔𝑛  in the global dataset was 40 mmol m−2 s−1 . Therefore, 

utilizing COS to directly optimize stomatal related parameters should be perused. Cho et 

al. (2023) has proven the effectiveness of optimizing the minimum stomatal conductance 

as well as other parameters by the assimilation of COS. Besides, with the argument that 

different enzymes have different physiological characteristics, Cho et al. (2023) proposed 

a new temperature function for the CA enzyme and showcase the considerate difference 

in temperature response of enzymatic activities of CA and RuBisCo enzyme, which also 

provided valuable insights into the modelling and assimilation of COS.” (Line 701-706) 

Other minor comments: 

Line 142: “For NUCAS, we use the same soil texture” to “we used the same soil texture.” 

Response: Corrected.  

Line 185: the sites used in the study is better to be shown in a Figure to give a general idea of 

the locations of those sites. 

Response: Thanks for your suggestion, we have added such a figure to our manuscript, as shown 

below. 

 

Figure 2. Locations of the 7 studied sites. Sites sharing the same plant function type are represented with 

consistent colors. The background map corresponds to the “Nature color Ⅰ” map 

(https://www.naturalearthdata.com). ENF and DBF denote evergreen needleleaf forest and deciduous 

broadleaf forest, respectively. 

Line 197: “the CO2 and COS mole fractions in the bulk air were assumed to be spatially 

invariant.” What is the value of CO2 and COS mole fractions in your case? 

Response: Thanks for your comment. we extended the text as follows: “The CO2 and COS mole 

fractions in the bulk air were assumed to be spatially invariant over the globe and to vary 

annually. The CO2 mole fraction data utilized in this study are taken from the Global 

Monitoring Laboratory (https://gml.noaa.gov/ccgg/trends/global.html). For the COS 

mole fraction, the average of the COS mole fraction observations from sites SPO (South 

Pole) and MLO (Mauna Loa, United States) was utilized to drive the model, the data are 

publicly available on line at: https://gml.noaa.gov/hats/gases/OCS.html.” (Line 219-223) 

Line 227: “in situ” to “in situ”, and all elsewhere. 

Response: Thanks for your reminder, we have changed to "in situ" throughout the manuscript. 

https://www.naturalearthdata.com/
https://gml.noaa.gov/ccgg/trends/global.html
https://gml.noaa.gov/hats/gases/OCS.html
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Line 284: “For all cases where the PFT is evergreen needleleaf forest, a perturbation ratio of 

0.2 was used. And for the remaining six single-site twin experiments, a perturbation rate of 0.4 

was used.” Please specify the reasons to those perturbation rate as 0.2 or 0.4. 

Response: Thanks for your comment. The settings of the prior parameter uncertainties in this 

study refer to previous studies, e.g., Chen et al. (2022), Ryu et al. (2018). Now, the prior 

uncertainty of most model parameters was set to 25% of the prior value, while the prior 

uncertainty of f_leaf was estimated using the datasets provided by Ryu et al. (2018) and was 

about 7 % of the prior value. These studies also provide us with reference for understanding the 

degree of parameter variability and choosing the perturbation rate. Now, we chose a 

perturbation ratio (0.2) that falls between these two values (7 % and 25 %), but is closer to the 

prior uncertainty with most of the parameters, and reran all the twin experiments.  

Line 440: “very reasonable”. Is there another way to say “very”? 

Response: Thank you for the suggestion. The relevant parts have been re-written in the revised 

manuscript. 

Line 450: “very similar”. The same as Line 440. And check all elsewhere.  

Response: Thanks for your comment. The relevant parts have been re-written in the revised 

manuscript and we have checked all elsewhere.  

Line 513: “assimilation using COS observations from multiple sites can also improve GPP 

simulations, and the assimilation is sometimes”, it is vague to use sometimes to describe results. 

Response: Thanks for your comment. We have reorganized the sentences to avoid vagueness. 

Line 1165: Figure 4, it is not easy to see clearly the green and gray shading. Please consider 

better visualization. 

Response: Thanks for your comment. We have remade our figures so that the results can be 

easily distinguished. 

Line 1170 and 1175: Figure 5 and 6, why there are error bars for some sites but no error bars 

for other sites? 

Response: Thanks for your comment. In this study, FI-Hyy and US-Ha1 are the only two sites 

with multi-year COS observations, which provides an opportunity to investigate the 

optimization results of COS-related parameters and the effectiveness of COS assimilation in 

different years. For these two sites, error bars were plotted to represent the maximum and 

minimum of the posterior parameter values. In contrast, no error bars were plotted for the other 

sites due to the lack of multi-year COS observations. We have described in the manuscript that 

we plotted error bars for sites with multiple years of COS observations. In response to your 

question, we have added a note to the figure legend of the revised manuscript: “For those sites 

lacking multi-year COS observations, no error bars were plotted.” (Line 1177-1178) 

Line 1185: Figure 8. It is hard to see difference between green and gray. The dots in c and f are 

maybe too big. 

Response: Thanks for your comment. We have reorganized the figure using smaller dots and 
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changed the colours for better visualization.  

 

Review #2 

Zhu et al. present a new assimilation model NUCAS v1.0 for simulating carbonyl sulfide (COS) 

fluxes at ecosystem scale. The model is a good addition to the COS modeling pool, but the 

study requires some modifications and the paper lacks important information and is in many 

places too ambiguous and inconsistent. 

Response: We thank the reviewer for this comment. In response to this comment, we have 

refined the manuscript to enhance clarity and ensure consistency. The necessary information 

has been incorporated, rendering the manuscript comprehensive and informative. 

General comments: The paper lacks consistency on terminology used throughout the paper. 

Examples: in Eq. 1 observation is marked with O and model with M while in Eq. 12 they are 

marked with c and s and in Eqs. 14-16 they are marked obs and sim, respectively. Soil moisture 

is sometimes marked with SWC and sometimes as Θ. Section 2.1.3 is full of examples (listed 

below in more detail). This makes the paper very difficult to follow for the reader.  

Response: We thank the reviewer for this comment. To enhance readability, we have revised 

the manuscript to ensure consistency in terminology. In the revised manuscript, we have 

designated observations as 'O' and the model as 'M.' Soil moisture is identified by 'SWC.' 

Furthermore, to mitigate ambiguity with 'C' in Eq.1, we now use 'F' to represent the corrected 

COS fluxes. Additional details regarding the rationale for utilizing corrected COS data from the 

US-Wrc site have been elaborated below. 

The authors model soil and plant COS fluxes separately but only report the total ecosystem flux. 

However, it would be interesting to see the simulated soil and plant fluxes separately and see 

how they compare with measured chamber COS fluxes from the different sites and also with 

e.g. other soil models. 

Response: Thanks for this valuable comment. Actually, there are many difficulties in evaluating 

COS soil and plant fluxes separately for the sites used in this study. The five-year COS 

ecosystem flux data at FI-Hyy provided us an opportunity to investigate the difference of 

assimilation performance of COS. However, the soil COS flux data at FI-Hyy are only available 

in 2015, which makes it impossible for us to separately evaluate COS plant flux and soil flux 

for the vast majority of experiments conducted at FI-Hyy. In addition, Whelan et al. (2022)have 

evaluated the model performance at FI-Hyy in 2015 and US-Ha1 using a similar soil model. At 

US-Wrc, only the raw COS concentration data at different altitudes are provided in Rastogi et 

al. (2018), while the values of the parameters needed to calculate the COS fluxes by the 

aerodynamic gradient method are not provided. Thus, there may be significant biases in our 

estimates of both plant and soil fluxes at US-Wrc. As for DK-Sor, ES-Lma and IT-Soy, a random 

forest regression model was trained for each site in order to simulate the soil COS exchange, 

and only the modelled COS soil fluxes are provided in Spielmann et al. (2019) while the 

observational data for COS soil flux is lacking. Overall, given the insufficient and inconsistent 

availability of separate COS soil and plant data, we face considerable obstacles in separately 
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assessing simulated COS soil and plant fluxes. 

Additionally, in NUCAS, the resistance analog model of COS plant uptake and the empirical 

model of soil COS flux were embedded in the BEPS model, and the model performance of 

these COS models have been evaluated in numerous previous studies (Berry et al., 2013; 

Whelan et al., 2016; Kooijmans et al., 2021; Maignan et al., 2021; Whelan et al., 2022; Chen 

et al., 2023; Cho et al., 2023). These studies have demonstrated the usefulness and robustness 

of these models to simulate COS plant and soil fluxes, thus founded the basis for us to assimilate 

COS ecosystem flux in this study.  

Last but not least, we do agree with your opinion and we also believe that assimilating the 

component fluxes of COS individually should be pursued in the future as this assimilation 

approach would provide separate constraints on different parts of the model. We expect the 

observational information on the partitioning between the two flux component to provide a 

stronger constraint than using just their sum.  

Therefore, we extended the text in the conclusion: “Specifically, with the lack of separate 

COS plant and soil flux data, the ecosystem-scale COS flux observations were utilized in 

this study. However, we believe that assimilating the component fluxes of COS 

individually should be pursued in the future as this assimilation approach would provide 

separate constraints on different parts of the model. We expect the observational 

information on the partitioning between the two flux components to provide a stronger 

constraint than using just their sum.” (Line 739-743) 

Some coefficients and uncertainty estimates used in the paper are very poorly explained. Where 

does a perturbation rate of 0.4 come for some sites while for others it is 0.2? How do the authors 

come up with an uncertainty of 1 pmol m-2 s-1 for the prior simulated COS flux (L275)? Section 

2.1.3 is also filled with these coefficients, listed in more detail below.  

Response: Thanks for your comment. Reviewer #1 asked a similar question about the choice of 

the perturbation size, please refer to our previous answer. Besides, we have changed the 

uncertainty of the prior simulated COS flux in twin experiments, and reperformed the 

experiments. Now, the uncertainty of the prior simulated COS flux was estimated as the 

standard deviation of the prior simulated COS fluxes within 24 hours around each simulation. 

The benefit of the “multi-site” assimilation is unclear since it produces more or less similar 

results as the single-site assimilation. This is primarily due to using only two sites in this 

assimilation. The use of the word “multi” is thus exaggerated and I suggest leaving this part 

totally out of the paper, since it does not bring any notable improvement to the model. I 

understand that using only two sites is due to lack of in-situ COS flux measurements in similar 

ecosystems, but I don’t really see a point doing a two-site assimilation since the results will be 

very similar to single-site assimilation. 

Response: We appreciate the reviewer’s understanding of the lack of in situ COS flux 

measurements in similar ecosystems. Therefore, we only performed a “multi-site” or “two-site” 

assimilation experiment at evergreen forest sites FI-Hyy and US-Wrc. Our two-site setup 

constitutes a challenge for the assimilation system, the model and the observations. In this setup 

the assimilation system has to determine a parameter set that achieves a fit to the observations 
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at both sites, and NUCAS passes this important test. NUCAS was designed as a platform that 

integrates multiple data streams to provide a consistent map of the terrestrial carbon cycle, 

although only ecosystem COS flux data were used to evaluate the performance of NUCAS in 

this study. The “two-site” assimilation experiment conducted in this study gives us more 

confidence that the calibrated model will provide a reasonable parameter set and posterior 

simulation throughout the plant functional type. In other words, what we present here is a pre-

requisite for applying the model and assimilation system at regional to global scales. We did, 

however, replace the formulation "multi-site" by "two-site".  

Also, we have extended the text in the conclusion: “Our two-site setup constitutes a challenge 

for the assimilation system, the model and the observations. In this setup, the assimilation 

system has to determine a parameter set that achieves a fit to the observations at both 

sites, and NUCAS passes this important test. It should be noted that the NUCAS was 

designed as a platform that integrates multiple data streams to provide a consistent map of the 

terrestrial carbon cycle although only ecosystem COS flux data were used to evaluate the 

performance of NUCAS in this study. The “two-site” assimilation experiment conducted in 

this study gives us more confidence that the calibrated model will provide a reasonable 

parameter set and posterior simulation throughout the plant functional type. In other 

words, what we present here is a pre-requisite for applying the model and assimilation 

system at regional to global scales.” (Line 744-751) 

I have several comments regarding the use of measured COS flux data: 

- all sites: The authors do not specify any quality criteria used to filter the measured fluxes. 

Usually eddy covariance flux data are given a quality flag from 0 to 2; 2 indicating poor quality 

fluxes that should not be used, 1 indicating medium quality fluxes that are fine for budget 

calculations and 0 indicating the best quality that should be used for functional relationships 

and modelling. Please specify if you have used quality filtering in the data and if not, please 

give reasons why.  

Response: Thanks for this comment. In the dataset for FI-Hyy (Vesala et al., 2022), No quality 

flags are provided, but measured COS fluxes as well as gap-filled COS fluxes are provided. In 

this study, only the measured COS fluxes are utilized and we have provided additional 

clarification on this (Line 260-261). For US-Ha1 and US-Wrc, no quality flag or gap-filled data 

is provided. At the remaining four sites, “COS filter” flag was provided to mark whether the 

COS observations are without flux detection limits. In this study, we do not use the detection 

limits to filter the COS flux data because such filtering would cause us to lose all values close 

to zero. 

- US-Wrc: The dataset provided by Rastogi et al. 2018 does include the ready calculated 

gradient fluxes, and it is unclear why the authors are not using those fluxes but give a very 

ambiguous explanation of their own gradient flux parameter calculations. Moreover, since US-

Wrc fluxes were calculated partly from the simulated COS fluxes in this study, this introduces 

a huge bias to these fluxes which gives even more reason not use this site in the “multi”-site 

assimilation.  

Response: Thanks for this comment. The dataset (https://zenodo.org/records/1422820) 
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provided by Rastogi et al. (2018) does lack readily available gradient fluxes. Consequently, we 

implemented a bias correction to align the simulated and estimated COS fluxes for the US-Wrc 

site, drawing upon methodologies outlined in previous studies (Leung et al., 1999; Scholze et 

al., 2016). In addition, we have reached out to the corresponding authors via email to kindly 

request assistance in obtaining their readily-calculated flux data. Unfortunately, as of now, we 

have not received a response. 

We acknowledge that the absence of precise COS flux data at US-Wrc poses challenges to our 

two-site assimilation experiments. Nevertheless, we maintain the importance of conducting 

two-site experiment, as detailed before. 

- FI-Hyy: The dataset provided in Vesala et al. 2022 and Kohonen et al. 2022 already include 

storage corrected COS fluxes and it is not clear why the author have decided to do another 

storage correction for this site but not to other sites. In addition, this dataset includes gap-filled 

COS fluxes and it is not clear if the authors have used the gap-filled fluxes or the direct 

measured fluxes since the authors have not given any information on quality filtering. 

Response: Thank you for pointing this out. We deleted the sentence: “We then corrected the 

COS fluxes from FI-Hyy using the storage-correction method (Kooijmans et al., 2017).” At FI-

Hyy, only the direct measured COS flux data were utilized in the assimilation experiments, and 

we have clarified this (Line 260-261). 

Simulation of sensible and latent heat fluxes as well as SWC seems quite out of place. Can you 

explain how COS fluxes should be related to sensible heat flux, and why assimilating COS 

fluxes should improve simulated sensible heat flux and soil moisture? Simulated sensible heat 

flux has even a different direction than the measured one. I suggest to leave this part out of the 

paper. 

Response: Thanks for this comment. Reviewer #1 asked a similar question, please refer to our 

previous answer.  

In this study, the diurnal variability of the simulated sensible heat fluxes using the BEPS model 

exhibited misalignment with observations, mainly at FI-Hyy. However, the simulated sensible 

heat showed good agreement with observations at the remaining sites. Moreover, the 

optimization of H was demonstrated successfully at FI-Hyy, despite the different direction of 

the simulated sensible heat and the measured one. 

The abstract is too ambiguous and no concrete results are given. The authors use expressions 

“various processes” and “various ecosystems” without providing any details that would be 

useful for the reader. 

Response: Thanks for your comment. We have deleted the expression "variable ecosystems" 

and listed the corresponding ecosystems of our study site in detail. 

The authors need to mention in the method section if they use one-sided or all-sided LAI data, 

and if that applies everywhere in the paper or not. Also specify if negative fluxes mean uptake 

or emission. The word “significantly” is thrown around a lot, without any relation to statistical 

significance, it seems. 
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Response: Thanks for this comment. The leaf area index is commonly defined as half the total 

all-sided developed area of green leaves per unit ground surface area (Chen and Black, 1992; 

Liu et al., 2012; Xiao et al., 2016). In the publications listed in Table 1, only Kohonen et al. 

(2022) specified that the all-sided leaf area index (LAI) of FI-Hyy was ca. 8 m2 m−2 during the 

measurement period (2013–2017). In this study, we followed the convention of using one-sided 

LAI (for broadleaves). We now have added “one-sided” (Line 99 and Line 1994) to account for 

this. In Sect. 2.4.3, we have specified positive values indicate COS uptake. Furthermore, we 

have corrected the inappropriate use of "significantly". 

Section 2.1.3 needs to be rewritten, especially regarding the equations that are inconsistent and 

lacking information. Specifically: 

- Where is Fcos,leaf used in the model? It is not present in any other equations after Eq. 3 

Response: In eq.3, 𝐹𝑐𝑜𝑠,𝑙𝑒𝑎𝑓
 represents the leaf-level COS uptake rate. For COS simulations, 

BEPS uses the leaf-level resistance analog model of COS (Berry et al., 2013) with a two-leaf 

upscaling scheme (Chen et al., 1999) from leaf to canopy. 

- The authors need to explain where the different coefficients (e.g., 1.94 and 1.56 in Eq. 3; 

1.4, 1.0, 5.33, -0.45 in Eq. 4; 0.437 and 0.0984 in Eq. 6; -0.00986, 0.197, -9.31 in Eq. 9; -

0.119, 0.110, -1.18 in Eq. 10 , and 0.28 and 14.5 in Eq. 11) come from; what they represent 

and what is the reference. 

Thanks for your comment, we have detailed the coefficients relevant to COS plant flux 

modeling (Eq. 3-6). For the COS soil model, we have updated them and detailed the coefficients 

currently used (please see Table S2 and Table S3 for details).  

In NUCAS, the resistance analog model of COS plant uptake (Berry et al., 2013) were used. 

Such a model utilizes the COS mole fraction in the bulk air and the series conductance 

(conductance = 1/resistance) of the leaf system for COS (the terms in parentheses in Eq. 3) to 

calculate the flux of COS uptake. In the series conductance of the leaf system for COS, the 

stomatal conductance and laminar boundary layer conductance of COS are framed in reference 

to that of H2O vapor. The greater mass and larger cross section of COS restricts its diffusion 

relative to H2O in the stomatal pore by a factor of 1.94 and in the laminar boundary layer by 

1.56 (Seibt et al., 2010; Stimler et al., 2010). 

As for Eq. 5, we followed the modelling scheme of COS in the SiB (version 4.2) (Haynes et al., 

2020), and we have provided additional clarification on this. 

- What is fsw (how it is defined, is there an equation, what unit does it have and what kind 

of variation does it have) exactly. 

Response: Thanks for your comment, we renamed it to 𝑓𝑤. In sect. 2.1.3, we mentioned 𝑓𝑤 is a 

soil moisture stress factor describing the sensitivity of 𝑔𝑠𝑤 to soil water availability. We have 

added the definition of 𝑓𝑤 to the appendix and also citations to the relevant literature, i.e. Ju et 

al. (2006). 

- Vcmax; what is the unit and how do you get values (and which values) for it? 
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Response: The unit of 𝑉𝑐𝑚𝑎𝑥  is μmol m−2 s−1, we now added the detail calculation of 𝑉𝑐𝑚𝑎𝑥 in 

the appendix. 

- Fcos,biotic suddenly changes to FΘg in the switch from Eq. 7 to Eq. 8, if I got it right. Be 

consistent with the terms, as this is impossible to follow as a reader!! Also, where does Θi go 

in between these equations?? Is it switched to Θg? 

Response: Thanks for this comment. To enhance readability, we have revised the manuscript to 

ensure consistency in terminology. In the soil COS model proposed by Whelan et al. (2016), 

The soil abiotic COS flux corresponding to a soil moisture of 𝑆𝑊𝐶𝑖 can be calculated by Eq. 7 

(Eq. 9 in the revised manuscript). In Eq. 7, 𝑆𝑊𝐶𝑜𝑝𝑡 denote the optimum soil moisture, at which 

soil abiotic COS flux reaches a maximum (𝐹𝑜𝑝𝑡), 𝑆𝑊𝐶𝑔 denote a certain soil moisture, which 

is greater than 𝑆𝑊𝐶𝑜𝑝𝑡 and whose corresponding soil abiotic emissions are known. The last 

constant (a) that needs to be known in Eq. 7 can be calculated by Eq. 8 (Eq. 10 in the revised 

manuscript).  

- How is “optimum soil moisture” defined? Optimum in terms of what? 

Response: According to Whelan et al. (2016) and Whelan et al. (2022), there exists an optimum 

soil moisture at which the simulated biotic COS flux is maximized, i.e. optimum in terms of 

COS soil biotic uptake. 

In general, there is lot of repetition throughout the paper and the text could certainly be 

condensed.  

Response: Thank for your suggestion. We have thoroughly reviewed our manuscript and made 

refinements to the text. 

Finally, I would like to see scatter plots in addition to the diurnal variation comparison, to better 

see how the model is able to simulate the COS fluxes and GPP. 

Response: Thank for your suggestion. We now plotted the corresponding scatterplots and added 

them to the supplement. 

Specific comments: 

L19: “various processes” is too ambiguous 

Response: Thanks for this comment. We have deleted the expression "variable ecosystems". 

L25: “various ecosystems”; please specify which ecosystems 

Response: we now specified the ecosystems, including evergreen needleleaf forest, deciduous 

broadleaf forest, C3 grass and C3 crop, respectively. 

L26: “can significantly improve”; how much did it improve, which timescale, which 

ecosystem(s) etc? 

Response: Thanks for this comment. Now we rewrite this sentence. 

Comparing prior simulations with validation datasets, we found that the assimilation of 

COS can significantly improve the model performance in gross primary productivity, 
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sensible heat, latent heat and even soil moisture. (L26-L27) 

L34: “carbon dioxide (CO2)” since this is the first time  

Response: Corrected. 

L 47-49: I don’t really see a point in repeating the same references twice in the same sentence  

Response: Thanks for this comment. We have revised the references in the manuscript. 

Recently, carbonyl sulfide (COS) has emerged as a promising proxy for understanding 

terrestrial carbon uptake and plant physiology (Montzka et al., 2007; Campbell et al., 

2008) since it is taken up by plants through the same pathway of stomatal diffusion as 

CO2 (Goldan et al., 1988; Sandoval-Soto et al., 2005; Seibt et al., 2010) and completely 

removed by hydrolysis without any back-flux in leaves under normal conditions 

(Protoschill-Krebs et al., 1996; Stimler et al., 2010). (Line 47-51) 

L55: Wohlfahrt et al 2012 and Kooijmans et al 2019 present an empirical model for leaf relative  

uptake (the uptake ratio of COS and CO2 at the leaf scale) but do not model COS flux itself 

Response: Thanks for this comment. We now deleted these two references. 

L58-60: This sentence is very unclear and I am not sure what the authors want to emphasize 

here.  

Please rephrase 

Response: Thanks for this comment. As mentioned earlier, a crucial hypothesis in this study is 

that the assimilation of COS is expected to improve the modelling of LE, H and SWC due to 

the ability of COS to indicate transpiration and the mechanism of transpiration. Therefore, here 

we would like to emphasize the second half of the sentence, i.e., only few experiments were 

conducted to systematically assessed the ability of COS to simultaneously constrain 

photosynthesis, transpiration and other related processes in ecosystem models. Of course, We 

also mentioned COS observations here (in the first half of the sentence). That is because the 

lack of COS measurements is for sure an essential limiting factor in examining the ability of 

COS to constrain ecosystem processes, such as photosynthesis and transpiration. At the same 

time, we also believe that the mention of observations here can also serve to pave the way for 

the introduction of data assimilation below. Therefore, we have rewritten the sentence while 

retaining the main content. The revised sentence now reads as: However, with the lack of 

ecosystem-scale measurements of the COS flux (Brühl et al., 2012; Wohlfahrt et al., 2012; 

Kooijmans et al., 2021), only few studies were conducted to systematically assess the 

ability of COS to simultaneously constrain photosynthesis, transpiration and other 

related processes in ecosystem models. (Line 58-61) 

L71-75: Please rephrase this sentence and preferably split it in two. At the moment it reads like 

Liu et al 1997 developed a model for simulating COS fluxes (which is not the case). 

Response: Thank for this suggestion. We have split it in two: 

In this study, we present the newly developed adjoint-based Nanjing University Carbon 
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Assimilation System (NUCAS) v1.0. NUCAS v1.0 is designed to assimilate multiple 

observational data streams including COS flux data to improve the process-based 

Biosphere-atmosphere Exchange Process Simulator (BEPS) (Liu et al., 1997), which has 

been specifically extended for simulating the ecosystem COS flux with the advanced two-

leaf model that is driven by satellite observations of leaf area index (LAI). (Line 72-76) 

L78: Since you do not assimilate COS fluxes in all ecosystems existing, please specify which 

ecosystems you are talking about here 

Response: Corrected. 

L79: Controlling factors in which time scale of variability? E.g., in yearly scale temperature 

and radiation are for sure the most important drivers for carbon fluxes since they drive the 

seasonality, but this might not be the case in sub-daily time scales. 

Response: Thanks for your comment. We have reorganized and revised that question and 

question one " What are the main changes in the parameters through the assimilation of COS 

flux and which processes are constrained?" The revised sentence reads as follows: What 

parameters are the COS simulation sensitive to and how do these parameters change in 

the assimilation of ecosystem scale COS flux data? (Line 78-79) Which processes are 

constrained by the assimilation of COS and what are the mechanisms leading to 

adjustments of the corresponding process parameters? (Line 82-83) 

Response: Thanks for your comment.  

L81: List the ecosystems 

Response: Corrected. 

To achieve these objectives, COS observations across a wide range of ecosystems 

(including evergreen needleleaf forest, deciduous broadleaf forest, C3 grass and C3 crop) 

are assimilated into NUCAS to optimize the model parameters using the four-dimensional 

variational (4D-Var) data assimilation approach, and the optimization results are 

evaluated against in situ observations. (Line 85-88) 

L96: all-sided or one-sided LAI? 

Response: one-sided LAI. 

L98: “phenology is driven by LAI” but isn’t it the other way around? 

Response: The BEPS model (Liu et al., 1997; Chen et al., 1999) used in this study is a process-

based diagnostic model driven by remotely sensed leaf area index (Chen et al., 2019). In BEPS, 

LAI is used as an indicator of the current state of vegetation within an ecosystem, and the plant 

phenology is driven by LAI. In contrast, in prognostic models, LAI is used as a dynamic 

variable that evolves over time, and the prognostic models allow researchers to make 

predictions about how LAI will change in response to varying environmental conditions and 

disturbances. 

L103: remove one “of the” 
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Response: Corrected. 

L148: “pmol/m2/s” -> should be pmol m-2 s-1 and units are not supposed to be written in italic. 

Check this everywhere in the paper, also with other units like m2 m-2 

Response: Thank for this comment. we have corrected the units in this manuscript. 

L153: “And the leaf-level” -> “The leaf-level” 

Response: Corrected. 

L156: Are the conductances different for shaded and sunlit leaves? 

Uniform leaf laminar boundary layer conductance was applied to both shaded and sunlit leaves. 

However, BEPS takes into account radiation transmission processes (e.g., direction and 

scattering) within the canopy and calculates the amount of radiation received by the sunlit and 

shade leaves accordingly. Thus, the sunlit and shade leaves have different photosynthesis rates 

in theory due to the different radiation they receive, and in turn have different stomatal 

conductance (Ball et al., 1987; Ju et al., 2010).  

L179: Do you perhaps mean Table S2? 

Response: Yes, we have corrected the clerical error here. 

L187-195: It is quite strange to cite here not the papers whose data you use but other papers 

from those same sites. Please cite the papers whose data you are using.  

Response: Thanks for this comment. This arose from the fact that certain literature 

corresponding to the sites from which we obtained data lacked detailed site descriptions. We 

have addressed this by including references to the papers from which we sourced the data. 

L189: ICOS is not defined (Integrated Carbon Observation System) 

Response: Corrected. 

L199-201: Specify that you use ecosystem scale eddy covariance (or gradient) flux 

measurements. 

Response: Corrected. 

Sect. 2.4.1: I don’t understand how the authors decided that the GLOBMAP LAI product was 

too low for the DK-Sor site but not for other sites. I did not find this information from 

Spielmann et al. 2019, as the authors claim. Please elaborate. 

Response: Thanks for this comment. Mean LAI during the campaign of DK-Sor (referred to 

DBL in Spielmann et al. (2019)) was presented in Table S1 of the supplement in Spielmann et 

al. (2019). 

L224-226: I am sure US-Ha1 site has some radiation data, at least PPFD data if not shortwave 

radiation, as well as air temperature and relative humidity. In-situ data is for sure better than the 

ERA5 data. 

Thank you for your comment. We re-examined and collected the meteorological data of the 
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US-Ha1 site. As a FLUXNET site and an Ameriflux site, the meteorological data for the US-

Ha1 can be found in both the Ameriflux and FLUXNET datasets, and both datasets does include 

some radiation data. However, the shortwave radiative data required by the BEPS model of US-

Ha1 are only available at FLUXNET while only net radiation and PPFD data are available at 

Ameriflux. Considering the meteorological data of US-Ha1 provided by FLUXNET are only 

available in 1991-2012, we currently use FLUXNET data at US-Ha1 in 2012 and ERA5 

shortwave radiation data with Ameriflux data in 2013 to drive the BEPS model. 

L235: Table 1 does not list soil measurement information (and not the references either) 

Thanks for your comment. Measurement information on COS soil fluxes already included in 

the literature we listed in Table 1 except for FI-Hyy. The reason we did not cite literature on 

soil COS flux observations at FI-Hyy (Sun et al., 2018) is that we assimilated ecosystem scale 

COS fluxes (Vesala et al., 2022) in this study. However, soil texture derived from the 

harmonized world soil database (Wieder et al., 2014) was used before. Now, we have updated 

the soil texture with in situ data and added relevant references (including Sun et al. (2018)).  

L248-250: Now this is very confusing. In Kohonen et al 2020 the uncertainty is high with low 

absolute fluxes, the fact there is a stronger peak in negative fluxes is simply due to lack of 

observations of positive fluxes. In Kohonen et al. 2020 the negative fluxes are defined as uptake 

by the biosphere. In any case there should be no reason to remove either positive or negative 

fluxes, unless the quality criteria are not filled! 

Thanks for your comment. Currently, we kept both positive and negative values of COS fluxes 

and re-ran the assimilation experiments.  

L254: “gross primary productivity” -> “GPP”; “sensible heat” -> ”H”; “latent heat” -> “LE” 

Response: Corrected. 

L257: Cite Reichstein 2005 for the nighttime partitioning method 

Response: Corrected. 

L260: How is nighttime defined? 

Response: In light of the extended daylight hours during the Northern Hemisphere summer and 

to prevent misclassification of actual daytime hours as nighttime due to discrepancies in local 

longitude and locally adopted time, we fit the equation for the relationship between respiration 

and temperature based only on data from 21:00 local time to 3:00 the following day. 

L280: “And as a…” -> “As a..” 

Response: Corrected. 

L296: Do you really mean that only one set of model parameters is required, independent of 

the ecosystem type? I would assume e.g., Vcmax to be quite different for different ecosystems 

and PFTs. 

Response: Thanks for your comment. We absolutely recognize that e.g., 𝑉𝑐𝑚𝑎𝑥varies greatly 

from ecosystem to ecosystem. In this study, we take the PFT- and texture-dependence of 
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parameters into consideration, thus the parameter number of one set of accurate and generalized 

model parameters is 76. In other words, the only one set of model parameters mentioned here, 

includes parameters that are specific to a PFT or texture but not to the point on the global that 

is populated by this PFT and characterized by this texture. 

L307: I don’t understand where the number 76 comes from. In table S2 there are 11 different 

parameters and their values are repeated as a constant value to get to 76, but there are certainly 

not 76 different parameters? 

Response: The interdependence of parameters was considered in this study. Therefore, when 

counting the PFT-dependent parameters as well as the texture-dependent parameters, we 

multiply the number of PFTs and the number of textures considered in the BEPS model. This 

is how the number 76 is obtained. 

L310: “correlation” -> “coefficient” 

Response: Corrected. 

L330: “dozens” -> please give an exact number 

Response: We have modified this sentence with specific instructions.  

L335-337: This sentence is too vague. Please be more specific. 

Response: Thanks for your comment. We have reorganized the sentence: “Corresponding to 

the PFT and soil texture of the experimental site, some PFT-dependent and texture-

dependent parameters as well as global parameters showed different adjustments from 

others as they can affect the simulation of COS to different degrees.” 

L337-339: Where are these parameters used? Not in the COS model presented earlier 

Response: We detailed how these parameters affect the simulation of COS in the appendix. 

L353: 1.64% is very low, how do you explain that? 

Response: As shown in the Figure 3j of the original manuscript, it is because the prior simulated 

COS at IT-Soy is already very close to the corresponding observations. 

L357: Figure 3 comes in the text before Figure 2 is presented 

Response: Corrected. 

L360: Could this have something to do with the dry conditions and stomatal limitations, 

discussed in Vesala et al. 2022 regarding the low COS fluxes at FI-Hyy in July and August 

2014? 

Thanks for your comment. But according to Vesala et al. (2022), these months were not 

considered to be drought because the SWC remained at a normal level (well above 0.1 m3 m−3). 

However, the SWC observations as well as simulations in August 2014 are indeed noticeably 

lower than the other months, and are close to the optimum soil moisture for the COS abiotic 

flux modelling (see Figure S9 for details). As a result, the prior simulated COS for that month 

were significantly overestimated by 41.06 %, resulting in 𝑉𝑐𝑚𝑎𝑥25  and VJ_slope being 
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considerable downward adjustments by -42.44 % and -41.03 % in the single-site experiments. 

Thus, the simulated GPP were also markedly downgraded by 53.54 % in August 2014, 

ultimately resulting in the underestimation of the single-site posterior simulated GPP. 

Regarding this, we have added the text in the manuscript: “However, with a low SWC in 

August 2014, the prior simulated COS were obviously overestimated by 41.06 %, which 

led to remarkable downward adjustments of 𝑽𝒄𝒎𝒂𝒙𝟐𝟓  as well as VJ_slope. Thus, the 

simulated GPP were also markedly downgraded by 53.54 % in August 2014, ultimately 

resulting in the underestimation of the single-site posterior simulated GPP.” (Line 478-481) 

L378: “for all experiments” -> not true for IT-Soy and US-Ha1! 

Response: Corrected. 

L385: Can this even be called an increase? In any case very low correlation coefficient. 

Response: Yes, thus we say “𝑅2 remained almost unchanged by the optimizations”.  

L387: Why are the simulated nighttime fluxes unchanged? 

Response: In the BEPS model, stomatal conductance was set to a constant value at night. 

Meanwhile, soil fluxes were small and less variable relative to the magnitude of plant COS flux. 

L400: “due to high value of observation” or rather underestimation by simulation? 

Response: Could, of course, be either, but according to Kooijmans et al. (2021), the air depleted 

in COS can then suddenly be captured by the EC system when turbulence is enhanced in the 

morning. 

L412: I would not call two sites multiple sites…. 

Response: Now we changed our expression from 'multi-site' to 'two-site'. 

L422: Can the ratio between PAR and SW really change that much? Why is it allowed to change 

so much? 

Thanks for your comment. According to Ryu et al. (2018), the default f_leaf value in the BEPS 

model and the prior uncertainty of f_leaf in this study is overestimated. Thus, it tends to 

overshoot in the previous assimilation experiments. Now, we have computed the mean value of 

f_leaf with its standard deviation as an estimate of the error based on the MODIS PAR and SW 

data from 2012-2017 (Ryu et al., 2018) and re-ran the assimilation experiments. 

L429: Either “In particular,” or “Particularly” 

Response: Corrected. 

L444: “underestimated (by 55.72%), …” 

Response: Corrected. 

L444: “greatly increased”; how much? 

Response: We have provided a quantitative description. 

L445: “…simulations of COS flux at FI-Hyy..” 
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Response: Corrected. 

L468: “forest sites (DK-Sor, FI-Hyy, US-Ha1, US-Wrc) compared to grassland and savanna 

(AT-Neu and ES-Lma)” 

Response: Corrected. 

L489-491: GPP cannot be observed directly, it is always a model!! 

Response: Thanks for your comment. We know that GPP cannot be measured directly. In order 

to distinguish it from the modeled GPP of BEPS, we rephrase it to GPP derived from EC 

measurements. 

L502: “excellent match” needs quantification 

Response: Corrected. 

L513-515: Not a very convincing result with the multi-site assimilation though 

Thanks for your comment. Due to the lack of in situ COS observation data of the same PFT, 

we only conducted a two-site assimilation experiment. Therefore, we admit that the results of 

our experiments are not very convincing. More multi-site or two-site assimilation experiments 

would have helped us to get more statistically significant and plausible results, however we are 

faced with the challenge of lack of COS data. 

L515-520: How would the results be without COS assimilation? 

Response: the results be without COS assimilation, i.e., the prior simulation result can be found 

in Figure 4 and Figure 5 in the revised manuscript. 

L523: It is not possible that there would not be sensible heat flux measured at a site where other 

eddy fluxes are measured, since it comes directly from the sonic anemometer used for wind 

measurements. If the authors have not published their sensible heat flux data, you can ask for 

it from the authors.  

Response: Thanks for your suggestion. We have reached out to the corresponding authors via 

email to kindly request assistance in obtaining the sensible and latent heat flux data. With their 

assistance, we have conducted a thorough comparison and evaluation of H and LE simulations 

at the AT-Neu and IT-Soy sites. For the help they provided, we have added a note in the 

acknowledgements. 

L525: “And the assimilation..” -> “The assimilation..” 

Response: Corrected. 

L536 & L554-556: Refer to the supplement figs 

Response: Corrected. 

L571: “not significant” by what metric? What is a “short period of time”? 

Response: Thanks for your comment. Actually, this sentence is not necessary. We have therefore 

deleted it to avoid confusion.  
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L573: “almost no diurnal…” very vague, be more specific 

Response: Thanks for your comment. We rewrite the sentence. 

However, the simulated SWC exhibited a clear diurnal cycle whereas the observed SWC 

had almost no diurnal fluctuations. (Line 534-535) 

L578-580: This is not really true, especially in the end of August (but other months are also 

underestimated) 

Response: Thanks for your comment. We rewrote the sentence. 

L583-585: Refer to the supplement figs 

Response: Corrected. 

L592: “COS fluxes of soil” -> “soil COS fluxes” or “COS fluxes from soil” 

Response: Corrected. 

Sect 4.1: Would it make sense to limit f_leaf and Vcmax25 variability to reasonable scales? 

Response: Thanks for the comment. Since 𝑉𝑐𝑚𝑎𝑥25 and f_leaf have their physical significance, 

the optimized values of both should be within certain ranges, e.g., greater than zero. Currently, 

both are within their physical significance, despite the huge relative change of them. The 

magnitude of the adjustment of f_leaf is expected to be limited by improving the estimation of 

its prior uncertainty. However, the prior uncertainty we set of the parameter 𝑉𝑐𝑚𝑎𝑥25  is 

comparable to the existing dataset Chen et al. (2022). Furthermore, we have indeed refined the 

prior uncertainty of f_leaf and re-run the assimilation experiments. 

L635: But since soil COS fluxes are low, wouldn’t that lead to higher change in the parameters, 

to compensate for low fluxes? 

Response: Thanks for the comment. The optimized parameter values are the result of the trade-

off between the two parts of the cost function. When the reduction in the discrepancy between 

observation and simulation resulting from the adjustment of the parameters is not sufficient to 

offset the increase in the discrepancy between the current and prior parameter values, the 

adjustment is not continued. 

L652-655: Already mentioned in the previous section¨ 

Response: Removed. 

L662: Could this be due to drought/ drier than normal conditions at FI-Hyy reported in Vesala 

et al. 2022? 

Thanks for your comment. As shown in Table 3 of the original manuscript, f_leaf has been 

greatly downregulated after the assimilation of COS. We believe that this inappropriate 

parameter value is the main reason for the underestimation of posterior simulation. Now, we 

have refined the prior parameter uncertainty and re-ran the assimilation experiment.  

L691: Table 1 perhaps? 
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Response: Yes, now we corrected this error. 

L706: Which in-situ LAI data was used for FI-Hyy? Maybe the other one is all-sided and the 

other one-sided LAI? 

According to Kohonen et al. (2022), the all-sided leaf area index (LAI) of FI-Hyy was ca. 8 m2 

m−2 during the measurement period (2013–2017). In this study, we followed the convention of 

using one-sided LAI, so the LAI at FI-Hyy is 4 m2 m-2, as listed in Table 1. 

L720: Start a new sentence “More laboratory…” 

Response: Corrected. 

L728: Why are the authors not already refining the uncertainty of prior values in this study? 

Thanks for your comment. We have currently referred to the relevant literature and refined the 

prior uncertainty of the parameters (as mentioned before). Specifically, as the COS data utilized 

in this study range from 2012-2017, only the Moderate Resolution Imaging Spectroradiometer 

(MODIS) PAR and shortwave radiation (SW) data ranging from 2012-2017 was used to 

calculated the mean and standard deviation of f_leaf, and the prior uncertainty of f_leaf was 

estimated as the calculated standard deviation. The MODIS PAR and SW datasets are publicly 

available at: http://environment.snu.ac.kr. 

L735-738: Given that this is already known, why is the COS concentration variation not already 

taken into account in this model? 

Response: Continuous COS concentration data are a pre-condition for continuous COS flux 

simulations based on COS concentrations due to the linear relationship between the two 

(Stimler et al., 2011; Berry et al., 2013). However, similar to COS flux data, the in situ observed 

COS concentrations are not continuous in the whole assimilation windows. Therefore, in order 

to perform continuous simulations of COS flux based on a variable COS concentration, 

Kooijmans et al. (2021) used the surface COS mole fraction fields retrieved from an 

atmospheric transport inversion performed with TM5-4DVAR. We also think that modelling 

and assimilation of COS fluxes based on spatially and temporally varying COS concentrations 

is an aspect of the NUCAS system that can be further enhanced, and we will strive to combine 

the ecosystem model with atmospheric transport model to address this issue in our next steps. 

However, with the lack of in situ COS mole fraction data, COS mole fractions in the bulk air 

are currently assumed to be spatially invariant over the globe and to vary annually in NUCAS, 

which may introduce significant errors into the parameter calibration. 

L749: Plants in lower rainfall conditions could also be e.g. CAM plants? 

Response: Thanks for your comment. According to the summary of species information used 

in Yu et al. (2019), they do not include the crassulacean acid metabolism (CAM) plants in the 

study. However, the CAM plants are indeed commonly found in harsh environments such as 

arid and semi-arid regions (Amin et al., 2019), and the main feature of stomatal conductance 

patterns in CAM plants is nocturnal opening (Males and Griffiths, 2017). 

Data availability section: Please include also citations to all datasets used 
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Response: Done. 

Figure 1: How about mesophyll conductance? What does the dashed box represent? 

Response: Thanks for your comment. In the resistance analog model of COS plant uptake 

(Berry et al., 2013), the apparent conductance for COS uptake from the intercellular airspaces 

(include the mesophyll conductance and the biochemical reaction rate of COS and carbonic 

anhydrase) is represented by 𝑔𝑐𝑜𝑠. The dashed box includes the driver data of BEPS, and those 

data were utilized in both diagnostic process and prognostic process. 

Figure 2: Are there any boundary values given to the parameters? How are these normalized? 

Add a similar plot from each site to same figure (as subplots) and put the figure to the 

supplementary material.  

Response: We didn't set any boundary values for the parameters. Currently, they are normalized 

by their prior values. We have carefully considered showing the convergence trajectory through 

the parameter space from the starting point of the iterative procedure to the final point. In fact, 

this trajectory is to a large extent arbitrary, because branches depend on specifics of the floating-

point arithmetic/rounding, which depend in turn on aspects like computing platform, compiler, 

or even compiler flags. What both technically and scientifically matters are the values of 

parameters, cost function and its gradient at the starting and end points of the minimization. 

These are now provided in Tables S5 for the twin experiments and S4 and 2 for the experiments 

with real data. We thus refrain from including the trajectory plots into the manuscript or its 

supplement, but provide the corresponding graphs and their presentation (requested by the 

reviewer) here: 
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Figure 1. The evolution of model parameters with the number of iterations of cost function (𝐽𝑖𝑡𝑒𝑟) during 

the single-site experiments. Evolution (open carats and dashed lines) of soil texture dependent parameters 

is plotted on the right-hand y axis, evolution (filled circles and solid lines) of PFT-dependent parameters 

and global parameter is plotted on the left-hand y axis. Parameters are normalized by their prior values. 
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Figure 2. The evolution of model parameters with the number of iterations of cost function (𝐽𝑖𝑡𝑒𝑟) during 

the two-site experiment. Evolution (open carats and dashed lines) of soil texture (abbreviated as Txt) 

dependent parameters is plotted on the right-hand y axis, evolution (filled circles and solid lines) of PFT-

dependent parameters and global parameter is plotted on the left-hand y axis. The texture-dependent 

parameters for FI-Hyy are denoted by “Txt3” and that of US-Wrc are denoted by “Txt4”. Parameters are 

normalized by their prior values. 

Corresponding to the PFT and soil texture of the experimental site, some PFT-dependent and 

texture-dependent parameters as well as global parameters showed different adjustments from 

others as they can affect the simulation of COS to different degrees. Those parameters are the 

maximum carboxylation rate at 25 ℃ (𝑉𝑐𝑚𝑎𝑥25 ), the ratio of 𝑉𝑐𝑚𝑎𝑥  to maximum electron 

transport rate 𝐽𝑚𝑎𝑥  (VJ_slope), the scaling factors ( 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟  and (𝑏𝑠𝑐𝑎𝑙𝑎𝑟 ) of saturated 

hydraulic conductivity (Ksat) and Campbell parameter (b), and the ratio of photosynthetically 

active radiation (PAR) to shortwave radiation (f_leaf). Particularly, as the soil textures at the 

FI-Hyy and US-Wrc are different, 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟  and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 corresponding to these two soil 

textures were both optimized in the two-site twin experiment. 

Figure 3: I don’t think these colors are color-blind friendly. Fig. 3 m: How is the RMSE in 

posterior lower, even though it looks worse than prior? Are the times presented here local time? 

For FI-Hyy the dataset is in local winter time (UTC +2). Please include the variability of the 

circle size (and what it means) to the figure legend. Why are you using mean instead of median 

diurnal variability? 

Response: Thanks for your suggestion. We have modified the color scheme of our figures to 

make them easier to read for the color-blind. Certainly, the times presented here are local time. 

We have included the variability of the circle size in the legend in the revised manuscript. We 

use the mean because it is sensitive to all values.  
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Figure 4: I suggest to remove this fig with the whole “multi-site” analysis 

Response: Thanks for your suggestion. For a detailed explanation of the need for two-site 

experiments we as well, refer to the previous section. Therefore, we’ve left the experiment in 

the main manuscript but changed to "two-site". Additionally, we also added the explanation of 

the need for two-site experiment in the revised manuscript. (Line 744-751) 

Figure 5: Add in legend what the different colors mean. It is not clear from the caption what do 

the thick bars and the error bars represent.  

Response: Corrected. 

Figure 6: Same comments as for Fig. 5; you could combine these two figs in one as two different 

rows 

Response: Thanks for your suggestion. We have combined these two figures in one as two 

different rows. 

Figure 7: same comments as for Figure 3.  

Response: Thanks for your suggestion. We will modify the color scheme of our figures to make 

them easier to read for the color-blind. Certainly, the times presented here are local time. We 

will include the variability of the circle size. We use the mean because it is sensitive to all values 

Figure 8: Very weird pattern in simulated H. Solid and hollow circles are not distinguishable. I 

suggest to remove this fig with the analysis of H and LE. 

Response: Thanks for this comment. The less effective simulation of H by the BEPS model 

compared to other variables, i.e. LE has been confirmed in previous studies (Ju et al., 2006). 

We acknowledge that the different direction of the simulated sensible heat and the measured 

one was observed at FI-Hyy. However, the optimization of H was demonstrated successfully, 

including at the FI-Hyy site. The connection between COS and latent and sensible heat, and the 

hypotheses of this paper have already been explained in the previous section and we have put 

the corresponding figures in the supplement.  

Figure 9: Suggest to remove or move to supplement. 

Response: Thanks for this comment. The connection between COS and SWC, and the 

hypotheses of this paper have already been carefully explained in the previous section, and we 

have put the corresponding figures in the supplement. 

Figure 10: Not cited in the results section. What are “four LAI data”? 

Response: Thanks for this comment. We have cited this figure in the results section and 

specified these four types of LAI data. 

Table 1: Better reference to FI-Hyy would in this case be Vesala et al. 2022, since that paper 

presents the COS fluxes while Kohonen et al 2022 is about GPP.  

Response: Thanks for this comment. We've changed the reference. 

Table 4: Suggest to remove.  
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Response: Thanks for this suggestion. The necessity of conducting two-site experiment, we 

have already explained in detail above in this response and now also provide the explanation in 

the revised manuscript on lines 744-751. 

Table S2: Not clear why the constant parameter values are repeated so many time 

Response: Thanks for your comment. This is due to the fact that we take into account the 

interdependence of parameters, and we actually optimize the scaling factor of Ksat and b in this 

study. Regarding this, we have modified the table (Table S4 in the revised supplement) and 

restated the description of the parameters. 
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Abstract. Modeling and predicting changes in the function and structure of the terrestrial biosphere and its feedbacks to climate 

change strongly depends on our ability to accurately represent interactions of the carbon and water cycles, and energy exchange. 

However, carbon fluxes, hydrological status and energy exchange simulated by process-based terrestrial ecosystem models 

are subject to significant uncertainties, largely due to the poorly calibrated parameters related to various processes.. In this 

work, an adjoint-based data assimilation system (Nanjing University Carbon Assimilation System, NUCAS) was developed, 20 

which is capable of assimilating multiple observations to optimize process parameters of a satellite data driven ecosystem 

model—BEPS (Boreal Ecosystem Productivity Simulator). Data assimilation experiments were conducted to demonstrate the 

robustness and to investigate the feasibility and applicability of NUCAS on seven sites by assimilating the carbonyl sulfide 

(COS) fluxes, which were tightly related to the stomatal conductance and photosynthesis. Results showed that NUCAS is able 

to achieve a consistent fit to COS observations across various ecosystems., including evergreen needleleaf forest, deciduous 25 

broadleaf forest, C3 grass and C3 crop. Comparing prior simulations with validation datasets, we found that the assimilation 

of COS can significantlynotably improve the model performance in gross primary productivity, sensible heat, latent heat and 

even soil moisture. We also showed that the NUCAS is capable of constraining parameters from multiple sites simultaneously 

and achieving a good consistency to the single-site assimilation. Our results demonstrate that COS can provide strong 

constraints on parameters relevant to water, energy and carbon processes with the data assimilation system, and open new 30 

perspectives for better understanding of the ecosystem carbon, water and energy exchanges. 

Keywords: Carbonyl sulfide; Data assimilation; Carbon cycle; Satellite-driven; Ecosystem model 

1 Introduction 

Overwhelmingly due to anthropogenic fossil fuel and carbonate emissions, as well as land use and land cover change (Arias 

et al., 2021), atmospheric carbon dioxide (CO2) concentrations have increased at an unprecedented rate since the Industrial 35 

Revolution and the global climate has been profoundly affected. As a key component of earth system, the terrestrial biosphere 

has absorbed about 30% of anthropogenic CO2 emissions since 1850 and has significantly mitigated climate change 

(Friedlingstein et al., 2022). However, in line with large-scale global warming, the structure and function of terrestrial 
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biosphere have changed rapidly (Grimm et al., 2013; Arias et al., 2021; Moore and Schindler, 2022), which makes. As a 

consequence terrestrial carbon fluxes are subject to great uncertainty (Macbean et al., 2022). 40 

Terrestrial ecosystem models have been an important tool to investigate the net effect of complex feedback loops between the 

global carbon cycle and climate change (Zaehle et al., 2005; Fisher et al., 2014; Fisher and Koven, 2020). Meanwhile, with 

the advancement of modern observational techniques, a rapidly increasing number of satellite- and ground-based observational 

data have played an important role in studying the spatiotemporal distribution and mechanisms of the terrestrial ecosystem 

carbon fluxes (Rodell et al., 2004; Quirita et al., 2016). Various observations (Scholze et al., 2017), such as sun-induced 45 

chlorophyll fluorescence (Schimel et al., 2015) and soil moisture (Wu et al., 2018), have been used to estimate or constrain 

carbon fluxes in terrestrial ecosystems. Recently, carbonyl sulfide (COS) has emerged as a promising proxy for understanding 

terrestrial carbon uptake and plant physiology (Sandoval-Soto et al., 2005; Montzka et al., 2007; Campbell et al., 2008; Seibt 

et al., 2010; Stimler et al., 2010; Stimler et al., 2011)(Montzka et al., 2007; Campbell et al., 2008) since it is taken up by plants 

through the same pathway of stomatal diffusion as CO2 (Goldan et al., 1988; Sandoval-Soto et al., 2005; Seibt et al., 2010) 50 

and completely removed by hydrolysis without any back-flux in leaves under normal conditionconditions (Protoschill-Krebs 

et al., 1996; Stimler et al., 2010). 

Plants control the opening of leaf stomata in order to regulate the water and CO2 transit during transpiration and photosynthesis 

(Daly et al., 2004). As an important probe for characterizing stomatal conductance, COS has shown with great potential to 

constrain plant photosynthesis and transpiration and to improve understanding of the water-carbon coupling (Wohlfahrt et al., 55 

2012). A number of empirical or mechanistic COS plant uptake models (Sandoval-Soto et al., 2005; Campbell et al., 2008; 

Wohlfahrt et al., 2012; Berry et al., 2013; Kooijmans et al., 2019) and soil exchange models (Kesselmeier et al., 1999; Berry 

et al., 2013; Launois et al., 2015; Sun et al., 2015; Whelan et al., 2016; Ogée et al., 2016; Whelan et al., 2022) have been 

developed to simulate COS fluxes in order to more accurately estimate gross primary productivity (GPP) as well as other key 

ecosystem variables. However, due towith the lack of ecosystem-scale measurements of the COS flux (Brühl et al., 2012; 60 

Wohlfahrt et al., 2012; Kooijmans et al., 2021), little experimentsonly few studies were conducted to systematically assess the 

added valueability of COS into simultaneously constrainingconstrain photosynthesis, transpiration and other related processes 

in ecosystem models. 

Data assimilation is an approach that aims at producing physically consistent estimates of the dynamical behavior of a model 

by combining the information in process-based models and observational data (Liu and Gupta, 2007; Law et al., 2015). It has 65 

been widely applied in geophysics and numerical weather prediction (Tarantola, 2005). In the past few decades, substantial 

efforts have been put into the use of various satellite- (Knorr et al., 2010; Kaminski et al., 2012; Deng et al., 2014; Scholze et 

al., 2016; Norton et al., 2018; Wu et al., 2018) and ground-based (Knorr and Heimann, 1995; Rayner et al., 2005; Santaren et 

al., 2007; Kato et al., 2013; Zobitz et al., 2014) observational datasets to constrain or optimize the photosynthesis, transpiration 

and energy-related parameters and variables of terrestrial ecosystem models via data assimilation techniques. In particular, by 70 

applying data assimilation methods to process-based models, not only can the observed dynamics of ecosystems be more 

accurately portrayed, but also our understanding of ecosystem processes can be deepened, with respect to their responses to 

climate (Luo et al., 2011; Keenan et al., 2012; Niu et al., 2014). 

In this study, we present the newly developed adjoint-based data assimilation system NUCAS (Nanjing University Carbon 

Assimilation System), that (NUCAS) v1.0. NUCAS v1.0 is designed to assimilate multiple observational data streams 75 

including the recently promising COS flux data to improve the process-based model Boreal Ecosystem ProductivityBiosphere-

atmosphere Exchange Process Simulator (BEPS) (Liu et al., 1997),(Liu et al., 1997), which has been specifically 

developedextended for simulating the ecosystem COS flux with the advanced two-leaf model that is driven by satellite 

observations of leaf area index (LAI).  



 

3 

 

In this context, the main questions that we aim to answer in this paper are as follows: 80 

What are the main changes in the parameters throughis the assimilation of COS fluxsimulation sensitive to and which processes 

are constrainedhow do these parameters change in the assimilation of ecosystem-scale COS flux data? 

How effective is the assimilation of COS fluxes in improving the carbon, water and energy balance for different ecosystems? 

(including Evergreen needleleaf forest, deciduous broadleaf forest, C3 grass and C3 crop)? 

What are the controlling factors of variability of carbon, water and energy exchange? 85 

Which processes are constrained by the assimilation of COS and what are the mechanisms leading to adjustments of the 

corresponding process parameters? 

How robust is the NUCAS when optimizing over single-site and multipleover two sites simultaneously? 

To achieve these objectives, COS observations across a wide range of ecosystems (including evergreen needleleaf forest, 

deciduous broadleaf forest, C3 grass and C3 crop) are assimilated into NUCAS to optimize the model parameters using the 90 

four-dimensional variational (4D-Var) data assimilation approach, and the optimization results are evaluated against in situ 

observations. Specifically, materials and methods used in our study are described in Sect. 2. In this section, the BEPS model 

and our new data assimilation system NUCAS are introduced, along with the data used and the parameters chosen to be 

optimized in this study. The results are presented in Sect. 3, including the fit of COS simulations to observations, the variation 

and impact of parameters on simulated COS, as well as the comparison and evaluation of model outputs. Sect. 4 discusses the 95 

impacts of the COS assimilation on parameters and processes related to the water-carbon cycle and energy exchange as well 

as the influence of uncertainty inputs, in particular of the LAI driving data on posterior parameters values. In addition, the 

caveats and implications of assimilating COS flux are summarized. Finally, the conclusions are laid out in Sect. 5. 

2 Materials and Methods 

2.1 NUCAS data assimilation system 100 

2.1.1 NUCAS framework 

NUCAS is built around the generic satellite data driven ecosystem model BEPS, and applies the 4D-Var data assimilation 

method (Talagrand and Courtier, 1987). The BEPS model uses satellite-derived one-sided LAI to drive the phenology 

dynamics and separates sunlit and shaded leaves in calculating canopy-level energy fluxes and photosynthesis. It further 

features detailed representations of water and energy processes (Figure 1). These makefeatures render BEPS more advanced 105 

in representing ecosystem processes than standard ecosystem models (Richardson et al., 2012) and with less parameters to be 

calibrated givenowing to the LAI-driven phenology is driven by LAI..  

By assimilating the observed data, NUCAS can achieve the optimization of the model process parameters and the model state 

variables of BEPSData assimilation if performed in two sequential steps: First, the BEPS model is run with default parameters 

and the model output is combined with COS flux observations to optimize thean inversion step adjusts the values of parameters 110 

controlling photosynthesis, energy balance, hydrology and soil biogeochemical processes to match the observations. Second, 

the posterior parameters obtained in the first step are used as input data for the second step, in which the BEPS model is re-

run to obtain the posterior model variables. The schematic of the of the system is shown in Figure 1. 

Considering model and data uncertainties, NUCAS implements a probabilistic inversion concept (Talagrand and Courtier, 

1987; Tarantola, 1987; Tarantola, 2005) by using Gaussian probability density functions to combine the dynamic model and 115 

observations to obtain an estimate of the true state of the system and model parameters (Talagrand, 1997; Dowd, 2007). Hereby, 

we minimize the following cost function: 
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𝐽(𝑥) =
1

2
[(𝑀𝑐𝑜𝑠(𝑥) − 𝑂𝑐𝑜𝑠)𝑇𝐶𝑐𝑜𝑠

−1
(𝑀𝑐𝑜𝑠(𝑥) − 𝑂𝑐𝑜𝑠) + (𝑥 − 𝑥0)𝑇𝐶𝑥

−1(𝑥 − 𝑥0)] (1) 

𝐽(𝑥) =
1

2
[(𝑀(𝑥) − 𝑂)𝑇𝐶𝑂

−1
(𝑀(𝑥) − O) + (𝑥 − 𝑥0)𝑇𝐶𝑥

−1(𝑥 − 𝑥0)] (1) 

where MO and O denotes model and observationM denote vectors of observations and their modelled counterparts, 120 

respectively; 𝑥  and 𝑥0  denotes the control parameter vector with current and the prior control parameter vector; C 

denotesvalues, respectively. 𝐶𝑂 and 𝐶𝑥 denote the uncertainty covariance matrices for observations and prior parameters, and 

both. Both matrices are diagonal as we supposeexpressing the assumption that observation uncertainties and the parameter 

uncertainties to be independent (Rayner et al., 2005). This definition of the cost function contains both the mismatch between 

modelled and observed COS fluxes and the mismatch between the prior and current and prior parameter values (Rayner et al., 125 

2005).  

To determine an optimal set of parameters which minimizes 𝐽, a gradient-based optimization algorithm (BFGS) performs an 

iterative search (Wu et al., 2020). In each iteration, the gradient of 𝐽 is calculated by applying the adjoint of the model, where 

the model is run backward to efficiently compute the sensitivity of 𝐽 and with respect to 𝑥 (Rayner et al., 2005), and. The 

gradient of 𝐽 is used to define a new search direction. The adjoint model is an efficient sensitivity analysis tool for calculating 130 

the parametric sensitivities of complex numerical model systems (An et al., 2016). The computational cost of it is independent 

of the number of parameters and is in the current case comparable to 3–4 evaluations of 𝐽. In this study, all derivative code is 

generated from the model code by the automatic differentiation tool TAPENADE (Hascoët and Pascual, 2013). The derivative 

with respect to each parameter was validated against finite differences of model simulations, which showed agreement within 

the accuracy of the finite difference approximation. 135 

Additionally, theThe minimization of the cost function is implemented in a normalized parameter space where the parameter 

values are specifiedmeasured in multiples of their respective standard deviation with Gaussian priors (Kaminski et al., 2012). 

The model parameters are the various constants that are not influenced by the model state. Therefore, while they may change 

in spacebetween plant function types (PFT) to reflect different conditions and physiological mechanisms, they will not change 

in time (Rayner et al., 2005). 140 

2.1.2 BEPS basic model 

The BEPS model (Liu et al., 1997; Chen et al., 1999; Chen et al., 2012) is a process-based diagnostic model driven by remotely 

sensed vegetation data, including LAI, clumping index, and land cover type, as well as meteorological and soil data (Chen et 

al., 2019). With the consideration of coupling among terrestrial carbon, water, and nitrogen cycles (He et al., 2021), the BEPS 

model now consists of photosynthesis, energy balance, hydrological, and soil biogeochemical modules (Ju et al., 2006; Liu et 145 

al., 2015). It stratifies whole canopies into sunlit and shaded leaves to calculate carbon uptake and transpiration for these two 

groups of leaves separately (Liu et al., 2015). For each group of leaves, the GPP is calculated by scaling Farquhar's leaf 

biochemical model (Farquhar et al., 1980) up to canopy-level with a new temporal and spatial scaling scheme (Chen et al., 

1999), and the stomatal conductance is calculated using a modified version of the Ball–Woodrow–Berry model (Ball et al., 

1987; Ju et al., 2006). Evapotranspiration is calculated as the summation of sunlit leaf and shaded leaf transpirations, 150 

evaporation from soil and wet canopy, and sublimation from snow storage on the ground surface (Liu et al., 2003). The BEPS 

model stratifies the soil profile into multiple layers (five were used in this study), and simulates temperature and water content 

from each layer (Ju et al., 2006). The soil water content is then used to adjust stomatal conductance considering the water 

stress impacts (Ju et al., 2010; He et al., 2021). Over the last few decades, the BEPS model has been continuously improved 

and used for a wide variety of terrestrial ecosystems (Schwalm et al., 2010; Liu et al., 2015). 155 
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The previous version of BEPS considers a total of six plant function types (PFTs) as well as eleven soil textures (see 

https://github.com/JChen-UToronto/BEPS_hourly_site). For NUCAS, wePFTs as well as eleven soil textures (Chen et al., 

2012)We use the same soil texture but added four PFTs to BEPS in order to better discriminate vegetation types, especially 

the C4 grass and crop. Detailed information on these ten PFTs and eleven soil textures is given in Table S1. 

2.1.3 COS modelling 160 

The ecosystem COS flux, 𝐹𝑐𝑜𝑠𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚
, includes both plant COS uptake𝐹𝑐𝑜𝑠,𝑝𝑙𝑎𝑛𝑡 and soil COS flux exchange 𝐹𝑐𝑜𝑠,𝑠𝑜𝑖𝑙 (Whelan 

et al., 2016). In this study, these two components were modelled separately. The canopy-level COS plant uptake 𝐹𝑐𝑜𝑠,𝑝𝑙𝑎𝑛𝑡 

(𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ pmol m−2 s−1) was calculated by upscaling the resistance analog model of COS uptake (Berry et al., 2013) with 

the upscaling scheme (Chen et al., 1999). Specifically, considering the different responses of foliage to diffuse and direct solar 

radiation (Gu et al., 2002), 𝐹𝑐𝑜𝑠,𝑝𝑙𝑎𝑛𝑡 is calculated as: 165 

𝐹𝑐𝑜𝑠,𝑝𝑙𝑎𝑛𝑡 = 𝐹𝑐𝑜𝑠,𝑠𝑢𝑛𝑙𝑖𝑡𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡 + 𝐹𝑐𝑜𝑠,𝑠ℎ𝑎𝑑𝑒𝑑𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑 (2) 

where 𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡 and 𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑 are the LAI values (𝑚2/𝑚2m2 m−2) of sunlit and shaded leaves, respectively. 𝐹𝑐𝑜𝑠,𝑠𝑢𝑛𝑙𝑖𝑡 and 

𝐹𝑐𝑜𝑠,𝑠ℎ𝑎𝑑𝑒𝑑 are the leaf-level COS uptake rate (𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ pmol m−2 s−1) of sunlit and shaded leaves, respectively. And 

theThe leaf-level COS uptake rate 𝐹𝑐𝑜𝑠𝑙𝑒𝑎𝑓
 is calculated as: 

𝐹𝑐𝑜𝑠,𝑙𝑒𝑎𝑓 = 𝑐𝑜𝑠𝑎 ∗ (
1.94

𝑔𝑠𝑤
+

1.56

𝑔𝑏𝑤
+ 𝑔𝑐𝑜𝑠)

−1

(3) 170 

where 𝑐𝑜𝑠𝑎is the COS mole fraction in the bulk air. 𝑔𝑠𝑤and  𝑔𝑏𝑤 are the stomatal conductance and leaf laminar boundary layer 

conductance to H2O vapor. 𝑔𝑐𝑜𝑠 denotes the apparent conductance for COS uptake from the intercellular airspaces, combining 

the mesophyll conductance and the biochemical reaction rate of COS and carbonic anhydrase. It can be calculated as: 

𝑔𝑐𝑜𝑠 = 1.4 ∗ 103 ∗ (1.0 + 5.33 ∗ 𝐹𝐶4) ∗ 10−6 ∗ (1 − 𝑒(−0.45∗𝐿𝐴𝐼)) ∗ 𝑓𝑠𝑤 ∗ 𝑉𝑐𝑚𝑎𝑥 (4) 

where 𝐹𝐶4 denotes the C4 plant flag, which takes the value of 1 when the vegetation is C4 plants and 0 otherwise. 𝑓𝑠𝑤 is a 175 

parameter describing the soil water stress on stomatal conductance.𝑉𝑐𝑚𝑎𝑥 denotes the maximum carboxylation rate. 

𝐹𝑐𝑜𝑠,𝑙𝑒𝑎𝑓 = 𝑐𝑜𝑠𝑎 ∗ (
1.94

𝑔𝑠𝑤
+

1.56

𝑔𝑏𝑤
+

1

𝑔𝐶𝑂𝑆
)

−1

(3) 

where 𝐶𝑂𝑆𝑎 is the COS mole fraction in the bulk air. 𝑔𝑠𝑤 and 𝑔𝑏𝑤 are the stomatal conductance and leaf laminar boundary 

layer conductance to water vapor (H2O). The factors 1.94 and 1.56 account for the smaller diffusivity of COS with respect to 

H2O (Seibt et al., 2010; Stimler et al., 2010). 𝑔𝐶𝑂𝑆 denotes the apparent conductance for COS uptake from the intercellular 180 

airspaces, combining the mesophyll conductance and the biochemical reaction rate of COS and carbonic anhydrase (CA). 

Independent studies indicate that both CA activity (Badger and Price, 1994) and mesophyll conductance (Evans et al., 1994) 

tend to scale with the photosynthetic capacity or the maximum carboxylation rate of Rubisco at 25℃. 

𝑔𝐶𝑂𝑆 =  α ∗  𝑉𝑐𝑚𝑎𝑥25 (4) 

Where α is a parameter that is calibrated to observations of simultaneous measurements of COS and CO2 uptake (Stimler et 185 

al., 2012). Analysis of these measurements yield estimates of α of ∼1400 for C3 and ∼7500 for C4 species. With reference 

the COS modelling scheme of the Simple biosphere model (version 4.2) (Haynes et al., 2020), 𝑔𝐶𝑂𝑆  can be calculated 

as:

𝑔𝑐𝑜𝑠 = 1.4 ∗ 103 ∗ (1.0 + 5.33 ∗ 𝐹𝐶4) ∗ 10−6 ∗ 𝐹𝐴𝑃𝐴𝑅 ∗ 𝑓𝑤 ∗ 𝑉𝑐𝑚𝑎𝑥 (5) 

where 𝐹𝐶4 denotes the C4 plant flag, which takes the value of 1 when the vegetation is C4 plants and 0 otherwise. 𝑓𝑤 is a soil 190 

moisture stress factor describing the sensitivity of 𝑔𝑠𝑤 to soil water availability (Ju et al., 2006). 𝐹𝐴𝑃𝐴𝑅 is the scaling factor for 

leaf radiation, calculated as: 
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𝐹𝐴𝑃𝐴𝑅 = 1 − 𝑒(−0.45∗𝐿𝐴𝐼) (6) 

𝐹𝑐𝑜𝑠,𝑠𝑜𝑖𝑙 is taken as the combination of abiotic COS flux 𝐹𝑐𝑜𝑠,𝑎𝑏𝑖𝑜𝑡𝑖𝑐  and biotic COS flux 𝐹𝑐𝑜𝑠,𝑏𝑖𝑜𝑡𝑖𝑐  (Whelan et al., 2016). 

𝐹𝑐𝑜𝑠,𝑠𝑜𝑖𝑙 = 𝐹𝑐𝑜𝑠,𝑎𝑏𝑖𝑜𝑡𝑖𝑐 + 𝐹𝑐𝑜𝑠,𝑏𝑖𝑜𝑡𝑖𝑐 (5) 195 

𝐹𝑐𝑜𝑠,𝑠𝑜𝑖𝑙 = 𝐹𝑐𝑜𝑠,𝑎𝑏𝑖𝑜𝑡𝑖𝑐 + 𝐹𝑐𝑜𝑠,𝑏𝑖𝑜𝑡𝑖𝑐 (7) 

𝐹𝑐𝑜𝑠,𝑎𝑏𝑖𝑜𝑡𝑖𝑐 is described as an exponential function of the temperature of soil 𝑇𝑠𝑜𝑖𝑙  (℃). 

𝐹𝑐𝑜𝑠,𝑎𝑏𝑖𝑜𝑡𝑖𝑐 = 0.437 ∗ 𝑒0.0984∗𝑇𝑠𝑜𝑖𝑙 (6) 

𝐹𝑐𝑜𝑠,𝑎𝑏𝑖𝑜𝑡𝑖𝑐 = 𝑒(𝑎𝑙𝑝ℎ𝑎+𝑏𝑒𝑡𝑎 ∗𝑇𝑠𝑜𝑖𝑙) (8) 

Where 𝑎𝑙𝑝ℎ𝑎 (unitless) and 𝑏𝑒𝑡𝑎 (℃−1) are parameters determined using the least-squares fitting approach. 200 

𝐹𝑐𝑜𝑠𝑏𝑖𝑜𝑡𝑖𝑐
is calculated according to Behrendt et al. (2014):  

𝐹𝑐𝑜𝑠,𝑏𝑖𝑜𝑡𝑖𝑐 = 𝐹𝑜𝑝𝑡 (
𝜃𝑖

𝜃𝑜𝑝𝑡
) ∗ 𝑒

−𝑎(
𝜃𝑖

𝜃𝑜𝑝𝑡
−1)

(7) 

𝐹𝑐𝑜𝑠,𝑏𝑖𝑜𝑡𝑖𝑐 = 𝐹𝑜𝑝𝑡 (
𝑆𝑊𝐶

𝑆𝑊𝐶𝑜𝑝𝑡
) ∗ 𝑒

−𝑎(
𝑆𝑊𝐶

𝑆𝑊𝐶𝑜𝑝𝑡
−1)

(9) 

which can be rearranged to 

𝑎 = 𝑙𝑛 (
𝐹𝑜𝑝𝑡

𝐹𝜃𝑔

) ∗ (𝑙𝑛 (
𝜃𝑜𝑝𝑡

𝜃𝑔
) + (

𝜃𝑔

𝜃𝑜𝑝𝑡
− 1))

−1

(8)205 

Here a is the curve shape constant, 𝜃𝑖 is the soil moisture (percent volumetric water content). The maximum biotic COS uptake 

𝐹𝑜𝑝𝑡  and the biotic COS uptake 𝐹𝜃𝑔
are the COS fluxes (𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ ) at optimum soil moisture 𝜃𝑜𝑝𝑡  and 𝜃𝑔 , and can be 

calculated from 𝑇𝑠𝑜𝑖𝑙 using eqs. (9) and (10) respectively.  

𝐹𝑜𝑝𝑡 = −0.00986 ∗ 𝑇𝑠𝑜𝑖𝑙
2 + 0.197 ∗ 𝑇𝑠𝑜𝑖𝑙 − 9.32 (9) 

𝐹𝜃𝑔
= −0.119 ∗ 𝑇𝑠𝑜𝑖𝑙

2 + 0.110 ∗ 𝑇𝑠𝑜𝑖𝑙 − 1.18 (10) 210 

𝜃𝑔 is assumed to be a constant 0.35, and 𝜃𝑜𝑝𝑡 is assumed to be a first order function of 𝑇𝑠𝑜𝑖𝑙. 

𝜃𝑜𝑝𝑡 = 0.28 ∗ 𝑇𝑠𝑜𝑖𝑙 + 14.5 (11) 

𝑎 = 𝑙𝑛 (
𝐹𝑜𝑝𝑡

𝐹𝑆𝑊𝐶𝑔

) ∗ (𝑙𝑛 (
𝑆𝑊𝐶𝑜𝑝𝑡

𝑆𝑊𝐶𝑔
) + (

𝑆𝑊𝐶𝑔

𝑆𝑊𝐶𝑜𝑝𝑡
− 1))

−1

(10) 

Here a is the curve shape constant, 𝑆𝑊𝐶 is the soil moisture (percent volumetric water content). The maximum biotic COS 

uptake 𝐹𝑜𝑝𝑡  and the biotic COS uptake 𝐹𝑆𝑊𝐶𝑔
 are the COS fluxes (𝑝𝑚𝑜𝑙 𝑚−2 𝑠−1) at optimum soil moisture 𝑆𝑊𝐶𝑜𝑝𝑡  and 215 

𝑆𝑊𝐶𝑔, and 𝑆𝑊𝐶𝑔 > 𝑆𝑊𝐶𝑜𝑝𝑡. Here we use the parameterization scheme of soil COS modelling from Whelan et al. (2016) and 

Whelan et al. (2022), see Table S2 and Table S3 for details. Specifically, with reference of Abadie et al. (2022) and Whelan 

et al. (2022), the mean modelled SWC and temperature of the top 9 cm of the soil profile in BEPS were utilized to drive the 

COS soil model in this study, and the mean modelled SWC and temperature were calculated through a weighted average 

considering the depth of each soil layer. A more detailed description about the soil hydrology and stomatal conductance 220 

modelling approach of BEPS is provided in the appendix. 

Then ecosystem COS flux 𝐹𝑐𝑜𝑠,𝑒𝑐𝑜𝑠𝑦𝑠𝑡𝑒𝑚 can be calculated as the sum of COS plant uptake and the COS soil flux.  

2.2 Model parameters 

In this study, we optimized a total of 76 parameters belonging to BEPS, the parameters are described in Table S3. Of these 

parameters; some are global and others differentiated by PFT or soil texture class. The prior values of the parameters are taken 225 

as model defaults which have been tuned with efforts from previous model development and validation, and the prior 

uncertainty of parameters is set as 25% of the prior values. 
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Here we optimized a total of 76 parameters belonging to BEPS. Of these parameters; some are global and others differentiated 

by PFT or soil texture class. The prior values of the parameters are taken as model defaults which have been tuned previous 

model in development and validation studies (Kattge et al., 2009; Chen et al., 2012). The prior uncertainty of parameters is set 230 

based on previous research (Chen et al., 2022; Ryu et al., 2018). For a more detailed description of these parameters, see Table 

S4 in the supplement. 

2.3 Site description 

The NUCAS was evaluated at seven sites distributed on the Eurasian and North American continents in boreal, temperate and 

subtropical regions based on field observations collected from several studies. Those sites were representative of different 235 

climate regions and land cover types (in the model represented by PFTs, and soil textures, as depicted in Table 1). They 

contained 5 of the 10 PFTs used in BEPS and 5 of the 11 soil textures. The sites comprise AT-Neu, located at an intensively 

managed temperate mountain grassland near the village of Neustift in the Stubai Valley, Austria (Hörtnagl et al., 2011); the 

Danish ICOS RI site (DK-Sor), which is dominated by European beech (Braendholt et al., 2018); the Las Majadas del Tietar 

site (ES-Lma) located in western Spain with a Mediterranean savanna ecosystem (El-Madany et al., 2018); the Hyytiälä forest 240 

Station (FI-Hyy), located in Finland and is dominated by Scots Pine (Bäck et al., 2012); an agricultural soybean field 

measurement site (IT-Soy) located in Italy  In this study, NUCAS was operated at seven sites distributed on the Eurasian and 

North American continents in boreal, temperate and subtropical regions (as illustrated in Figure 2) based on field observations 

collected from several studies. Those sites were representative of different climate regions and land cover types (in the model 

represented by PFTs, and soil textures, as depicted in Table 1). They contained 4 of the 10 PFTs used in BEPS and 3 of the 245 

11 soil textures. The sites comprise AT-Neu, located at an intensively managed temperate mountain grassland near the village 

of Neustift in the Stubai Valley, Austria (Hörtnagl et al., 2011; Spielmann et al., 2020); the Danish ICOS (Integrated Carbon 

Observation System) Research Infrastructure site (DK-Sor), which is dominated by European beech (Braendholt et al., 2018; 

Spielmann et al., 2019); the Las Majadas del Tietar site (ES-Lma) located in western Spain with a Mediterranean savanna 

ecosystem (El-Madany et al., 2018; Spielmann et al., 2019); the Hyytiälä forest Station (FI-Hyy), located in Finland and is 250 

dominated by Scots Pine (Bäck et al., 2012; Vesala et al., 2022); an agricultural soybean field measurement site (IT-Soy) 

located in Italy (Spielmann et al., 2019); the Harvard Forest Environmental Monitoring Site (US-Ha1) which is dominated by 

red oak and red maple in Petersham, Massachusetts, USA (Urbanski et al., 2007)(Urbanski et al., 2007; Wehr et al., 2017); the 

Wind River Experimental Forest site (US-Wrc), located within the Gifford Pinchot National Forest in southwest Washington 

state, USA, with 478 ha of preserved old growth evergreen needleleaf forest (Rastogi et al., 2018). 255 

. For further information on all sites, see publications listed in Table 1. 

2.4 Data 

The NUCAS system was driven by several temporally and spatially variant and invariant datasets. The CO2 and COS mole 

fractions in the bulk air were assumed to be spatially invariant over the globe and to vary annually. And theThe CO2 mole 

fraction data in this study are taken from the Global Monitoring Laboratory (https://gml.noaa.gov/ccgg/trends/global.html). 260 

For the COS mole fraction, the average of the COS mole fraction observations from sites SPO (South Pole) and MLO (Mauna 

Loa, United States) was utilized to drive the model, the data are publicly available on line at: 

https://gml.noaa.gov/hats/gases/OCS.html. The other main inputs include a remotely sensed LAI dataset, a meteorological 

dataset and a soil dataset. Additionally, in order to conduct data assimilation experiments and to evaluate the effectiveness of 

the assimilation of COS fluxes, field observations including the ecosystem-scale (eddy-covariance or gradient-based) COS 265 

https://gml.noaa.gov/ccgg/trends/global.html
https://gml.noaa.gov/hats/gases/OCS.html
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flux, GPP, sensible heat (H), latent heat (LE) and soil moisturewater content (SWC) at these sites collected at the sites were 

used.  

2.4.1 LAI dataset  

The LAI dataset used here are the GLOBMAP global leaf area index product (Version 3) (see GLOBMAP global Leaf Area 

Index since 1981 | Zenodo), the Global Land Surface Satellite (GLASS) LAI product (Version 3) (acquired from 270 

ftp://ftp.glcf.umd.edu/) and the level-4 MODIS global LAI product (see LP DAAC - MOD15A2H (usgs.gov)). The 

GLOBMAP LAI product represents Leaf area index at a spatial resolution of 8 km and a temporal resolution of 8-day (Liu et 

al., 2012). The GLASS LAI product is generated every 8 days at a spatial resolution of 1 km (Xiao et al., 2016). And the 

MODIS LAI is an 8-day composite dataset with 500 m pixel size. OverallAs default, we used GLOBMAP products for 

assimilation experiments as much as possible given its good performance in the BEPS applications to various cases (Chen et 275 

al., 2019). And all of the threeThe other two LAI products were used to drive the model to investigate the effect of the LAI 

products on the parameter optimization results. AccordingAlso, according to Spielmann et al. (2019), the GLOBMAP product 

had significantlyconsiderably underestimated the LAI at the DK-Sor site in June 2016, and we noticed it was not consistent 

with the vegetation phenology at ES-Lma in May 2016. Therefore, GLASS LAI was used at these two sites and the GLOBMAP 

product was used at the remaining five sites. In addition, these 8-days LAI data were interpolated into daily values by the 280 

nearest neighbour method. 

2.4.2 Meteorological dataset 

Standard hourly meteorological data as input for BEPS including air temperature at 2 m, shortwave radiation, precipitation, 

relative humidity and wind speed is available throughwere taken from the FLUXNET database (AT-Neu, DK-Sor, ES-Lma 

and, FI-Hyy, and US-Ha1 see https://fluxnet.org),  the AmeriFlux database (US-Ha1, US-Wrc, see https://ameriflux.lbl.gov) 285 

and the ERA5 dataset (Site AT-Neu, IT-Soy, US-Ha1 see https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-

single-levels?tab=overview), respectively. Since the experiments were conducted at the site scale, we used the FLUXNET and 

AmeriFlux data, which contains information about the downscaling of meteorological variables of the ERA-Interim reanalysis 

data product (Pastorello et al., 2020) as far as possible, and supplemented them with ERA5 reanalysis data. Particularly, 

although AT-Neu is a FLUXNET site, its FLUXNET meteorological data are only available for the years 2002-2012 while 290 

the measurement of COS was performed in 2015. Therefore, we first performed a linear fit of its ERA5-Land data and 

FLUXNET meteorological data for 2002-2012, and then corrected the ERA5 data for 2015 with the fitted parameters to obtain 

downscaling information for the meteorological variables. In addition,Additionally, for US-Ha1, we used the FLUXNET data 

in 2012, and Ameriflux data and ERA5 shortwave radiation data in 2013 to drive the BEPS model, due to the absence of US-

Ha1 were also derived from ERA5 since there are no in situFLUXNET data in 2013 and the lack of shortwave radiation 295 

measurements at this site. data of Ameriflux. 

2.4.3 Assimilation and evaluation datasets 

The hourly ecosystem-scale COS flux observations were used to perform data assimilation experiments and to evaluate the 

assimilation results. They were taken from existing studies (listed in Table 1) and were available for at least a month. Most of 

the ecosystem COS flux observations were obtained using the eddy-covariance (EC) technique, with the exception US-Wrc, 300 

where the COS fluxes were derived with the gradient-based approach. We then corrected the COS fluxes from FI-Hyy using 

the storage-correction method (Kooijmans et al., 2017). The COS soil measurements were collected using soil chamber, except 

at US-Ha1, where a sub-canopy flux-gradient approach was used to calculate the soil COS flux. Detailed information on the 

https://zenodo.org/record/4700264#.Y3OZKctBxD8
https://zenodo.org/record/4700264#.Y3OZKctBxD8
ftp://ftp.glcf.umd.edu/
https://lpdaac.usgs.gov/products/mod15a2hv006/
https://fluxnet.org/
https://ameriflux.lbl.gov/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview
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observations of COS can be found in the publications listed in Table 1about the COS measurements can be found in the 

publications listed in Table 1. Specifically, only the measured ecosystem COS flux data of FI-Hyy (Vesala et al., 2022) was 305 

utilized in this study. 

Since only the raw COS concentration data at different altitudes are provided in Rastogi et al. (2018), while the values of the 

parameters needed to calculate the COS fluxes by the aerodynamic gradient method are not provided, there may be 

significantconsiderable biases in our estimates of COS fluxes at US-Wrc. Therefore, a bias correction scheme was implemented 

to match the simulated and estimated the ecosystem-scale COS fluxes for the US-Wrc site. The objectives of this correction 310 

scheme are to obviate the need for accurate values of parameters relevant for COS flux calculations, and to retain as much 

useful information from the COS concentration measurements as possible (Leung et al., 1999; Scholze et al., 2016). This was 

done by using the mean and standard deviation of the simulated COS flux to correct the COS flux observations: 

C =
𝜎𝑠(𝑐 − 𝑚𝑐)

𝜎𝑐
+ 𝑚𝑠 (12) 

F =
𝜎𝑀(𝑂 − �̅�)

𝜎𝑂
+ �̅� (11) 315 

where c denotes the COS flux observations (converted to 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ ). 𝑚𝑐𝑂 and 𝜎𝑐𝜎𝑂 are mean and standard deviation of 

the observed COS flux series. CF is the corrected observed COS flux, which is matched to the simulated COS flux. 𝑚𝑠𝑀 and 

𝜎𝑠𝜎𝑀 are mean and standard deviation of the COS simulations, calculated from the simulations using the prior parameters for 

the time period corresponding to the COS flux observations. 

Considering that COS soil fluxes are much lower than the anticipated plant fluxes in general (positive values indicate COS 320 

uptake) and that the relative uncertainty in COS fluxes is very large at low values, especially when negative (Kohonen et al., 

2020), we first removed the negative values of the ecosystem COS fluxes. Then, theThe standard deviation of the ecosystem 

COS fluxes within 24 hours around each observation was calculated as estimate of the observation uncertainty. For the case 

where there are no other observations within the surrounding 24 hours, the uncertainty was taken as the mean of the estimated 

uncertainties of the whole observation series. 325 

In order to evaluate the assimilation results, gross primary productivity, sensible heat, latent heat and volumetric soil water 

content (SWC) observations were also taken from FLUXNET (DK-Sor, ES-Lma and FI-Hyy),  AmeriFlux (US-Ha1 and US-

Wrc),Due to the coupling between leaf exchange of COS, CO2 and H2O, GPP and LE data are selected to evaluate the model 

performance of COS assimilation in this study. In addition, we further explored the ability of COS to constrain SWC as well 

as H simulations since the water dissipated in transpiration originates from the soil (Berry et al., 2006) and the transpiration 330 

contribute to a decrease in temperature within the leaf (so called “cooling effect”) (Gates, 1968; Konarska et al., 2016). These 

data were taken from FLUXNET (DK-Sor, ES-Lma, FI-Hyy and US-Ha1), AmeriFlux (US-Ha1 and US-Wrc) and existing 

studies (Spielmann et al. (2019)Spielmann et al. (2020) and Spielmann et al. (2019) for AT-Neu and IT-Soy). As GPP is only 

available for FLUXNET sites, and CO2 turbulent flux (FC) or net ecosystem exchange (NEE) data are available for other sites, 

a night flux partitioning model (Reichstein et al., 2005) was used to estimate ecosystem respiration (𝑅𝑒𝑐𝑜) and thus to calculate 335 

GPP. The model assumes that nighttime NEE represents ecosystem respiration (Reichstein et al., 2005), and thus partitions 

FC or NEE into GPP and 𝑅𝑒𝑐𝑜, and thus partitions FC or NEE into GPP and 𝑅𝑒𝑐𝑜 based on the semi-empirical models of 

respiration, which use air temperature as a driver (Lloyd and Taylor, 1994; Lasslop et al., 2012).  

2.5 Experimental design 

Three groups of data assimilation experiments were conducted in this study: (1) 14 model-based twin experiments were 340 

performed to investigate the ability of NUCAS to assimilate COS flux data in different scenarios; (2) 13 single-site assimilation 
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experiments were conducted at all seven sites to obtain the site-specific posterior parameters and the corresponding posterior 

model outputs based on COS flux observations; (3) one multitwo-site assimilation experiment was carried out to refine one 

set of parameters over multipletwo sites simultaneously and to simulate the corresponding model outputs. Prior simulations 

using default parameters were also performed in order to investigate the effect of the COS flux assimilation. Moreover, due to 345 

the limitation of the COS observations, all of these experiments were conducted in a one-month time window at the peak of 

the growing season. Detailed information of these experiments is described in the following.  

2.5.1 Twin experiment 

Model-based twin experiments were performed to investigate the model performance of the data assimilation (Irrgang et al., 

2017) at all seven sites considering single-site and multitwo-site scenarios, and under different perturbation conditions. In each 350 

twin experiment, we first created a pseudo-observation sequence by NUCAS using the prior parameters. The pseudo-

observation sequencetime series included the prior simulated ecosystem COS fluxes with its uncertainties, and the latter were 

set to a constantestimated as the standard deviation of 1 (𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ ).the prior simulated COS fluxes within 24 hours around 

each simulation. Then, a given perturbation ratio was applied to the prior parameters vector, and a perturbed ecosystem COS 

simulation sequence could be obtained based on the perturbedas a starting point for the interactive adjustment of parameter 355 

vector. Finally, the data assimilation experiments were performed to minimize the discrepancy between the prior parameters 

and the perturbed parameters, and thus the discrepancy betweenvalues to match the COS flux pseudo-observations and the 

perturbed ecosystem COS simulations. The effectiveness of the data assimilation methodology of NUCAS can be validated if 

it successfully restores the control parameters from the pseudo-observations. And asAs a gradient-based optimization 

algorithm is used in NUCAS to tune the control parameters and minimize the cost function, the changes of cost function and 360 

gradient over assimilation processes can also be used to verify the assimilation performance of the system. In this work, a total 

of fourteen twin experiments were conducted, including thirteen single-site twin experiments and one multitwo-site twin 

experiment. For all cases whereWith reference the PFT is evergreen needleleaf forestuncertainty of parameters, a perturbation 

ratio of 0.2 was used. And forutilized in all of the remaining six single-site twin experiments, a perturbation rate of 0.4 was 

used. 365 

2.5.2 Real data assimilation experiment 

After the ability of NUCAS to assimilate COS flux data was confirmed by twin experiments, we could then use the system to 

conduct data assimilation experiments with real COS observations under single-site and multi-site conditions to optimize the 

control parameters and state variables of this model, and use the evaluation dataset to test the posterior simulations of the state 

variables. For the single-site case, a total of thirteen data assimilation experiments were conducted at all of these sites to 370 

investigate the assimilation effect of COS flux on optimizing key ecosystem variables. In the diagnostic processes, no 

perturbation was applied to the default parameters, except for the experiment conducted at the FI-Hyy site in July 2017, where 

a perturbation ratio of 0.2 was applied. Detailed information about those single-site experiments is shown in Table 32. 

Single-site assimilation can fully account for the site-specific information, and thus achieve accurate calibration. However, 

this assimilation approach often yields a range of different model parameters between sites. For large-scale model simulations, 375 

only one set of accurate and generalized model parameters is required (Salmon et al., 2022). Thus, multia two-site assimilation 

experiment that can assimilate COS observations from multipletwo sites simultaneously is necessary to be conducted. Across 

the seven sites, Although both DK-Sor and US-Ha1 are both dominated by deciduous broadleaved forest, while there is no 

overlap in the timingand both AT-Neu and ES-Lma are dominated by C3 grass, none of the observations for their COS data 

from these two PFTs overlap in observation time. We therefore selected FI-Hyy and US-Wrc, which are both dominated by 380 
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evergreen needleleaf forest, and conducted a multitwo-site assimilation experiment with a one-month assimilation window in 

August 2014.  

2.6 Model evaluation 

For the purpose of demonstrating the process of control parameter vector being continuously adjusted in the normalized 

parameter space in twin experiment, and quantifying the deviation of the current control vector from the prior, the distance 385 

(𝐷𝑥) between the parameter vector and the prior parameter vector was calculated. 

𝐷𝑥 = ‖𝑥 − 𝑥0‖ = √∑(𝑥(𝑖) − 𝑥0(𝑖))
2

𝑛

𝑖=1

(13) 

𝐷𝑥 = ‖𝑥 − 𝑥0‖ = √∑(𝑥(𝑖) − 𝑥0(𝑖))
2

𝑛

𝑖=1

(12) 

where i denotes the i th parameter in the parameter vectors and n denotes the number of parameters in the parameter vector, 

and takes a value of 76.  390 

With the aim of evaluating the performance of NUCAS in the real data assimilation experiments, we reran the model to obtain 

the posterior model outputs based on the posterior model parameters. Typical statistical metrics including mean bias (MB), 

root mean square error (RMSE),) and correlationcoefficient of determination (𝑅2) are used to measure the difference between 

the simulations and in situ observations. They were calculated as: 

𝑀𝐵 =
1

𝑁
∑(𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖)

𝑁

𝑖=1

= 𝑜𝑏𝑠 − 𝑠𝑖𝑚 (14) 395 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖)

2

𝑁

𝑖=1

(15) 

𝑅2 = 1 −
∑ (𝑜𝑏𝑠𝑖 − 𝑠𝑖𝑚𝑖)

2𝑁
𝑖=1

∑ (𝑜𝑏𝑠𝑖 − 𝑜𝑏𝑠)
2

𝑁
𝑖=1

(16) 

𝑀𝐵 =
1

𝑁
∑(𝑂𝑖 − 𝑀𝑖)

𝑁

𝑖=1

= 𝑂 − 𝑀 (13) 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑂𝑖 − 𝑀𝑖)

2

𝑁

𝑖=1

(14) 

𝑅2 = 1 −
∑ (𝑂𝑖 − 𝑀𝑖)

2𝑁
𝑖=1

∑ (𝑂𝑖 − 𝑂)
2

𝑁
𝑖=1

(15) 400 

 

where “obs” and “sim” denote the observations and simulations, respectively. 𝑠𝑖𝑚𝑖𝑀𝑖 denotes the simulation corresponding 

to the i th observation 𝑜𝑏𝑠𝑖. The terms 𝑜𝑏𝑠 and 𝑠𝑖𝑚 are the mean of observations and the mean of simulations corresponding 

to the observations. 𝑂𝑖 and N is the total number of observations. 

Given the large variation in the magnitudes of simulations and observations across experiments, the coefficient of variation of 405 

RMSE (CV(RMSE)) was employed to compare the assimilation results between different experiments, and it was calculated 

by normalizing the RMSE using the mean of observations.  
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𝐶𝑉(𝑅𝑀𝑆𝐸) =
𝑅𝑀𝑆𝐸

𝑜𝑏𝑠
(17) 

Additionally, in order to investigate the sensitivity of COS assimilation to the model parameters, we also calculated the 

sensitivity coefficientindex (SI) for each parameter at the prior value based on the sensitivity information provided by the 410 

adjoint model. The sensitivity coefficient ΦSI of anyi th parameter var𝑥(𝑖) of the parameter vector x was calculated as: 

Φ(𝑣𝑎𝑟) =  
𝜕𝐽/𝜕𝑥0(𝑣𝑎𝑟)

‖𝜕𝐽/𝜕𝑥0‖
(18) 

SI(𝑥(𝑖)) =  
𝜕𝐽/𝜕𝑥(𝑖)

‖𝜕𝐽/𝜕𝑥‖
(16)

where ‖𝜕𝐽/𝜕𝑥0‖ denote‖𝜕𝐽/𝜕𝑥‖ denotes the norm of the sensitivity vector of the cost function to the model parameters at the 

prior values.  415 

3 Results 

3.1 Twin experiments 

After dozens ofaveraging about 18 and 13 evaluations of the cost function and its gradients, each of the twin experiments was 

successfully performed. Details of those twin experiments are shown in Table 2S5. In summary, during those assimilations, 

the cost function values were significantlysubstantially reduced by more than sixteen orders of magnitude, from greater than 420 

4.58 × 103 50.75 to less than 3.505.09 × 10−13  and the respective gradient values also reduced from greater than 

3.94 × 10338.81 to  less than 2.791.59 × 10−410−6, which verified the ability of the data assimilation algorithm to correctly 

complete the assimilation. 

Corresponding to the PFT and soil texture of the experimental site, some PFT-dependent and texture-dependent parameters as 

well as global parameters showed different adjustments from others as they can affect the simulation of COS to different 425 

degrees. Those parameters are the maximum carboxylation rate at 25 ℃ (𝑉𝑐𝑚𝑎𝑥25), the ratio ofThe relative changes of the 

𝑉𝑐𝑚𝑎𝑥 to maximum electron transport rate 𝐽𝑚𝑎𝑥 (VJ_slope), saturated hydraulic conductivity (Ksat), Campbell parameter (b), 

and the ratio of photosynthetically active radiation (PAR) to shortwave radiation (f_leaf). Particularly, as the soil textures at 

the FI-Hyy and US-Wrc are different, Ksat and b corresponding to these two soil textures were both optimized in the multi-

site twin experiment. The relative changes of those parameters with respect to the prior values at the ends of the experiments, 430 

as well as the initial values (𝐷𝑖𝑡𝑖𝑎𝑙) and the maximums (𝐷𝑚𝑎𝑥) and the final values (𝐷𝑓𝑖𝑛𝑎𝑙) of 𝐷𝑥 are reported in Table S3S5. 

Results show that the relative differences of those parameters from the "true" values reached veryexceedingly small values at 

the ends of twin experiments, with the maximum of the absolute values of the relative changes below 28.55 ∗ 10−8. 10−9. 𝐷𝑥 

was also reduced to nearly zero with the maximum value below 26.60 ∗ 10−710−8, which indicates that all parameters in the 

control parameter vectors were almost fully recovered from the pseudo observations. In conclusion, these results demonstrate 435 

that NUCAS has excellent data assimilation capability under various scenarios with different perturbations, and can effectively 

perform iterative computations to obtain reliable parameter optimization results during the assimilation process. 

3.2 Single-site assimilation 

With an average of approximately 118113 cost function evaluations, all of the 13 single-site experiments were performed 

successfully. The experiments reduced cost function values significantlysubstantially, with an average cost function reduction 440 

of 33.7824.43 % (Table 32). However, the minimization efficiency cost function reduction of the experiment varies 

considerably with PFT, site and assimilation window, ranging from 1.644.87 % to 64.9269.05 %. The single-site assimilations 

tend to achieve greater minimization efficiencycost function decreased dramatically at the deciduous broadleaf forest sites 
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and the evergreen needleleaf forest sitesUS-Ha1, with mean minimization efficiency of 42.74% and 42.39%, respectively. For 

the other three PFTs, i.e. grass, crop and shrub, the minimization efficiencies were quite small, ranging from 1.64% to 10.48%, 445 

as the simulations of COS using the default parameters at these three sites are already very close to the corresponding 

observations (Figure 3). We found that for different sites with the same PFT, theiran average minimization efficiencies of the 

assimilation are in good agreement. However, for the same site, the minimization efficiencies varied considerablydecrease of 

56.59 %. In contrast, at IT-Soy, the cost function reduction is only 4.87 %. With a same PFT (C3 grass), the cost function 

decreased by a similar degree at AT-Neu and ES-Lma, with the cost function reduction of 16.39 % and 15.70 %. The average 450 

cost function reduction at FI-Hyy was also similar to another evergreen needleleaf forest site, US-Wrc. However, the cost 

function reduction of FI-Hyy varied notably from year to year, yet were very similar for the same year. For example, at FI-

Hyy, the cost function reduction in . In July and August 2014 were almost identical, with 62.23% and 64.92% respectively, 

both much greater than, the cost function reduction rateswere as high as 40.59 % and 50.94 %, while in other years.  

For all single-site experiments, the model parameters were continuously adjusted during the assimilation and eventually 455 

stabilized., the cost function reduction are much lower, ranging from 5.73 % to 18.94 %. Similar to the single-site twin 

experiments, only five parameters have been efficiently adjusted. Figure 2 illustrates the evolution of the values of those 

parameters during the single-site assimilation experiment at the DK-Sor site in June 2016. At the beginning of the assimilation, 

each parameter had a great adjustment. As the iterations continued, the parameters gradually stabilized and the minimization 

was eventually completed. Specifically, 𝑉𝑐𝑚𝑎𝑥25, VJ_slope and f_leaf varied over a very large range during the assimilation, 460 

up to 47.92 in the normalized model parameter space. In contrast, the texture-dependent parameter Ksat and b, varied in a very 

small range between 3.99 and 4.01. (Table 2).  

Figure 3 illustrates theThe mean diurnal cycle and the scatterplots of observed and simulated COS fluxes. are presented in 

Figure 3 and Figure S1, respectively. Results show that the prior simulations can accurately reflect the magnitude of 

ecosystem COS fluxes and effectively capture the daily variation and the diurnal cycle of COS. On average across all sites, 465 

the prior simulated and observed ecosystem COS fluxes were veryremarkably close, with 21.92 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ 20.60 

pmol m−2 s−1  and 21.88 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ ,01 pmol m−2 s−1  respectively. However, there was substantial variability between 

sites and even between experiments at the same site. At DK-SorES-Lma, the prior simulated COS fluxes were greatly 

underestimated by 55.7263.38 %. In contrast, the prior simulated COS fluxes were overestimated at FI-Hyy, while the 

overestimation is only significant in 2014US-Ha1, with MBs of 11.59 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ -10.01  pmol m−2 s−1  and 8.34 470 

𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ -13.63 pmol m−2 s−1 in July 2012 and August respectively.July 2013. In general, the MBs of COS fluxes are 

largely determined by the simulations and observations at daytime due to the larger magnitude (Figure 3). However, the 

model-observation differences at nighttime are also non-negligible. As shown in Figure 3, the simulated COS fluxes during 

nighttime were almost constant and lower than the observations for all experiments. Moreover, the underestimation is 

particularly evident inat AT-Neu, ES-Lma and FI-Hyy.  475 

After the single-site optimizations, both the daily variation and diurnal cycle of COS simulations were improved. This was 

reflected in the reduction of mean RMSE between the simulated and the observed COS fluxes from 16.69 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ 49 

pmol m−2 s−1 in the prior case to 13.64 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ 86 pmol m−2 s−1 in the posterior case. And similarSimilar to the values 

of cost function, the RMSEs were also reduced in all single-site experiments. Moreover, the assimilation of COS observations 

also effectively corrected the bias between prior simulations and observations, with mean absolute MB significantly decreased 480 

from 6.94 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄  pmol m−2 s−1 to 3.84 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ .09 pmol m−2 s−1. In contrast, 𝑅2 remained almost unchanged by 

the optimizations, with its mean value increasing slightly fromof 0.2956 to 0.3037. In addition,2967 in the prior case and 

0.2970 in the posterior case. Our results also demonstrateshowcase that the assimilation model-observation differences of COS 

mainly optimizes the simulated COS fluxeswere effectively reduced at daytime, while. However, the simulated nighttime COS 
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fluxesremarkable differences between COS observations and simulations at nightime, are almost unchanged. not effectively 485 

corrected in a number of assimilation experiments (i.e., the experiment conducted at FI-Hyy in July 2013, see Figure 3d). 

The impacts of the assimilation of COS in improving the COS posterior simulations were particularly evident at forest sites, 

where the prior simulated COS often deviated significantly from the observations, and less evident at low-stature vegetation 

(including grass, crop and shrub) sites, as the model using prior parameters already performed very well in the simulations. 

This result is very reasonable since a similar pattern was also found in the cost function reductions at these sites. For example, 490 

with the largest cost function reduction, the assimilation of COS significantly corrected the overestimation of the COS 

simulations at FI-Hyy in August 2014, with RMSE decrease from 16.13 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄  to 10.11 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ . In contrast, with 

a reduction in the cost function of only 2.08%, the assimilation of COS had little effect at the IT-Soy site, where the RMSE of 

simulated and observed COS only decreased from 12.23 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄  to 12.10 𝑝𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ . In addition, the performance of 

the assimilation of COS at these sites was evaluated utilizing CV(RMSE). Results showed that the three experiments with the 495 

smallest CV(RMSE)s all were carried out at the FI-Hyy site, in July 2013, 2016 and 2017 respectively, with a mean value of 

CV(RMSE) of 0.51. While at AT-Neu and US-Wrc, the CV(RMSE)s were much larger, with 0.90 and 0.85 respectively. For 

AT-Neu, in addition to the large model-observation biases during nighttime (Figure 3a), there were also significant deviations 

between observations and simulations in the morning due to the high values of observations.  

3.3 MultiTwo-site assimilation 500 

FI-Hyy and US-Wrc have different soil textures, with loamy sand and siltysandy loam and loam, respectively. In the multitwo-

site assimilation experiment, NUCAS took this difference into account and successfully minimized the cost function from 

703.36495.94 to 370.44365.63 after 14667 evaluations of cost function. The cost function reduction for the experiment is very 

reasonable, withhas a value of 47.3328.29 %, comparable to the cost function reductions for corresponding single-site 

assimilation experiments at FI-Hyy and US-Wrc (64.9250.94 % and 44.6527.71 %). Furthermore, corresponding to these two 505 

soil textures, the texture-dependent parameters Ksat𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and b𝑏𝑠𝑐𝑎𝑙𝑎𝑟 yielded two different posterior parameter values, 

respectively, so that a total of seven parameters were optimized in the multitwo-site experiment (Table 4). Table 4 shows3). 

It can be seen that with the exception oftwo-site optimized results of 𝑉𝑐𝑚𝑎𝑥25, VJ_slope, the multi-site posterior parameters 

and f_leaf are all very similar to thosethat of the single-site experiments in both the sign ofoptimized results at US-Wrc, as 

most of the observations of the two-site experiment originated from US-Wrc. As for the change (increase or decrease) and 510 

texture-dependent parameters, they had the same signs and comparable magnitudes of the adjustments. to that of the 

corresponding single-site experiment at FI-Hyy and were minutely adjusted at US-Wrc as in the corresponding single-site 

experiment. Overall, both the minimization efficienciescost function reduction and the parameter optimization results of the 

multitwo-site assimilation experiments were very similar to the corresponding single-site experiments, demonstrating the 

ability of NUCAS to correctly perform joint data assimilation from COS observations at multipletwo sites simultaneously. 515 

The posterior simulations of COS flux using the multitwo-site posterior parameters, also demonstrated the ability of NUCAS 

to correctly assimilate multitwo-site COS fluxes simultaneously.  (Figure 4 and Figure S2). As shown in Figure 44a, the 

prior COS simulations for both the FI-Hyy site and US-Wrc site show overestimation compared to the observations. However, 

afterAfter the multitwo-site COS assimilation, the discrepancies between COS simulations and observations were significantly 

reduced in both FI-Hyy and US-Wrc, with RMSE reductions of 36.8624.75 % and 9.273.39 %, achieving similar results to the 520 

simulations using the single-site posterior parameters.  
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3.4 Parameter change 

As mentioned before, there were only five parameters that have been significantly changedadjusted during the assimilation of 

COS flux observations by the NUCAS system, whether in twin, single-site or multitwo-site experiments. They are the 

maximum carboxylation rate at 25 ℃ (𝑉𝑐𝑚𝑎𝑥25), the ratio of 𝑉𝑐𝑚𝑎𝑥 to maximum electron transport rate 𝐽𝑚𝑎𝑥 (VJ_slope), the 525 

scaling factor (𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟) of saturated hydraulic conductivity (Ksat),) and Campbell parameter (b), and the ratio 

of PAR to shortwave radiation (f_leaf). These parameters are strongly linked to the COS exchange processes and it is therefore 

reasonable that they could be optimized by the assimilation of COS flux. Furthermore, these parameters are also closely linked 

to processes such as photosynthesis, transpiration and soil water transport, and therefore providethe assimilation of COS flux 

provides an indirect constraint for improving the simulation of GPP, LE, H and soil moisture based on the assimilation of COS 530 

flux. 

For both single-site and multi-site experiments, the changes of those five parameters exhibited different characteristics: The 

texture-dependent parameters Ksat and b had a very little relative change, while the PFT-specific parameters (𝑉𝑐𝑚𝑎𝑥25 and 

VJ_slope) and f_leaf changed dramatically (Figure 5). In particularly, the experiment with the largest relative change of Ksat 

and b performed in July 2017 at FI-Hyy, showed the corresponding relative change of only 1.33% and -2.08% respectively. 535 

For other experiments, the relative changes of Ksat and b were much smaller, on average 0.09% and 0.14%, respectively of 

their absolute values. In contrast, the other three parameters varied considerably after the assimilations, in particular f_leaf, 

which decreased by 31.55% on average in the single-site experiments. However, among these posterior parameters,  𝑉𝑐𝑚𝑎𝑥25 

has the greatest variability, with relative changes ranging from -60.64% to 113.45%. 

Across all single-site experiments, there were significant differences in the results of parameter optimization between sites. 540 

We found that for those sites where the prior simulations of COS were already very close to COS observations, such as AT-

Neu, ES-Lma and IT-Soy, there are still some parameters that varied significantly in the assimilation experiments. For example, 

in the experiment conducted at AT-Neu, although the cost function reduction of this experiment was only 1.64%, both 𝑉𝑐𝑚𝑎𝑥25 

and VJ_slope were changed significantly, with the relative changes of 45.54% and -45.42% respectively. With the opposite 

directions and similar magnitudes, the relative changes in 𝑉𝑐𝑚𝑎𝑥25 and VJ_slope are very reasonable, and reflect the trade-off 545 

of the assimilation system for the parameters which ensured the posterior simulated COS fluxes are still close to the COS 

observations. For those sites where the prior COS simulations deviated considerably from the observations, the relative changes 

of the posterior parameters were relatively larger. At DK-Sor, where the prior simulations of COS were significantly 

underestimated by 55.72%, both 𝑉𝑐𝑚𝑎𝑥25, VJ_slope and f_leaf have been greatly increased in the assimilation. In response to 

the apparent overestimation in the prior simulations of COS at FI-Hyy, the posterior COS plant uptake related parameters 550 

showed an overall decrease, especially f_leaf.  

In the multi-site experiment, corresponding to the different soil textures of FI-Hyy and US-Wrc, two different posterior 

parameter values were obtained for the texture-dependent parameters Ksat and b respectively, while only one posterior 

parameter value was obtained for each of other parameters. The results show that the posterior values of 𝑉𝑐𝑚𝑎𝑥25 and txt-

dependent parameters obtained from the multi-site optimization are very similar to those from the single-site optimization both 555 

in terms of the sign and the magnitude of adjustments. However, with a relative change of 30.72% and -63.64% in the multi-

site experiment, the posterior VJ_slope and f_leaf were significantly larger and smaller than those in the single-site experiments, 

respectively. 

In both single-site and the two-site experiments, 𝑉𝑐𝑚𝑎𝑥25 has been considerably adjusted, with average absolute relative change 

of 45.09 % and 41.36 %, respectively (Figure 5a). 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 and VJ_slope also varied greatly in the single-site experiments, with 560 

mean absolute relative changes of 30.92 % and 21.00 %, respectively. However, in the two-site experiment, their mean absolute 

changes were much smaller, at 4.08 % and 2.96 %. The relative changes of 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 are modest in both single-site and two-
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site experiments, with mean absolute values of 11.65 % and 9.34 %, respectively. As for f_leaf, the average absolute relative 

changes are even smaller than that of 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟, at 3.67 % and 6.28 % in the single-site and the two-site experiments. In 

addition, we found that the parameters can be tuned considerably in cases where the prior simulations are close to the 565 

observations. For example, at IT-Soy, where the prior simulations agree well with the observations and the cost function only 

decrease 4.87 % in the experiment, both 𝑉𝑐𝑚𝑎𝑥25 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 were remarkably tuned, with relative change of 32.55 % and -

44.72 %. 

Across all single-site experiments, there are notable differences in the results of parameter optimization, especially in 𝑉𝑐𝑚𝑎𝑥25. 

For the single-site experiment at US-Ha1 in July 2013, the posterior value of 𝑉𝑐𝑚𝑎𝑥25 is 62.08 % lower than the prior. In 570 

contrast, the posterior 𝑉𝑐𝑚𝑎𝑥25 is 127.80 % higher than the prior at ES-Lma. In addition to 𝑉𝑐𝑚𝑎𝑥25, The relative changes of 

𝑏𝑠𝑐𝑎𝑙𝑎𝑟 and VJ_slope also vary considerably, ranging from -78.13 % to 16.84 % and -58.23 % to 35.18 %, respectively. On 

the contrary, the posterior values of f_leaf show less variability, and do not differ from the prior value by more than 10.05%.  

3.5 Parameter sensitivity 

The adjoint-based sensitivity analysis results of the parameters are illustrated in Figure 5b. Our results suggest that 𝑉𝑐𝑚𝑎𝑥25 575 

has a critical impact on the assimilation results, followed by f_leaf and VJ_slope, while Ksat and b do not influence the 

assimilation results significantly (Figure 6).. With absolute sensitivity coefficientsSIs ranging from 89.0688.47 % to 97.39% 

except at IT-Soy,96.41 %, the mean absolute sensitivity coefficientSI of 𝑉𝑐𝑚𝑎𝑥25 is more than three times that of VJ_slope and 

f_leaf, which are 24.71% and 28.76% respectively. 27.67 %. In contrast, for the texture-dependent parameter Ksat and b, their 

the average absolute sensitivity coefficients were only 0.01%SIs of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟, f_leaf and 0.02%,𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 are much lower, with 580 

11.13 %, 8.30 % and 2.96 % respectively.  

Unlike the great variability of the posterior COS plant uptake related parameters𝑉𝑐𝑚𝑎𝑥25 and VJ_slope, the sensitivitiesSIs of 

the cost function to thosethese two parameters are very stable (except IT-Soy), , especially at the same site. At US-Ha1, for 

example, the difference between the sensitivity coefficientsSIs of 𝑉𝑐𝑚𝑎𝑥25, and VJ_slope and f_leaf in its two experiments 

were all smaller than 0.57%. Among the three parameters, 54 %. Furthermore, 𝑉𝑐𝑚𝑎𝑥25 has the smallest magnitude of variation 585 

in sensitivity coefficient (except IT-Soy), only about half that of VJ_slope and f_leaf, although its sensitivity coefficientsSIs 

among the five parameters with the standard deviation of the SIs of 2.25 %, despite its SIs are of a much larger order of 

magnitude. As for Ksat and b, despite the small values of their sensitivity coefficients,With the relative variability is large, 

with sensitivity coefficientsSIs ranging from -0.0520.62 % to 33.78 % and 4.17 % to 0.04 and from -0.03% to 0.07% 

respectively.  590 

Our results also suggest that11.99 % (with the parameters related to light reaction (exception of DK-Sor), VJ_slope and f_leaf), 

tend to also play more important roles in the COS assimilation at the forest sites compared to AT-Neu and ES-Lma, while 

𝑉𝑐𝑚𝑎𝑥25 does the opposite. However, the smallest absolute Φ𝑉𝑐𝑚𝑎𝑥25
 was found at the agricultural site IT-Soy with a value of 

only 23.76%, yet its sensitivity coefficient of f_leaf is as high as 94.97%.modelling of COS. As for 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟, 

their SIs varied considerably across sites and even across experiments at the same site. For example, the absolute SIs of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 595 

are as high as 30.80 % and 34.04 % at the C3 grass sites AT-Neu and ES-Lma. On the contrary, the mean absolute SI of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 

is only 1.95 % at FI-Hyy. Yet, the absolute SIs of 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 of FI-Hyy varies considerably across the experiments, ranging from 

0.07 % to 7.99 %.  

Our results also suggest that f_leaf tends to play a more important role in the COS assimilation at the forest sites (except DK-

Sor) compared to the low-stature vegetation type sites (including AT-Neu, ES-Lma and IT-Soy), with the mean absolute SIs 600 

about two times than that of the latter. With the absolute SIs ranging from 93.00 % to 96.41 %, 𝑉𝑐𝑚𝑎𝑥25 is also observed to be 
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more sensitive at the forest sites. Specifically, the largest SI of 𝑉𝑐𝑚𝑎𝑥25 was observed at DK-Sor, while the SIs of VJ_slope 

and f_leaf of DK-Sor are noticeably lower than that of other sites, at 12.05 % and 0.94 %, respectively.  

3.6 Comparison and evaluation of simulated GPP  

For single-site experiments, both the prior and posterior GPP simulations performed very well in modelling the daily variation 605 

and diurnal cycle of GPP, with mean 𝑅2 of 0.7680 and 0.7578, respectively. (Figure 7 and Figure S3). The discrepancy 

between simulations and observations was significantlysubstantially reduced by the assimilation of COS, from mean RMSE 

of 8.22 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ 7.43 umol m−2 s−1 in the prior case to 6.38 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ 5.34 umol m−2 s−1 in the posterior case (Figure 

7). The mean bias between the observed and simulated GPP was also corrected with the reduction in mean absolute MB from 

4.82 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄  to 3.14 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ .  610 

. Similar to COS flux, the mean of prior simulated GPP is also generally larger than the observed. We found thatWith the 

assimilation of COS, the tuning directions of the GPP simulations and the COS simulations were consistent for almost all 

single-site experiments (12/13). The only exception occurred at AT-Neu, with the simulated COS increasing by 10.32% while 

the simulated GPP decreasing by 15.24%. Such results also reflect that the sensitivity of COS exchange and photosynthesis to 

the model parameters differs due to the different physiological mechanisms.bias between the observed and simulated GPP was 615 

effectively corrected, with the reduction in mean absolute MB from 4.31 umol m−2 s−1 to 2.28 umol m−2 s−1. 

In general, the GPP performance was improved for most of the single-site experiments (912 of 13), with RMSE reductions 

ranging from 9.41% to 59.83%, while for the other 4 experiments, the posterior RMSEs were slightly higher than the prior by 

0.84% to 23.96%. More specifically, across3.81 % to 64.27 %. Across all single-site experiments performed at evergreen 

needleleaf forest sites, the posterior GPP simulations were remarkably improved, with an averaged RMSE reduction of 620 

37.9242.00 %. At the sites that were dominated by deciduous broadleaf forest, sites (DK-Sor and US-Ha1), the posterior 

simulated GPP also achieved a better fit with the GPP derived from EC observations, with an averaged RMSE reduction of 

11.9920.95%. However, for experiments conducted on other low-stature vegetation types (including C3 grass, and C3 crop 

and shrub), the ), the assimilation of COS is less effective in constraining the modelled GPP. At ES-Lma and IT-Soy, the 

RMSEs of the posterior simulated GPP are slightly largerlower than the prior. Nevertheless, with reduction ratios of 8.60 % 625 

and 3.81 %, respectively. At AT-Neu, the posterior simulations ofaddition of COS observation shifted the GPP for these three 

sites also achieved a consistent fit tosimulations away from the GPP derived from EC observations, with their CV(the RMSE)s 

all smaller than the averaged CV(RMSE) of all posterior simulations in single-site experiments. Moreover, for AT-Neu and  

increasing from 3.48 umol m−2 s−1 to 5.97 umol m−2 s−1. IT-Soy, the GPP observations exhibited significant fluctuations 

even at night, suggesting that they may have large uncertainties, which is to be considered in the evaluations of our GPP 630 

simulations. 

Covering different years or months, the single-site experiments performed at FI-Hyy and US-Ha1 provided an opportunity to 

analyze inter-annual and seasonal variation in the simulated and observed GPP. At US-Ha1, the prior simulations 

overestimated GPP in both July 2012 and July 2013 overestimated GPP , by almost the same degree, 30.5821.26 % and 

34.5842.02 % respectively, while. With the assimilation of COS, the corresponding posterior simulated GPP differs 635 

considerably.modelled COS exhibited substantial decreases. In July 2012parallel, the model using-observation difference also 

reduced, by 12.36 % and 24.46 %, respectively. However, the posterior parameters performed very well in GPP simulations, 

with MB of only 0.20 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ . In contrast, the posterior GPP simulations in July 2013 were significantlysimulated GPP 

appeared to be underestimated, with MB of -6.38 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ .. At FI-Hyy, a total of six single-site experiments were 

conducted between 2013 and 2017, five of them in July and one in August 2014. The observed GPP shows little inter-annual 640 

variation in July from 2013 to 2017, with the mean ranging from 8.30 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ umol m−2 s−1 to 9.15 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ , while 
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umol m−2 s−1. In August 2014, the mean for August of 6.43 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄  was GPP observations were noticeably lower than 

that in July., with a mean of 6.43 umol m−2 s−1. As for simulations, the prior simulations tendmodel tends to overestimate 

GPP, with MBs ranging from 3.76 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ 2.79 umol m−2 s−1 to 6.61 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ . However, 5.25 umol m−2 s−1. After 

the posterior GPP differs considerably, in some experiments achieving excellent match with the observations and other 645 

experiments yielding very low simulated GPP. In July 2013, 2015 and 2016, the model using posterior parameters performs 

well in simulating GPP and achieves the smallest CV(RMSE)sassimilation of all single-site experimentsCOS, the 

overestimation of the COS simulation for FI-Hyy were effectively corrected, with CV(RMSE)s ranging from 0.39 to 0.42. In 

contrast, as the observed COS is lower than the prior simulated COS by 39.64% and 39.32% in July and the mean absolute 

MBs of 1.01 umol m−2 s−1 . However, with a low SWC in August 2014, f_leaf and 𝑉𝑐𝑚𝑎𝑥  were dramatically adjusted 650 

downwards in July and the prior simulated COS were obviously overestimated by 41.06 %, which led to remarkable downward 

adjustments of 𝑉𝑐𝑚𝑎𝑥25 as well as VJ_slope. Thus, the simulated GPP were also markedly downgraded by 53.54 % in August 

respectively,2014, ultimately resulting in notablethe underestimation inof the single-site posterior simulated GPP, with MBs 

of -6.27 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄  and -2.57 𝜇𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ . In addition, a dramatic reduction of f_leaf was also reported in July 2017 and 

resulted in an underestimation of posterior simulated GPP. . 655 

In the multitwo-site experiment, the posterior model-observation differences forof GPP were reduced for both FI-Hyy and US-

Wrc were reduced by the assimilation of COS, with RMSE reductions of 45.8539.90 % and 55.7142.69 %, respectively. These 

RMSE reductions are even higher than those in the corresponding single-site experiments, by 20.3455.08 % for FI-Hyy and 

7.8416.31 % for US-Wrc. These results suggest that simultaneous assimilation using COS observations from multipletwo sites 

can also improve GPP simulations, and the assimilation is sometimescan be more effectiverobust than the single-site 660 

assimilation because the possibility of over-fit local noise is reduced.  

Overall, the assimilation of ecosystem COS flux data can improveimproved the simulation of GPP in both single-site 

assimilationexperiments and multithe two-site assimilationexperiment. However, the assimilation effects vary considerably 

for different sites and even for different periods within the same site. The Our results suggest the assimilation of COS degrades 

the fitis able to observed GPP at provide strong constrain to the modelling of GPP at forest sites, with an average RMSE 665 

reduction of 36.62 %. In contrast, at the low-stature vegetation sitestype (including AT-Neu, ES-LmaC3 grass and IT-Soy) 

where the prior COS simulations perform well. By contrast, for the single-site experiments conducted at forest sites, C3 crop) 

sites, the assimilation can always improve the simulation of GPP, although the optimizations were sometimes affected by the 

over-tuning of 𝑉𝑐𝑚𝑎𝑥25 and f_leaf. of COS is less effective in constraining the GPP simulations. 

3.7 Comparison and evaluation of simulated HLE and LE H 670 

In order to verify the impact of COS assimilation on stomatal conductance and energy balance, observations of latent heatLE 

and sensible heatH were compared to the prior and posterior model outputs. Due to the lack of observations at AT-Neu and 

IT-Soy, the validation was carried out at the remaining five sites only. Results showed that the assimilation of COS is generally 

able to improve both latent and sensible heat, whether in single-site experimentexperiments or multithe two-site experiment. 

And the  (Figure S4-S7). The assimilation is more effective in improvingreducing the simulationmodel-observation difference 675 

of LE, with the average RMSE decreasing from 94.69 𝑊 𝑚2⁄ 89.55 W m−2 to 79.69 𝑊 𝑚2⁄ ,73.94 W m−2, while for H, the 

average RMSE only decreased from 101103.10 W m−2 to 98.02 W m−2. However, the average 𝑅2of the simulated H increased 

noticeably from 0.39 in the prior case to 0.46 in the posteriori case, while that of LE slighted decreased from 0.65 𝑊 𝑚2⁄  to 

96.29 𝑊 𝑚2⁄ .to 0.64. 

Results show that the BEPS model can simulate the daily variations of HLE and LEH as well as the diurnal cycle of LE very 680 

well, while the diurnal cycle of H is relatively poorly simulated. The prior simulation tends to overestimate LE during the 



 

19 

 

daytime, and to exhibit short-time fluctuations in H that is not present in the observations. On average across all experiments, 

the prior simulated LE is overestimated by 41.88 𝑊 𝑚2⁄  (Figure 8 and Figure S1)31.60 W m−2 while the prior simulated H 

is underestimated by 39.92 𝑊 𝑚2⁄  (Figure 8 and Figure S1).37.28 W m−2. The overestimation of LE and the underestimation 

of H are particularly apparent at the evergreen needleleaf forest sites (FI-Hyy and US-Wrc). In addition, atAt FI-Hyy and US-685 

Wrc, the model-observation biases are more pronounced for H, with an averaged MB of -62.13 𝑊 𝑚2⁄ 66.36 W m−2 than for 

LE with the averaged MB of 41.78 𝑊 𝑚2⁄ . These results indicate that the BEPS model may underestimate the solar radiation 

absorbed by the evergreen needleleaf forest ecosystem.51.09 W m−2. For the deciduous broadleaf forest sites DK-Sor and US-

Ha1, the prior simulations of H are very close toboth fit well with the observations, with a maximum absolute MB of only 

16.18𝑊 𝑚2⁄ .17.88 W m−2. However, similar to evergreen needleleaf forests, its the prior simulations also tend to overestimate 690 

LE, with MB ranging from 17.92 𝑊 𝑚2⁄  to 61.34 𝑊 𝑚2⁄ . With a shrub PFT, ES-Lma is the only site where the prior 

simulations overestimate both H and LE at US-Ha1, with a mean MB of 22.00 𝑊 𝑚2⁄ and 50.06 𝑊 𝑚2⁄  respectively, which 

poses a significant challenge for the simultaneous optimization of H and LE.47.18 W m−2.  

In general, the single-site assimilation of COS effectively corrected the biases in the prior simulations of H and LE, and the 

correction mainly affected the daytime. Moreover, the correction was particularly effective for the evergreen needleleaf forest 695 

sites, where the mean values of the simulations of H and LE were increased by 30.95 𝑊 𝑚2⁄  and decreased by 31.04 𝑊 𝑚2⁄  

respectively. With a mean RMSE reduction of -25.56%, the improvements of LE are also larger than the improvements of H. 

For the deciduous broadleaf forest sites, the optimization results for LE and H show considerable inconsistency. At US-Ha1, 

the model overestimated the absorbed solar radiation energy both in July 2012 and 2013. And the assimilation of COS 

significantly corrected the overestimation of LE, with RMSE reduction of 25.63% in July 2012 and 28.90% in July 2013. In 700 

contrast to the reduction of LE, the H was increased by 21.40 and 54.40 𝑊 𝑚2⁄ , in the respective period. At DK-Sor, the 

simulations of H and LE using the default parameters of the BEPS model already performed very well, and little improvement 

is needed. However, as the prior simulated COS was much lower than observed COS, parameters including 𝑉𝑐𝑚𝑎𝑥25, VJ_slope 

and f_leaf were increased after the assimilation. As a result, the model output using the posterior parameters overestimated LE 

and underestimated H. As for ES-Lma, where the prior model output overestimated both H and LE, the posterior simulated 705 

LE was overestimated yet stronger, while the overestimation of H was partially correctedare primarily reflected at daytime. . 

Moreover, the correction was particularly effective for the evergreen needleleaf forest sites. On average across the ENF sites, 

the overestimation of LE and the underestimation of H were effectively corrected through the assimilation of COS, by 19.71 

W m−2 and 18.38 W m−2, respectively. At the DBF site US-Ha1, the simulation of LE increased by 38.07 W m−2 after the 

assimilation of COS, which considerably corrected the overestimation of the prior simulation. In contrast, the modelled H 710 

decreased by an average of 37.56 W m−2, and deviated from the H observations in July 2013.  

At US-Wrc, the multitwo-site assimilation greatlyof COS effectively corrected the overestimation of LE and the 

underestimation of H in the prior simulations during the daytime, with RMSE reductions of 26.5717.58 % for LE and 

32.9922.33 % for H, achieving almost identical effect to which is even larger than that of the single-site optimization. and 

confirms the robustness of the two-site assimilation. Similar to US-Wrc, the LE and H simulations obtained with the multitwo-715 

site posterior parameters were reduced by about one third comparedare also superior to the prior simulations at FI-Hyy, which 

allowed the overestimation of the prior simulation during the first half of the month to be effectively corrected (Figure 8a). 

Meanwhile, the model-observation differences of H were also remarkably reduced at FI-Hyy, with MBthe RMSE reductions 

of -63.44 𝑊 𝑚2⁄ 19.34 % for the prior caseLE and -39.93 𝑊 𝑚2⁄ 5.90 % for the posterior caseH. 

Overall, the BEPS model performed well in simulating the daily variations and diurnal cycle of HLE and LEH, while it tended 720 

to overestimate LE during the daytime and underestimate H around midday and sunset. Generally, the assimilation of COS 

could effectively improve the simulation of LE and H, whether the assimilation was conducted at single-site or at multipletwo 
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sites simultaneously, and this improvement was particularly noticeable for the simulation of LE. We also found that the 

simulated LE was always adjusted in the same direction as the COS, while H was adjusted in the opposite direction.  

3.8 Comparison and evaluation of simulated SWC 725 

The effectivenessinfluence of COS assimilation in improving soil moisture simulationson the modelling of SWC was assessed 

by comparing hourly soil water contentSWC observations with hourly simulations of soil moisture using prior parameters, 

single-site and multi-site posterior parameters.SWC. The assessments were carried out at all sites except US-Ha1, where no 

soil water observations were available. We found that Results show the impact of COS assimilation on the modelling of SWC 

varies considerably by site and by period at the same site (Figure S8). Our results also improvedsuggested that the assimilation 730 

of COS is able to improve the simulation of soil moistureSWC and this improvement wasis closely linked to the improved 

simulation of LE. However, the improvement of soil moisture was not significant in a short period of timewith the considerable 

adjustment of soil hydrology related parameters, the posterior simulated SWC also deviated noticeably from observations at 

several sites, i.e., the AT-Neu site. 

Results show that the model can roughly follow the soil moisture trend (Figure 9 and Figure S3S8). However, the simulated 735 

soil water content (SWC) exhibited a clear cycle of diurnal variationcycle whereas the observed SWC had almost no diurnal 

fluctuations. Generally, inIn response to the overestimation of LE at the ENF sites, the prior simulations tended to overestimate 

the rate of decline in SWC. Afterunderestimated the assimilation of COS,SWC in most (6/7) of the single-site experiments 

conducted at ENF sites. As the overestimation of the decline rate of SWC was significantly corrected and the posterior SWC 

simulations were more closely aligned with observations in terms of state and trend. For example, during the first half month 740 

of August 2014 at FI-Hyy, the prior simulations greatly overestimated LE (Figure 8a), such that the corresponding simulated 

SWC dropped rapidly to the wilting point and then remained constant (Figure 9c). In contrast, with the simulated LE being 

notably corrected was effectively corrected by the assimilation of COS, the simulated SWC was also effectively 

correcteddecline in soil moisture slowed down, leading to the level of the observations.  

However, the effect of the assimilation of COS on the optimization of SWC simulations varied considerably from site to site. 745 

Little difference was found between the prior and the posterior simulations of SWC for those sites (AT-Neu, ES-Lma, IT-Soy) 

where there the GPP simulations also changed little after the assimilations of COS. The model significantly overestimated the 

rate of soil moisture decline at US-Wrc and DK-Sor, with the posterior simulated LESWC simulation being about 169% and 

78% largerhigher than the observed. In contrast, the assimilation of COS remarkably improved the SWC simulations at FI-

Hyy, with an average RMSE reduction of 24.86%. Yet, at FI-Hyy site,prior in the majority (6/7) of experiments. This 750 

conclusion was confirmed by the experiment results (Figure 9) at FI-Hyy in July 2015, in which the soil hydrology-related 

parameters 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 were adjusted as low as -0.0026 % and -0.0717 %, respectively. On the contrary, the soil 

hydrology-related parameters were considerably adjusted in the single-site experiment at FI-Hyy in July 2016, with relative 

changes of 18.13 % and -69.86 % for 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟  and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 , respectively. As a result, the corresponding posterior soil 

moisture simulations declined rapidly and deviated markedly from observations. Similar adjustment results for soil hydrology-755 

related parameters were also observed at the C3 grass sites (AT-Neu and ES-Lma), with mean relative changes in 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 

and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 at these two sites of 26.32 % and 71.73 %, respectively. Accordingly, the posterior SWC simulations also showed 

there is still a large mismatch of observed and simulated decline rate of SWC during inter-storm periodsshow rapid declines 

and of the effect of precipitation on SWCdeviated from observations. 
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4 Discussion 760 

4.1 Parameter changes  

As we mentioned before, our results show 𝑉𝑐𝑚𝑎𝑥25 was tuned the texture-dependent parameters Ksatmost in both the single-

site experiments and b had a very smallthe two-site experiments, with the mean absolute relative change in the assimilation of 

COS, while the parameters related to PFT (𝑉𝑐𝑚𝑎𝑥2544.59 %, followed by 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 and VJ_slope) and f_leaf varied dramatically. 

This is because COS plant fluxes are much larger than COS fluxes of soil in general (Whelan et al., 2016; Whelan et al., 2018) 765 

and the texture-dependentsoil hydrology-related parameters cannot directly influence the COS plant uptake. Therefore, the 

assimilation of the COS flux mainly changed the parameters related to COS plant uptake rather than texture-dependent 

parameters that relate to soil COS flux to minimize the cost function. Among the three COS plant uptake related parameters, 

it was found that the posterior 𝑉𝑐𝑚𝑎𝑥25 had the largest change relative to the prior, with the relative change ranging from -

60.64% to 113.45%, followed by f_leaf and VJ_slopeHowever, the adjustment of soil hydrology related parameters should 770 

not be neglected as well, as they play an important role in minimizing the discrepancy between COS simulations and 

observations.  

Although the posterior f_leaf has significant variability, f_leaf varies little in reality and is usually between 41% and 53% on 

an annual mean scale (Ryu et al., 2018). Considering that f_leaf is set to 0.5 in our model, it should remain about the same or 

be slightly reduced after the optimization. Certainly, the relative change rate of f_leaf is very reasonable in some experiments, 775 

such as the single-site experiments conducted at As shown in Figure 3, the prior simulations underestimated COS fluxes at 

nighttime for many sites, i.e., FI-Hyy. On the one hand, this is due to the substantial gap between current modelled COS soil 

fluxes and observations (Whelan et al., 2022). On the other hand, this also stems from the fact that the nighttime stomatal 

conductance was set to a low and constant value (1 mmol m−2 s−1) in the BEPS model. As a result, the discrepancy between 

nighttime ecosystem COS simulations and observations could not be reduced by adjusting photosynthesis-related parameters 780 

to have an effect on stomatal conductance modelling. Thus, soil hydrology-related parameters were adjusted to compensate 

for the differences in both soil and plant components simultaneously. In this study, the COS soil model proposed by Whelan 

et al. (2016) and Whelan et al. (2022) was utilized, in which the optimal SWC for soil COS biotic uptake was set to 12.5 (%) 

for both grass and needleleaf forest. Such an optimal SWC value is much lower than the prior simulated SWC, as shown in 

Figure S8. Therefore, the soil hydrology-related parameters were considerably tuned, resulting in a rapid decline in the 785 

posterior SWC simulation to a level comparable to the optimum SWC. 

FI-Hyy in August 2014 and July 2015, with relative changes of -14.18% and -13.29% respectively. However, the posterior 

f_leaf was also reduced dramatically by more than 60% in some single-site experiments conducted at FI-Hyy and US-Ha1, 

which suggested that the assimilation of COS may lead to over-tuning of f_leaf in some cases. COS plant uptake is governed 

by the reaction of COS destruction (Wohlfahrt et al., 2012) by carbonic anhydrase though it can also be destroyed by other 790 

photosynthetic enzymes, e.g., RuBisCo (Lorimer and Pierce, 1989), and the reaction is not dependent on light (Stimler et al., 

2011; Whelan et al., 2018). Yet, given that stomatal conductance is simulated from net photosynthetic rate with a modified 

version (Woodward et al., 1995; Ju et al., 2010) of the Ball-Woodrow-Berry (BWB) model (Ball et al., 1987), in BEPS, the 

adjustment of light reaction related parameters (VJ_slope and f_leaf) can therefore indirectly affect the simulation of COS 

plant uptake by influencing the calculation of stomatal conductance. As mentioned in Sect 3.2, the prior simulated COS fluxes 795 

were larger than the observed ones at FI-Hyy and US-Ha1. Therefore, the assimilation of COS resulted in down-regulations 

of f_leaf in the single-site experiments performed at FI-Hyy and US-Ha1. According to Ryu et al. (2018), f_leaf varies little 

in reality and is usually between 41 % and 53 % on an annual mean scale. In our assimilation experiments, the optimized f_leaf 

values were distributed between 42.50 % and 51.28 %, consistent with this study. In contrast, the other light reaction related 

parameter VJ_slope, has a much wider range of variation, with relative changes ranging from -58.23 % to 35.18 %. 800 
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In addition to f_leaf, 𝑉𝑐𝑚𝑎𝑥25 was also over-adjusted in a few assimilation experiments, particularly at We noticed remarkably 

different optimization results for photosynthesis-related parameters in the experiments conducted in August 2014. For example, 

at US-Wrc, 𝑉𝑐𝑚𝑎𝑥25 was dramatically down-regulated by a similar degree in the single-siteJuly 2015 and multi-site experiment, 

with July 2017 at FI-Hyy, especially for 𝑉𝑐𝑚𝑎𝑥25 and VJ_slope. In these two experiments, the difference in the relative change 

of -50.63% and -44.64% respectively, whereas the posterior VJ_slopein 𝑉𝑐𝑚𝑎𝑥25 is more than 20%, and f_leaf are significantly 805 

different.that in VJ_slope is as high as 37.04%. However, with such different posteriorsets of parameters, caused similar effects 

on the posterior simulated COS are very similar (Figures 4b).simulations, leading to the latter being reduced by 12.51 % and 

10.43 % in July 2015 and July 2017, respectively. These results revealed the ‘equifinality’ (Beven, 1993) of the inversion 

problem at hand, i.e. the fact that different combinations of parameter values can achieve a similar fit to the COS observations. 

Assimilation of further observational data streams is expected to reduce the level of equifinality by differentiating between 810 

such combinations of parameter values that achieve a similar fit to COS observations.  

4.2 Parameter sensitivity 

It has been widely proved that photosynthetic capacity simulated by terrestrial ecosystem models is highly sensitive to 𝑉𝑐𝑚𝑎𝑥, 

𝐽𝑚𝑎𝑥, and light conditions (Zaehle et al., 2005; Bonan et al., 2011; Rogers, 2014; Sargsyan et al., 2014; Koffi et al., 2015; 

Rogers et al., 2017). Therefore, it is expected that 𝑉𝑐𝑚𝑎𝑥25 , VJ_slope, and f_leaf would significantlymarkedly affect the 815 

optimization results, as these parameters ultimately have an impact on the simulation of plant COS uptake by influencing the 

estimation of photosynthesis capacity and stomatal conductance. Specifically, results of Wang et al. (2004), Verbeeck et al. 

(2006)Verbeeck et al. (2006), Staudt et al. (2010), Han et al. (2020) and Ma et al. (2022) showed that the simulated 

photosynthetic capacity was generally more sensitive to 𝐽𝑚𝑎𝑥  and light conditions than to 𝑉𝑐𝑚𝑎𝑥 . However, due to the 

differences in the physiological mechanisms of COS plant uptake and photosynthesis, e.g., the hydrolysis reaction of COS by 820 

carbonic anhydrase is not dependent on light, the sensitivities of the two processes with respect to the model parameters may 

differ considerably although they are tightly coupled. Indeed, our adjoint sensitivity results suggest that the same change of 

𝑉𝑐𝑚𝑎𝑥25 is capable to influence the assimilation results to a greater extent than of VJ_slope and f_leaf. This result can be 

attributed to the model structure that 𝑉𝑐𝑚𝑎𝑥25 not only affects the estimation of stomatal conductance through photosynthesis, 

but is also used to characterize mesophyll conductance and CA activity due to their linear relationships with 𝑉𝑐𝑚𝑎𝑥 (Badger 825 

and Price, 1994; Evans et al., 1994; Berry et al., 2013). In addition, such a large sensitivity of 𝑉𝑐𝑚𝑎𝑥25 also indicates the 

importance of accurate modelling of the apparent conductance of COS for ecosystem COS flux simulation.  

As for Ksat and b,𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟  and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 , they also play aan important role in the assimilation of COS since the SWC 

simulations of BEPS are sensitive to the twoKsat and b (Liu et al., 2011). But since, and SWC is the primary factor for COS 

soil biotic flux modelling (Whelan et al., 2016). However, the soil COS exchange is generally much smaller than COS plant 830 

uptake (Whelan et al., 2018) and they have less impact on the simulation of GPP (Novick et al., 2022), the assimilation results 

are not significantly affected by these two parameters., and the parameter scheme provided by Whelan et al. (2022) sets 

different empirical parameter values (See Table S3 for details) depending on the PFTs. Thus, the SIs of 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 and 𝑏𝑠𝑐𝑎𝑙𝑎𝑟 

differs considerably across PFTs, and are overall lower than those of photosynthesis related parameters.  

In Sect 3.5, we mentioned that the parameters related to light reaction (VJ_slope and f_leaf), tend to play more essential roles 835 

in the assimilation of COS at the forest sites. Actually, similar features were found in the sensitivity of photosynthesis to 

radiation, i.e. the simulated GPP was more sensitive to radiation at forested vegetation types and less sensitive at low-stature 

vegetation types (Sun et al., 2019). Particularly, the simulated GPP was also found to be highly sensitive to variations of 

radiation at low radiation conditions (Koffi et al., 2015). At IT-Soy, Figure 3j showed that the assimilation of COS 

observations mainly changes the COS simulation in the early evening to minimize the cost function. Thus, it is reasonable that 840 
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f_leaf is the most influential parameter for that experiment as photosynthesis is very sensitive to radiation under such low light 

condition and f_leaf is an essential parameter for the calculation of PAR. 

4.3 Impacts of COS assimilation on ecosystem carbon, energy and water cycles 

Due to the physiological basis that COS is taken up by plants through the same pathway of stomatal diffusion as CO2, the 

assimilation of COS was expected to optimize the simulation of GPP. And itIt was confirmed by our single-site and multithe 845 

two-site experiments conducted in a variety of ecosystems, including evergreen needleleaf forest, deciduous broadleaf forest, 

C3 grass and C3 crop. However, limited by many factors, such as the observation errors of the COS fluxes, the assimilation of 

COS does not always improve the simulation of GPP, especially if the prior simulations of COS are already very close to the 

observations. Moreover, the assimilation of COS could sometimes lead to overshooting of photosynthesis-related parameters, 

such as f_leaf, and thus result in considerable errors in the GPP simulations. In our experiments, those significant overshoots 850 

of f_leaf all occurred at well-vegetated forest sites (FI-Hyy and US-Ha1). This is also very reasonable as f_leaf is relevant to 

the calculation of PAR and light can become a limiting factor for photosynthesis, in particular when plants grow in dense 

vegetation (Demarsy et al., 2018).i.e., at AT-Neu site.  

Similar to the photosynthesis, the transpiration is also coupled with the COS plant uptake through stomatal conductance. But 

the difference is that after CO2 is transported to the chloroplast surface, it continues its journey inside the chloroplast, and is 855 

eventually assimilated in the Calvin cycle (Wohlfahrt et al., 2012; Kohonen et al., 2022). Based on the BWB model, 

photosynthesis-related parameters only indirectly influence the calculation of stomatal conductance through photosynthesis in 

our model. In our experiments, posterior simulation results consistent with this mechanism were obtained in that although the 

posterior GPP simulations significantly deviate from reality due to parameter overshooting, the posterior LE does not. An 

example is the experiment conducted at FI-Hyy in July 2014, in which the posterior simulated GPP was substantially 860 

underestimated by 68.77%, while the posterior simulated LE was only 19.57% lower than the observations.Thus, the 

transpiration related variable LE, was not optimized as dramatically as GPP in the assimilation of COS. 

In comparison, the RMSEs of GPP simulations were reduced by an average of 25.37 % within the assimilation of COS, while 

that of LE were reduced by 16.27 %. Moreover, as transpiration rate and leaf temperature change show a linear relationship 

(Kümmerlen et al., 1999; Prytz et al., 2003) and surface-air temperature difference is a key control factor for sensible heat 865 

fluxes (Campbell and Norman, 2000; Arya, 2001; Jiang et al., 2022), the optimization for transpiration can therefore improve 

the simulation of leaf temperature and consequently improve the simulation of sensible heat flux. 

Driven by the difference in water potential between the atmosphere and the substomatal cavity (Manzoni et al., 2013), the 

water is taken up by the roots, flows through the xylem, and exits through the leaf stomata to the atmosphere in the soil-plant-

atmosphere continuum (Daly et al., 2004). Thus, when plants transpire, the water potential next to the roots decreases, driving 870 

water from bulk soil towards roots (Carminati et al., 2010) and reducing soil moisture. Certainly, soil moisture dynamics are 

also influenced by soil evaporation and leakage during inter-storm periods under ideal conditions (Daly et al., 2004). However, 

studies have shown that transpiration represents 80 to 90 percent of terrestrial evapotranspiration (Jasechko et al., 2013) and 

evaporation is typically a small fraction of transpiration for well-vegetated ecosystems (Scholes and Walker, 1993; Daly et al., 

2004). Based on current knowledge of leakage, for example the relationship between leakage and the behavior of hydraulic 875 

conductivity (Clapp and Hornberger, 1978), extremely small adjustments of Ksat and b, i.e., with average of the absolute 

values of the relative changeschange of -0.17%0026 % for 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟  and -0.28% across all of the data assimilation 

experiments,0717 % for 𝑏𝑠𝑐𝑎𝑙𝑎𝑟, hardly caused any change in leakage. Therefore, our results indicate that the assimilation of 

COS can significantlymarkedly improve the modelling of stomatal conductance and transpiration and finally improve soil 

moisture. However, our results also show that there are large uncertainties in remarkable discrepancies between the BEPS 880 
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model for the simulation of the decline rate of SWC during inter-storm periodsecosystem COS flux simulations and of the 

effect of precipitation on SWC, although in some cases the model using the posterior parameters has already achieved an 

excellent simulation of LE. This result suggests that there may still be significant errors in the soil texture-related 

parametersobservations, and that these errorsdiscrepancies cannot be effectively corrected by the assimilation of COS due to 

the weak connection between ecosystem COS fluxesreduced by the adjustment by the photosynthesis related parameters duo 885 

to the simplification of BPES for nighttime stomatal conductance modelling. As a result, it was also observed that the soil 

hydrology related parameters were drastically adjusted to minimize the discrepancy of COS simulations and soil hydrological 

processes. observations, which instead biased the SWC simulations away from observations. 

4.4 Impacts of leaf area index data on parameter optimization 

As an essential input data of the BEPS model, LAI products have been demonstrated to be a source of uncertainty in the 890 

simulation of carbon and water fluxes (Liu et al., 2018). Therefore, it is necessary to investigate the influence of LAI on our 

parameter optimization results, as the LAI is directly related to the simulation of COS and the discrepancy between COS 

simulations and COS observations is an essential part of the cost function. Here we collected three widely used satellite-derived 

LAI products (GLOBMAP, GLASS and MODIS) and the means of in situ LAI during the growing seasons or during the COS 

measurement periods for these sites (see Table 21). These in situ LAI means were used to drive the BEPS model along with 895 

the other three satellite-derived LAI products, with the assumption that they are representative of the LAI values during the 

assimilation periods. The configurations of those assimilation experiments were the same as those listed in Table 2, so that a 

total of 52 single-site experiments were conducted. Almost allAll experiments were successfully performed, with the exception 

of a few at the DK-Sor and IT-Soy sites, and the results were shown in in Figure 107 and Figure S4S9. 

We found that the posterior 𝑉𝑐𝑚𝑎𝑥25 significantly correlated best with the LAI (𝑅2 = 0.2317, P < 0.01), followed by VJ_slope 900 

(𝑅2 = 0.14, P < 0.05) and f_leaf (𝑅2 = 0.09, P < 0.1). Whilst) whilst there was no apparent relationship between the optimization 

results of the other three parameters and the LAI. As mentioned before, the LAI is directly related to the simulation of COS 

and thus influences the optimal values of the parameters. Therefore, to some extent, the correlations of LAI with these 

parameters reflects the robustness of the constraint abilities of COS assimilation with respect to them. These results suggest 

that the assimilation of COS is able to provide strong constraints on 𝑉𝑐𝑚𝑎𝑥25, while it constrains other parameters (VJ_slope 905 

and, 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟, 𝑏𝑠𝑐𝑎𝑙𝑎𝑟, f_leaf) weakly, although the latterthey also considerably changed by the assimilation. 

 In Sect 3.4, we have noted that the posterior 𝑉𝑐𝑚𝑎𝑥25 and f_leaf were sometimes over-tuned, which significantly influenced 

the posterior simulation of GPP. Here, by comparing the posterior parameters obtained with different LAI data, we further 

found that the over-tuning of those parameters could be partly attributed to the uncertainty of the LAI. For example, in the 

experiment conducted at FI-Hyy in July 2017, driven by the GLOBMAP LAI which were on average 41% greater than the in 910 

situ LAI, the posterior f_leaf value was significantly reduced, with a decrease rate of 78.09%. However, when the GLASS 

LAI, which is only 4% larger than the in situ LAI, is used to drive the model, the percentage decrease in f_leaf is significantly 

reduced to only 43.12%. Suchconclusion, our results suggest that the uncertainty in satellite-derived LAI not only can exert 

large impacts on the modelling of water-carbon fluxes (Wang et al., 2021), but also is an important source of the uncertainty 

in the parameter optimization results when performing data assimilation experiments with ecosystem models driven by LAI. 915 

4.5 Caveats and implications 

In general, we found that the assimilation of COS can improve the model performance for GPP, LE, H and SWCH for both 

single-site assimilation and multitwo-site assimilation. Nonetheless, there are currently limitations that affect the use of COS 

data for the optimization of parameters, processes and variables related to water-carbon cycling and energy exchange in 
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terrestrial ecosystem models. For SWC, there is a mixed picture. Affected by the substantial downward adjustment of soil 920 

moisture to the optimal soil moisture at individual sites (i.e., AT-Neu), the RMSE of soil moisture simulations did not improve 

on average. However, in some experiments (especially those where soil hydrological parameters do not change much, such as 

the experiment conducted at FI-Hyy in July 2015), SWC simulations did improve with the assimilation of COS.  

The assimilation of COS fluxes relies on the availability and quality of field observations. As both COS plant uptake and COS 

soil exchange are modelled within NUCAS and the data assimilation was performed at the ecosystem scale, a large number of 925 

accurate measurements of both COS soil flux and COS plant flux are essential for assimilation. However, at present, we face 

a serious lack of ecosystem-scale field measurements (Brühl et al., 2012; Wohlfahrt et al., 2012), more. More laboratory and 

field measurements are needed for better understanding of mechanistic processes of COS. Besides, the existing COS flux data 

were calculated based on different measurement methods and data processing steps, which poses significantconsiderable 

challenges for comparing COS flux measurements across sites. Standardization of measurement and processing techniques of 930 

COS (Kohonen et al., 2020) is therefore urgently needed.  

In this study, the prior uncertainty of observation was estimated by the standard deviation of ecosystem COS fluxes within 24 

hours with the assumption of a normal distribution. However, Hollinger and Richardson (2005) suggested that flux 

measurement error more closely follows a double exponential than a normal distribution. Furthermore, the prior uncertainty 

of the parameters was simply set to 25% of the prior values in this study, which could certainly be refined. In conclusion, we 935 

should be more careful in considering the distribution and the magnitude of theKohonen et al. (2020) showed that the overall 

uncertainty in the COS flux varies with the sign (uptake or release) as well as the magnitude of the COS flux. Furthermore, 

there is a lack of understanding of the prior uncertainty for certain model parameters, such as VJ_slope, which makes the 

uncertainty estimates subject to potentially large errors. In conclusion, we should be more careful in considering the 

distribution and the magnitude of the prior uncertainty of observations and parameters. 940 

The spatial and temporal variation in atmospheric COS concentrations has a considerable influence on the COS plant uptake 

(Ma et al., 2021) due to the linear relationship between the two (Stimler et al., 2010). The typical seasonal amplitude of 

atmospheric COS concentrations is ∼ 100–200 parts per trillion (ppt) around an average of ∼ 500 ppt (Montzka et al., 2007; 

Kooijmans et al., 2021; Hu et al., 2021; Ma et al., 2021; Belviso et al., 2022). However, in NUCAS, COS mole fractions in 

the bulk air are currently assumed to be spatially invariant over the globe and to vary annually in NUCAS, which may introduce 945 

significantsubstantial errors into the parameter calibration. Kooijmans et al. (2021) has confirmed that modifying the COS 

mole fractions to vary spatially and temporally significantlymarkedly improved the simulation of ecosystem COS flux. Thus, 

we suggest to take into account the variation in COS concentration and their interaction with surface COS fluxes at high spatial 

and temporal resolution in order to achieve better parameter calibration. 

Currently, there are still uncertainties in the simulation of COS fluxes by BEPS particularly for nighttime COS fluxes. As the 950 

nighttime COS plant uptake is driven by stomatal conductance (Kooijmans et al., 2021), the nighttime COS fluxes can therefore 

be used to test the accuracy of the model settings for nighttime stomatal conductance (𝑔𝑛). In the BEPS model, Aa low and 

constant value (1 𝑚𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ 1mmol m−2 s−1) of 𝑔𝑛 was set for all PFTs. Our simulations of nighttime COS flux indicate 

that in BEPS, 𝑔𝑛 is underestimated into different degrees in BEPS for different sites. This result is also proved by Resco De 

Dios et al. (2019), which found that the median 𝑔𝑛 in the global dataset was 40 𝑚𝑚𝑜𝑙 𝑚2⁄ 𝑠⁄ .mmol m−2 s−1. Therefore, 955 

utilizing COS to directly optimize stomatal related parameters should be perused. Cho et al. (2023) has proven the effectiveness 

of optimizing the minimum stomatal conductance as well as other parameters by the assimilation of COS. Besides, with the 

argument that different enzymes have different physiological characteristics, Cho et al. (2023) proposed a new temperature 

function for the CA enzyme and showcase the considerate difference in temperature response of enzymatic activities of CA 

and RuBisCo enzyme, which also provided valuable insights into the modelling and assimilation of COS. In addition, soil 960 
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COS exchange is an important source of uncertainty in the use of COS as carbon-water cycle tracer since carbonic anhydrase 

activity occurs in the soil as well (Kesselmeier et al., 1999; Smith et al., 1999; Ogée et al., 2016; Meredith et al., 2019). 

Kaisermann et al. (2018) showed that COS hydrolysis rates were linked to microbial C biomass, whilst COS production rates 

were linked to soil N content and mean annual precipitation (MAP). Interestingly, MAP was also suggested to be the best 

predictor of 𝑔𝑛 in Yu et al. (2019) which, who found that plants in locations with lower rainfall conditions had higher 𝑔𝑛. 965 

Therefore, using the global microbial C biomass, soil N content and MAP datasets and the relationships between these variables 

and the associated COS exchange processes is expected to further achieve more accurate modelling of terrestrial ecosystem 

COS fluxes, increase the understanding of the global COS budget and facilitate the assimilation of COS fluxes. 

5 Conclusions 

Over the past decades, considerable efforts have been made to obtain field observations of COS ecosystem fluxes and to 970 

describe empirically or mechanistically COS plant uptake and soil exchange, which offers the possibility of investigating the 

ability of assimilating ecosystem COS flux to optimize parameters and variables related to the water and carbon cycles and 

energy exchange. In this study, we first introduced the NUCAS system, which has been developed based on the BEPS model 

and was designed to have the ability to assimilate ecosystem COS flux data. In NUCAS, thea resistance analog model of COS 

plant uptake and thean empirical model of soil COS flux were embedded in the BEPS model to achieve the simulation of 975 

ecosystem COS flux, and a gradient-based 4D-Var data assimilation algorithm was implemented to optimize the internal 

parameters of BEPS.  

Fourteen twin experiments, thirteen single-site experiments and one multitwo-site experiment withincovering the period from 

2012 to 2017, were conducted to investigate the data assimilation capability and the optimization effect of parameters and 

variables of NUCAS for COS flux observations over a range of ecosystems that contains fivefour PFTs and fivethree soil 980 

textures. Our results show that NUCAS has the ability to optimize parameter vectors, and the assimilation of COS can constrain 

parameters affecting the simulation of carbon and water cycles and energy exchange and thus effectively improve the 

performance of the BEPS model. We found that there is a tight link between the assimilation of COS and the optimization of 

LE, which demonstrates the role of COS as an indicator of stomatal conductance and transpiration. The improvement of 

transpiration can further improve the model performance for H and SWC, although the propagation of the optimization effect 985 

is subject to some limitations. These results highlight the broad perspective of COS as a tracer for improving the simulation 

of variables related to stomatal conductance. Furthermore, we demonstrated that COS can provide a strong constraint on 

𝑉𝑐𝑚𝑎𝑥25 , whereas the adjustment of parameters related to the light reaction of photosynthesissoil hydrology appears to 

compensate for weaknesses in the model, i.e., the nighttime stomatal conductance set in BEPS model. We also proved the 

strong impact of LAI on the parameter optimization results, emphasizing the importance of developing more accurate LAI 990 

products for models driven by observed LAI. In addition, we made a number of recommendations for future improvement of 

the assimilation of COS. Particularly, we flagged the need for more observations of COS, suggested better characterisation of 

observational and prior parameter uncertainties, the use of varying COS concentrations and the refinement of the model for 

COS fluxes of soil. Specifically, with the lack of separate COS plant and soil flux data, the ecosystem-scale COS flux 

observations were utilized in this study. However, we believe that assimilating the component fluxes of COS individually 995 

should be pursued in the future as this assimilation approach would provide separate constraints on different parts of the model. 

We expect the observational information on the partitioning between the two flux components to provide a stronger constraint 

than using just their sum. 

Our two-site setup constitutes a challenge for the assimilation system, the model and the observations. In this setup, the 

assimilation system has to determine a parameter set that achieves a fit to the observations at both sites, and NUCAS passes 1000 
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this important test. It should be noted that the NUCAS was designed as a platform that integrates multiple data streams to 

provide a consistent map of the terrestrial carbon cycle although only ecosystem COS flux data were used to evaluate the 

performance of NUCAS in this study. As shown here, the optimization of model parameters often facesThe “two-site” 

assimilation experiment conducted in this study gives us more confidence that the calibrated model will provide a reasonable 

parameter set and posterior simulation throughout the plant functional type. In other words, what we present here is a pre-1005 

requisite for applying the model and assimilation system at regional to global scales.  

 We noticed the optimization of model parameters faced the challenge of ‘equifinality’ due to the complexity of the model and 

the limited observation data. However, the ‘equifinality’ can be avoided by imposing additional observational constraints 

(Beven, 2006). Indeed, using several different data streams to simultaneously (Kaminski et al., 2012; Schürmann et al., 2016; 

Scholze et al., 2016; Wu et al., 2018; Scholze et al., 2019) or step-wise (Peylin et al., 2016) to constrain multiple processes in 1010 

the carbon cycle is becoming a focus area in carbon cycle research. Therefore, it is necessary to combine COS with other 

observations to constrain different ecosystem processes and/or exploit multiple constraints on the same processes in order to 

achieve better modelling and prediction of the ecosystem water-carbon cycle and energy exchange. 
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Figure 1. Schematic of the Nanjing University Carbon Assimilation System (NUCAS). Left: illustration of a two-leaf model coupling 

stomatal conductance, photosynthesis, transpiration and COS uptake, and an empirical model for simulating soil COS fluxes in NUCAS. 

Right: data assimilation flowchart of NUCAS. Ovals represent input (blue-grey) and output data (green). Boxes and the rhombi represent 1420 
the calculation and judgement steps. The solid black line represents the diagnostic process, the solid blue line represents the prognostic 

process, and the input datasets of BEPS (in the dashed box) are used in both diagnostic process and prognostic process. 

 

Figure 2. The evolution of model parameters with the number of iterations of cost function (𝑵𝒊𝒕𝒆𝒓) in the normalized parameter 

space during the single-site experiment at the DK-Sor site in June 2016. Evolution (open carats and dashed lines) of soil texture 1425 
(abbreviated as Txt) dependent parameters is plotted on the right-hand y axis, evolution (filled circles and solid lines) of PFT-

dependent parameters and global parameter is plotted on the left-hand y axis. 
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Figure 2: Locations of the 7 studied sites. Sites sharing the same plant function type are represented with consistent colors. The background 1430 
map corresponds to the “Nature color Ⅰ” map (https://www.naturalearthdata.com). ENF and DBF denote evergreen needleleaf forest and 

deciduous broadleaf forest, respectively. 

 

Figure 3. The mean diurnal cycle of observed (blue) and simulated COS flux using prior parameters (red) and single-site posterior parameters 

(greenblue). The size of the circle indicates the number of observations (ranging from 1 to 31) within each circle, and the error bars depict 1435 
the standard deviations in the mean of observations from the variability within each circle if the number of corresponding observations is 

greater than three. Lines connect the mean values of simulations and pale bands depict the standard deviation in the mean of simulations 

from the variability within each bin.  

https://www.naturalearthdata.com/
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 1440 

Figure 4. The diurnal cycle of observed (blue) and simulated COS flux using prior parameters (red), single-site (greenblue) and multitwo-

site (browngreen) posterior parameters. The size of the circle indicates the number of observations (ranging from 1 to 31) within each circle, 

and the error bars depict the standard deviations in the mean of observations from the variability within each circle if the number of 

corresponding observations is greater than three. Lines connect the mean values of simulations and pale bands depict the standard deviation 

in the mean of simulations from the variability within each bin. 1445 
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Figure 5. (a) Relative changes of parameters for single-site experiments (bars) and the multi-site experiment (diamond points). (b) 

Sensitivity indexes of parameters at prior values. For sites where multiple single-site experiments were conducted, the ends of the error bars 1450 
and the bar indicate the maximum, minimum and mean of the relative changes of the parameters, respectively. For sites with the same PFT 

or soil texture, the same colors were used for their PFT-dependent and texture-dependent parameters, and f_leaf was plotted using 

the same color scheme as the PFT-dependent parametersFor those sites lacking multi-year COS observations, no error bars were plotted. 

The color of bar is drawn according to PFT/texture. 
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 1455 

Figure 6. Sensitivity coefficients of parameters at default values. The ends of the error bars and the bar indicate the maximum, 

minimum and mean of the sensitivity coefficients of the parameters, respectively. For sites with the same PFT or soil texture, the 

same colors were used for their PFT-dependent and texture-dependent parameters, and f_leaf was plotted using the same color 

scheme as the PFT-dependent parameters. 



 

41 

 

 1460 



 

42 

 

Figure 7.

 

Figure 6. The diurnal cycle of observed (blue) and simulated GPP using prior parameters (red), single-site (green) and multi-site (brown) 

posterior parameters. The size of the circle indicates the number of observations within each circle, (ranging from 1 to 31), and the error bars 

depict the standard deviations in the mean of observations from the variability within each circle. Lines connect the mean values of 1465 
simulations and pale bands depict the standard deviation in the mean of simulations from the variability within each bin. 
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Figure 8. Daily variation (a and d), diurnal cycle (b and e) and scatter (c and f) plots of LE and H at FI-Hyy in August 2014. 

Observations (blue) are compared to simulations using prior (red) parameters, single-site (green) and multi-site (brown) posterior 1470 
parameters. In the daily variation and diurnal plots, the size of the circle indicates the number of observations within each circle, 

and the error bars depict the standard deviations in the mean of observations from the variability within each circle if the number 

of corresponding observations is greater than three. Lines connect the mean values of simulations and pale bands depict the standard 

deviation in the mean of simulations from the variability within each bin. And in the scatter plots, the daytime data (6:00-18:00LT) 

and nighttime data (18:00-6:00LT) are represented as solid and hollow circles respectively. 1475 
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Figure 9. Observed (blue point) and simulated SWC (%) at FI-Hyy. Results show SWC simulated using prior parameters (red line), 

single-site (green line) and multi-site (brown line) posterior parameters. 

 

Figure 107. Influence of LAI on the posterior 𝑉𝑐𝑚𝑎𝑥25 (a), the posterior VJ_slope (b) and the posterior f_leaf (c) obtained by the single-1480 
site experiments conducted at seven sites and driven by four LAI data. (GLOBMAP, GLASS, MODIS and in situ). The posterior 𝑉𝑐𝑚𝑎𝑥25, 

the posterior VJ_slope and the posterior f_leaf and the LAI were represented by their normalized values 𝑁𝑉𝑐𝑚𝑎𝑥25, 𝑁𝑉𝐽_𝑠𝑙𝑜𝑝𝑒, 𝑁f_leaf𝑁𝑉𝑐𝑚𝑎𝑥25
 

and 𝑁𝐿𝐴𝐼, respectively. The posterior parameters were normalized by their prior values and the LAI were normalized by the in situ values. 

The linear regression fit linesline of the posterior parameters obtained based on the satellite-derived LAI (GLOBMAP, GLASS and MODIS) 

with the corresponding LAI data is shown, with 95% confidence intervalsinterval spread around the linesline.  1485 
 

Table 1. Site characteristics. Site identification includes the country initials and a three-letter name for each site; locations of the sites are 

provided by the latitude (Lat) and longitude (Lon); PFTs covered by the sites are evergreen needleleaf forest (ENF), deciduous broadleaf 

forest (DBF), C3 grass, shrub and C3 crop; Soil texture covered by the sites are silty claysandy loam, silty clay, loamy sand,slit loam and 

silty loam. 1490 

Site 

Namename 
AT-NeuLat (°N) DK-SorLon (°E) PFTES-Lma 

FI-HyySoil 

texture 

IT-SoyLAI 

(𝑚2 𝑚2⁄ )* 
yearUS-Ha1 

US-

WrcReferences 

Lat (°N)AT-

Neu 
47.12 55.4911.32 grass39.94 sandy clay61.85 4.745.87 42.542015 

Spielmann et 

al. (2019)45.82 

Lon (°E)DK-

Sor 
11.3255.49 11.64 DBF-5.77 clay24.29 5.013.08 2016-72.17 

Spielmann et 

al. (2019)-

121.95 

ES-LmaPFT 39.94C3 grass -5.77DBF shrubC3 grass clayENF C3 crop1.82 2016DBF 
Spielmann et 

al. (2019)ENF 
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FI-HyySoil 

texture 

61.85Sandy 

loam 
24.29Sandy loam 

ENFSandy 

loam 

sandySandy 

loam 
4.0Slit loam 

2013-

2017Sandy 

loam 

Kohonen et al. 

(2022)Loam 

IT-SoyLAI* 45.873.88 13.085.0 1.82crop sandy clay4.0 2.3 20175.0 
Spielmann et 

al. (2019)8.7 

US-Ha1Year 201542.54 -72.172016 DBF2016 
silty loam2013-

2017 
20175.0 2012-2013 

2014Wehr et 

al. (2017) 

ReferencesUS-

Wrc 

45.82(Spielmann 

et al., 2020) 

-

121.95(Spielmann 

et al., 2019) 

ENF(Spielmann 

et al., 2019) 

sandy clay 

loam(Sun et al., 

2018; Vesala et 

al., 2022; 

Kohonen et al., 

2022) 

8.7(Spielmann 

et al., 2019; 

Abadie et al., 

2022) 

2014(Commane 

et al., 2015; 

Wehr et al., 

2017) 

Rastogi et al. 

(2018)(Shaw et 

al., 2004; 

Rastogi et al., 

2018) 

* Mean one-sided LAI (m2 m−2) during the experimental period 

Table 2. Configuration and assimilation result of each twin experiment. 𝑱𝒊𝒏𝒊𝒕𝒊𝒂𝒍and  𝑱𝒇𝒊𝒏𝒂𝒍 denote the initial value and the final value 

of the cost function 𝑱(𝒙) respectively, 𝑮𝒊𝒏𝒊𝒕𝒊𝒂𝒍 and 𝑮𝒇𝒊𝒏𝒂𝒍 denote the initial value and the final value of the gradient respectively. 

Site Assimilation window Perturbation 𝐽𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐽𝑓𝑖𝑛𝑎𝑙 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐺𝑓𝑖𝑛𝑎𝑙 

AT-Neu June 2015 0.4 2.31E+04 2.70E-14 1.91E+04 3.14E-05 

DK-Sor June 2016 0.4 3.20E+04 2.34E-16 2.54E+04 8.28E-05 

ES-Lma May 2016 0.4 4.58E+03 1.63E-18 3.94E+03 1.22E-06 

FI-Hyy 

July 2013 0.2 1.05E+04 4.99E-16 1.66E+04 2.77E-05 

July 2014 0.2 1.56E+04 1.51E-16 2.44E+04 6.41E-05 

August 2014 0.2 7.76E+03 1.87E-18 1.20E+04 1.49E-06 

July 2015 0.2 7.95E+03 4.01E-19 1.33E+04 8.42E-07 

July 2016 0.2 1.20E+04 1.01E-14 1.92E+04 2.18E-04 

July 2017 0.2 9.27E+03 8.35E-16 1.55E+04 1.48E-04 

IT-Soy July 2017 0.4 1.72E+04 3.50E-13 1.42E+04 2.79E-04 

US-Ha1 
July 2012 0.4 6.85E+04 1.61E-14 5.48E+04 8.54E-05 

July 2013 0.4 7.76E+04 8.21E-16 6.23E+04 2.65E-05 

US-Wrc August 2014 0.2 1.13E+04 6.90E-15 1.78E+04 6.69E-05 

Multi-site August 2014 0.2 1.70E+04 3.17E-14 2.68E+04 1.41E-04 

 

Table 3.Table 2. The configuration and the relative changes (%) of the parameters for each single-site assimilation experiment. The 1495 

minimization efficiency cost function reduction of each experiment is indicated by the reduction rate between the initial value of cost 

function (𝑱𝒊𝒏𝒊𝒕𝒊𝒂𝒍𝐽𝑖𝑛𝑖𝑡𝑖𝑎𝑙) and the final value of cost function (𝑱𝒇𝒊𝒏𝒂𝒍𝐽𝑓𝑖𝑛𝑎𝑙), defined as 𝟏 − 𝑱𝒇𝒊𝒏𝒂𝒍 𝑱𝒊𝒏𝒊𝒕𝒊𝒂𝒍⁄ 1 − 𝐽𝑓𝑖𝑛𝑎𝑙 𝐽𝑖𝑛𝑖𝑡𝑖𝑎𝑙
⁄ , and 𝑵𝒄𝒐𝒔𝑁𝐶𝑂𝑆 

denotes the number of ecosystem COS flux observations.  

Site 

name 

Assimilation 

window 
𝑁𝑐𝑜𝑠𝑁𝐶𝑂𝑆 

Cost function reduction 

(%) 

Relative change (%) of parameters 

𝑉𝑐𝑚𝑎𝑥25 VJ_slope Ksat𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 b𝑏𝑠𝑐𝑎𝑙𝑎𝑟 f_leaf 

AT-Neu June 2015 
483493 1.6416.39  45.5467.69  -45.425.10  0.134715.57  -

0.158378.13  

-1.7701  

DK-Sor June 2016 440509 42.179.46  113.4550.77  46.37-0.47  0.023321.54  0.060014.23  31.35-5.97  

ES-Lma May 2016 
278445 10.4815.70  62.60127.80  -

13.4935.18  

0.041237.08  0.0669-

65.33  

19.6510.05  

FI-Hyy 

July 2013 
470506 21.434.87  2.2832.55  6.4813.15  0.006721.60  -

0.030544.72  

-66.260.94  

July 2014 479504 62.237.74  5.60-13.42  -2.7925.48  0.0399-1.58  -0.085990  -89.938.80  

August 2014 
199166 64.9240.59  -60.6441.09  -

26.2819.10  

0.22234.02  -

0.370416.84  

-14.186.21  
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July 2015 
457492 14.7450.94  -3.7442.44  -

48.2241.03  

-0.03748.65  0.19395.07  -13.291.66  

July 2016 413430 35.025.73  -29.5912.45  -9.6558.23  0.268900  -0.377307  -350.65  

July 2017 
513527 53.7118.94  34.79-33.32  -4.6613.48  1.332918.13  -

2.084569.86  

-78.091.60  

IT-Soy July 2017 
218250 2.086.35  19.69-7.88  12.81-

21.20  

0.004903  -0.015745  -39.004.14  

US-Ha1 

July 2012 
335333 27.9644.14  -35.9251.89  24.3116.08  0.006012.05  -

0.035843.31  

-21.311.44  

July 2013 
514397 58.1069.05  -24.5462.08  -

11.1510.00  

0.113715.39  -

0.286460.58  

-76.311.82  

US-Wrc August 2014 701 44.6527.71  -50.6342.77  1614.52  0.0860-1.04  0.00602.45  -28.923.39  

 

Table 43. The configuration and the relative changes (%) of the parameters for the multi-site assimilation experiment at FI-Hyy and US-1500 
Wrc site. 𝑵𝒄𝒐𝒔𝑵𝑪𝑶𝑺 denotes the total number of ecosystem COS flux observations.  

Site 

name 

Assimilation 

window 
𝑁𝑐𝑜𝑠𝑁𝐶𝑂𝑆 

Cost function reduction 

(%) 

Relative change (%) of parameters 

𝑉𝑐𝑚𝑎𝑥25 VJ_slope Ksat𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 b𝑏𝑠𝑐𝑎𝑙𝑎𝑟 f_leaf 

FI-Hyy 

August 2014 900867 47.3328.29 
-

44.6441.36 
30.722.96 

0.183717.32 
-

0.28415.56 -

63.646.28 
US-Wrc 0.09631.36 

-

0.02252.60  

 

Appendix: Stomatal conductance and soil hydrology modelling in BEPS, including parameters to be optimised 

In the BEPS model, the leaf stomatal conductance to water vapor (𝑔𝑠𝑤 in mol m−2 s−1) is estimated using a modified version 

of Ball-Berry (BB) empirical model (Ball et al., 1987) following Woodward et al. (1995): 1505 

𝑔𝑠𝑤 = 𝑏𝐻2𝑂 + 
 𝑚𝐻2𝑂 𝐴  𝑅ℎ 𝑓𝑤

𝐶𝑎

(A1) 

where 𝑏𝐻2𝑂 is the intercept of the BB model, representing the minimum 𝑔𝑠𝑤 (mol m−2 s−1), 𝑚𝐻2𝑂 is the empirical slope pa-

rameter in the BB model (unitless), 𝑅ℎ is the relative humidity at the leaf surface (unitless), 𝑓𝑤 is a soil moisture stress factor 

describing the sensitivity of 𝑔𝑠𝑤  to soil water availability (Ju et al., 2006), 𝐶𝑎  is the atmospheric CO2 concentration 

(μmol mol−1), and the net photosynthesis rate (A) is calculated using the Farquhar model (Farquhar et al., 1980; Chen et al., 1510 

1999): 

𝐴 = min(𝐴𝑖 , 𝐴𝑗) − 𝑅𝑑  (A2) 

𝐴𝑐 = 𝑉𝑐𝑚𝑎𝑥  
𝐶𝑖 − 𝛤𝑖

∗

𝐶𝑖 + 𝐾𝑐 (1 +
𝑂𝑖

𝐾𝑜
)

 (A3)
 

𝐴𝑗 = 𝐽
𝐶𝑖 − 𝛤𝑖

∗

4(𝐶𝑖 − 2𝛤𝑖
∗)

 (A4) 

where 𝐴𝑖 and 𝐴𝑗 are Rubisco-limited and RuBP-limited gross photosynthetic rates (μmol m−2s−1), respectively. 𝑅𝑑 is leaf 1515 

dark respiration (μmol m−2s−1). 𝑉𝑐𝑚𝑎𝑥  is the maximum carboxylation rate of Rubisco (μmol m−2s−1); J is the electron 

transport rate ( μmol m−2s−1 ); Ci and Oi are the intercellular carbon dioxide (CO2) and oxygen (O2) concentrations 

(mol mol−1), respectively; Kc and Ko are Michaelis–Menten constants for CO2 and O2 (mol mol−1), respectively. 

The electron transport rate, J, is dependent on incident photosynthetic photon flux density (PPFD, μmol m−2s−1) as: 

J =  
𝐽𝑚𝑎𝑥 𝐼

𝐼 + 2.1𝐽𝑚𝑎𝑥
 (A5) 1520 
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where 𝐽𝑚𝑎𝑥  is the maximum electron transport rate (μmol m−2s−1), 𝐼  is the incident PPFD calculated from the incident 

shortwave radiation 𝑅𝑆𝑊 (W m−2): 

𝐼 = 𝛽 𝑅𝑆𝑊 𝑓_𝑙𝑒𝑎𝑓 (A6) 

where 𝛽 = 4.55 is the energy – quanta conversion factor (μmol J−1), f_leaf is the ratio of photosynthesis active radiation to 

the shortwave radiation (unitless).  1525 

The maximum carboxylation rate of Rubisco 𝑉𝑐𝑚𝑎𝑥 was calculated according the Arrhenius temperature function and the max-

imum carboxylation rate of Rubisco at 25 ℃ (𝑉𝑐𝑚𝑎𝑥25). 𝑉𝑐𝑚𝑎𝑥 is generally proportional to leaf nitrogen content. Considering 

both the fractions of sunlit and shaded leaf areas to the total leaf area and the leaf nitrogen content vary with the depth into the 

canopy, the 𝑉𝑐𝑚𝑎𝑥 values of sunlit (𝑉𝑐𝑚𝑎𝑥,𝑠𝑢𝑛) and shaded (𝑉𝑐𝑚𝑎𝑥,𝑠ℎ) leaves can be obtained through vertical integrations with 

respect to leaf area index (Chen et al., 2012): 1530 

𝑉𝑐𝑚𝑎𝑥,𝑠𝑢𝑛𝑙𝑖𝑡 =  𝑉𝑐𝑚𝑎𝑥𝜒𝑛𝑁𝑙𝑒𝑎𝑓

𝑘[1 − 𝑒(𝑘𝑛+𝑘)𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡]

(𝑘𝑛 + 𝑘)(1 − 𝑒−𝑘𝐿𝐴𝐼𝑠𝑢𝑛𝑙𝑖𝑡)
 (A7) 

𝑉𝑐𝑚𝑎𝑥,𝑠ℎ𝑎𝑑𝑒𝑑 =  𝑉𝑐𝑚𝑎𝑥𝜒𝑛𝑁𝑙𝑒𝑎𝑓

1
𝑘𝑛

[1 − 𝑒−𝐾𝑛𝐿] −
1

𝑘𝑛 + 𝑘
[1 − 𝑒(𝑘𝑛+𝑘)𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑]

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑 −
1
𝑘

(1 − 𝑒−𝑘𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒𝑑)
(A8) 

where 𝜒𝑛 (m2 g−1) is the relative change of 𝑉𝑐𝑚𝑎𝑥 to leaf nitrogen content; 𝑁𝑙𝑒𝑎𝑓 (g m−2) is the leaf nitrogen content at the top 

of the canopy; 𝑘𝑛 (unitless) is the leaf nitrogen content decay rate with increasing depth into the canopy, taken as 0.3; 𝑘 is 

calculated as: 1535 

𝑘 = 𝐺(𝜃)𝛺 𝑐𝑜𝑠(𝜃) (A9) 

where G(𝜃) is the projection coefficient, taken as 0.5, 𝛺 is the clumping index, and 𝜃 is the is the solar zenith angle. 

After 𝑉𝑐𝑚𝑎𝑥 values for the representative sunlit and shaded leaves are obtained, the maximum electronic transport rate for the 

sunlit and shaded leaves are obtained from Medlyn et al. (1999): 

𝐽𝑚𝑎𝑥 =  𝑉𝐽_𝑠𝑙𝑜𝑝𝑒 𝑉𝑐𝑚𝑎𝑥 − 14.2 (A10) 1540 

Soil water availability factor 𝑓𝑤,𝑖 in each layer i is calculated as: 

𝑓𝑤,𝑖 =  
1.0

𝑓𝑖(𝜓𝑖)𝑓𝑖(𝑇𝑠,𝑖)
 (A11) 

where 𝑓𝑖(𝜓𝑖) is a function of matrix suction 𝜓𝑖 (m) (Zierl, 2001), 𝑓𝑖(𝑇𝑠,𝑖) is a function describing the effect of soil temperature 

(𝑇𝑠,𝑖 in ℃) on soil water uptake (Bonan, 1991).  

To consider the variable soil water potential at different depths, the scheme of Ju et al. (2006) was employed to calculate the 1545 

weight of each layer (𝑤𝑖) to 𝑓𝑤: 

𝑤𝑖 =  
𝑅𝑖𝑓𝑤,𝑖

∑ 𝑅𝑖𝑓𝑤,𝑖
𝑛
𝑖=1

(A12) 

where n is the number of soil layer (five were used in this study) of the BEPS model, 𝑅𝑖 is the root fraction in layer i, calculated 

as: 

𝑅𝑖 = {

1 − 𝑟𝑑𝑒𝑐𝑎𝑦 
100𝑐𝑑𝑖                                        𝑖 = 1

𝑟𝑑𝑒𝑐𝑎𝑦 
100𝑐𝑑𝑖−1 − 𝑟𝑑𝑒𝑐𝑎𝑦 

100𝑐𝑑𝑖         1 < 𝑖 < 𝑛

𝑟𝑑𝑒𝑐𝑎𝑦 
100𝑐𝑑𝑖−1                                             𝑖 = 𝑛

 (A13) 1550 

where 𝑐𝑑𝑖 is the cumulative depth (m) of layer i. In this study, each soil layer depth (from top to bottom) of the BEPS model 

is 0.05 m, 0.10 m, 0.20 m, 0.40 m and 1.25 m, respectively. 

The overall soil water availability 𝑓𝑤 is then calculated as:  
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𝑓𝑤 =  ∑ 𝑓𝑤,𝑖𝑤𝑖

𝑛

𝑖=1

 (A14) 

The hydraulic conductivity of each soil layer 𝐾𝑖 (m s−1) is expressed as: 1555 

𝐾𝑖 = 𝐾𝑠𝑎𝑡𝑖 (
𝑠𝑤𝑐𝑖

𝜃𝑠,𝑖
)

2𝑏𝑖+3

 (A15) 

where 𝐾𝑠𝑎𝑡𝑖 is the saturated hydrological conductivity of soil layer i (m s−1); 𝑆𝑊𝐶𝑖 is the volumetric liquid soil water content 

of soil layer i (m s−1); 𝜃𝑠,𝑖 is the porosity of soil layer i (unitless); 𝑏𝑖 is the Campbell parameter for soil layer i, determining 

the change rate of hydraulic conductivity with SWC (unitless). In this study, 𝐾𝑠𝑎𝑡𝑖 and 𝑏𝑖 are expressed as: 

 𝐾𝑠𝑎𝑡𝑖 =  𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟𝐾𝑠𝑎𝑡𝑑𝑓,𝑖 (A16) 1560 

𝑏𝑖 = 𝑏𝑠𝑐𝑎𝑙𝑎𝑟𝑏𝑑𝑓,𝑖 (A17) 

where 𝐾𝑠𝑎𝑡𝑑𝑓,𝑖 and 𝑏𝑑𝑓,𝑖 are the default values of 𝐾𝑠𝑎𝑡𝑖 and 𝑏𝑖 respectively. 
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Figure S1. Scatterplots of observed versus simulated hourly COS flux using prior (red) and single-site posterior (blue) parameters. 
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Figure S2. Hourly scatterplots of observed versus simulated hourly COS flux using prior (red), single-site (blue) and two-site (green) 25 
posterior parameters. 
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Figure S3. Hourly scatterplots of observed versus simulated hourly GPP using prior (red), single-site (blue) and two-site (green) posterior 

parameters. 

 30 
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Figure S4. The diurnal cycle of observed (black) and simulated LE using prior parameters (red), single-site (blue) and two-site (green) 

posterior parameters. The size of the circle indicates the number of observations within each circle (ranging from 1 to 31), and the error bars 

depict the standard deviations in the mean of observations from the variability within each circle. Lines connect the mean values of 

simulations and pale bands depict the standard deviation in the mean of simulations from the variability within each bin. 35 
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Figure S5. Scatterplots of observed versus simulated hourly LE using prior (red), single-site (blue) and two-site (green) posterior parameters. 
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Figure S6. The diurnal cycle of observed (black) and simulated H using prior parameters (red), single-site (blue) and two-site (green) 

posterior parameters. The size of the circle indicates the number of observations within each circle (ranging from 1 to 31), and the error bars 40 
depict the standard deviations in the mean of observations from the variability within each circle. Lines connect the mean values of 

simulations and pale bands depict the standard deviation in the mean of simulations from the variability within each bin. 
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Figure S7. Hourly scatterplots of observed versus simulated hourly H using prior (red), single-site (blue) and two-site (green) posterior 

parameters. 45 
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Figure S8. Observed (black point) and simulated SWC (%). Results show SWC simulated using prior parameters (red line), single-site (blue 

line) and two-site (green line) posterior parameters. 
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Figure S9. Influence of LAI on the posterior VJ_slope, 𝑲𝒔𝒂𝒕𝒔𝒄𝒂𝒍𝒂𝒓, 𝒃𝒔𝒄𝒂𝒍𝒂𝒓 and f_leaf obtained by the single-site experiments conducted at 50 
seven sites and driven by four LAI data (GLOBMAP, GLASS, MODIS and in situ). The posterior VJ_slope, 𝑲𝒔𝒂𝒕𝒔𝒄𝒂𝒍𝒂𝒓, 𝒃𝒔𝒄𝒂𝒍𝒂𝒓, f_leaf and 

the LAI were represented by their normalized values 𝑵𝑽𝑱_𝒔𝒍𝒐𝒑𝒆 , 𝑵𝑲𝒔𝒂𝒕𝒔𝒄𝒂𝒍𝒂𝒓
, 𝑵𝒃𝒔𝒄𝒂𝒍𝒂𝒓

, 𝑵𝒇_𝒍𝒆𝒂𝒇  and 𝑵𝑳𝑨𝑰 , respectively. The posterior 

parameters were normalized by their prior values and the LAI were normalized by the in situ values. The linear regression fit line of the 

posterior parameters obtained based on the satellite-derived LAI (GLOBMAP, GLASS and MODIS) with the corresponding LAI data is 

shown, with 95% confidence interval spread around the line.  55 

Table S1. PFT and Soil Texture descriptions in BEPS model. 

PFT No. Descriptions 

1 Evergreen needleleaf forest 

2 Deciduous needleleaf forest 
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3 Deciduous broadleaf forest 

4 Evergreen broadleaf forest 

5 Mixed forest 

6 Shrub 

7 C3 grass 

8 C3 crop 

9 C4 grass 

10 C4 crop 

Soil texture No. Description 

1 Sand 

2 Loamy sand 

3 Sandy loam 

4 Loam 

5 Silt loam 

6 Sandy clay loam 

7 Clay loam 

8 Silty clay loam 

9 Sandy clay 

10 Silty clay 

11 Clay 

Table S2. 𝑎𝑙𝑝ℎ𝑎 and 𝑏𝑒𝑡𝑎 parameters for COS production term. 

Site name PFT in BEPS PFT in Whelan et al. (2016) 𝑎𝑙𝑝ℎ𝑎 (unitless) 𝑏𝑒𝑡𝑎 (℃−1) 

AT-Neu C3 grass Savanna -9.54 0.108 

ES-Lma C3 grass Savanna -9.54 0.108 

DK-Sor Deciduous broadleaf forest Temperate forest -7.77 0.119 

US-Ha1 Deciduous broadleaf forest Temperate forest -7.77 0.119 

FI-Hyy Evergreen needleleaf forest Temperate forest -7.77 0.119 

US-Wrc Evergreen needleleaf forest Temperate forest -7.77 0.119 

IT-Soy C3 crop Soy field -6.12 0.096 

Table S3. Parameters for COS uptake term. 

PFT in BEPS PFT in Whelan et al. 

(2022) 

𝑆𝑊𝐶𝑜𝑝𝑡 

(%) 

𝐹𝑜𝑝𝑡  ( pmol m−2 s−1 ) with 

temperature (℃) at 𝑆𝑊𝐶𝑜𝑝𝑡 

𝑆𝑊𝐶𝑔 

(%) 

𝐹𝑜𝑝𝑡  ( pmol m−2 s−1 ) with 

temperature (℃) at 𝑆𝑊𝐶𝑔 

C3 grass Grassland 12.5 𝐹𝑜𝑝𝑡: -4.5 

𝐹𝑇𝑔
: -1.5 

𝑇𝑜𝑝𝑡: -10.9 

26.9 𝐹𝑜𝑝𝑡: -2.3 

𝐹𝑇𝑔
: -1.3 

𝑇𝑜𝑝𝑡: -14.8 
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𝑇𝑔: -25 𝑇𝑔: -25 

Deciduous 

broadleaf forest 

Forest - Temperate 

or broadleaf 

24.6 12.6 51 -0.18T+0.48 

Evergreen 

needleleaf forest 

Forest – Boreal or 

needleleaf 

12.5 𝐹𝑜𝑝𝑡: -18 

𝐹𝑇𝑔
: -12 

𝑇𝑜𝑝𝑡: 28 

𝑇𝑔: 35 

19.3 𝐹𝑜𝑝𝑡: -5.9 

𝐹𝑇𝑔
: -3.8 

𝑇𝑜𝑝𝑡: 28 

𝑇𝑔: 35 

C3 crop Agricultural 17.7 -9.7 22 -5.36 

Table S4. Description of parameters used for optimizations within the Nanjing University Carbon Assimilation System (NUCAS). 

Parameters are either specified per PFT, per soil texture, or globally, i.e., all PFTs and textures share one value, as indicated in column 3.  60 

No. Parameter Dependent Unit Description 
Prior 

Value 

Prior 

Uncertainty 

1 

𝑉𝑐𝑚𝑎𝑥25 PFT μmol m−2 s−1 maximum carboxylation rate at 25℃ 

62.5 15.625 

2 39.1 9.775 

3 57.7 14.425 

4 29 7.25 

5 66 16.5 

6 57.85 14.4625 

7 48 12 

8 84.5 21.125 

9 30 7.5 

10 30 7.5 

11 

VJ_slope PFT unitless 
Slope of the 𝑉𝑐𝑚𝑎𝑥  and 𝐽𝑚𝑎𝑥  (maximum electron transport rate) 

relationship 

2.39 0.5975 

12 2.39 0.5975 

13 2.39 0.5975 

14 2.39 0.5975 

15 2.39 0.5975 

16 2.39 0.5975 

17 2.39 0.5975 

18 2.39 0.5975 

19 2.39 0.5975 

20 2.39 0.5975 

21 

Q10 PFT unitless Soil respiration temperature factor 

0.046 0.0115 

22 0.046 0.0115 

23 0.046 0.0115 

24 0.046 0.0115 

25 0.046 0.0115 

26 0.046 0.0115 

27 0.046 0.0115 
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28 0.046 0.0115 

29 0.046 0.0115 

30 0.046 0.0115 

31 

SIF_alpha PFT W m−2 

Quadratic term coefficient for the relationship between additional heat 

dissipation under light adapted conditions and relative reduction of 

photochemical yield 

6.2473 1.561825 

32 6.2473 1.561825 

33 6.2473 1.561825 

34 6.2473 1.561825 

35 6.2473 1.561825 

36 6.2473 1.561825 

37 6.2473 1.561825 

38 6.2473 1.561825 

39 6.2473 1.561825 

40 6.2473 1.561825 

41 

SIF_beta PFT W m−2 

Primary term coefficient for the relationship between additional heat 

dissipation under light adapted conditions and relative reduction of 

photochemical yield 

0.5994 0.14985 

42 0.5994 0.14985 

43 0.5994 0.14985 

44 0.5994 0.14985 

45 0.5994 0.14985 

46 0.5994 0.14985 

47 0.5994 0.14985 

48 0.5994 0.14985 

49 0.5994 0.14985 

50 0.5994 0.14985 

51 

𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟 texture unitless Scaling factor of saturated hydraulic conductivity (Ksat) 

1 0.25 

52 1 0.25 

53 1 0.25 

54 1 0.25 

55 1 0.25 

56 1 0.25 

57 1 0.25 

58 1 0.25 

59 1 0.25 

60 1 0.25 

61 1 0.25 

62 

𝑏𝑠𝑐𝑎𝑙𝑎𝑟 texture unitless 
Scaling factor of Campbell parameter b (the exponential parameter of 

Campbell's soil moisture retention model) 

1 0.25 

63 1 0.25 

64 1 0.25 

65 1 0.25 

66 1 0.25 

67 1 0.25 

68 1 0.25 
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69 1 0.25 

70 1 0.25 

71 1 0.25 

72 1 0.25 

73 f_leaf global unitless The ratio of photosynthetically active radiation to shortwave radiation 0.5 0.125 

74 kc25 global μbar Michaelis–Menten constants for CO2 in 25℃ 274.6 68.65 

75 ko25 global mbar Michaelis–Menten constants for O2 in 25℃ 419.8 104.95 

76 tau25 global unitless 
The CO2/O2 specificity factor, which reflects the carbon assimilation 

efficiency of Rubisco 
2904.12 726.03 

Table S5. Summary of configurations of twin experiments. 𝑱𝒊𝒏𝒊𝒕𝒊𝒂𝒍 and 𝑱𝒇𝒊𝒏𝒂𝒍 denote the initial value and the final value of the cost function 

𝑱(𝒙) respectively; 𝑮𝒊𝒏𝒊𝒕𝒊𝒂𝒍 and 𝑮𝒇𝒊𝒏𝒂𝒍 denote the initial value and the final value of the gradient respectively; 𝑫𝒊𝒏𝒊𝒕𝒊𝒂𝒍 and 𝑫𝒇𝒊𝒏𝒂𝒍 denote the 

initial value and the final value of the respectively. 𝑫𝒇𝒊𝒏𝒂𝒍 denote the final value of the distance (𝑫𝒙) between the parameter vector and the 

prior parameter vector. The initial value (𝑫𝒊𝒏𝒊𝒕𝒊𝒂𝒍) of 𝑫𝒙 for all twin experiments is 7.48, due to an identical perturbation size (0.2) being 

applied. 65 

Site name Data duration 𝐽𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐽𝑓𝑖𝑛𝑎𝑙 𝐺𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝐺𝑓𝑖𝑛𝑎𝑙 𝐷𝑓𝑖𝑛𝑎𝑙 
Relative changes of parameters (%) 

𝑉𝑐𝑚𝑎𝑥25 VJ_slope 𝐾𝑠𝑎𝑡𝑠𝑐𝑎𝑙𝑎𝑟  𝑏𝑠𝑐𝑎𝑙𝑎𝑟 f_leaf 

AT-Neu June 2015 55.08  6.52E-16 48.09  6.65E-07 1.48E-07 -8.13E-10 -3.16E-09 -6.88E-10 -1.68E-09 1.24E-09 

DK-Sor June 2016 77.13  7.45E-16 77.01  1.30E-06 1.70E-08 1.55E-09 -8.85E-10 -2.82E-09 -1.08E-09 -1.80E-09 

ES-Lma May 2016 53.01  3.34E-15 51.59  1.55E-06 8.80E-10 -1.06E-09 1.88E-09 8.54E-09 7.58E-09 4.26E-11 

FI-Hyy 

July 2013 73.44  2.02E-17 70.43  1.10E-06 2.57E-08 1.29E-10 3.66E-10 -9.30E-11 4.46E-10 -2.01E-10 

July 2014 77.59  1.06E-17 76.83  2.97E-07 4.74E-09 3.18E-10 -6.80E-10 -2.08E-11 -1.96E-10 -1.56E-10 

August 2014 74.09  9.27E-18 70.00  4.63E-07 1.02E-09 -7.33E-11 1.22E-10 5.99E-10 4.59E-10 2.20E-10 

July 2015 72.76  1.19E-16 70.07  7.93E-07 7.58E-10 -1.16E-10 -4.87E-10 1.14E-11 7.20E-10 1.07E-09 

July 2016 75.89  1.13E-18 73.35  2.12E-07 4.53E-08 -9.64E-11 1.08E-10 3.16E-11 3.95E-11 -5.55E-12 

July 2017 73.94  8.47E-17 73.64  7.18E-07 2.45E-08 8.68E-11 7.31E-10 3.69E-12 2.01E-10 8.47E-10 

IT-Soy July 2017 50.75  5.09E-13 38.82  4.94E-07 6.98E-08 2.86E-09 -7.41E-09 2.74E-09 -5.89E-09 -5.70E-10 

US-Ha1 
July 2012 66.15  1.93E-19 59.66  2.05E-07 1.63E-07 -6.01E-12 7.29E-11 1.35E-11 7.87E-11 -5.81E-12 

July 2013 66.50  1.61E-17 60.25  9.99E-07 2.36E-08 4.42E-09 7.44E-10 -9.77E-11 4.07E-10 -3.52E-11 

US-Wrc August 2014 58.97  3.28E-18 46.87  1.45E-07 2.84E-08 -1.16E-10 4.40E-10 1.22E-10 -7.50E-11 6.04E-11 

FI-Hyy* 
August 2014 108.04  3.95E-15 119.27  1.28E-06 2.01E-08 -1.16E-10 4.40E-10 

1.22E-10 -7.50E-11 
6.04E-11 

US-Wrc* -3.41E-10 4.63E-10 
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