10

15

20

TorchClim v1.0: A deep-learning plugin for climate model physics

David Fuchs'**, Steven C. Sherwood!*", Abhnil Prasad'->*", Kirill Trapeznikov™>", and Jim Gimlett>"

IClimate Change Research Centre, Biological, Earth and Environmental Sciences, University of New South Wales, Sydney,
Australia

2 ARC Centre of Excellence for Climate Extremes, University of New South Wales, Sydney, New South Wales, Australia
3School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, NSW, Australia
“Climate and Atmospheric Science Branch, Department of Planning and Environment, Sydney, New South Wales, Australia
5STR, Woburn, MA, USA

“These authors contributed equally to this work.

Correspondence: David Fuchs (David.Fuchs @environment.nsw.gov.au)

Abstract. Climate models are hindered by the need to conceptualize and then parameterize complex physical processes that are
not explicitly numerically resolved and for which no rigorous theory exists. Machine learning and artificial intelligence methods
(ML/AI) offer a promising paradigm that can augment or replace the traditional parametrized approach with models trained
on empirical process data. We offer a flexible and efficient plugin, TorchClim, that facilitates the insertion of ML/AI physics
surrogates into the climate model to create hybrid models. A reference implementation is presented for the Community Earth
System Model (CESM), where moist physics and radiation parametrizations of the Community Atmospheric Model (CAM)
are replaced with such a surrogate. We present a set of best-practice principles for doing this with minimal changes to the
GCM, exposing the surrogate model as any other parametrization module, and discuss how to accommodate the requirements
of physics surrogates such as the need to avoid unphysical values and supply information needed by other GCM components.
We show that a deep-neural network surrogate trained on data from CAM itself can produce a model that reproduces the
climate and variability of the original model, albeit with some biases. The efficiency and flexibility of this approach open up
new possibilities for using physics surrogates trained on offline data to improve climate model performance, better understand

model physical processes, and flexibly incorporate new processes into climate models.

1 Introduction

The ubiquitous approach to forecasting weather and climate is with General circulation models (GCMs). GCMs offer a coarse
numerical grid representation of the climate system, with a typical horizontal resolution of one hundred kilometers and a few
dozen vertical layers. In this model design, the effects of unresolved meteorological phenomena such as boundary-layer tur-
bulence, moist convection, water vapor condensation, and ice nucleation must be summarized as a handful of moments or
other parameters calculated in each spatial grid location. Heat transport by radiation must also be calculated, and it depends
on the details of cloud distributions, which must also be calculated. The process of introducing these quantities into a GCM

is loosely termed "parametrization” (hereafter "traditional parametrization" or TP) and generally involves an arduous develop-

25

30

35

40

45

50

55

ment cycle where an often simplistic conceptual model representing each unresolved process is codified into the coarse model
representation.

Despite decades of investment, climate models show systematic departures from observations, such as erroneous rainfall
distributions and sea surface temperature patterns (Masson-Delmotte et al., 2021). Different models also disagree on key
aspects of our climate system and its future in a warmer climate, such as cloud feedback and climate sensitivity (Zelinka
et al., 2020) and regional climate changes. Often, this disagreement is traced back to the parametrization of physical processes.
For example, Fuchs et al. (2023b) showed that much of the disagreement among climate models in the positioning of the
midlatitude jet could be attributed to differences in the parametrization of shallow convection. Grise and Polvani (2014) found
systematic errors across GCMs in the representation of Southern Ocean clouds. GCMs also have biases in predicting surface
moisture trends in semi-arid regions (Simpson et al., 2024). Likewise, much of the spread of low cloud feedback in models
was directly attributable to their cloud parameterizations (Geoffroy et al., 2017) or to sometimes spurious convective behavior
(Nuijens et al., 2015). In some cases, model errors were linked to difficulties in tuning these parametrizations (e.g. Schneider
et al., 2017, and references therein). The number and variety of parametrizations in current GCMs arguably point to a lack of
consensus on appropriate conceptual models of small-scale processes and how they work.

The difficulty of developing TP and increasing computational power has led to growing enthusiasm for very high-resolution
global models where it is hoped that processes such as convection and clouds can be explicitly represented by the equations
of motion (Satoh et al., 2019). While this is an exciting development, such models are many orders of magnitude slower
than traditional GCMs and therefore cannot replace standard models for most purposes. Moreover, even the highest resolutions
contemplated for large-scale use will still require parameterizations of some processes (e.g., microphysics and turbulence). The
current effort is motivated by the evident need to improve physics parameterizations, particularly for models run at affordable
grid sizes.

Improving a TP involves substantial intellectual and engineering effort, requiring first the introduction of a new conceptual
representation of partially observed processes that is parsimonious and yet captures all features thought to be essential, and
then the substantial engineering challenge of codifying it into a GCM. In many cases, the development of new ideas has been
hindered by computational complexities, with newer versions of GCMs offering more elaborate parametrizations and finer nu-
merical grids. For example, CAM version 5 introduced new features and increased the complexity of existing parametrizations
that degraded the computational performance fourfold compared to CAM version 4. For many years, the increase in GCM
computational complexity was matched by infrastructure improvements that helped keep GCM performance at acceptable
levels (aka Moore’s Law, 2022). However, this infrastructure improvement reached saturation.

An alternative to TP of growing interest has been ML/AL This has benefited from increases in distributed storage and com-
puting capacity and, notably, the re-purposing of the graphical processing unit (GPU) for ML/AI applications. One approach
that has proven useful for weather forecasting is to replace the entire atmosphere model with an empirical one (Bi et al., 2023).
Here we do not consider this option, but rather, using a hybrid model which uses empirical learning to improve parameteriza-
tions or replace them with a physics surrogate. One way of doing this is to use ML to adjust physics parameters at run time to

steer the model toward observed states (e.g. Dunbar et al., 2021; Howland et al., 2022; Schneider et al., 2017). This approach

60

65

70

75

80

85

90

replaces the manual tuning step in parametrizations, addressing uncertainties associated with manual tuning. However, these
approaches rely on a small set of parameters, which themselves are manually chosen, and a fixed set of possibly flawed struc-
tural assumptions in the parametrizations. Kelly et al. (2017) replaced physical parameterizations with a linear tangent model
fitted to results from a process model but obtained disappointing results even in the tropics where variations are relatively small,
presumably because the actual physics is too nonlinear.

A few approaches have been tried for developing nonlinear empirical physics surrogates. One is to train a new parametriza-
tion from a more complete set of data but leave it bound to the input data. O’ Gorman and Dwyer (2018) used a random forest
algorithm as a drop-in replacement of moist convection to emulate the original scheme, while Yuval and O’Gorman (2020)
used a similar approach to represent the impact of unresolved motions in a much higher-resolution training simulation. This
data-bound approach has the advantage of being able to obey conservation laws and properties of different variables (e.g.
by design, precipitation rate cannot be negative). However, a random forest algorithm is unlikely to extrapolate successfully
beyond the input data, as the authors found when trying to simulate warmer climates.

An approach that might hold more promise for extrapolation is the use of deep neural networks (NNs or DNNs). NNs have
been used extensively in climate science and have seen a growing interest as an alternative to TPs. For example, Brenowitz
and Bretherton (2019) trained a DNN using data from a 4 km spatial resolution near-global aqua-planet cloud-resolving model
(CRM). This was used to learn heating and moistening tendencies in a coarse-grained 160 km resolution representation of the
same model, serving as a drop-in replacement to the original parametrization. This model was able to run for a few days before
becoming unstable. Wang et al. (2022) train a DNN using a super-parameterized (SP) GCM and use the trained model in a
non-SP version of the same GCM. They report a significant boost in computational performance compared to an SP GCM,
alongside the ability to reproduce features from the SP parametrization.

There are multiple motivations for developing hybrid models. First, they can be used to speed up GCMs, for example, to
make a low-resolution model emulate a much more expensive high-resolution one (e.g. Wang et al., 2022) or replace expensive
parameterizations such as radiation. The main premise in this case is that the increase in computational complexity of ML/AI
models will be significantly smaller than that of a TP with similar skills. Another motivation, if training data of sufficient
quality and quantity can be obtained from observations or process models, could be to learn more accurate relationships than
are produced in existing models and thereby improve them. A third and less discussed but promising use of hybrid models
could be to accelerate model development and scientific discovery by enabling rapid online experimentation with different
surrogate architectures or training, for example, that encode different physical assumptions (e.g. Beucler et al., 2021). Note
that while the first of these motivations places strong requirements on execution speed and integration with GCMs, the second
mostly needs accuracy, and the third needs flexible and rapid surrogate implementation. Advancing any of these aims would
therefore be useful as long as it did not strongly compromise the others.

Despite these possible use cases and the availability of data and computational resources, NNs are yet to find their place in
climate physics parametrization. NNs have mostly been used so far in offline test beds, simplified GCMs, and scenarios with
limited boundary conditions such as aqua-planet simulations. Model stability has been a key issue with hybrid models, with

a myriad of approaches proposed to diagnose and correct instabilities (e.g. Brenowitz et al., 2020, and references therein). In

95

100

105

110

115

120

many cases, stability issues have been linked to the NN model learning non-causal relationships or the hybrid GCM-NN model
being unable to obey conservation laws. For example, Brenowitz and Bretherton (2019) attributed instabilities in their model to
non-causal process influences from the upper troposphere that their DNN learned. They fixed the issue by manually removing
inputs to their DNN above 10km. Wang et al. (2022) performed an extensive manual model search to learn a DNN that results
in a stable hybrid model. They also identified missing variables in previous studies, such as direct and diffuse radiation at
the surface, which are required by surface models. However, their model did not predict precipitation components, such as
convective precipitation and snow. These are required by the land surface model and are likely to be required in order to run
a stable fully coupled climate scenario. Mooers et al. (2021) found that their DNN showed selected regions with low skill on
the 15-minute time-step of their data while exhibiting high skill on coarser temporal resolutions. This issue was traced to the
difficulty of the DNN in emulating regions with fast stochastic signals, such as tropical marine boundary layer convection.
Others found that their NNs struggled in the stratosphere (e.g. Gentine et al., 2018; Brenowitz and Bretherton, 2019).

Approaches that alleviate the lack of skill and stability issues involve interventions at run time or during an offline learning
stage. For example, Rasp (2020) runs a surrogate model side-by-side with TP "advisor". Watt-Meyer et al. (2021) learn an
error correction term from observations and apply these back to the GCM at runtime. Beucler et al. (2021) added linearized
constraints to the learning loss function to help focus the learning. Rampal et al. (2022) augmented the loss function with
Boolean loss terms, taking into account the binary nature of precipitation.

The discussion so far suggests that ML/AI surrogates have yet to find their place as drop-in replacements of parametrizations
in existing GCMs due to scientific and engineering gaps, but that such a development could fulfill several interesting and
diverse use cases depending on the speed and flexibility of the hybrid model system. We therefore propose, first, a best practice
or set of design principles for how ML/AI-based surrogates can be most usefully added to GCMs, and provide a reference
implementation to one widely used GCM; and second, a software plugin that facilitates these design principles and improves
on the performance aims motivated by the various use cases. Section 2 presents the overall hybrid model following the proposed
design principles. This is followed by Section 3 which describes a case-study that is used as a reference implementation that we
have incorporated into the CESM/CAM GCM. Section 4 demonstrates an evaluation of the case study using an offline-trained
neural network physics emulator as the surrogate model, including the ability of the hybrid model to emulate the original GCM.

Finally, Section 5 discusses the gaps that shape the next steps on the roadmap of TorchClim.

2 Description of the hybrid model

Incorporating a surrogate model into a GCM should ideally incur minimal changes to the GCM. For example, the GCM’s
workflow should not distinguish the surrogate from other parametrization modules. We have noted a diverse range of use cases
of ML/ALI, highlighting the (previously unexplored) possibility that these approaches can help shorten the development cycle
of new parametrizations. We seek to facilitate this exploratory quality by proposing and implementing a set of best-practice

design principles for hybrid models. In particular, a situation is within grasp where many ML/AI models might be studied while

protecting the investment in existing CPU-based GCMs, and without compromising the potential of a future shift of GCMs to

125 GPUs or other technologies later on.

2.1 Best-practice Principles

To achieve this, we propose the following set of best-practice requirements and features for a hybrid implementation: that it,

1.

2.

130 3.

135 4.

140

145

Can be readily adapted to replace any portion of the GCM, focusing on (but not limited to) physics parameterizations;
Offers a concise and scalable design pattern, combining ease of use and run-time performance;
Offers a rapid "plug-and-play" replacement of previous physics surrogates with new ones.

— This should take the form of a plugin that is attached to a GCM, which, once installed, allows for ML/AI models
to be loaded into the GCM without requiring to recompile the GCM,;
— This requirement does not include any changes that need to be done to the GCM. Namely, the need to pipe inputs

and outputs from the surrogate model back to the GCM’s workflow;

Allows multiple ML/AI models to coexist in the same run or as an overlay on top of TPs—for example, to replace two

different TPs, or for data blending, online learning, or to use side-by-side with TPs;

Allows ML/AI parametrizations to coexist in the same source code branch, and execution flow of a GCM alongside TP

approaches;

Uses existing parallelization frameworks and infrastructure (i.e. Message Passing Interface (MPI) over CPUs), but with-

out limiting the ability of ML/AI approaches to use GPUs on demand inside a GCM or during the learning stage;
Allows ML/AI approaches to be activated under specific conditions, for example in a given time period and region;

Offers a workflow and supporting tools to boost the learning process of ML/AI models. Since most GCMs are written in

Fortran, offer a Fortran in addition to C/C++ interface implementation;

Allows the use of scripted languages during the learning process while avoiding the need to implement an ML/AI model

in Fortran.

These requirements and features are achieved here via two deliverables:

1.

150 2.

The TorchClim plugin.
This is a library (shared object) that is largely agnostic to a specific GCM. It exposes an interface by which one can

access surrogate models from a GCM.

A reference implementation.

This is a case study that demonstrates the above best-practice principles in incorporating the plugin into a GCM.

155

160

165

170

175

180

TorchClim bundles these into a repository with a GPL 3.0 license (Fuchs et al., 2023a). Our approach relies on PyTorch (Paszke

et al., 2019), a deep-learning neural network framework that offers both Python and C/C++ interfaces.
2.2 Architecture overview

The workflow of a GCM generally cycles through repeated time steps where the output from one step feeds into the next.
Prognostic variables (e.g., temperature, winds, humidity, and usually one or more cloud quantities) are integrated into the
dynamical core and carried from one time step to the next, while diagnostic ones (e.g., radiation fluxes) are recalculated from
scratch at each time step inside various parametrization modules (Fig. 1.a). A parametrization module can "see" prognostic
variables from the dynamical core, and in some cases, diagnostic variables from other parametrizations that have already
executed.

The recommended mode of use of TorchClim is one where the surrogate model is exposed to the GCM as a parametrization
module that is indistinguishable from others in the GCM. Like any other parametrization, a surrogate model that is implemented
in this fashion can use prognostic, diagnostic variables and spatio-temporal dimensions that the GCM provides at the point of
insertion of the new parametrization. The role of the parametrization module that wraps the surrogate model boils down to
piping inputs and outputs from the GCM into the surrogate model.

In order to call a surrogate model, the new parametrization relies on calls to the TorchClim plugin (thereafter the plugin). This
plugin is a lean implementation, with the main purpose of hiding the details of the underlying ML/AI library implementation
from the GCM. The plugin handles initialization and configuration of LibTorch, loads and calls ML/AI models, and if required,
keeps state and alignment between MPI ranks, GPUs and stateful ML/AI models (see Section 5).

The first release of the plugin is focused more on functionality than on the computational performance of a hybrid model. It
is shipped with a Fortran layer that packs variables according to the input and output specifications of the underlying ML/AI
model that is used in the reference implementation (Section 3). Users can choose to change this code to match their objective,
which will require recompiling the plugin, or implement this layer in their GCM and call the C/C++ interface directly from
the GCM (calling "model_predict_c" under torch-wrapper/src/interface/torch-wrap-cdef.f£90). An
example of how to export a PyTorch Model into a Torchscript format that can be uploaded by the TorchScript plugin is also
provided (examples/torchscript_example.py in the TorchClim repository). This implementation is relatively lean,
so much of the computational complexity that the hybrid model incurs depends on the complexity of the ML/AI surrogate.
One advantage of implementing the packing layer in the TorchClim plugin rather than the GCM is that it allows the user to
test the calls to the surrogate in a test application without running the GCM. That is, the plugin can be loaded as a separate
executable, calling an ML/AI model using a set of validation input test profiles that the user supplies. For example, the reference
implementation offers a standalone test application that feeds prescribed atmospheric profiles into ML/AI models via a test

executable of this plugin.

185

190

195

GCM CAM : Physics before
Upstream
Parametrization
module
Dynamic core
Convection, Radiation

(@) |dealized CESM r=--=--=--------- ; ®
coupling
Dry physics
Hybrid Parametrization
module and clouds
Dynamic core ~
TorchClim ’ - -~ |——1 5 || TorchClim
_ Plugin O) ‘—:* _ Plugin
I
AI/ML model !

Downstream
Parametrization

Coupled

Physics after
surface models

module coupling

Figure 1. An overview of the implementation of TorchClim into a GCM. (a) an idealized GCM where a hybrid parametrization module calls
TorchClim. To the GCM it appears like any other parametrization module. (b) an elaboration of (a) for the reference implementation into

CESM/CAM, where the hybrid model replaces convection, radiation and clouds parametrizations (adapted from Wang et al., 2022)

2.3 Parallelization considerations

One of the main dilemmas in introducing an ML/AI surrogate into the GCM involves parallelization. We note that most GCMs
rely on CPUs to parallelize their execution and scale via MPI to multiple CPUs and compute nodes, while ML/AI frameworks
tend to scale using GPUs. This creates a duplication of parallelization frameworks in the GCM, leading to the possibility that
the CPUs will be idle while the GPUs access the surrogate model and vice versa. Furthermore, there is an overhead in copying
state from the CPU to the GPU, which could reduce the efficiency of this approach. It is possible that a better use of resources
would be to use more CPUs to parallelize the GCM via MPI and keep the surrogate model on the same CPU core that is bound
with the MPI rank. This is especially relevant to implementations that access the GPU serially or use a global MPI gather
to push data to the GPU. At the least, users should be advised to benchmark their hybrid-GCM against several architectures
before running expensive workloads, to ensure the best use of resources.

TorchClim offers the user the flexibility to choose between a pure CPU configuration (on the same CPU that the MPI rank
resides), and one where the surrogate model is pushed to a GPU. Note that GPU functionality will be tested in the next release
of TorchClim following the addition of vectorization of the MPI tile, and configuration of multiple surrogate models (see
Section 5). To achieve this flexibility, an instance of the TorchClim plugin is loaded at runtime to the thread-local-storage
(TLS) inside an MPI rank. This means that TorchClim’s recommended best practice naturally follows the spatial discretization

used to parallelize GCMs via CPU/MPI. This is illustrated in Fig. 2 for CAM, where the CPU/MPI parallelization discretizes

(oS
NN
SFCY
(8)
DU Sy
 O
Thread
MPI rank Local

Storage

LibTorch
\/ modlel ir?;‘t:ance
CAM tile

Thread
pool

Figure 2. An architecture diagram depicting the relationship between a GCM’s physics geographical tile (chunk), representing a set of
adjacent geographical grid locations, and a LibTorch instance. In a GCM with MPI support, both coexist within the MPI rank. LibTorch

ML/AI models can subsequently execute on a local GPU or a thread pool.

the spatial domain into tiles and allocates each tile to a CPU. The instance of TorchClim lives inside the MPI rank associated
200 with this CPU and can offload the requests to TorchClim to a range of parallelization options as supported by the underlying
ML/AI framework.

3 Reference Implementation with CESM/CAM

We provide a reference implementation for the Community Atmospheric Model (Neale et al., 2010) that is part of CESM
version 1.0.6. This comes in the form of a case study that demonstrates our recommended best practices outlined in Section 2.1.

205 Specifically, this case study demonstrates:
1. How to include the TorchClim library into the GCM.

2. How to import the TorchClim module in Fortran.

210

215

220

225

230

235

3. How to call the plugin’s interface.

4. How to pipe inputs and outputs from and to the GCM.

5. How to wrap the surrogate model as parametrization module.
6. How to do basic validation and constraint tests.

Additional features that extend the functionality of the GCM and surrogate development cycle are discussed in Sections 3.1
and 3.2.

Our case study’s surrogate model is a DNN (described in Section 4.1) that predicts the total tendencies of moisture and
heat due to moist processes (convection, clouds, boundary layer) and radiation (Fig. 1.b), thus replacing the respective TPs in
CAM with a single surrogate model. Other parameterizations such as eddy diffusion, gravity wave drag and CAM’s dynamical
core are left running as usual. Like many other GCMs, CAM uses MPI to discretize its domain, dividing the workload across
processes and compute nodes. The physics parametrization suite in CAM divides the geographical domain into tiles of adjacent
grid locations, with each tile associated with an MPI rank (process). Each grid location represents an atmospheric column, in
which the physics runs independently from other columns. This dictates the required spatial dimensions of the input and output
of the surrogate model.

Our choice to replace the sum of moist and radiative physics parameterizations dictates the minimal set of output variables
that the surrogate model will need to predict. Failing to predict and feed these back to the GCM can lead to runtime instabilities,
regardless of the skill of the surrogate model. For example, Wang et al. (2022) found that direct and diffuse shortwave radiative
variables must be predicted by their surrogate model. This is not surprising given that in CAM, downstream surface models
require these variables. The minimal set used in our case study, listed in Table 1, includes a subset of all the diagnostic variables
the TPs produce, namely those required by the surrogate model or runtime diagnostics.

In developing our case study we found that ensuring that output requirements are met can be a time-consuming task. To
help users do this, Table 2 identifies several types of variables that are likely to be encountered along with their characteristics.
The first three denote quantities that are needed either by the physics modules downstream from the surrogate model, by other
climate system model components such as the land surface model, or by the dynamical core. Note that these types are not
mutually exclusive. We also note here that in principle, given appropriate training data, surrogate models could be developed
to predict diagnostic quantities beyond those produced by the TPs (#4 in Table 2)—for example, simulated satellite radiances,
palaeoclimate proxies, downscaled meteorological fields or even climate impacts. This important potential use case could allow
such quantities to be produced more rapidly and efficiently than by current methods of offline calculation (which can have large

storage requirements) or online simulators (which require effort to implement and affect GCM execution speed).
3.1 Alternate physics workflows

We recognize the potential of ML/AI to serve a range of modes of use. For example, users may wish to run an ML/AI surrogate

only at a certain time step or within a particular geographical region. It is also desired to be able to choose among multiple

Table 1. CAM history output variables used to learn the ML/AI model. The input variables contain CAM prognostic variables and atmo-
spheric boundary conditions, while the output dimension contains variables that are needed to comply with CAM’s interface downstream
from the point of insertion of the NN model. Variables that are marked by ’*’ are used for diagnostics and are not essential at run-time.
Variables prefixed with "PREC" and "F" denote components of precipitation and radiation, respectively. Further description of variables can
be found in CESM/CAM history fields documentation (Eaton, 2011).

Inputs Outputs
+(2), T(2), , V(z), OMEGA(z),

Proiles | 02" T U0: V(2. OMEGA®. | 57() 0Qu(2)
73(2) ot ot

FSNS, FLNS, FSNT*, FLNT", FSDS,
FLDS, SRFRAD, SOLL, SOLS,
SOLLD, SOLSD, PRECT”*, PRECC,
PRECL, PRECSC, PRECSL

PS, TS, SOLIN, SHFLX, LHFLX,
Scalars | LANDFRAC, OCEANFRAC, ICE-
FRAC

Table 2. Hints designed to help the user identify the minimal set of output variables that a surrogate model needs to predict and pipe back

into the GCM'’s workflow.

Locality and use Description Examples (see Table 1)

Local, after the point of in- | Variables required by the physical parametrization directly downstream from

sertion the point of insertion of the ML surrogate.

Non-local, required by other | Variables required by downstream GCM components such as land surface | SOLL, SOLS,
models models. SOLLD, SOLSD

Non-local required by the))) L)
3) Variables required by the prognostic equations in the dynamical core.
dynamical core

4 Non-local for user analysis Output variables that users might want but the GCM itself doesn’t need. FLNT
s Local required by the surro- | Variables that are used to track or constrain the surrogate model (potentially PRECT
gate model redundant variables).

240 physics parametrizations that point to different surrogate model combinations. Alternatively, it may be desired to run multiple
models side-by-side or as a replacement for different physics parameterizations. This functionality could also be used to
diagnose instabilities in the surrogate model or do online corrections (e.g. Rasp, 2020), for example, by comparing the outputs
from the surrogate model with the TP. The reference implementation supports this need by placing a mode selector before
the call to the physics parametrization (Fig. 3). An advantage of this approach is that it offers users a way to extend CAM

245 with new capabilities without removing existing ones. The reference implementation still offers the original parametrization of
CAM, alongside an ML/AI mode that runs combined moist and radiative parametrizations as an ML/AI surrogate, and a dual
mode that runs both of these side by side. Our implementation allows the user to achieve that out-of-the-box (without directly
changing CESM/CAM code base).

10

250

255

260

CAM physics entry point

CAM physics exit point

Figure 3. A sketch of the mode selector, which allows the reference implementation to add new models of CAM physics alongside the
original parametrization. The mode selector is placed before the entry point to CAM’s physics parametrization, allowing the selector to
choose the workflow for a given spatial and temporal location and use case. The selector facilitates fast turnover to extend CAM with

additional physics workflows without compromising other workflows.

3.2 Assisting the learning phase

So far we assumed that an ML surrogate is available, without addressing where the data that would be used to learn it would
come from. A good starting point for training a surrogate model is simply to use the TP of the host GCM itself. In the reference
implementation, this is the combined effect of the moist-physics and radiation parametrizations of CAM. This approach has
the benefit that it allowed us to benchmark a surrogate model both computationally and scientifically against an ideal synthetic
dataset. It can also serve as a starting point for further training from other datasets that have missing or insufficient data, as is
frequently the case with climate data. User could mitigate learning biases in this using the TP as a starting point in different
ways, for example, by using an ensemble of TPs, potentially from different GCMs, or increasing the learning rate when training
with subsequent data sources. To this end, the reference implementation of TorchClim is shipped with the export_state Fortran
module. The user is provided with two subroutines: the first is inserted in the TP before the location where the surrogate model
is to be called, while the second is inserted after that point. These produce a dataset of inputs and labels required for supervised
learning. For example, our reference implementation replaces the parametrizations of moist physics and radiation, so these
subroutines are placed in the TP before and after these parameterizations (Fig. 4). These add additional history variables to
CAM’s output, recording state and accumulated tendencies before and after the desired section of TPs. This functionality could

also be used to study instabilities during online runs of the GCM with the surrogate model. In our reference implementation,

11

265

State Tend.
Sll lltll

5 Record initial

E "S" and |lt|l

E S - B B B B B . ﬁ

o .

= Moist processes

© +

©

Q radiation

0

©

g _— -_— -_— -_— -_— -_— -_— -_—)

o) Record
changes d"t"

\4

State Tend.
Sll lltll

Figure 4. The process of producing inputs and labels for supervised learning from the TP parametrization. Here we exemplify it using the
TP of moist and radiative parametrization in CAM. The export_state module allows the user to take snapshots of CAM’s physics state and

tendencies before and tendencies after these TPs. These are saved to CAM’s history files and subsequently used to train a baseline DNN (e.g.

for our reference implementation).

this can be done by extracting samples before and after the call to the surrogate model and tracking offline the locations where

the surrogate model diverges from the TP.

12

270

275

280

285

290

295

4 Evaluation

We now evaluate the end-to-end process of outputting training data from the TP (described in Section 3.2), training a DNN
offline, and then deploying this DNN as a surrogate inside CAM using TorchClim. In this case, success is evaluated on the
computational performance and accuracy of the hybrid model relative to the original CAM, whose physics the DNN is emulat-
ing.

Since our reference implementation allows traditional and hybrid model versions to coexist under the same code base, it was
used to produce the training dataset. We generated a ten-year run with this version of CAM using monthly AMIP SSTs (from
1979 to 1989). This run was configured to call the radiative parametrization at every model time step rather than hourly as in
the original configuration. Likewise, it produced history outputs at every physical time step, allowing the training data to be
composed of adjacent time steps for the inputs and outputs of the DNN. History variables were written for the state before and
after the insertion point in CAM’s physics parametrization using the framework described in Section 3.2.

The first nine years of this dataset were used for training and validation, and the last was used for testing. Training and
validation samples were drawn uniformly over space and time while testing data was sampled over time, using the entire spatial
grid at a sampled time-step. The training and validation sample size is proportional to the size of the time-space dimensions and
matches size = [365 * years * longitudes x latitudes] or 365 * 9 x 144 % 96 = 4.57 instances. This dataset was also randomly

divided into 90% training and 10% validation datasets.
4.1 DNN surrogate model description

The DNN model for our case study was trained offline via PyTorch’s Python interface. The input and output variables that the
DNN used were discussed in Section refsec:cam and shown in Table 1. These are composed of scalars such as radiative fluxes
and vertical model level profiles (26 levels in this version of CAM).

The DNN is composed of seven fully connected layers. Each layer (except the last) is followed by a batch normalization,
dropout, and a linear rectifier. We use zero-mean / one-standard-deviation normalization per feature before the first layer, i.e.,
separately normalizing each model level (z) globally for each 3-D input variable, such as water vapor and each 2-D variable
(Table 1). Correspondingly, we use one-standard-deviation re-normalization after the last layer for re-scaling the output during
inference.

Eq. 1 defines the loss function used to be minimized. The mean squared error (MSE) on the normalized output variables is
the initial loss function to be minimized (L;5g). We also introduce additional terms in the loss function to address the biases
described below. We add L2 regularization with a weight of one on all parameters except the biases and batch norm (Lp2).
Several constraints on range, equality and conservation to prevent unphysical predictions are encoded as either parameterization
of the outputs in the DNN model or as additional regularization terms in the optimization objective. These are defined for the

three constraint groups discussed in Section 4.2 and Table 3. The loss trade-off coefficients .y are chosen experimentally.

Liotai = Lyse +araLlps+arLy+arr L+ oLy (D

13

300

305

310

315

320

Optimization is done using the Adam method (Kingma and Ba, 2014) with a learning rate of 1e-3. We train for 100 epochs,
with a large batch size of 24 x 96 x 144 atmospheric columns that are randomly selected in time and space from the original
ten-year dataset. We determined 100 epochs to be a good compromise between model accuracy and training time on a separate
validation set. Training beyond 100 epochs resulted only in marginal gains. Finally, we use linear warm-up for the first 10% of
epochs and cosine cool-down learning rate scheduler to zero.

During training, the validation data are used to monitor optimization progress and perform early stopping if necessary.

In practice, we tested dozens of versions of the DNN with various bug fixes and tweaks. This was made easy by the Torch-

Clim interface, which enables newly trained DNN to be dropped in with no recompile of CAM required.
4.2 Constraining the target solution

Past studies and our own efforts have found that to obtain good performance it is necessary to apply physical constraints to ML
surrogates to prohibit nonphysical predictions (Beucler et al., 2021; Brenowitz et al., 2020; Mooers et al., 2021; Karniadakis
et al., 2021). In training the model for our reference implementation, we found a set of rules that helped constrain the target
solution. Here, we propose a classification of such constraints into three types according to the nature of the applied constraint
(Table 3).

Table 3. Classification of constraints of the solutions’ space.

Type Name CAM Relations Implementation
PRECT,PRECC,PRECL >0 output param.
FSDS,SOLL,SOLS,SOLLD,SOLSD >0 max(z,0)

SOLL+ SOLS+ SOLLD + SOLSD = FSDS | residual reg.
PRECC+ PRECL = PRECT |wjg — >0 @i

Type III | Soft constraints penalize %—? when RH(Q,---) > 0.60 grad. reg. |1[h(x;) > f]

Type I Range constraints

Type I | Redundancy constraints

31722) |

The variables = will usually be outputs of the surrogate but could also be inputs. Type I constraints stem from the fact that
physical variables may be bounded in some way either by definition, a static threshold, or by another variable. For example,
precipitation rate and shortwave radiation flux cannot be negative. Likewise, no component of shortwave radiation can exceed
the incoming solar flux (given that plane-parallel radiation is assumed in CAM). The constraint, in this case, limits these
variables to the space of solutions {z|z € R,z >= 0} and {z|z € R,z >= SOLIN}, where SOLIN is solar insulation variable
in CAM. We have found that ML approaches struggle to consistently obey this type of constraint to the required accuracy,
especially since even small violations are unphysical and can cause problems elsewhere in the model, hence we enforce the
positivity constraint by applying the rectifier function to the output variables: max(x,0). This is a type of inductive biasing
(Karniadakis et al., 2021). Type II or "redundancy" constraints formalize a relation among variables, which generally means
that the target solution exists on a manifold inside the unconstrained set of target solutions, i.e., there is physical redundancy

in the output variables. For example, the sum of direct and diffuse shortwave radiation at the surface must be equal to the total

14

325

330

335

340

345

350

355

radiation at the surface. Type II constraints, therefore, take the form z; = >_"_, x; where z; is a surrogate output that consists
of n components x; also represented by other surrogate outputs. To improve overall model learning, we incorporate these
physically-dictated constraints by converting them to a residual loss term in the objective: ||z; — >, z;||> such that when the
constraint is satisfied the residual will be zero. Note that such constraints could also be nonlinear. Type III or "soft" constraints
penalise solutions that disobey a desired physical property expressed via functions of the output variables. For example, we
expect that the sum of all tendencies of water vapor in a column will balance those of condensed water plus precipitation,
but this relationship may not be exact due to small terms in the conservation equation (such as storage of condensed water)
that are not known or available. Type III constraints are examples of learning biasing following Karniadakis et al. (2021). As
listed in Table 3, we implement a soft constraint that penalizes increasing moistening tendencies when relative humidity is

%ﬂ;) |. This term will penalize positive slopes,

above a specified threshold with gradient regularization term |1[h(x;) >]
i.e., gradients of the output variable x; with respect to input variable z;, but only when h(z;) > 3. In this example, x; is the
moistening tendency, x; is the input humidity, and A () is the relative humidity function.

Naively, these constraints could just be applied at runtime in the GCM’s integration. For example, one might truncate a
precipitation variable to be non-negative at runtime. Adding these constraints to the learning stage, however, can assist in
learning the joint solution rather than correcting a single variable. For example, if the learning process had predicted negative
precipitation, this may imply non-physical predictions of other variables that are empirically related to precipitation even if
no other constraints are violated. To ameliorate this issue, we bring Type I-III constraints into the learning stage, presenting
them as additional terms in the loss function. Type I constraints are also applied at run-time since learning does not completely

eliminate violations and even small type-I violations (for example negative solar fluxes) can crash the land model.
4.3 The skill of the hybrid CAM-ML model

We evaluate the hybrid CAM-ML model by comparing it with standard CAM, whose physics the surrogate emulates. We
do not perform an extensive skill evaluation since our main objective is to test the plugin rather than the skill of the NN
physics emulator, which can easily be changed. Here we present results from a hybrid CAM-ML run that starts from the
same starting point that was used for extract the training data. That is the CESM AMIP scenario for CAM4 with default
configuration parameters. The hybrid CAM-ML model was able to run for six months before exhibiting numerical instabilities.
These instabilities appear to be brought on by stratospheric drift, which we have not yet attempted to correct. Here we present
results for the fifth month into the run, before the instabilities became apparent. During this month the hybrid model produces
zonal-mean moisture and temperature tendencies that closely resemble those of the original model (Fig. 5). The ITCZ is
slightly too narrow and there is a double-ITCZ bias in the hybrid model and too much heating near the tropopause, but the
differences overall appear modest. The hybrid model also shows similar temporal variations of tropical variability and waves
when comparing them to the original CAM model (Fig. 6). This is a stronger test of the surrogate model since the character of
tropical waves is sensitive to the behavior of moist physics (Majda and Khouider, 2002; Kelly et al., 2017). Note that the initial
behavior of the hybrid model matches that obtained with CAM parameterizations, diverging later as expected but retaining

a similar character. Despite spatiotemporal pattern similarities, the hybrid model exhibits larger relative humidity extremes

15

360

365

370

375

380

385

390

(Fig. 6). It is not clear why these extremes are permitted by the surrogate model, although earlier versions of the model that
lacked the RH-sensitivity regularization (Section 4.2) showed a more severe manifestation of the problem suggesting that
even with regularization the surrogate model is insufficiently quick to condense water above saturation compared to the CAM
physics. This is not too surprising as the parameterized physics is extremely nonlinear, and we have not explicitly coded the
Clausius-Clapeyron relation into the DNN, so it must learn the point at which condensation (rapidly) begins. Thus we expect
that better use of physics-informed architectures or other improvements would lead to further improvement in emulation skill.

Further insights into the behavior of the hybrid model are gained using the third mode of operation of TorchClim, where
the ML model is called alongside the original parametrization of CAM. Here we call the ML model and output its response,
without assimilating it into the CAM workflow. Figs. 7-8 compare specific humidity and temperature tendencies of the original
CAM parametrization to the ones from the ML model at various vertical levels, between 10° North and 10° South from the
equator. A perfect ML model would follow the 1:1 line. Both specific humidity and temperature tendencies exhibit a line
of best fit that is smaller than one. The ML model generally predicts smaller positive specific humidity tendencies (Fig. 7).
Interestingly, for both quantities, the lowest skill is found in the mid-troposphere between hybrid model levels 510 and 696.
In these levels, the ML model learns spurious features of specific humidity tendencies that do not exist in the original model.
These discrepancies appear at vertical levels where shallow convection is active and are in line with Mooers et al. (2021), who
found that their deterministic DNN had less skill in regions with fast stochastic convective activity. However, this issue could
also be attributed to the fact that cloud liquid and ice are not treated by the current surrogate DNN model.

Although these biases could be discovered offline during training, we found that the ability of TorchClim to run the original
and hybrid CAM models side-by-side enabled us to quickly diagnose errors in hybrid simulations, particularly where there

may not be analogs in the training dataset.
4.4 Computational performance

The evaluation of computing speed is undertaken on the normal queue of the Gadi infrastructure in the National Computational
Infrastructure (NCI), supported by the Australian Government. The normal queue nodes are based on 2 x 24-core Intel Xeon
Platinum 8274 (Cascade Lake) 3.2 GHz CPUs, with 192GB RAM, 2 CPU sockets, each with 2 NUMA nodes, and no hyper-
threading. Noticeably MPI ranks are bound to the core, with each MPI rank hosting an instance of the DNN model.

For the sake of comparison, both original and hybrid CAM configurations were run for a year with minimal monthly-mean
output variables so that a relatively large fraction of the overall CPU would be spent on computation. Each run used three
nodes on the normal queue (144 CPU cores) and 64GB RAM. This configuration matched the number of longitudes of our
AMIP scenario spatial discretization. The hybrid and standard configurations of the GCM required similar resources, unlike
previous implementations we know of, where the DNN implementation required significantly more compute resources than the
original model. The results of this experiment are detailed in Table 4. The hybrid model added 20 percent to the wall-time of
CAM, reducing its performance by 8 modeled years per wall-time d<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>