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Abstract.  

Although the quality of weather forecasts in the polar regions is improving, forecast skill there still lags the lower latitudes. So 25 

far there have been relatively few efforts to evaluate processes in Numerical Weather Prediction systems using in-situ and 

remote sensing datasets from meteorological observatories in the terrestrial Arctic and Antarctic, compared to the mid-

latitudes. Progress has been limited both by the heterogeneous nature of observatory and forecast data but also by limited 

availability of the parameters needed to perform process-oriented evaluation in multi-model forecast archives.  The YOPP site 

Model Inter-comparison Project (YOPPsiteMIP) is addressing this gap by producing Merged Observatory Data Files (MODFs) 30 

and Merged Model Data Files (MMDFs), bringing together observations and forecast data at polar meteorological 

observatories in a format designed to facilitate process-oriented evaluation.  

 

An evaluation of forecast performance was performed at seven Arctic sites, focussing on the first YOPP Special Observing 

Period in the Northern Hemisphere (SOP1), February and March 2018. It demonstrated that although the characteristics of 35 

forecast skill vary between the different sites and systems, an underestimation in boundary layer temperature variability across 

models, which goes hand in hand with an inability to capture cold extremes, is a common issue at several sites. Diagnostic 

analysis using surface fluxes suggests that this is at least partly related to insufficient thermal representation of the land-surface 

in the models, which all use a single layer snow model.  

1 Introduction 40 

Recent decades have seen a marked increase in human activity in the polar regions leading to an increasing societal demand 

for weather and environmental forecasts (Emmerson and Lahn, 2012; Goessling et al., 2016). Despite this growing need, the 

skill of weather forecasts in the polar regions lags that of the mid-latitudes (Jung et al., 2016; Bauer et al., 2016). This is partly 

the result of the relatively lower density of conventional observations in high compared to mid-latitudes (Lawrence et al., 

Deleted: nce45 



2 
 

2019), but is also related to the occurrence of meteorological situations and phenomena which are historically difficult to 

model such as stable boundary layers (e.g. Atlaskin and Vihma, 2012; Sandu et al., 2013; Holtslag et al., 2013), mixed-phase 

clouds (e.g. Pithan et al., 2014, 2016, Solomon et al., 2023), and the importance of coupling between the atmosphere and snow 

and ice surfaces (e.g. Day et al., 2020; Batrak and Muller, 2019; Svensson and Karlsson, 2011). 

 50 

The ability of climate models to represent atmospheric processes in polar regions has recently been assessed highlighting 

deficiencies in near-surface and boundary layer properties (Pithan et al., 2014; Svensson and Karlsson, 2011; Karlsson and 

Svensson, 2013). Since many climate models are based on global weather forecasting systems, understanding the causes of 

forecast error after 1-2 days may help develop understanding of the sources of error in climate models (Rodwell and Palmer, 

2007). Nevertheless, until recently there has been little focus on evaluating Numerical Weather Prediction (NWP) models 55 

using in-situ data from the terrestrial Arctic and Antarctic (Jung and Matsueda, 2016; Jung et al., 2016).  

 

Recent studies, conducted as part of the World Weather Research Programme’s Polar Prediction Project (PPP, Jung et al, 

2016) have started to address this gap, assessing the skill of both the large scale circulation (Bauer et al., 2016) and surface 

weather properties (Køltzow et al., 2019). The Year of Polar Prediction (YOPP) site Model Intercomparison Project 60 

(YOPPsiteMIP) was designed to build on these earlier studies by utilising process level data from polar observatories to 

diagnose the causes of forecast error from a process perspective and ultimately inform model development. Although process-

oriented evaluation studies focussing on polar processes are not new, those that have been done have tended to focus on one 

or two sites or a specific field campaign (see Day et al., 2020; Batrak and Müller, 2019; Miller et al., 2018; Tjernström et al., 

2021, Kähnert et al., 2023 for some recent examples). A key aim of YOPPsiteMIP is to provide a pan-Polar perspective on 65 

forecast evaluation and process representation.   

 

YOPPsiteMIP participants were asked to provide data in so-called Merged Data Files (MDFs) which includes both Merged 

Observatory Data Files (MODFs), for observatory data, and Merged Model Data Files (MMDFs), for model data. These data 

standards, which were developed specifically for YOPPsiteMIP, are described by Uttal et al. (2023). Using this common file 70 

format, with consistent naming and metadata, facilitates equitable and efficient comparisons between models and observations. 

This standardisation of the data from different observatories also aids interoperability in the sense that the same evaluation 

code can be applied at different sites. These MDF filetypes were developed as part of PPP, following the FAIR (Findable, 

Accessible, Interoperable, Reusable) data principles (Wilkinson, 2016). Details of the MDF concept and specifics of the data 

processing chain for producing MDFs are described in Uttal et al. (2023). 75 

 

The observatories selected for YOPPsiteMIP represent a geographically diverse set of locations (see Mariani et al. 2024). At 

these sites a wide range of instruments measuring properties of the air, snow and soil are employed, extending far beyond the 

traditional synoptic surface and upper-air observation network, which are collected for use in the production and evaluation of 

NWP systems (Uttal et al., 2015). Taken together, the observations collected at these observatories offer opportunities to 80 

develop a deeper understanding of the physical processes governing the weather in the polar regions, their representation in 

forecast models, and how this varies from site to site. The processes and phenomena targeted in YOPPsiteMIP include 

boundary-layer turbulence, surface exchange (including over snow and ice) and mixed-phase clouds.  

 

A benefit of organizing coordinated evaluation involving several NWP systems and multiple sites is that it helps clarify if the 85 

issues revealed by the analysis are model or location specific. The modelling community has organized model inter-

comparisons to target various atmospheric processes relevant for Arctic conditions (e.g. Cuxart et al., 2006; Pithan et al., 2016; 

Tjernström et al 2005, Sedlar et al. 2020, Solomon et al., 2023) each using its own protocol for data sharing. However, the 
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newly developed standardisation of the observational and forecast model data developed for YOPPsiteMIP is planned to be 

used for future MIIPs (model intercomparison and improvement projects). Converging on a standard like this will aid 

interoperability, making it easier for model developers to expand their evaluation to new sites or observational campaigns, but 

also to other models or forecasting systems.  95 

 

MDFs were requested for the locations listed in Table 1 and shown in Figure 1 during the YOPP Special Observing Periods, 

during which the observations taken at many polar observatories (e.g. the frequency of radiosondes) was enhanced (see 

Lawrence et al., 2019; Bromwich et al., 2020). For the Northern Hemisphere the periods Feb–Mar 2018 and Jul–Sep 2018 

were selected and named NH-SOP1 and SOP2 respectively. For the Southern Hemisphere or SH-SOP the period Nov–Feb 100 

2018/19 was chosen. At the time of publication MMDFs have been produced and archived from seven NWP systems for these 

periods and all of the sites listed have MMDFs from at least one model. MODFs have been produced and archived for seven 

of the sites so far and it is hoped that additional MODFs will be produced in the future to fill the gaps, particularly in the 

Southern Hemisphere.  

 105 

Observatory name 

Filename 

Latitude Longitude Elevation 

Arctic land sites 

Utqiaġvik (Formerly known as 

Barrow, Alaska) 

Utqiaġvik 

71.32°N, 156.62°W 8-20 m 

Oliktok Point (Alaska) 

oliktok 

70.50°N 149.89°W  2-6 m 

Whitehorse (Canada) 

whitehorse 

60.71°N, 135.07°W  682 m 

Eureka (Canada) 

eureka 

80.08°N 86.42°W  0-610 m 

Iqaluit (Canada) 

iqaluit 

63.74°N, 68.51°W 5-11 m 

Alert (Canada) 

alert 

82.49°N, 62.51°W  8-210 m 

Summit (Greenland) 

summit 

72.58°N, 38.48°W 3210-3250 m 

Ny-Ålesund (Svalbard) 

(Zeppelin station)  

nyalesund  

78.92°N, 11.53°E   

(78.9°N, 11.88°E) 

0-30 m  

(473 m) 

 

Sodankylä (Finland) 

Sodankylä 

67.37°N, 26.63°E 

 

198 m  

 

Pallas (Finland) 

pallas 

67.97°N, 24.12°E 305 m 
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Tiksi (Russia) 

tiksi 

71.60°N, 128.89°E  1-30 m 

Cherskii (Russia) 

cherskii 

68.73°N, 161.38°E 

(68.51°N, 161.53°E)  

8 m 

(16 m) 

Ice Base Cape Baranova 

(Russia) 

baranova 

79.3°N, 101.7°E 24 m 

Arctic Ocean sites 

SHEBA location 

sheba 
165°W, 76°N Sea level 

Arctic Ocean 1 (Gakkel 

Ridge)  

ao1 

10°E, 85°N Sea level 

Arctic Ocean 2 (North Pole) 

ao2 
0°E, 90°N Sea level 

Arctic Ocean 3 (Canada 

Basin)  

ao3 

135°W, 81°N Sea level 

 

Antarctic land sites 

Alexander Tall Tower 

alexander 

79.01°S, 170.72°E 55 m 

Casey 

casey 

66.28°S, 110.53°E 30 m 

Davis 

davis 

68.58°S, 77.97°E  

Dome C 

domec 

75.08°S, 123.34°E 3233 m 

Dumont d’Urville 

dumont 

66.66°S, 140.01°E 0-50 m 

Halley IV 

halley 

75.58°S, 26.66° W 130 m 

King Sejong (King George 

Island) 

kingsejong 

 

62.22°S, 58.79° W 

10 m 
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Georg von Neumayer 

neumayer 

70.65°S, 8.25°W 42 m 

Mawson 

mawson 

67.60°S, 62.87°E 15 m 

Syowa (Showa) 

syowa 

69.00°S, 39.59°E 18-29 m 

Jang Bogo (Terra Nova Bay) 

jangbogo 

74.62°S, 164.23°E  

 

36 m 

Amundsen-Scott South Pole 

southpole 

90°S, 0°E 2835 m 

Byrd 

byrd 

80.01°S, 119.44°W 1539 m 

Rothera 

rothera 

67.57°S, 68.13° W 4 m 

Vostok 

vostok 

78.46°S, 106.84°E 3489 m 

McMurdo  

(Scott base) 

mcmurdo 

77.85°S, 166.67°E 

(77.85°S, 166.76°E) 

10 m 

(10 m) 

Troll 

troll 

72.01°S, 2.54°E 1275 m 

 

Table 1: List of YOPPsiteMIP observatory locations: name, name as used in filenames, latitude, longitude and elevation. 

Where an elevation range is stated, this is because the instruments at a given observatory extend over a range of values due to 

variations in local topography.  

 110 
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Figure 1: Maps of the ERA5 2m-temperature climatology (1990-2019) for February-March (time of NH-SOP1) for Arctic (left) and 115 
for November-February (SH-SOP) for Antarctic (right). The observatories used in YOPPsiteMIP are marked with stars. White 
stars indicate the sites where MODFs are currently available, which are the subject of this study; black stars indicate the sites whose 
MODFs are not yet complete. The orange and green boxes depict the extent of the ECCC-CAPS and AROME-Arctic domains 
respectively.       

The purpose of this paper is two-fold: firstly, to document the first version of the YOPPsiteMIP dataset along with a basic 120 

description of the forecasting systems and their respective MMDFs that are archived at the YOPP Data Portal, hosted by the 

Norwegian Meteorological Institute (MET Norway). Secondly, the paper presents a multi-site evaluation of seven forecasting 

systems during NH-SOP1, at seven Arctic observatories that have produced MODFs. The locations are indicated by the white 

stars in Figure 1a and the MODFs and full details of the sites are described in Mariani et al., (2024).  

 125 

The seven Arctic sites used for evaluation in this study cover both high and sub-Arctic climate zones. Tiksi, Utqiaġvik, Iqaluit, 

Ny-Ålesund and Eureka all sit in the Arctic tundra characterised by low vegetation. The remaining two sites Whitehorse and 

Sodankylä are sub-Arctic, with higher vegetation corresponding to the boreal cordillera and taiga ecozones respectively. 

Whitehorse, Iqaluit, Ny-Ålesund and Eureka are characterised by complex topography in the surrounding area, whereas the 

other sites are flatter. All the sites are in close vicinity to either frozen ocean (sea ice) or frozen inland water bodies at this time 130 

of year and the land surrounding each observatory is covered in snow throughout the period Feb-Mar 2018. A visual 

representation of the model grids with respect to the landscape surrounding these stations can be seen in Fig 2 of Mariani et 

al., (2024) in which a more detailed description of the site characteristics may be found.  

2 Description of simulations, model formulation and output protocol 

To date, six NWP centres have submitted forecasts from seven forecasting systems for SOP1 & SOP2, with two systems 135 

submitted for the SH-SOP (see Table 2).  Four of the systems are global:  

● The Integrated Forecasting System from the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS; 

Day et al., 2023),  

● The Action de Recherche Petite Echelle Grande Echelle from Meteo France (ARPEGE-MF ; Bazile and Azouz, 

2023a),  140 

● The Semi-Lagrangian, based on the absolute vorticity equation from the Hydrometeorological Research Centre of 

Russia (SLAV-RHMC, Tolstykh, 2023) and, 

● The Icosahedral Nonhydrostatic Model from Deutscher Wetterdienst (DWD-ICON; Frank, 2023).  

Three are regional:  

● The Canadian Arctic Prediction System from Environment and Climate Change Canada (ECCC-CAPS; Casati, 2023)  145 
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● and two versions of Applications of Research to Operations at Mesoscale (AROME) from Meteo France (AROME-

MF; Bazile and Azouz, 2023b) and from MET Norway (AROME-Arctic; Remes, 2023).  150 

The domain boundaries of the regional forecasting systems can be seen in Figure 1 (note that only two of the observatories are 

within the AROME domain). The forecasts analysed here were initialised at 00 UTC for each day of the SOPs (although 

12UTC forecasts are also available on the archive for many of the systems). The forecast leadtime varies between the different 

systems but all forecasts are at least two days long (see Table 2 and Figs 2 & 3).  

 155 

The files for some of the systems (CAPS, SLAV, ARPEGE, AROME-MF) are provided with multiple grid-points, centred on 

the observatory location. For others only a single grid-point was provided. Multiple grid-points centred around the observatory 

location were requested because many of the observatories are located in the vicinity of  coasts, which leads to 

representativeness issues when comparing the land-based observation to model output for grid-points being partially or entirely 

over the ocean. In this study when there are multiple grid points we choose the closest 100% land point to the supersite location, 160 

with the exception of CAPS, for which the central grid-point within a beam of 7x7 grid-points was considered (since nearest 

to the observation site) and ICON which provided the single closest gridpoint to the station locaton. As a result, the evaluation 

utilises a 100% land gridbox at all models and locations, with the exception of ICON, which has 23% land cover at the 

Utqiaġvik and 73% at Ny-Ålesund, and CAPS, which has 37% land cover in Utqiagvik, 71% and 77% in Tiksi and Iqaluit, 

and over 90% land cover for the other sites. Comparison of the CAPS grid-points surrounding Utqiagvik with each other 165 

indicated that the evaluation would not be much influenced by the choice of gridcell (not shown) since during the Arctic winter 

the frozen ocean gridpoints have similar propreties to the snow-covered land surface (e.g. when analysing the surface energy 

budget sensitivity to radiative forcing in Section 3.4). The grid resolutions range from 2.5 km to ~30 km and the model timestep 

varies from 1.5 to 7.5 min (see Table 2).  

 170 

The models have quite a diverse mixture of formulations for atmospheric dynamics, land surface, sub-grid scale 

parameterisations and initialisation/data assimilation procedures. More details about the simulations with specific models are 

provided below and a summary of the key model components/parameterisations used in each model is included in Table 3.  

 

2.1 IFS-ECMWF 175 

MMDFs for the operational forecasts with the IFS high resolution deterministic forecasts are available for the period starting 

Jan 2018. The initial forecasts are produced with IFS cycle 43r3 which was an atmosphere only model with persisted sea ice 

and anomaly SSTs. From 5 June 2018 (i.e. before SOP2) the forecasts were produced with cycle 45r1 which included dynamic 

sea ice and ocean fields (see Day et al., 2022 for more information). Although the model version changes the horizontal (~9km) 

and vertical resolution (L137) are the same in all SOPs. The data archived in the MMDFs is provided at the model timestep 180 

(7.5 min) for a single model grid point closest to the observatory. In addition to the grid point data a number of parameters 

(including albedo, surface temperature and surface energy fluxes) are provided on the land-surface model tiles to enable 

detailed evaluation of processes even at heterogeneous sites. A complete description for the two versions of the IFS can be 

found here: https://www.ecmwf.int/en/publications/ifs-documentation.    

  185 

2.2 ARPEGE-MF  

The version of ARPEGE submitted to YOPPsiteMIP was a pre-operational version based on the cy43t2_op1 operational 

system but coupled with the 1D sea-ice model GELATO (Bazile et al. 2020). The resolution of the model used for these 

simulations is the same as is used operationally at Meteo France which is variable (using a stretching factor of 2.2) with the 

pole (highest resolution of 7.5 km) over France for SOP1 and SOP2 and over Antarctica in SOP-SH and 105 vertical levels. 190 

The horizontal resolution is about 8-9 km over the North-Pole and timeseries have been provided for the three SOPs in the 
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MMDF format for the 21 YOPP observatories with an hourly output for both state variables (instantaneous) and fluxes 

(accumulated). 215 

 

2.3 SLAV-HMRC 

MMDFs were produced by the SLAV model (Tolstykh et al., 2018) for both SOP1 and SOP2 containing 7-day forecasts 

starting at 00 UTC. The output is available for 4 horizontal grid points surrounding selected observatories, every 15 minutes 

(i.e. every fourth timestep). Depending on variable, the output is instantaneous or a 15-min averaged value. Data for 13 of the 220 

Arctic observatories in Table 1 are provided. Selection of observatories is based on model resolution in latitude which is 

relatively low, ~16 km in Northern polar areas; also, the ao2 point is not included because the model grid does not contain the 

poles.  

 

2.4 ICON-DWD 225 

MMDFs from DWD’s ICON (Zängl et al., 2015) are available from February 2018 to June 2020 containing 7.5-day forecasts 

starting at 00 and 12 UTC for Sodankylä, Ny-Ålesund, and Utqiaġvik (Barrow). The mesh width is 13 km. Different model 

versions are used during this period.  In February icon-nwp-2.1.02 was used followed by icon-2.3.0-nwp0 during 2018-02-14 

to 2018-06-06, and from 2018-09-19 to 2018-12-05 icon-2.3.0-nwp2 was in operation. Since 2018-02-14, a new orographic 

data set came in operations, however, for the 3 data points provided the changes were less than 1 m in height. The sea ice 230 

analysis used in ICON, was based on the Real-Time Global SST High Resolution Analysis of NCEP until 2018-07-16. Since 

then it is based on the Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA; Donlon et al., 2012). To represent 

variations of subgrid scale surface characteristics ICON uses a tile approach. Since 2018-07-16 the tile values of surface fluxes, 

and other tile dependent variables are included in the MMDFs in addition to the grid average values. Hourly output is available 

based on a timestep of 120s. 235 

 

2.5 CAPS-ECCC 

MMDFs for ECCC-CAPS are available for the whole period from February 2018 to December 2018. Prior to the 28th of June 

2018 CAPS was uncoupled and run with the GEM version 4.9.2. After the 29th of June 2018 CAPS was coupled with the 

Regional Ice and Ocean Prediction system (RIOPS) and run with the GEM version 4.9.4. Atmospheric Lateral Boundary 240 

Conditions (LBCs) and initial conditions (ICs) are from ECCC Global Deterministic Prediction System (GDPS). Initial surface 

fields are from the Canadian Land Data Assimilation System (CaLDAS). The CAPS timeseries are produced for a beam of 7 

x 7 grid-points centred on each of the twelve land-based Arctic observatories listed in Table 1. Timeseries up to 48 hours 

leadtime are made available for the daily runs initialized at 00 UTC. The data is archived with a time frequency of 7.5 min, 

equivalent to five timesteps of 90 s each.  245 

 

2.6 AROME-ARCTIC 

MET Norway utilises the HARMONIE-AROME (HIRLAM–ALADIN Research on Mesoscale Operational NWP in 

Euromed–Application of Research to Operations at Mesoscale) model configuration (Bengtsson et al., 2017) for operational 

weather forecasting for the European Arctic with the name AROME-Arctic (Muller et al., 2017). AROME-Arctic MMDFs are 250 

based on the operational forecasts (cy40h.1) and are available for the SOP1 and SOP2 at Sodankylä and Ny-Ålesund. LBCs 

are derived from the ECMWF IFS-HRES described in Section 2.1. Assimilation of conventional and satellite observation with 

3DVAR in the upper atmosphere, optimal interpolation of snow depth, screen level temperature and relative humidity in the 

surface model. Temperature tolerance in the surface assimilation scheme was increased on 15 March 2018 to better assimilate 

observed low temperatures. The data archived in the MMDFs are provided hourly for the single model grid-point closest to 255 

the site. Model data for the full domain in its original format are also available via thredds.met.no.  
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2.7 AROME-MF 260 

The AROME -MF system from Météo-France and AROME-ARCTIC from MET Norway are both configurations of the same 

model system but use different parameterizations of turbulence, shallow convection, cloud microphysics and sea ice. The 

system used for the YOPPsiteMIP differs from the operational AROME-France configuration (Seity et al., 2011) and the 

version evaluated for SOP1 in Køltzow et al., (2019) in that it is coupled with the GELATO 1D sea ice model. However, the 

domain (see Figure 1a), horizontal and vertical grid are exactly the same as the AROME-ARCTIC operational system (see 265 

Section 2.6). The ICs and LBCs are interpolated from the global model ARPEGE-MF simulation descried above (Section 2.2). 

The MMDF files have been produced for Ny-Ålesund, Sodankylä and Pallas with hourly output.  

 
2.8 Output format 

For each forecast initial time and each forecasting system a single netCDF file containing all variables was archived following 270 

the MMDF format, which use the same nomenclature, metadata, and structure as the MODFs. In order to be able to assess 

process representation, the YOPPsiteMIP protocol requested that atmospheric fields were provided on native model vertical 

levels and all fields should be provided with high frequency (every 5 or 15 minutes), ideally at the frequency of the model 

timestep if practical to support detailed process investigations without the confounding effect of time averaging.  

 275 

The actual variables archived, frequency and number of grid-points, vary from model to model. For example, ECCC provided 

a comprehensive set of parameters for the CAPS model focusing on precipitation and clouds microphysics to allow studies on 

the representation of different types of hydrometeors by the P3 scheme (Morrison and Milbrandt, 2015; Morrison et al., 2015; 

Milbrandt and Morrison, 2016). A full list of requested variables, along with a schema for producing the MDFs are described 

in a document known as the H-K Table (Hartten and Khalsa, 2022). The table is available in both human and machine-readable 280 

form (PDF and JSON, respectively). The H-K Table relies on standards and conventions commonly used in the earth sciences, 

including netCDF encoding with CF naming and formatting conventions and is an evolving document that is expected to 

evolve to fulfil the requirements of future MMDFs and MODFs. The prescribed metadata make data provenance clear and 

encourage proper attribution of data origin (see further information in Uttal et al., 2023).  

 285 

Although we only focus on model performance during SOP1, a full set of MMDFs and MODFs was produced for both SOPs. 

The MODFs for Iqaluit (Huang et al., 2023a), Whitehorse (Huang et al., 2023b), Utqiaġvik (formerly known as Barrow: Akish 

and Morris, 2023c), Eureka (Akish and Morris, 2023a), Tiksi (Akish and Morris, 2023b), Ny-Ålesund (Holt, 2023) and 

Sodankylä (O’Conner 2023) are described in detail in Mariani et al., (2024) along with descriptions of the site geography. 

MMDFs have also been produced for the SH-SOP with the ECMWF-IFS and ARPEGE models (See Table 2), but no MODFs 290 

for the Antarctic observatories have been produced yet.  

  

 

 

Centre  Model-
name  

Global/Regional 
and 
horizontal/vertical 
resolution 

Dynamics 
timestep/output 
frequency/foreca
st length 

Version 

 

Key Reference(s)  SOPs in YOPP 
portal  
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ECMWF  IFS  Global: 
9km/L137  

7.5min/7.5min/3
d 

Cy43r3 for SOP1, 
Cy45r1 for SOP2 
& SOP-SH 

 Buizza et al., 
(2017) 

SOP1, SOP2 & 
SOP-SH  

Meteo-
France  

ARPEGE-
MF 

Global: 7.5-
25km/L105 

240s/60min/4d cy43t2_op2  Pailleux et al. 
(2014) 

SOP1, SOP2 & 
SOP-SH 

Meteo-
France 

AROME-
Arctic  

Regional: 
2.5km/L65 

50s/60min/2d cy43t2_op2 Seity et al., (2011) SOP1 & SOP2  

ECCC   CAPS Regional: 
3km/L62 

 

1.5min/7.5min/2
d 

vn1.0.0 for SOP1 
& vn1.1.0 for 
SOP2  

Milbrandt et al., 
(2016) 

Casati, et al., 
(2023) 

SOP1 & SOP2  

DWD   ICON Global: 
~13km/L90 

2min/60min/7.5 
d 

icon-nwp-2.1.02, 
icon-2.20-nwp0, 
icon-2.30-nwp0, 
icon-2.30.nwp2 

Zängl et al., 
(2015) 

Prill et al., (2020) 

SOP1 & SOP2  

HMCR  SLAV Global: 
~20km/L51 

3.75min/15min/
3d 

SLAV20 (2018) Tolstykh et al., 
(2018) 

Tolstykh et al., 
(2017) 

SOP1 & SOP2 

MET 
Norway  

AROME-
Arctic  

Regional: 
2.5km/L65  

50s/60/2d HARMONIE-
AROME cy40h 

Müller et al. 
(2017) 

Bengtsson et al., 
(2017) 

SOP1 & SOP2  

 Table 2. Summary of forecasting systems 

Deleted: GELATO

https://www.zotero.org/google-docs/?Q6no0p
https://www.zotero.org/google-docs/?Q6no0p


11 
 

 305 

Model-name  Land-surface 
model 

Surface 
layer/Fluxes 

Turbulent diffusion Orographic drag Convection Cloud microphysics Radiation Dynamical core 

IFS HTESSEL: 
Balsamo et al., 
(2009) 

K-diffusion with 
stability functions of  
Dyer (1974) and 
Högström (1988) 
and Holtslag and De 
Bruin (1988) in 
unstable conditions 
and for stable 
conditions 
 

EDMF Köhler et al., 
(2011) in unstable 
conditions and K-
diffusion (Louis, 
1979; Sandu et al., 
2013) in stable 
conditions  

Following Lott and Miller 

(1997) and Baines and 

Palmer (1990) 

mass-flux for deep, shallow and 

mid-level convection: 

Tiedtke (1993) and Bechtold et 

al. (2008) 

double moment scheme with 

four categories of 

hydrometeor  

Forbes and Ahlgrimm (2014) 

EcRad 

(Hogan and Bozzo, 2018) 

Is based on the Rapid 

Radiation Transfer Model 

(RRTM, Mlawer et al., 

1997; Iacono et al., 2008) 

Spectral/FE/H 

ARPEGE  SURFEX: 
Masson et al., 
(2013) 

K-diffusion with 

modified version of 

Louis (1979) 

TKE:  
Cuxart et al., (2000) 
with a modified 
mixing length 
(Bazile et 2011) 

Scheme described in Catry 

et al., (2008) following Lott 

and Miller (1997) for 

gravity wave drag, and an 

envelope orography 

approach (after Wallace et 

al., 1983) 

Mass flux for deep convection 

following Bougeault (1985) and  

mass flux  for shallow 

convection following Bechtold 

et al., (2001)  

Single moment with five 

categories of hydrometeor 

(Seity et al., 2012) 

 

RRTM  Spectral/FE/H 

AROME-MF  SURFEX: 
Masson et al., 
(2013) 

K-diffusion with 
stability function of 
Louis (1979) 

TKE:  
Cuxart et al., (2000) 
 

N/A Deep convection is explicitly 

represented and  

shallow uses the Pergaud et al. 

(2009) EDMF scheme.  

Single moment with six 

categories of hydrometeor 

(ICE3; Pinty and Jabouille 

1998) 

RRTM 

 

Spectral/FD/NH 

 CAPS ISBA: 

Noilhan and 

Planton (1989) 

and  

Bélair et al. 

(2003) 

K-diffusion with 
stability functions of  
Delage and Girard 
(1992) in unstable 
conditions and 
Delage (1997) in 
stable conditions. 

TKE with statistical 

representation of 

subgrid-scale 

cloudiness 

(MoisTKE: Bélair et 

al. (2005)) 

Lott and Miller (1997) Deep convection from the Kain 

and Fritsch (1990) mass flux 

scheme and shallow convection 

from a Kuo-transient scheme 

(Bélair et al., 2005) 

Double moment with 

Predicted Particle Properties 

(P3; Morrison and Milbrandt, 

2015; Morrison et al, 2015; 

Milbrandt and Morrison, 

2016) 

Correlated-k distribution 

radiative transfer scheme 

(Li and Barker, 2005) 

Gridpoint/FE 

(horizontal)&FD(vertical)/N

H 

(Coté et al, 1998a,b; Girard et 

al, 2014) 
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 ICON TERRA:  

Heise et al., 

(2006) 

transfer-resistances 

approach: Baldauf et 

al., (2011) 

TKE  

Baldauf et al., (2011) 

and Raschendorfer 

(2001) 

Lott and Miller (1997) mass-flux for deep, shallow and 

mid-level convection: 

Tiedtke (1993) and Bechtold et 

al. (2008) 

Single moment scheme with 

four hydrometeors (Seifert, 

2008) 

 RRTM Grid-point/FV/NH 

SLAV  ISBA 2L:  

Noilhan and 

Planton (1989) 

with  

modifications 

Stability functions 

based on Cheng et al. 

(2002) 

with modifications 

leading to the 

absence of critical 

gradient Richardson 

number in the 

system. 

TOUCANS  

(TKE+TTE) 

(Bašták-Ďurán et al 

2014) 

Scheme described in Catry 

et al., (2008) following Lott 

and Miller (1997) for 

gravity wave drag, and an 

envelope orography 

approach (after Wallace et 

al., 1983)  

Mass flux following Bougeault 

(1982) but with modifications  

according to 

Gerard and Geleyn (2005) 

Single moment scheme with 

four hydrometeors (Gerard et 

al., 2009)  

 

 

Shortwave radiative 

transfer uses the CLIRAD 

model  

(Tarasov and Fomin, 2007) 

and RRTM for longwave 

Grid-point/FD/H  
Tolstykh et al., (2017) 

AROME-
Arctic 

SURFEX: 
Masson et al. 
(2013) 

Based on Louis 
(1979) 
 

 

HARATU: TKE 
together with a 
diagnostic length 
scale  
 
(Lenderink and 
Holtslag 2004; van 
Meijgaard et al. 
2012) 

N/A Deep convection is explicitly 

represented and  

Shallow is represented by EDMF 

(Soares et al. 2004; Siebesma et 

al. 2007, Bentsson et al. 2017)  

Single moment with five 

categories of hydrometeor 

based on Pinty and Jabouille 

(1998) with modifications 

(Müller et al 2017)       

RRTM (EcRad) 

With modified cloud optical 

properties compared to 

AROME-MF (Bengtson et 

al. 2017) 

Spectral/FD/NH 

Table 3. Details of physical processes and parameterizations of the forecasting systems (see Appendix A for list of acronyms). 307 
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3 Evaluation of basic surface meteorology and vertical profiles 309 

3.1 Evaluation/Scores 310 

As mentioned in the introduction, the combination of MODFs and MMDFs allow detailed process-oriented diagnostics to be 311 

performed for the models. However, it is first important to assess what the errors are for standard variables such as 10m wind 312 

speed and 2m temperature. This first step is important because if they are stationary with leadtime one can simply consider a 313 

24hr time range in the forecasts such as T+25 until T+48 (the second day of the forecast), simplifying the analysis.  314 

 315 

The 2m temperature errors during February and March 2018 have quite different properties at each site and for each model 316 

(Fig 2). The models are typically too warm at Utqiaġvik and Tiksi and too cold at Ny-Ålesund and Whitehorse, with the sign 317 

of the bias varying between the models at Iqaluit and Eureka. At both Sodankylä and Whitehorse, which are situated at lower 318 

latitudes than the other sites, there is a distinct diurnal cycle in the bias and standard deviation that is not there at higher latitude 319 

sites. At both sites the night-time temperature bias is typically more positive than the daytime bias, indicating an underestimate 320 

of the diurnal temperature range. In the case of the CAPS and the IFS, the bias in the diurnal cycle at these observatories are 321 

representative of those seen over wider region (e.g. Casati et al., 2023 and Haiden et al., 2018).  322 

 323 

In terms of wind speed, the forecasts all have a positive wind speed bias at Utqiaġvik and a negative bias at Iqaluit and 324 

Whitehorse (Fig 3). At Tiksi, Eureka, Sodankylä and Ny-Ålesund, the sign of the bias varies between the models. Interestingly, 325 

the largest inter-model spread and biases in wind speed is observed at the sites surrounded by  the most complex orography 326 

(i.e. Iqaluit, Ny-Ålesund, Eureka and Tiksi: see Fig 2 of Mariani et al., 2024), likely due to the difficulties in representing the 327 

mesoscale flow patterns typically generated in such locations. Interestingly, there does not seem to be an obvious benefit from 328 

the increased resolution, with the AROME configurations and CAPS model actually having worse biases than the lower 329 

resolution global models at Ny-Ålesund.  330 

 331 

Although there is some sub-daily variability with a diurnal frequency in the bias, more pronounced in wind speed bias (Figs. 332 

2 and 3), the size of the biases does not grow dramatically with time. Thus, we consider a 24hr time range between the T+25 333 

and T+48 forecast steps (i.e. the second day of the forecast) to be representative of the general error, simplifying the analysis. 334 

 335 

 336 

 337 
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 341 

Figure 2: Mean bias (solid lines) and standard deviation (dashed lines) of the 2m temperature error (in °C) at each 342 

observatory (see Figure 1a) for forecasts initialised at  00z during SOP1, described in Table 2. Night-time periods (with 343 

mean SW↓<15Wm-2) are indicated with grey crosses along the x-axis.   344 Formatted: Superscript
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 345 
Figure 3: Mean bias (solid lines) and standard deviation (dashed lines) of the 10m wind speed error (in m s-1) at each 346 

observatory for forecasts initialised at 00z during SOP1. Night-time periods (with mean SW↓<15Wm-2) are indicated 347 

with grey crosses along the x-axis.   348 
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 349 

 350 

3.2 Vertical profiles 351 

To gain further insights we investigate the vertical structure of the errors by comparing the model output to observations from 352 

radiosonde and tower. To do this the model and tower data were thinned to the same frequency as the radiosonde prior to 353 

calculating the median and inter-quartile range shown in Figs 4 & 5. The median temperature and specific humidity within the 354 

boundary layer is overestimated at Tiksi, Eureka, Utqiaġvik and Iqaluit (see Fig 4) and the models underestimate the strength 355 

of temperature and humidity inversions as a result. The picture is more mixed at Ny-Ålesund and Sodankylä where most 356 

models are too cold and humid, and two out of the three models are too dry at Whitehorse.  357 

 358 

The biases in the upper air temperatures, 2m air temperature, and the surface skin temperature tend to go hand-in-hand with 359 

each other, i.e. model with warmest/coldest surface temperature tends to have the warmest/coldest 2m and upper air 360 

temperatures. As a result, the mean 2m temperature errors seen in Fig 2 give a sense of the sign of the error in the lowest 100m, 361 

or so, of the atmosphere. This coupling between the lowest model level, the surface skin temperature and the 2m-temperature 362 

is to be expected, since the 2m-temperature is a diagnostic calculated as a function of the lowest atmospheric model layer and 363 

the surface skin temperature.   364 

 365 

Air temperature variability in the lower boundary layer is generally underestimated by the models, except at Iqaluit (Fig 5). 366 

This generally translates to an underestimation of the 2m temperature variability at these sites. Interestingly, at Ny-Ålesund 367 

some models severely overestimate the 2m temperature variability despite underestimating the variability aloft, possibly due 368 

to the overestimation of the surface skin temperature variability. For specific humidity the observed inter-quartile-range tends 369 

to sit within the range of the models, however it is over-estimated at Eureka and underestimated at Tiksi and Whitehorse in 370 

the lower boundary layer.  371 

 372 

The median of the modelled wind speed is too high in the boundary layer at Sodankylä, Utqiaġvik and Tiksi, but more mixed 373 

at other sites (Fig 4 & 5). The variability of the wind speed is within the model range, with the exception of Iqaluit, where it 374 

is underestimated. The overestimation of the wind speed at these sites is likely a contributing factor in the underestimation of 375 

the temperature and humidity inversions, since a positive bias in the wind speed will drive excessive turbulent mixing of heat 376 

and moisture inhibiting the decoupling of near-surface and upper air temperatures that occurs during periods of radiative 377 

surface cooling and low wind (Van de Weil et al., 2017). Other factors which could play a role are the radiative forcing at the 378 

surface or the response of the surface to radiative forcing. Both aspects will be addressed in the following subsection.  379 
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  387 

  388 
Figure 4: Median temperature (left), specific humidity (middle) and wind speed (right) from the radiosonde (black 389 

solid line), the tower (black dashed line), and the numerical models (during the second day of the forecast: colour lines). 390 

The mean surface skin temperature is indicated by a dot, 2m temperature (left), 2m specific humidity (middle) and 391 

10m wind speed (right) are shown with a square. Note that wind speed and humidity profiles from the tower are not 392 

available in the Tiksi and Ny-Ålesund MODFs respectively. The numbers in the left hand panels correspond to the 393 

verification sample size, which was dictated by the availability of radiosonde profiles.   394 
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 395 
Fig 4 continued. 396 

 397 
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398 
   399 

Figure 5: As Figure 4 but showing the Inter Quartile Range.  400 

 401 
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 402 
Fig 5 continued.   403 

 404 

3.3 Links between errors in boundary-layer temperature variability and surface radiation.  405 

In this section we investigate the role of radiative forcing in the underestimation of near-surface and boundary-layer 406 

temperature variability at Sodankylä, Utqiaġvik and Tiksi where the models underestimate the temperature variability. At these 407 

sites all upwelling and downwelling radiation components are available in the SOP1 MODFs allowing us to investigate 408 

whether the suppressed temperature variability is related to suppressed variability in the radiative forcing at the surface, a lack 409 

of sensitivity of the near-surface temperature to radiative forcing or something else. 410 

 411 

The box-plots shown in Fig 6a-c confirm the underestimate of near-surface-temperature Inter-Quartile Range (IQR) at Tiksi 412 

(except CAPS), Sodankylä, and Utqiaġvik, and further show that the cold tail of the distribution is generally shorter in the 413 

models meaning there is a warm bias during cold periods. The warm bias in cold conditions is well known at Sodankylä and 414 

is typical of NWP systems (see Atlaskin and Vihma, 2012 and Day et al., 2020), but this feature has not been shown before at 415 

the other two sites to our knowledge.  416 

 417 
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The models typically also show differences in the distribution of the downwelling radiation at the surface, 𝐿𝑊 ↓ +𝑆𝑊 ↓ 421 

compared to observations (Fig 6d-f). The IQR is underestimated at Tiksi (except for CAPS) and Utqiaġvik. However, at 422 

Sodankylä all the models overestimate the IQR (except for CAPS) but also do not capture the highest values of incident 423 

radiation observed at the top of the distribution. Since errors in the incident radiation likely relate to interactions with clouds, 424 

which are not included in this iteration of the MODFs, we will not investigate the causes of these discrepancies between the 425 

observed and forecast radiation distributions further, leaving this for a more focussed future study, and will instead move on 426 

to focus on the response of the near-surface air temperature and the surface energy budget.  427 

 428 

 429 

 430 

 431 

 432 

 433 

 434 

 435 

 436 

 437 

 438 

 439 

 440 

 441 

 442 
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 446 

 447 

Fig 6. Boxplots of T2m (a-c) and LW↓+SW↓ (d-f) for Sodankylä, Utqiaġvik and Tiksi in observations and during the 448 

second day of the forecast. The text above the boxplots states the median (and inter-quartile-range) of each distribution, 449 

which are also shown by the orange line and box edges respectively. The 5-95% range is plotted by the whiskers and 450 

points outside this are shown in dots.   451 

 452 

As LW↓ +SWnet is the effective radiative forcing for the surface skin temperature (and indirectly for the 2m temperature), 453 

errors in 2 m air temperature are either due to errors in this driving term itself, the relationship between LW↓ +SWnet and 2 m 454 
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temperature, or a more likely combination of both (assuming that errors in advection are negligible). Because the model median 457 

surface albedo (except for SLAV at Tiksi) is close to the observed estimate (Fig 7), then we can focus on how 2m temperature 458 

varies as a function of LW↓ +SWnet, to more deeply investigate  the causes of error.  459 

 460 

 461 

 462 

Figure 7. Boxplots of surface albedo for Sodankylä, Utqiaġvik and Tiksi in observations and during the second day of 463 

the forecast. The text above the boxplots states the median (and inter-quartile-range) of each distribution, which are 464 

also shown by the orange line and box edges respectively. The 5-95% range is plotted by the whiskers and points outside 465 

this are shown in dots.   466 

 467 

At Sodankylä, Tiksi and Utqiagivk all the models have a warm 2m temperature bias at low levels of incoming radiation (LW↓ 468 

+SWnet) (see Fig 8). At Tiksi, Utqiaġvik and Sodankylä the overall sensitivity of T2m to radiative forcing, as measured by the 469 

slope of the regression coefficient between 2m-temperature and LW↓ +SWnet is underestimated in all the models with one 470 

exception. The AROME-Arctic model seems to be too sensitive at Sodankylä according to this diagnostic, but captures the 471 

observed temperature range at low levels of LW↓ +SWnet.  472 

 473 

Note that the LW components used for Sodankylä in this study, are not those provided in the SOP1 MODF, which are collected 474 

at the top of the 45m tower, rather they are from a dedicated radiation tower located near the sounding station where the 475 

downwelling component is at a height of 16m and the outgoing is at 2m. These were swapped due to a concern over the 476 

accuracy of the LW radiation data collected at the met tower (Roberta Pirazzini, personal communication).  477 
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                            489 
Figure 8: Scatter plots of 2m temperature as a function of LW↓ +SWnet for Sodankylä, Utqiaġvik and Tiksi (from left 490 

to right), for the second day of the forecast. The regression slope between the 2m temperature and the LW↓ +SWnet is 491 

stated in the title, for the observations (in grey) and each model (various colours)..  492 
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                                    495 
         496 

Figure 8 cont. 497 

 498 

To investigate the role of surface-atmosphere decoupling in the 2m-temperature cold-tail warm bias and lack of 2m-499 

temperature variability at low levels of incident radiation we plot the thermal stratification as a function of near-surface wind 500 

speed at the three sites (Fig 9) for situations where the model or observed LW↓ +SWnet is below the 20th percentile. In the 501 

observations one can see the typical pattern seen at other sites (e.g. Ven de Weil et al., 2016) that inversions are weak for 502 

strong winds, whereas large inversions are found under weak-wind conditions with a transition found between those regimes 503 

at some critical wind speed. The models generally capture this qualitative regime behaviour (Fig 9), although the magnitude 504 

of the thermal stratification, the wind speed and the critical wind speed for the regime transition varies between the models.  505 

 506 

Deleted: 7507 

Formatted: Superscript



26 
 

 508 

Figure 9. Scatter plots of thermal stratification ((T2m-Tlml)/height) as a function of wind speed on the lowest model at 509 

Sodankylä, Utqiaġvik and Tiksi (from left to right) for the observations (in black) and each model (various colours) 510 

during the second day of the forecast for situations where the model or observed LW↓ +SWnet is below the 20th 511 

percentile. 512 

 513 

 514 

 515 

Figure 9. continued. 516 
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 518 

 519 

3.4 Surface energy budget sensitivity to radiative forcing 520 

Further insight into the role of the land-surface and surface exchange processes in the T2m errors outlined in the previous 521 

section, particularly the lack of T2m sensitivity to radiative forcing, can be gained by constructing surface energy budget 522 

sensitivity diagrams, following Miller et al. (2018) and Day et al. (2020). The idea here is that the surface energy budget can 523 

be separated into a “driving term” (LW↓ +SWnet) and “response terms” (SHF, LHF, GHF, and LW↑). The relationship 524 

between the driving term and each response term can be summarised with regression coefficients, e.g. for the SHF: 525 

𝑆𝐻𝐹 = 𝛼!"#(𝐿𝑊 ↓ +𝑆𝑊$%&) + 𝛽!"##(1)	 526 

where each of the α's can be interpreted as a coupling strength parameter between the driving term and each response term. 527 

These α’s provide direct information on the proportional response of each flux term, expressed as a fraction of the total change 528 

in radiative forcing. From this one can see that if, for example, the coupling to the ground heat flux and turbulent fluxes is too 529 

strong in the model (i.e. |𝛼'"#!"# + 𝛼!"#!"# + 𝛼("#!"#| > |𝛼'"#"$% + 𝛼!"#"$% + 𝛼("#"$%|) then |𝛼()↑| will be too small, i.e. 530 

surface temperature response will be too weak and vice versa. Similarly, compensating errors in the strength of the coupling 531 

to the turbulent fluxes (𝛼!"#!"# + 𝛼("#!"#) and ground heat flux(𝛼'"#!"#) could result in the right surface-temperature 532 

sensitivity, 𝛼()↑, but for the wrong reasons. As a result, by comparing the observed and modelled regression coefficients one 533 

can derive physical understanding of the causes of model error.  534 

 535 

Note that in convective cases - the main driver of turbulent heat fluxes is indeed the convective instability at the surface driven 536 

by radiative forcing. However, in stratified conditions the main driver of turbulence in the boundary layer (and of the sensible 537 

and latent heat fluxes) is the mechanical forcing i.e. the large-scale wind speed (Van Hooijdonk et al. 2015, Van de Wiel et al. 538 

2017, Vignon et al. 2017). As a result, one expects the turbulent fluxes to have little sensitivity to the radiative forcing in stable 539 

conditions, with the ground heat flux taking a larger role in balancing changes in radiative forcing and the converse in 540 

convective cases (see Day et al., 2020). As a result, at Utqiaġvik and Tiksi where stable conditions dominate, the ground heat 541 

flux varies with changes in radiative forcing, more than the turbulent fluxes as indicated by higher regression coefficients. At 542 

Sodankylä there is more of an even partitioning between the turbulent fluxes and the ground heat flux into the snow.  543 

 544 

It is clear from Figures 10, 11 and 12 that all the models generally underestimate the surface temperature sensitivity to radiative 545 

forcing at Sodankylä, Utqiaġvik and Tiksi, because the rate of change in LW↑ with changes in radiative forcing, LW↓ +SWnet, 546 

i.e. 𝛼()↑ is typically too low (i.e. 𝛼()↑!"# < 𝛼()↑"$%). Since the 2m temperature diagnostic in the models is calculated as a 547 

function of the surface skin temperature, the underestimation of the 2m-temperature and LW↑ sensitivity to radiative forcing 548 

and the positive bias in those variables in cold conditions are likely to be closely related (i.e. comparing Fig 8 to Figs 10, 11 549 

and 12). For example, at Sodankylä the CAPS model T2m and upwelling longwave (LW↑) sensitivities are very close to what 550 

is observed, AROME-Arctic slightly overestimates these sensitivities and SLAV underestimates them. A similar 551 

proportionality can be seen between these properties of the models at the other two sites. Note that because the LW↑ at 552 

Sodankylä was observed at 2m and so has rather a small footprint compared to the sensor on the 16m mast, the sensitivity is 553 

more representative of the bare snow than the forest canopy. As a result, one might expect the area mean LW↑ sensitivity to 554 

be higher than the value presented here.     555 

 556 

This mismatch in terms of LW↑ sensitivity goes hand in hand with differences in the other 𝛼 coefficients and by comparing 557 

the sensitivities of the other response terms in the surface energy budget we can develop some hypotheses about what is leading 558 

to this mismatch in surface temperature sensitivities. For example, at Utqiaġvik, all the models tend to overestimate the 559 
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sensitivity of the GHF, 𝛼'"#, which was calculated as the residual of the observed radiative and turbulent fluxes. This can be 571 

an indication of an indication of non-sufficient thermal representation of the land surface, for example lack of a multi-layer 572 

snow model (e.g. Day et al., 2020; Arduini et al., 2019). Unfortunately, we are not able to perform a similar calculation as 573 

performed for Sodankylä, to estimate the GHF, as the longwave observations thought to be most reliable, are not co-located 574 

with the other flux observations, or Tiksi, since we don’t have the turbulent fluxes in the MODF. As a result, we cannot 575 

calculate the GHF as a residual of the other terms.  576 

 577 

Where we have turbulent flux observations, we can also evaluate the 𝛼!"# and 𝛼("# terms. At Utqiaġvik, an underestimation 578 

of the sensitivity of the turbulent fluxes, too low 𝛼!"# and 𝛼("#in the ARPEGE and SLAV models goes hand in hand with an 579 

overestimation of 𝛼'"# mentioned above. In the IFS and ECCC models are closer to observations with smaller values of 𝛼'"# 580 

and larger values of 𝛼!"# and 𝛼("#. At Sodankylä, the 𝛼!"# varies quite a bit from model to model, but all the models where 581 

the LHF was available overestimate the 𝛼("#.  582 

 583 

At all three sites the relative size of the coefficients varies between the sites, with 𝛼()↑, 𝛼!"#, 𝛼'"# typically being an order 584 

of magnitude larger than 𝛼("#. This is likely to be typical of cold dry snow-covered environments where the magnitude of the 585 

latent heat flux is low. However, the difference in the relative size of the other three terms varies quite a bit between sites with, 586 

for example, the turbulent flux playing a larger role at Sodankylä than at Tiksi and Utqiaġvik at this time of year. This reflects 587 

the larger surface roughness at Sodankylä associated with the trees at this site.  588 

 589 

Before moving on it is worth noting that as well as being used to develop hypotheses about the causes of errors related to the 590 

surface energy budget, these process diagrams and sensitivity metrics could also be applied to test new configurations of NWP 591 

systems with modifications to the land-surface, boundary layer or related schemes and evaluate whether such modifications 592 

are improving the dynamic behaviour with respect to the surface energy budget in line with observed behaviour or not.       593 

    594 

 595 

  596 

 597 
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598 
Figure 10: Process relationship diagrams and sensitivity parameters for upwelling longwave radiation (LWup; left), 599 

sensible heat flux (SHF; middle left), latent heat flux (LHF; middle right) and ground heat flux (GHF; right) at 600 

Utqiaġvik. Observed values are shown in grey, model values during the second day of the forecast are shown in colour. 601 

The line of best linear fit is shown for observations (gray line) and each model (pink line). The sensitivity parameters, 602 

a, describing the coupling strength between the driving (LW↓ +SWnet) and each response term are printed above each 603 

diagram, with observational (modelled) relationship on the left (right). 604 
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 608 
Figure 11: Same as Figure 8 but for Sodankylä.  609 

 610 

 611 

 612 

 613 
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 616 
Figure 11: cont.  617 
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 620 
Figure 12: Same as Figure 8 but for Tiksi. 621 

 622 

3.5 Evaluation of wind stress and sensible heat flux 623 

The previous examples highlight discrepancies between forecast and observations and provide hints as to which processes are 624 

responsible for the documented errors. The observed conditions also provide multi-variate targets for updated forecasting 625 

systems. However, the observations can also help us evaluate a specific process and thereby target a specific parameter or 626 

parameterization to change. 627 

     628 

The Sodankylä and Utqiaġvik MODFs include turbulent fluxes and profiles of wind speed and temperature allowing us to 629 

investigate the parameterisation of turbulent exchanges of heat and momentum at the surface. Turbulent surface fluxes in NWP 630 

models are often parameterised according to Monin-Obukhov (M-O) similarity theory where they are related to the gradient 631 

in the lowest atmosphere (e.g. Beljaars and Holtslag, 1991):  632 

𝜏 = 𝜌𝐶+𝑈,%-. #(2)	 633 

𝑆𝐻𝐹 = 𝜌𝐶"𝑈,%-8𝜃,%- − 𝜃/-0;#(3)	 634 
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where 𝜏 is the wind stress, U is the wind speed, θ is potential temperature, ρ is the air density and the transfer coefficients, CM 637 

and CH, used to in each computation, are a function of the roughness length of momentum and heat, zoM and zoH, and a stability 638 

parameter. In these equations the Uref  and θref are the wind speed and potential temperature at a reference height, which in the 639 

case of the models is the lowest atmospheric model level, the height of which varies from around 10 to 30 m above the surface 640 

depending on the model (see Table 3).  641 

 642 

Successfully parameterizing τ and SHF relies on defining a reasonable function for CM and CH and selecting the appropriate 643 

parameters and a proper aggregation of the fluxes in the cases of a tiled surface. Because we have observed and forecast values 644 

for both the fluxes and the bulk parameters in equations 2 and 3 we can diagnose how appropriate the choices in each model 645 

are for the conditions at a particular site. This is done by examining the relationship between the bulk parameters, U and θ, 646 

and the fluxes 𝜏 and SHF (see Figures 13 to 16), as done previously by Tjernström et al. (2005) and more recently by Day et 647 

al. (2020).   648 

 649 

In the case of wind stress, in neutral conditions, the points in Figures 13 and 14 would sit on the straight line following: 650 

𝜏 = 𝜌 1&2&

34$5
'()*
'+,67

&,            #(4)                                                                                                                                                                                                                                                                                                                                                                    651 

 652 

where zref is the height of the lowest model level, k is the von Karman constant and z0m is the aerodynamic roughness length. 653 

The slope of this line is determined by z0m. However, this formula provides an overly simplified view as the atmospheric 654 

stability varies from neutral conditions and as a result there is scatter in the values of τ  for any given wind speed.  655 

 656 

The relationship between τ and U for Sodankylä (Figure 13) differs between the models and between the models and the 657 

observations. An estimate of the observed roughness length was calculated, following the equation above, after selecting for 658 

neutral conditions, and the value is presented in Table 4 along with the value used in each of the models. In the AROME-659 

Arctic and ICON models, τ increases too slowly with increasing U. This is consistent with the fact that the roughness length 660 

for momentum is too low in these models, which have roughness lengths an order of magnitude lower than that derived from 661 

observations (see Table 4). Increasing z0m in the AROME-Arctic and ICON models would likely reduce the positive bias in 662 

the wind median wind speed profile seen in Figure 4, however the other models which have roughness lengths closer to what 663 

was observed also have a positive wind speed bias suggesting another cause.  664 

 665 

Interestingly, all models fail to adequately capture the spread of τ for a given value of U, likely because the models 666 

underestimate the atmospheric stability as is suggested by the weaker than observed thermal stratification indicated by in Figs 667 

4d and 5d. A more detailed study including numerical experimentation would be needed to demonstrate this further.  668 

 669 

At Utqiaġvik, the aerodynamic roughness length is three orders of magnitude lower than at Sodankylä, reflecting the difference 670 

in surface type: snow covered tundra compared to the forested taiga of northern Finland (Table 4). Here the IFS and SLAV 671 

models have roughness lengths close to those derived from observations, whereas the ARPEGE and ICON have values that 672 

are higher. As a result, for a given wind speed the surface stress is too high in these two models (Figure 14).  673 

 674 
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 683 
Figure 13: scatter plots of wind stress vs. the square of the near-surface (lowest model level) wind speed at Sodankylä. 684 

The observed points are shown in black and hourly values during the second day of the forecast forecast is shown in 685 

colours.  686 
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 689 
Figure 14: as Figure 13 but for Utqiaġvik. 690 

 691 

 692 

 Sodankylä Utqiaġvik 

Obs 1.62 0.0012  

IFS 1.83 (1.83-1.83) 0.00130 (0.00130-0.00130) 

ARPEGE 1.50 (1.49-1.51) 0.00884 (0.00880-0.00891) 

SLAV 1.60 (1.59-1.61) 0.00135 (0.00129-0.00144) 

ICON-DWD 0.20 (0.20- 0.41) 0.00700 (0.00151-0.00981) 

AROME-Arctic 0.45 (0.45-0.45) Outside model domain 

Table 4. Roughness lengths for momentum (m) at Sodankylä and Utqiaġvik from observations and models. For the 693 
models the mean is stated and the range of values is stated in parenthesis.  694 

The scatterplots for the sensible heat flux (Figures 15,16) also provide some insights into the differences in the process 695 

representation between the models. All the models capture the link between the SHF and the temperature gradient dictated by 696 

M-O theory (see Eqn 3) however, the shape of the relationship varies between the models. For example, for the ARPEGE and 697 

AROME-MF models the sign of the sensible heat flux does not change in a binary way with ΔT, there is spread in the location 698 

along the x-axis where this occurs. This could be due to differences in the numerical formulation of the models, i.e. the timestep 699 

at which the flux and temperature terms are stored or due to the fact that we are looking at the gridbox mean values where the 700 

fluxes are aggregated from values computed on different surface tiles. At Sodankylä, the IFS, SLAV and AROME-ARCTIC 701 
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model have a clear tapering in the scaled sensible heat flux towards zero for high values of ΔT. However, the AROME-MF, 712 

ARPEGE and ICON do not have such a tapering and the scaled heat flux continues to grow with larger ΔT, which is 713 

qualitatively inconsistent with the observations and will lead to higher fluxes in very stable conditions inhibiting cooling of 714 

the surface. There is also a clear difference in the range of ΔT between the different models however, in the models this is an 715 

aggregate of different surface types representing forest canopy top, bare snow and frozen water and because we do not have a 716 

trustable observation of the temperature of the top of the canopy frozen water during freezing conditions it is not clear what 717 

the realistic range should be. Note also that the SHF at Sodankylä is measured at 24.5 m and for process consistency ÄT is 718 

calculated using the air temperatures observed at 18m and 32m which is not directly comparable with the models. 719 

 720 

Except for ICON, differences between the models at Utqiaġvik are less pronounced. IFS, SLAV and ARPEGE have quite a 721 

similar shape, and all underestimate the magnitude of the scaled heat flux for low values of ΔT, potentially due to the slow bias 722 

in wind speeds near to the surface. Note that the large values of ΔT for the SLAV model are because the lowest model level is 723 

at ~30m, compared to ~10m for the other models. Note that the ICON model has a large fraction of open ocean in the grid cell 724 

considered and therefore the model tends to be biased towards convective conditions (i.e. most points are in the top left 725 

quadrant of Figure 16 where the sensible heat flux is heating the atmosphere), this is likely the main reason for the warm bias 726 

in surface skin-temperature and 2m-air temperature. For the other models shown in Figure 16, the grid-point considered is 727 

100% land.  728 

 729 

 730 

 731 
Figure 15: scatter plots of the scaled sensible heat flux (SHF/U) vs. thermal stratification, ΔT=Tlml-Tskin, at Sodankylä. 732 

The observed points are shown in black and hourly values during the second day of the forecasts are shown in colours. 733 

Note that at Sodankylä the SHF is measured at 24.5 m and for process consistency ΔT is calculated using the 734 

temperatures observed at 18m and 32m so is not directly comparable with the models which use the skin temperature, 735 

Tskin, and the lowest model level, Tlml.  736 
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 742 
Figure 16: as Figure 15 but for Utqiaġvik. Note that for the observations ΔT is calculated using the 10m air temperature 743 

and an estimate of the surface temperature from an infrared sensor.  744 

 745 

4. Conclusions and future plans 746 

In this manuscript we have outlined the motivation for YOPPsiteMIP, documented the current status of the YOPPsiteMIP 747 

forecast MMDF data archived on the YOPP data portal (hosted by MET Norway), and presented some multi-model forecast 748 

evaluation examples to demonstrate the utility of the MMDFs and MODFs using data from the YOPP SOP1, which occurred 749 

during February and March 2018. The main conclusions from this analysis are that:  750 

● Near-surface temperature and wind speed forecast errors vary considerably between the different sites, reflecting both 751 

a range of climate conditions and forecast performance across the  selected sites. 752 

● A common feature of several sites, namely Sodankylä, Barrow, Tiksi, Eureka, is a warm bias during periods of 753 

extreme cold which goes hand-in-hand with a lack of temperature variability in the lowest ~100m of the atmosphere.754 

    755 

● This lack of variability is investigated further at Utqiaġvik, Tiksi and Sodankylä where radiation components were 756 

observed and provided in the MODFs and MMDFs, which enabled us to investigate the sensitivity of T2m to radiative 757 
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o At all three sites the models tend to underestimate the sensitivity of T2m and the surface skin temperature 764 

(or LW↑) to variations in radiative forcing and do not capture extreme minima in these variables, although 765 

the AROME-Arctic and CAPS models perform better in this regard. 766 

● At Utqiaġvik and Sodankylä, since turbulent fluxes were provided in addition, we were able to investigate the link 767 

between these fluxes and the bulk parameters. This highlighted: 768 

o Differences in the parameterisation of turbulent fluxes, particularly the specification of the roughness length 769 

for momentum which varies by a little less than an order of magnitude between different models.   770 

o The high importance of the ground heat flux, particularly at the Utqiaġvik and Tiksi sites, where stable 771 

conditions dominate. Note that despite this importance, this flux is not observed at these two sites.  772 

 773 

Process studies which compare point observations to gridded model output, need to be carried out in awareness of sub-tile 774 

representativeness issues. For fine resolution models it is alway recommended to provide output from multiple grid-points (as 775 

in this study), centred on the observatory, to be able to pair land-based observations to a model tile with dominant land-cover. 776 

For coarse resolution models, we recommend to provide variables for the different sub-tile components (bare soil, vegetation, 777 

water, ice, …). The more the site characteristics are matched to the correct model output, the more reliable diagnosis on the 778 

model capability to reproduce the observed physical process. In this study we found that the land-ocean contrast in the Arctic 779 

in winter does not significantly affect the surface energy budget sensitivity to radiative forcing in the CAPS model (in Section 780 

3.4, the ocean-dominated Utqiagvik grid-points of CAPS do not stand out with respect to the other models), because the frozen 781 

ocean has similar characteristics to the  snow-covered land surface. On the other hand, the ICON model, which has very low 782 

sea ice values (~10%) has much warmer temperatures than the other models at Utqiagvik,  and as a result the sensible heat 783 

flux behaves differently compared to the other models). Accounting for the land-ocean contrast will be crucial in the sea-ice 784 

free summer SOP2 period that will be evaluated in the future. 785 

 786 

The development of the MODFs and MMDFs is ongoing and will be completed in phases. The initial phase was to collect 787 

basic meteorology data and the main components of the radiation budget. Work on this initial phase is completed and the next 788 

phase will provide a wider range of parameters (e.g. turbulent fluxes and cloud parameters) included in the MODFs. This is a 789 

more complicated, but very necessary step since the models differ significantly in terms of surface heat and momentum fluxes 790 

as well as cloud properties (not shown). There are also plans to extend the MODF and MMDF concept to Antarctica, focussing 791 

on the Southern-hemisphere SOPs. These future phases of the YOPPsiteMIP will allow more detailed studies on e.g.: 792 

● cloud cover, microphysics and radiative forcing, 793 

● assessment of forecast models in Antarctica, 794 

● testing of specific model developments, 795 

● observatory representativeness studies.  796 

This will allow a more process-focussed understanding of the forecasts in the YOPPsiteMIP archive, but also provide a testbed 797 

for model developers to use when testing new model formulations relevant for the Arctic. Further details on the MODF concept 798 

and the SOP1 and 2 MODFs can be found in Uttal et al., (2023) and Mariani et al., (2024) respectively. A Python based toolkit 799 

for producing the MODFs is under development, which it is hoped will speed up and simplify the production of MODFs and 800 

facilitate timely evaluation of forecast models to inform the model development process.  801 
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EDMF=Eddy Diffusivity Mass Flux. 803 
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FD=Finite Difference,  832 

FV=Finite Volume,  833 

H=Hydrostatic,  834 

HARATU = HARMONIE-AROME with RACMO Turbulence 835 

HTESSEL=Hydrology-Tiled ECMWF Scheme for Surface Exchanges over Land,  836 

ICE3 = Three-class ice parameterization 837 

IQR = Inter-Quartile Range 838 

ISBA= Interactions between Surface–Biosphere–Atmosphere,  839 

NH=Non-hydrostatic,  840 

SURFEX = Surface Externalisée, 841 

TERRA = Land Surface module of the ICON weather forecast model.   842 

TKE=Turbulent Kinetic Energy,  843 

Data availability statement 844 

All MMDF and MODFs are available on the YOPP Data Portal (https://yopp.met.no), hosted by the Norwegian Meteorological 845 

Institute, for perpetuity (ie. longer than 10 years). The YOPP Data Portal is relying on the Arctic Data Centre 846 

(https://adc.met.no) for data stewarding and the YOPPSiteMIP data can be programmatically accessed using the machine 847 

interface for the Arctic Data Centre or can be accessed directly from 848 

https://thredds.met.no/thredds/catalog/alertness/YOPP_supersite /obs/catalog.html, for the MODFs and 849 

https://thredds.met.no/thredds/catalog/YOPPSiteMIP-models/catalog.html, for the MMDFs.  850 

 851 

The SOP1 and SOP2 MODFs for each station shown in white in Fig 1 has been assigned a separate DOI, as described in 852 

Mariani et al. (2024). In the case of the MMDFs a DOI is assigned to the data for each forecast model: 853 

● ECMWF-IFS: https://doi.org/10.21343/A6KA-7142, 854 

● ARPEGE-MF: https://doi.org/10.21343/T31Z-J391, 855 

● SLAV-RHMC: https://doi.org/10.21343/J4SJ-4N61 856 

● DWD-ICON: https://doi.org/10.21343/09KM-BJ07, 857 

● ECCC-CAPS: https://doi.org/10.21343/2BX6-6027,  858 

● AROME-MF: https://doi.org/10.21343/JZH3-2470, 859 

● AROME-Arctic: https://doi.org/10.21343/47AX-MY36.  860 

 861 

Code availability statement 862 

Apart from the ECMWF-IFS, for which an open access version of the code is available here: 863 

https://confluence.ecmwf.int/display/OIFS, the model codes are not open access.  864 
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