Contrasting impacts of humidity on the ozonolysis of monoterpenes: insights into the multi-generation chemical mechanism

4

Shan Zhang, Lin Du*, Zhaomin Yang, Narcisse Tsona Tchinda, Jianlong Li, Kun Li*
Environment Research Institute, Shandong University, Qingdao 266237, China.

7 Correspondence to: Lin Du (lindu@sdu.edu.cn) and Kun Li (kun.li@sdu.edu.cn)

8

9 Abstract. Secondary organic aerosol (SOA) formed from the ozonolysis of biogenic monoterpenes is a 10 major source of atmospheric organic aerosol. It has been previously found that relative humidity (RH) 11 can influence the SOA formation from some monoterpenes, yet most studies only observed the increase 12 or decrease in SOA yield without further explanations of molecular-level mechanisms. In this study, we 13 chose two structurally different monoterpenes (limonene with an endocyclic double bond and an 14 exocyclic double bond, Δ^3 -carene with only an endocyclic double bond) to investigate the effect of RH 15 in a set of oxidation flow reactor experiments. We find contrasting impacts of RH on the SOA formation: 16 limonene SOA yield increases by ~100% as RH increases, while there is a slight decrease in Δ^3 -carene 17 SOA yield. Although the complex processes in the particle phase may play a role, we primarily attribute it to the water-influenced reactions after ozone attack on the exocyclic double bond of limonene, which 18 19 leads to the increment of lower volatile organic compounds under high RH condition. However, as Δ^3 -20 carene only has an endocyclic double bond, it cannot undergo such reactions. This hypothesis is further 21 supported by the SOA yield enhancement of β -caryophyllene, a sesquiterpene that also has an exocyclic 22 double bond. These results greatly improve our understanding of how water vapor influences the 23 ozonolysis of biogenic organic compounds and subsequent SOA formation processes.

24 1 Introduction

Secondary organic aerosol (SOA), as an important type of ambient fine particulate matter ($PM_{2.5}$: aerosols with aerodynamic diameter $\leq 2.5 \ \mu$ m) (Guo et al., 2014; Huang et al., 2014), has caused a series of negative impacts on human health (Pye et al., 2021), air quality (Zhang et al., 2016) and global climate (Levy et al., 2013). SOA produced from the oxidation of biogenic volatile organic compounds (BVOCs) is a major component of SOA in heavy forest regions during summer (Sindelarova et al., 2014; Ahmadov et al., 2012), and contributes by a large fraction (~40%-80%) to global OA budget (Cholakian et al., 31 2019).

32 Monoterpenes, mostly emitted from coniferous trees, account for ~11% in total BVOCs 33 (Sindelarova et al., 2014; Kanakidou et al., 2005). Limonene is one of the most abundant monoterpenes, 34 with the annual emission budget of 11.4 Tg yr^{-1} (Guenther et al., 2012). Apart from the biogenic source, limonene can also be released from the indoor emission, mainly from essential oils (Ravichandran et al., 35 36 2018; De Matos et al., 2019; Mot et al., 2022). Limonene has an endocyclic double bond and an exocyclic 37 double bond, and is thus more reactive than other monoterpenes towards oxidants such as ozone (O₃), 38 hydroxyl radical (OH), and nitrate radical (NO₃) (Chen and Hopke, 2010; Atkinson and Arey, 2003). Δ³-39 carene is another kind of monoterpene that dominates the monoterpene emission from Scots pine (Bäck 40 et al., 2012). Different from limonene, Δ^3 -carene contains only one endocyclic double bond, which is 41 similar to most other monoterpenes.

42 Ozonolysis is an important reaction pathway for limonene and Δ^3 -carene. Although reactions with 43 OH and NO₃ are faster than that with O₃ for both two monoterpenes (Atkinson, 1991; Khamaganov and 44 Hites, 2001; Chen et al., 2015; Shaw et al., 2018), the atmospheric concentration of the latter 45 monoterpene is much higher than that of the former (Sbai and Farida, 2019). The contributions of O₃-46 reactions with limonene and Δ^3 -carene to tropospheric degradation are 47% and 24%, respectively, in 47 the daytime (Ziemann and Atkinson, 2012). In pristine areas where NO₃ concentration is very low, 48 ozonolysis is also the dominant fate for limonene and Δ^3 -carene in the nighttime. In addition, it has been 49 previously found that the ozonolysis of monoterpenes can produce more extremely low volatility 50 products than OH-initiated oxidation, which contributes by a large fraction to the SOA production 51 (Jokinen et al., 2015). For either limonene or Δ^3 -carene, the first step for ozonolysis is attacking on the 52 endocyclic double bond to form two types of stabilized Criegee intermediates (sCI) with low energy (Fig. 53 S1) (Drozd and Donahue, 2011; Chen et al., 2019). The sCI will then trigger a series of chemical reactions, 54 like isomerization, decomposition and addition reactions. Correspondingly, the major components in Δ^3 -55 carene SOA are caric acid, OH-caronic acid, and caronic acid (Ma et al., 2009; Thomsen et al., 2021), 56 while the major components from limonene SOA are limonaldehyde, keto-limonon aldehyde, limononic 57 acid and keto-limononic acid (Pathak et al., 2012; Wang and Wang, 2021). 58 Water is ubiquitous in the atmosphere and can affect the formation mechanism of SOA and its

59 relevant physical and chemical properties (Sun et al., 2013). A number of field measurements have shown

60 that the average molecular weight of the water/organic phase and activity coefficient of condensed 61 organics would be changed due to the change of relative humidity (RH) (Seinfeld et al., 2001; Li et al., 62 2020). In addition, several laboratory studies have demonstrated that RH can influence the ozonolysis of 63 monoterpenes in different ways. Most of those studies have reported either an inhibitory effect or a 64 negligible effect of high RH on the particle formation (Bonn and Moortgat, 2002; Fick et al., 2002; Zhao 65 et al., 2021; Ye et al., 2018). Nevertheless, few other studies found that high RH can promote SOA 66 formation from the ozonolysis of limonene (Yu et al., 2011; Gong et al., 2018; Xu et al., 2021), but the 67 reason of this promotion effect remains unclear.

68 To fully examine the effects of water on SOA formation from the ozonolysis of monoterpenes, 69 especially the related chemical processes, we used an oxidation flow reactor (OFR) to investigate the 70 ozonolysis of limonene and Δ^3 -carene under different RH conditions in this study. An ultra-high 71 performance liquid chromatography with a quadrupole time-of-flight mass spectrometer (UPLC-Q-TOF-72 MS) was deployed to analyze the molecular chemical composition of the SOA, which provided insights 73 into the physical and chemical processes influenced by the water content. With these state-of-the-art 74 techniques, we proposed mechanisms that may explain the inhibitory or enhancing RH effects on SOA 75 formation for different monoterpenes.

76 2 Experimental methods

77 **2.1 Oxidation flow reactor experiments**

78 A series of dark ozonolysis experiments of limonene and Δ^3 -carene were conducted in a custom-79 made oxidation flow reactor (OFR). The OFR is a 602 mm long stainless cylinder with a volume of 2.5 80 L (Fig. S2) (Liu et al., 2019; Liu et al., 2014). A zero-air generator (XHZ2000B, Xianhe, China) was 81 used to generate dry clean air as the carrier gas for the OFR. As shown in Fig. S2, there are four gas paths 82 upstream of the OFR: the first path is the precursor gas channel through which monoterpenes are injected 83 via a syringe pump (ISPLab 01, Shenchen, China); the second path is for the flow of 300 sccm dry zero air passing through a mercury lamp ($\lambda = 185$ nm) to generate O₃; the third path is connected to a water 84 85 bubbler to generate wet air; the fourth path is the extra dry zero air entering the OFR. The RH in the OFR 86 was controlled by adjusting the ratio of the wet and dry zero air flows. A water recycle system was 87 equipped to keep the temperature (T) around at 298 K. The total flow was 0.9 L min⁻¹, resulting in an 88 average residence time of 167 s. The RH and T in the OFR were monitored by a T/RH Sensor (HM40, 89 VAISALA, Finland). The concentration of ozone and the consumption of the precursor gas were 90 measured with an ozone monitor (Model 106L, 2B Technologies, USA) and a gas chromatography with 91 flame ionization detector (GC-FID 7890B, Agilent Technologies, USA), respectively. The GC was 92 equipped with a DB-624 column (30 m \times 0.32 mm, 1.8 μ m film thickness) whose temperature was set to ramp from 100 °C to 180 °C at a rate of 20 °C min-1, and then held at 180 °C for 2 min. Before each 93 94 experiment, O3 was introduced into the OFR to clean it until the background aerosol mass concentration 95 reached $< 1 \ \mu g \ m^{-3}$.

96 The experimental conditions are shown in Table 1. In these OFR experiments, the precursor 97 (limonene or Δ^3 -carene) concentration was set to ~320-340 ppb. A high O₃ concentration of ~6 ppm was 98 used to realize an equivalent aging time of 0.41 day in the real atmosphere, assuming an average ambient 99 O3 concentration of 28 ppb (Sbai and Farida, 2019) (see Section S1 for the calculation). Under such 100 conditions, most of the precursors were consumed, since the residence time was almost five and three 101 times of the half-life for limonene and Δ^3 -carene, respectively. Correspondingly, the O₃ consumption for 102 limonene and $\Delta 3$ -carene were ~250 ppb and ~100 ppb, respectively. A series of RH conditions ranging 103 from dry (1-2%) to 60% with a step of \sim 10% were used to investigate the effects of water content on 104 SOA production and composition (see Table 1). All materials used in the experiments have been 105 described in Section S2.

106 **Table 1.** Experimental conditions and results.

Exp.	[Precursor] (ppb)	[O]3 (ppm)	T (K)	RH (%)	N(13.8-723.4 nm) ^a (cm ⁻³)	M _(13.8-723.4 nm) ^b (μg m ⁻³)	D _(mean) c (nm)	SOA yield (%)
				liı	nonene			
1	321±39	5.7	298	1–2	6.9×10 ⁵	980.9	138.2	62.9
2	321±39	6.0	298	10±2	1.3×10^{6}	1377.5	126.8	88.4
3	321±39	5.9	298	20±2	9.0×10 ⁵	1573.3	150.9	90.2
4	321±39	5.9	298	30±2	1.4×10^{6}	1573.3	128.9	100.9
5	321±39	6.0	298	40±2	1.7×10^{6}	2051.4	130. 7	131.6
6	321±39	5.5	298	50±2	1.5×10^{6}	1962.7	137.8	125.9

7	321±39	5.5	298	60±2	1.5×10^{6}	2211.1	139.0	141.8				
	Δ^3 -carene											
8	341±28	6.1	298	1–2	9.5×10^{4}	346.0	195.8	19.4				
9	341±28	6.4	298	10±2	1.4×10 ⁵	300.3	163.4	16.8				
10	341±28	6.4	298	20±2	9.4×10 ⁴	244.9	176.9	13.7				
11	341±28	6.0	298	30±2	5.9×10 ⁴	241.2	205.1	13.5				
12	341±28	6.3	298	40±2	4.6×10^{4}	205.8	203.2	11.5				
13	341±28	6.3	298	50±2	6.8×10^{4}	196.7	180.7	11.0				
14	341±28	6.3	298	60±2	5.6×10 ⁴	198.5	190.2	11.1				

 $\begin{array}{l} 107 \\ nm \end{array} ^{a} N_{(14.1-735 nm)} \text{ means the total particle number concentration from size 13.8 nm to 723.4 nm.} \overset{b}{} M_{(13.8-723.4 nm)} \\ nm \end{array} \\ \begin{array}{l} nm \end{array} \\ nm \end{array} \\ \begin{array}{l} nm \end{array} \\ means the total particle mass concentration from size 13.8 nm to 723.4 nm. \overset{c}{} D_{(mean)} \\ means the particle mean diameter. \end{array}$

110 **2.2 SOA particle analysis**

111 **2.2.1 SOA yield**

112 The SOA particle size distribution was measured with a scanning mobility particle sizer (SMPS), 113 which consists of a differential mobility analyzer (DMA) (model 3082, TSI Inc., USA) and a 114 condensation particle counter (CPC) (model 3776, TSI Inc., USA). The samples were measured by SMPS 115 every 5 minutes with a sampling flow and a sheath flow of 0.3 L min⁻¹ and 3 L min⁻¹, respectively. The 116 SOA mass concentration was calculated from the volume concentration measured with SMPS and the 117 aerosol density, which was estimated to be 1.25 cm⁻³ for limonene- and 1.09 g cm⁻³ for Δ^3 -carene-SOA 118 (Thomsen et al., 2021; Watne et al., 2017).

119 The SOA yield (Y) for individual organic gas can be calculated as:

120 $Y = \frac{\Delta M}{\Delta HC}$

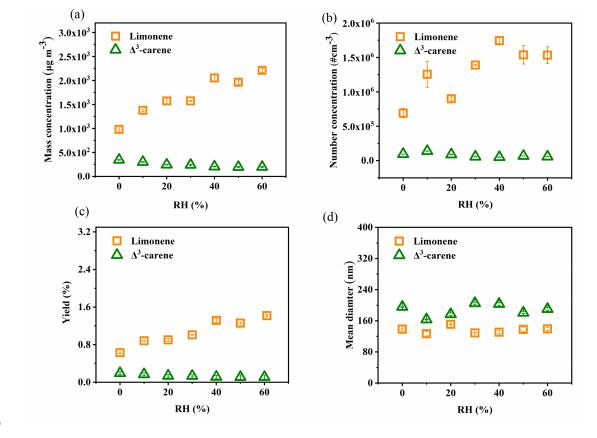
121 Where ΔM is the total mass concentration of SOA, ΔHC is the mass concentration of reacted precursor

122 (Ng et al., 2007; Odum et al., 1996).

2.2.2 Ultra-high performance liquid chromatography quadrupole time-of-flight mass spectrometry analysis

125 An ultra-high performance liquid chromatography (UPLC, UltiMate 3000, Thermo Scientific) 126 coupled with a quadrupole time-of-flight mass spectrometry (Q-TOFMS, Bruker Impact HD) was used to analyze the molecular-level chemical composition of SOA. First, the SOA particles were collected on the PTFE filters (47 mm diameter, 0.22 μ m pore size, Jinteng, China). Next, these filters were dissolved and extracted by 5 mL methanol for two times. Extracts were then filtered through PTFE syringe filters (0.22 μ m pore size), and were concentrated to near dryness by nitrogen-blowing. At last, the samples were redissolved in a 200 μ L solution with 0.1% (v/v) formic acid in 50:50 methanol/ultrapure water mixture.

133 The parameters of LC-MS were set as follows: capillary voltage 4000 V, nebulizer pressure 0.4 bar, 134 dry heater temperature 200°C, end plate voltage -500 V, and flow of dry gas 4 L min⁻¹. A C₁₈ column 135 (100 Å, 3 mm particle size, 2.1 mm×50 mm, Waters, USA) was used with a column temperature of 35°C. 136 The mobile phase was 0.1 % formic acid in methanol (A) and 0.1 % formic acid in ultra-high purity 137 water (B) with a flow of 200 μ L min⁻¹. The injection volume was 5 μ L. The MS was operated in negative 138 ion mode, and the detection molecular weight range was from m/z 50 to 1500. The temperature ramp 139 program was: 0-3min with 0%-3% phase B, 3-25min with 3%-50% phase B, 25-43min with 50%-90% 140 phase B, 43-48 min with 90%-3% phase B, 48-60min with 3% phase B.


141 **3 Results and discussion**

142 **3.1 SOA production under different RH conditions**

143 SOA formation of a representative experiment is shown in Fig. S3. It is found that the formed SOA 144 are mainly in the size range of 60-200 nm, and the number concentration and mass concentration are 145 relatively stable during the course of the OFR experiment. SOA formation from limonene and Δ^3 -carene 146 in terms of particle number concentration, particle mass concentration, and SOA yield as a function of 147 RH are illustrated in Fig. 1a-c. We find that all the above-mentioned 3 parameters of limonene-SOA 148 increase with the increasing RH. The increment of particle mass concentration and SOA yield from the 149 ozonolysis of limonene is ~100% higher at wet (60% RH) than at dry conditions. In contrast, SOA 150 formation from Δ^3 -carene is suppressed by ~40% under high RH. The distinct effects of RH on SOA 151 formation from the ozonolysis of limonene and Δ^3 -carene found in this study agree with most previous 152 studies (Yu et al., 2011; Jonsson et al., 2006b; Bonn et al., 2002; Gong and Chen, 2021; Li et al., 2019b). 153 As shown in Table 2, Yu et al. (2011) reported a positive correlation between SOA production and RH 154 for the ozonolysis of limonene in the chamber experiments without OH scavenger. Their experimental

155 condition is similar to that in our study regarding the absence of OH scavenger and, thus, similar results 156 were observed. However, in the presence of OH scavenger, results are quite different. Jonsson et al. (2006) 157 observed a similar enhancement effect of high RH on SOA production with 2-butanol as the OH 158 scavenger, while Bonn et al. (2002) found a negligible or suppressive effect with cyclohexane as the OH 159 scavenger. It should be noted that the OH scavenger not only has the ability to scavenge OH but also 160 produces additional products which may influence the reactions of target precursors. For example, there 161 is no difference between 2-butanol and cyclohexane in the scavenging ability of OH radical, though 2-162 butanol will produce more HO₂ \cdot than cyclohexane and, consequently, R \cdot will react with HO₂ \cdot to produce 163 more hydroxyl acids and hydroxyl per-acid products, most of which have low volatility and, thus high 164 partitioning into the particle phase. According to previous studies, the influence of different OH 165 scavengers can vary (Jonsson et al., 2008). This may explain the different findings with and without OH 166 scavenger for limonene-SOA. With regard to Δ^3 -carene, similar results are found in the absence of OH 167 scavenger, namely, high RH has negligible or slightly suppressive effect on SOA production (Bonn et al., 168 2002; Fick et al., 2002). Same as limonene, the presence of OH scavenger and its different chemical 169 nature can explain the different results found previously (Jonsson et al., 2006a; Bonn et al., 2002).

170 The enhancement in limonene-SOA production under high RH can be due to several reasons from 171 either physical or chemical processes. First, the hygroscopic growth of the particles (i.e., absorption of 172 water content) can lead to higher mass concentration under higher RH, but the enhancement should be 173 at most ~30% as the growth factor (GF, the ratio of wet and dry diameter: Dwet/Ddry) of limonene-SOA is 174 ≤1.1 (Varutbangkul et al., 2006). However, we do not observe an obvious change in the mean diameter 175 when comparing dry and wet conditions (Fig. 1d). In addition, hygroscopic growth should also occur for 176 Δ^3 -carene SOA, but no obvious enhancement in particle mass is observed (Fig. 1a). Therefore, it is 177 suggested that physical processes regarding hygroscopic growth play a minor role in the enhancement in 178 limonene-SOA under high RH. As a consequence, we believe that chemical processes are likely the 179 reason of the enhancement in limonene-SOA under high RH. Water can influence chemical processes in 180 the gas phase or in the particle phase. Particle-phase reactions can promote the growth of small particles 181 and, thus, mainly lead to larger particle sizes. As the observed SOA enhancement is mainly from high 182 number concentration particles rather than the large size particles (Fig. 1b and 1d), it is likely that the 183 water-participated gas-phase reactions are the most possible reasons for the limonene-SOA enhancement.

184 The reaction mechanism is analyzed below based on the mass spectra information on the SOA.

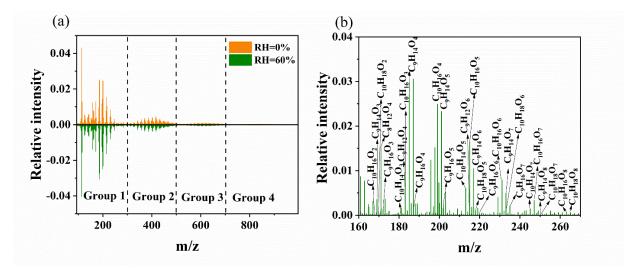
Figure 1. The effect of RH on the SOA formation: (a) number concentration, (b) mass concentration, (c)

187 SOA yield, (d) mean diameter.

1	00
_	109

 Table 2. Comparison with previous studies on the effect of RH.

	Precursor	O ₃ concentration		011			SOA Mass				
Precursor	concentration	(ppb)	Reactor	ОН	T (K)	RH (%)	Concentration	SOA Yield (%)	M ^a	$\mathbf{N}^{\mathbf{b}}$	Reference
	(ppb)			scavenger			(µg/m ³)				
1000	1000	1000	flow	1-1	205+2	0.02 and	NIMC	NI MC		_e	Down et al. (2002)
	1000		reactor	cyclohexane	295±2	32.5	N.M ^c	N.M ^c	no effect		Bonn et al. (2002)
		100±5				18±2,		$7.0\pm0.7;$			
	320		chamber	N.M.°	296±2	50±3	24; 58; 120	17.4±1.3;	+ ^d (7 times)	+ ^d (8 times)	Yu et al. (2011)
						and 82±2		53.4±1.9			
	15 and 30	430.9	flow	2 hutanal	208+0.4	< 2-85	2.7-10.5 and 62-	6.8-26.4 and	$+^{d}$	$+^{d}$	Jamasan at al. (2006)
limonene	15 and 50		reactor	2-butanol	298±0.4	< 2-85	229	77.4-285.7	+-	+-	Jonsson et al. (2006)
	endocyclic	endocyclic					endocyclic	endocyclic	exocyclic		
	-	(270) and	flow	2-butanol	298	10-50	(~11) and	(~7.4) and	$(+^d)$ and	N.M ^c	Gong and Chen
	(24.6) and	exocyclic (12200)	reactor	2-000000	298	10-30	exocyclic (22-	exocyclic (23.8-	endocyclic	IN.IVI	(2021)
	exocyclic (15.2)						51)	55.3)	(- ^c)		
1095	1085	900±10	flow	none	298	3 67	150; 200; 210	N.M	+d	_e	Li et al. (2019)
	1085		reactor	none	298	3-62	130; 200; 210	11.111	T -		LI et al. (2019)


	321±39	5786±203	flow reactor	none	298	0-60	980.9-2211.1	62.9-141.8	+ ^d (2 times)	+ ^d (3 times)	this study	
	1000	1000	flow		205+2	0.02 and	N.M ^c	N.M ^c	no effect	e	Dama et al. (2002)	
	1000		reactor	cyclohexane	295±2	32.5			no effect	_e	Bonn et al. (2002)	
	14.2 and 29.4	2300	flow	2-butanol	298±0.4	< 2-85	0.78-3.8 and	2.1-10.1and	$+^{d}$	$+^{d}$	Jonsson et al. (2006)	
Δ^3 -carene			reactor	2-000000	290-0.1	2 00	15.3-94;	19.8-116.7	·	, i		
	1111	900±10	flow	none	298	3-62	75; 80; 90	N.M	_e	_e	Li et al. (2019)	
			reactor	none	290	5 02	72,00,70	1.111			21 et ul (2013)	
	341±28	6257±140	flow	none	298	0-60	346.0-198.5	19.4-11.1	_e	no effect	this study	
	•		reactor								and study	

^a M means the change trend total particle mass concentration. ^b N means total particle number concentration. ^c N.M. means not mentioned. ^d Positive sign (+) means the

191 mass or number concentration increases with RH. ^e Negative sign (–) means the mass or number concentration decreases with RH.

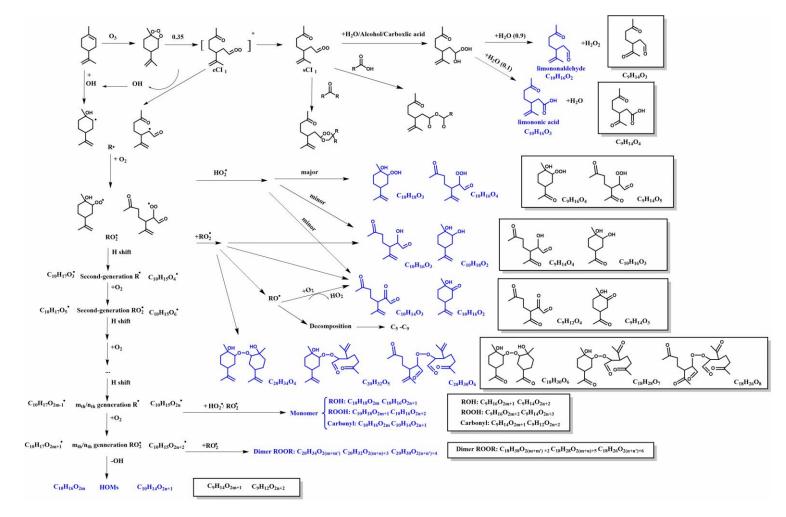
192 **3.2 Molecular analysis of SOA particles**

193 The UPLC/ESI-Q-TOF-MS was used to examine the SOA molecular composition under high and 194 low RH conditions. As shown in Fig. 2a, the mass spectra of limonene-SOA are divided into four groups: 195 monomeric group (<m/z 300), dimeric group (m/z 300-500), trimeric group (m/z 500-700), and 196 tetrameric group (m/z 700-1000), corresponding to products containing one, two, three, and four 197 oxygenated limonene units, respectively (Bateman et al., 2009). Most of the SOA molecules are 198 monomers (>60%) (Fig. 2b) and dimers (~25%), while trimers and tetramers contribute to very small 199 fractions (<10% and ~3%) (Table S1). Correspondingly, the distribution of Δ^3 -carene-SOA can be 200 divided into four groups (Fig. S4), comparable to that of limonene-SOA. Most of the SOA molecules are 201 monomers (\sim 70%) and dimers (\sim 25%), while trimers and tetramers contribute to smaller proportions (\sim 2%) 202 and <1%, respectively) (Table S2). Although the SOA mass concentration increases by $\sim 100\%$ under 203 high RH condition, the relative intensities of MS peaks do not significantly change with varying RH 204 conditions. In other words, we did not observe an obvious change in the overall MS patterns, and the 205 fractions of the four groups only slightly differed under different RH conditions, e.g., the fraction of 206 monomers was 62% under dry condition and 66% under wet conditions. However, if we take a closer 207 look, the intensities and contributions of specific peaks are quite different with varying RH. For example, 208 the relative intensity of $C_{10}H_{16}O_2$, a possible first-generation product (Gong et al., 2018), decreases by 209 \sim 20% with increasing RH from dry to 60% (Table S3). This is likely due to the multi-generation reactions 210 influenced by water vapor concentration, as discussed below with the proposed reaction mechanism of 211 limonene ozonolysis.

212

213 Figure 2. UPLC/ (-) ESI-Q-TOF-MS mass spectra of SOA from limonene ozonolysis. (a) MS under

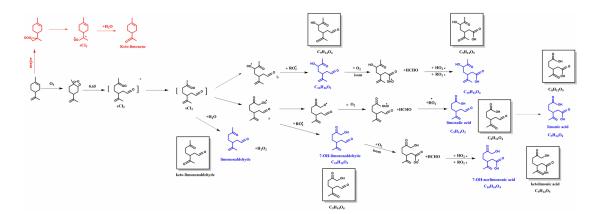
214 high and low RH conditions; (b) the identification of monomers under high RH condition.


215 The proposed reaction mechanism of limonene ozonolysis is shown in Fig. 3 and Fig. 4. The initial 216 step in the reaction of O_3 with limonene is the attack of the endocyclic double bond to form eCI_1 and 217 eCI_2 (with branching ratios of 0.35 and 0.65, respectively). In the context of eCI_1 , several complex 218 reactions occur, with the most dominant reaction being the generation of hydroxyl radicals (OH) and a 219 reaction pathway known as sCI₁. The sCI₁ pathway can proceed through three distinct reactions, as 220 depicted in Fig. 3. The first pathway is the reaction with H₂O, alcohol or carboxylic acid to form a 221 carboxylic acid species with hydroxyl, which would subsequently lose a molecule of water to form 222 limononaldehyde or lose a molecule of hydrogen peroxide to form limononic acid (Grosjean et al., 1992; 223 Li et al., 2019b). The second and third pathways involve reactions of sCI₁ with carboxylic acids and 224 carbonyls, respectively, leading to the formation of anhydrides and secondary ozonides. Additionally, the 225 generated OH radicals can react with limonene, giving rise to another alkyl radical, C₁₀H₁₇O. These 226 alkyl radicals react with O_2 and form peroxy radicals (RO₂·). The atmospheric fate of produced RO₂· in 227 the absence of NO_x includes the reaction with RO₂ or HO₂ (Atkinson and Arey, 2003) and the 228 unimolecular H shift. The RO_2 + HO_2 route mainly form hydroperoxide (ROOH), and the minor fraction 229 is to form alcohols and carbonyls (Atkinson and Arey, 2003). The products of bimolecular reactions 230 between RO2. and RO2. are alcohols, carbonyls, alkoxy radicals, peroxides and ROOR dimers (Hammes 231 et al., 2019; Peng et al., 2019). The H shift of RO₂ can form second-generation R and trigger a main 232 generation channel of highly oxidized molecules (HOMs), i.e., R. would go through a process of repeated 233 oxygen addition and hydrogen-atom shift to form HOMs with high O/C ratios of > 0.7-0.8 (Molteni et 234 al., 2018; Bianchi et al., 2019).

In addition to the eCI_1 route, the eCI_2 pathway is also responsible for the generation of various products (Fig. 4). Since the reaction of the hydroxyl radical (OH) attacking limonene is already depicted in Fig. 3, our main emphasis in Fig. 4 is on the pathways involved in the generation of SCI. First, sCI_2 reacts with H₂O and decomposes to limononaldehyde and H₂O₂. Additionally, sCI_2 could experience an O₂ addition, ·OH loss and isomerization to produce two types of RO₂·, which can undergo the similar reactions as the RO₂· formed from the sCI_1 route, and the major products are also shown in Fig. 4.

241 Since limonene and Δ^3 -carene both have an endocyclic double bond, the similar reactions as

242 mentioned above can occur for the ozonolysis of Δ^3 -carene (Fig. S5), and most corresponding formula 243 in Fig. S5 could be identified in Table S4. However, the reactivity of limonene towards O₃ is expected to 244 be higher owing to its exocyclic double bond. As shown in Fig. 4, the attack of O₃ to the exocyclic double 245 bond mainly leads to sCI₃ (highlighted in red) with the unpaired electrons outside the ring (Leungsakul 246 et al., 2005). sCI₃ can react with H₂O to form a carbonyl called keto-limonene. It should be noted that 247 this reaction can occur not only for limonene, but also for all the products that retain the exocyclic double 248 bond. As a result, the compounds that are colored in blue in Fig. 3 and Fig. 4 can undergo further reactions 249 to generate products with an additional carbonyl (see the boxes in Fig. 3 and Fig. 4). Furthermore, their 250 molecular formula shown in Table S5 have been identified using the Q-TOF-MS. This mechanism can 251 well explain the decrease in the relative intensity of $C_{10}H_{16}O_2$ from high RH to low RH and the increase 252 in the relative intensity of C₉H₁₄O₃ from low RH to high RH (Table S3).

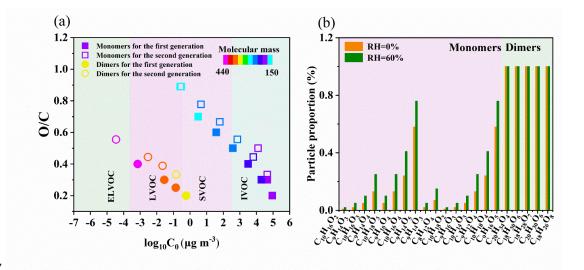

253 In such progress, we cannot rule out the possibility that relative humidity (RH) may influence the 254 generation of other free radicals (Ma et al., 2009), thereby impacting the formation of secondary organic 255 aerosols (SOA), such as, OH-radical reactions (Bonn et al., 2002; Fick et al., 2002). However, Molar OH 256 radical yields were reported as 0.65±0.10 (Hantschke et al., 2021), 0.86±0.11 (Aschmann et al., 2002) 257 and 0.56 to 0.59 (Wang et al., 2019) for Δ^3 -carene, while for limonene, the reported yields were 0.67±0.10 258 (Aschmann et al., 2002) and 0.76±0.06 (Herrmann et al., 2010). It seems that the OH radicals produced 259 from limonene and Δ^3 -carene are quite similar within the range of uncertainties. Therefore, the increased 260 ozone consumption by limonene seems primarily attributed to the presence of its exocyclic double bond.

261

262 Figure 3. Proposed formation mechanism for SOA formation from eCI1 oxidation under high RH. The compounds in blue and in boxes are identified using UPLC/ (-) ESI-Q-

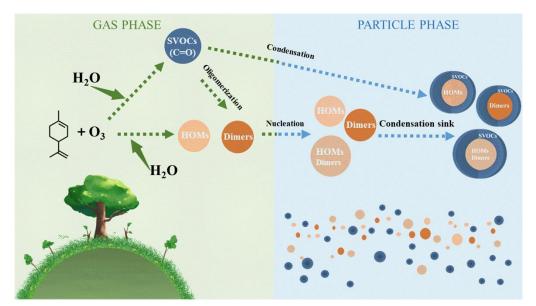
263 TOF-MS.

264


Figure 4. Proposed formation mechanisms for SOA formation from eCI₂ and exocyclic double bond
oxidation under high RH. The compounds in blue and in boxes are identified using UPLC/ (-) ESI-QTOF-MS.

268

269 **3.3 Processes leading to the increase or decrease in SOA formation**


270 Based on the results and mechanisms shown above, we present evidence that high humidity 271 enhances limonene-SOA formation. First, the presence of water vapor enhances the formation of 272 carbonyls from the reaction of exocyclic double bond, and the oligomerization of these carbonyls 273 generates more dimers including hemiacetal (or acetal) formation and aldol condensation (Zhang et al., 274 2022; Kroll et al., 2005; Jang et al., 2003). As shown in Table S6, the intensity of dimers generating from multi-carbonyls under high RH is higher than that under low RH, and 54 out of the total 187 dimers were 275 276 exclusively observed for limonene under high humidity conditions, contributing to a corresponding 277 intensity of ~19% (Table S7). These dimers can be classified as low-volatile organic compounds (LVOC; $3 \times 10^{-4} < C_0 < 0.3 \ \mu g \ m^{-3}$) and extremely low-volatile organic compounds (ELVOCs; $C_0 < 3 \times 10^{-4} \ \mu g$ 278 279 m^{-3}) (Fig. 5a), and thus promote the nucleation and new particle formation in different ways. This finding 280 is similar to that from a previous study showing that high RH can promote dimer formation from the 281 ozonolysis of α -pinene (Kristensen et al., 2014). Second, we find that high RH can also promote the 282 formation of HOMs, although the mechanism remains unclear. As shown in Table S3, many HOMs 283 proposed from the mechanism are detected under high RH condition but not detected under low RH 284 condition, including both monomers and dimers. Many HOMs have low volatilities and, thus, can also 285 promote new particle formation. Overall, the promoted dimer and HOM formation may greatly enhance 286 the new particle number concentration under high RH condition (Fig. 6).

15

287

Figure 5. (a) Distribution of the limonene-SOA in the two-dimensional volatility basis set (2D-VBS)
space. (b) Partitioning coefficients of limonene monomers and dimers under low and high RH conditions.

292 Figure 6. Schematic diagram of the possible mechanisms for the enhancement of limonene-SOA.

293

High particle number concentration generally provides more surface areas for semi-volatile organic compounds (SVOCs; $0.3 < C_0 < 300 \ \mu g \ m^{-3}$) to condense on, which results in higher condensation sink (CS). In the OFR, the fates of SVOCs include condensing on aerosol, getting lost on the wall, and reacting with OH radicals to form functionalization and/or fragmentation products (Palm et al., 2016; Li et al., 2019a). The promoted condensation by higher CS leads to a higher fraction of SVOCs getting into the particle phase rather than getting lost on the wall or becoming smaller fragments staying in the gas phase,

300 and thus promoting SOA formation (Li et al., 2019a). Furthermore, the transformation from C-C double 301 bond to carbonyl shown in Fig. 3 and Fig. 4 decreases the volatility of molecules, which can largely 302 influence the gas-particle partitioning of the monomeric compounds (Fig. 5b). For example, the C₀ values 303 of $C_{10}H_{16}O_2$ and $C_{10}H_{16}O_3$ are 90701 and 19968 µg m⁻³, corresponding to partitioning coefficients of 304 0.01 and 0.05, respectively (Fig. 5b and Table S3), with an SOA mass concentration of $\sim 1000 \ \mu g \ m^{-3}$ 305 under dry condition. When they are converted to carbonyls $C_9H_{14}O_3$ and $C_9H_{14}O_4$, the values of C_0 306 become 45556 and 6479 µg m⁻³, corresponding to partitioning coefficients of 0.02 and 0.13, respectively 307 (Fig. 5b and Table S3), with the same SOA loading. This enhancement in partitioning coefficient can 308 largely promote the condensation of SVOCs and, thus, enhance the SOA mass concentration. In addition, 309 the enhanced SOA formation can further influence the equilibrium, e.g., the partitioning coefficient of $C_{10}H_{16}O_3$ increases from 0.05 to 0.10 when SOA mass concentration increases from ~1000 µg m⁻³ under 310 311 dry condition to $\sim 2000 \ \mu g \ m^{-3}$ under wet condition (Fig. 5b and Table S3). The distribution of saturation 312 vapor pressure for monomers and dimers identified by MS has also been shown in Fig. 5a. As can be 313 seen from this figure, around 50% monomers are categorized as SVOCs, thus having the large fraction 314 in the particle phase when converting from dry to wet conditions. Overall, it is likely that the different 315 fate and partitioning of SVOCs largely enhance the amount of SVOCs in the particle phase (Fig. 6). 316 Concluding the analysis above, high humidity promotes the SOA formation from the ozonolysis of limonene in two steps: nucleation of new particles and condensation of SVOCs on them (Fig. 6). While 317 our study highlights significant changes in gas-phase chemistry, we cannot exclude the possibility of 318 319 concurrent reactions occurring in the condensed phase. These two steps are closely related to the multi-320 generation reactions of the exocyclic C=C bond, which are unlikely to happen for the ozonolysis of Δ^3 -321 carene. Interestingly, Gong and Chen (2021) have found that high RH can inhibit the SOA formation 322 from the first-generation oxidation of limonene ozonolysis, but enhance the SOA formation from the 323 second-generation oxidation (Gong and Chen, 2021), their results agree well with the results and analysis 324 shown here. In contrast, Li et al. (2019b) found negligible change in dimers and HOMs in limonene- O_3 325 system when changing RH from 0 to 60%. The discrepancy is mainly attributed to the different 326 experimental conditions. The ozone exposure in this study is ~18 times higher than in Li et al. (2019b), 327 while the limonene concentration in this study is only \sim 30% of that in their study. These two conditions 328 both favor the multi-generation reactions occurred at the exocyclic double bond of limonene and its

329 products. Thus, we believe this leads to the different results regarding the formation of HOMs and dimers.

330 Regarding Δ^3 -carene, the mechanisms and processes are almost opposite to those of limonene. First, 331 water vapor reacts with sCI₁ or sCI₂ to promote the formation of α -hydroxyalkyl-hydroperoxides (Fig. 332 S5). Their subsequent products without second ozonolysis of exocyclic double bond have higher 333 volatility, and may most likely prevail in the gas phase. In addition, it has been found that α -hydroxyalkyl 334 hydroperoxides preferentially decompose into aldehydes and H₂O₂ (Kumar et al., 2014; Chen et al., 2016), 335 i.e., 3-caronaldehyde for Δ^3 -carene, which has higher volatility than the products from other reaction 336 pathways. Correspondingly, the number and relative intensity of HOMs and dimers detected under high 337 RH conditions are both lower than those under low RH conditions (Table S8). Furthermore, out of a total 338 of 178 dimers, 63 dimers were exclusively identified under low RH conditions (Table S7). As a result, 339 high RH shows an inhibitory effect on the SOA formation from Δ^3 -carene ozonolysis.

340 To investigate the multi-generation reactions of limonene under low-concentration conditions, we 341 conducted low-concentration limonene ozonolysis experiments, and the results are shown in Fig. S6. In 342 these experiments, the limonene and O3 concentrations were 20.5 ppb and 5.7 ppm, respectively. 343 According to the experimental results, the number concentration of SOA formed from limonene 344 ozonolysis increased by approximately 1.4 times under high RH, which is similar to the increase observed 345 under high-loading conditions. The mass concentration increased by approximately 1.3 times at a 346 precursor concentration of 20.5 ppb. The relatively small increase in mass concentration compared to the 347 high-concentration conditions may be attributed to the less pronounced distribution of SVOCs at low 348 mass concentrations. This result suggests that the enhancement effect on limonene SOA by high RH is 349 still valid for low precursor concentrations.

350 To further confirm the assumption that water-influenced multi-generation reactions of the exocyclic 351 double bond enhance the SOA formation, we conducted two comparative analyses: firstly, we examined 352 the ozonolysis of the endocyclic double bond in limonene, leaving the exocyclic double bond unreacted. 353 This was done by applying a low O_3 concentration (~67 ppb), since the reaction of O_3 with endocyclic 354 double bond is \sim 30 times faster than the reaction of O₃ with exocyclic double bond (Shu and Atkinson, 355 1994). Interestingly, when limonene was oxidized at only the endocyclic double bond, we observed a 356 slight decrease in both the number and mass concentrations as the RH increased (Fig. S7). This is similar 357 to the results obtained for Δ^3 -carene, which contains only one endocyclic double bond. Secondly, we

358 compared the ozonolysis of structurally similar β -caryophyllene, which has an exocyclic C-C double 359 bond that can undergo further reactions (Fig. S8). As expected, we observe a large enhancement in SOA 360 formation under high RH condition (Table S9 and Fig. S9). This implies that monoterpenes, 361 sesquiterpenes, and other BVOCs with two unsaturation double bonds may follow similar reaction 362 mechanisms during ozonolysis, and thus have a RH dependency in SOA production.

363 4 Conclusions

364 In this study, the effect of humidity on SOA production from the ozonolysis of two monoterpenes 365 (limonene and Δ^3 -carene) was investigated with an OFR. Contrasting impacts of RH on the SOA 366 formation were observed: limonene-SOA yield increases by ~100% when RH changes from ~1% to 367 ~60%, while Δ^3 -carene-SOA yield slightly decreases. By analyzing the chemical composition of SOA 368 with ESI-Q-TOF-MS, we find that the multi-generation reactions of the exocyclic C-C double bond are 369 likely the driving force of the enhancement in limonene-SOA. The presence of water promotes the 370 formation of carbonyls from the reaction of exocyclic double bond, and further favors the formation of 371 dimers and HOMs. This leads to promoted new particle formation and subsequent condensation of SVOCs. These reactions also lower the volatilities of the SVOCs, and further promote the gas-particle 372 partitioning. Moreover, this hypothesis is supported by a similar behavior of the ozonolysis of β -373 374 caryophyllene (sesquiterpene with an exocyclic double bond) in SOA enhancement under high RH 375 condition. However, since aerosol dynamics of small clusters and particles are very complex, we do not 376 rule out a series of reactions that may occur in the particle phase. The results in this study suggest that 377 multi-generation reactions play an important role in SOA formation from the ozonolysis of BVOCs, 378 which are significantly influenced by humidity. This impact is largely dependent on the molecular 379 structure of the SOA precursors (e.g., with or without the exocyclic double bond), thus highlighting the 380 importance to consider the molecular structure of monoterpenes in modeling and field studies of biogenic 381 SOA.

382

383 **Data availability.** Experimental data are available upon request to the corresponding authors.

384 **Supplement.** The supplement related to this article is available online.

385 Author contributions. LD and SZ designed the experiments and SZ carried them out. SZ performed

19

data analysis with assistance from KL, LD, ZY, and JL. SZ and KL wrote the paper with contributions

387 from all co-authors.

- 388 **Declaration**. The authors declare that they have no conflict of interest.
- 389 Acknowledgements. We thank Guannan Lin, Jingyao Qu and Zhifeng Li from the State Key Laboratory
- 390 of Microbial Technology of Shandong University for help and guidance with MS measurements.
- 391 Financial support. This research has been supported by the National Natural Science Foundation of
- 392 China (grant no. 22076099), and the Fundamental Research Fund of Shandong University (grant no.
- 393 2020QNQT012).

394 Reference

- 395 Ahmadov, R., McKeen, S. A., Robinson, A. L., Bahreini, R., Middlebrook, A. M., de Gouw, J. A.,
- 396 Meagher, J., Hsie, E. Y., Edgerton, E., Shaw, S., and Trainer, M.: A volatility basis set model for
- 397 summertime secondary organic aerosols over the eastern United States in 2006, J. Geophys. Res.-Atmos.,
- 398 117, D6301, https://doi.org/10.1029/2011JD016831, 2012.
- 399 Aschmann, S. M., Arey, J., and Atkinson, R.: OH radical formation from the gas-phase reactions of O3
- 400 with a series of terpenes, Atmos. Environ., 36, 4347-4355, https://doi.org/10.1016/S1352-401 2310(02)00355-2, 2002.
- 402 Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the NO₃ radical with organic
- 403 compounds, J. Phys. Chem. Ref. Data, 20, 459-507, https://doi.org/10.1063/1.555887, 1991.
- 404 Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic volatile organic compounds: a
- 405 review, Atmos. Environ., 37, 197-219, https://doi.org/10.1016/S1352-2310(03)00391-1, 2003.
- 406 Bäck, J., Aalto, J., Henriksson, M., Hakola, H., He, Q., and Boy, M.: Chemodiversity of a Scots pine
- 407 stand and implications for terpene air concentrations, Biogeosciences, 9, 689-702,
- 408 https://doi.org/10.5194/bg-9-689-2012, 2012.
- 409 Bateman, A. P., Nizkorodov, S. A., Laskin, J., and Laskin, A.: Time-resolved molecular characterization
- 410 of limonene/ozone aerosol using high-resolution electrospray ionization mass spectrometry, Phys. Chem.
- 411 Chem. Phys., 11, 7931-7942, https://doi.org/10.1039/b905288g, 2009.
- 412 Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D.,
- 413 Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R.,

- 414 Thornton, J. A., Donahue, N., Kjaergaard, H. G., and Ehn, M.: Highly oxygenated organic molecules
- 415 (HOM) from gas-phase autoxidation involving peroxy radicals: a key contributor to atmospheric aerosol,
- 416 Chem. Rev., 119, 3472-3509, https://doi.org/10.1021/acs.chemrev.8b00395, 2019.
- 417 Bonn, B. and Moortgat, G. K.: New particle formation during α- and β-pinene oxidation by O₃, OH and
- 418 NO₃, and the influence of water vapour: particle size distribution studies, Atmos. Chem. Phys., 2, 183-
- 419 196, https://doi.org/10.5194/acp-2-183-2002, 2002.
- 420 Bonn, B., Schuster, G., and Moortgat, G. K.: Influence of water vapor on the process of new particle
- 421 formation during monoterpene ozonolysis, J. Phys. Chem. A, 106, 2869-2881,
 422 https://doi.org/10.1021/jp012713p, 2002.
- 423 Chen, H., Ren, Y., Cazaunau, M., Dalele, V., Hu, Y., Chen, J., and Mellouki, A.: Rate coefficients for the
- 424 reaction of ozone with 2-and 3-carene, Chem. Phys. Lett., 621, 71-77, 425 https://doi.org/10.1016/j.cplett.2014.12.056, 2015.
- 426 Chen, L., Huang, Y., Xue, Y., Shen, Z., Cao, J., and Wang, W.: Mechanistic and kinetics investigations
- 427 of oligomer formation from Criegee intermediate reactions with hydroxyalkyl hydroperoxides, Atmos.
- 428 Chem. Phys., 19, 4075-4091, https://doi.org/10.5194/acp-19-4075-2019, 2019.
- 429 Chen, L., Wang, W., Wang, W., Liu, Y., Liu, F., Liu, N., and Wang, B.: Water-catalyzed decomposition
- 430 of the simplest Criegee intermediate CH₂OO, Theor. Chem. Acc., 135, 131,
 431 https://doi.org/10.1007/s00214-016-1894-9, 2016.
- 432 Chen, X. and Hopke, P. K.: A chamber study of secondary organic aerosol formation by limonene
- 433 ozonolysis, Indoor Air, 20, 320-328, https://doi.org/10.1111/j.1600-0668.2010.00656.x, 2010.
- 434 Cholakian, A., Beekmann, M., Coll, I., Ciarelli, G., and Colette, A.: Biogenic secondary organic aerosol
- 435 sensitivity to organic aerosol simulation schemes in climate projections, Atmos. Chem. Phys., 19, 13209-
- 436 13226, https://doi.org/10.5194/acp-19-13209-2019, 2019.
- 437 de Matos, S. P., Teixeira, H. F., de Lima, Á. A. N., Veiga-Junior, V. F., and Koester, L. S.: Essential oils
- 438 and isolated terpenes in nanosystems designed for topical administration: a review, Biomolecules, 9, 138,
- 439 https://doi.org/doi:10.3390/biom9040138, 2019.
- 440 Drozd, G. T. and Donahue, N. M.: Pressure dependence of stabilized Criegee intermediate formation
- 441 from a sequence of alkenes, J. Phys. Chem. A, 115, 4381-4387, https://doi.org/10.1021/jp2001089, 2011.
- 442 Fick, J., Pommer, L., Andersson, B., and Nilsson, C.: A study of the gas-phase ozonolysis of terpenes:

- the impact of radicals formed during the reaction, Atmos. Environ., 36, 3299-3308,
 https://doi.org/10.1016/s1352-2310(02)00291-1, 2002.
- 445 Gong, Y. and Chen, Z.: Quantification of the role of stabilized Criegee intermediates in the formation of
- 446 aerosols in limonene ozonolysis, Atmos. Chem. Phys., 21, 813-829, https://doi.org/10.5194/acp-21-813-
- 447 2021, 2021.
- 448 Gong, Y., Chen, Z., and Li, H.: The oxidation regime and SOA composition in limonene ozonolysis: roles
- 449 of different double bonds, radicals, and water, Atmos. Chem. Phys., 18, 15105-15123,
- 450 https://doi.org/10.5194/acp-18-15105-2018, 2018.
- 451 Grosjean, D., Williams, E. L., and Seinfeld, J. H.: Atmospheric oxidation of selected terpenes and related
- 452 carbonyls: gas-phase carbonyl products, Environ. Sci. Technol., 26, 1526-1533,
- 453 https://doi.org/10.1021/es00032a005, 1992.
- 454 Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.:
- 455 The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and
- 456 updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492,
 457 https://doi.org/10.5194/gmd-5-1471-2012, 2012.
- 458 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L.,
- 459 Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proc. Natl. Acad. Sci.
- 460 U. S. A., 111, 17373-17378, https://doi.org/10.1073/pnas.1419604111, 2014.
- 461 Hammes, J., Lutz, A., Mentel, T., Faxon, C., and Hallquist, M.: Carboxylic acids from limonene oxidation
- 462 by ozone and hydroxyl radicals: insights into mechanisms derived using a FIGAERO-CIMS, Atmos.
- 463 Chem. Phys., 19, 13037-13052, https://doi.org/10.5194/acp-19-13037-2019, 2019.
- 464 Hantschke, L., Novelli, A., Bohn, B., Cho, C., Reimer, D., Rohrer, F., Tillmann, R., Glowania, M.,
- 465 Hofzumahaus, A., Kiendler-Scharr, A., Wahner, A., and Fuchs, H.: Atmospheric photooxidation and
- 466 ozonolysis of Δ 3-carene and 3-caronaldehyde: rate constants and product yields, Atmos. Chem. Phys.,
- 467 21, 12665-12685, 10.5194/acp-21-12665-2021, 2021.
- 468 Herrmann, F., Winterhalter, R., Moortgat, G. K., and Williams, J.: Hydroxyl radical (OH) yields from the
- 469 ozonolysis of both double bonds for five monoterpenes, Atmos. Environ., 44, 3458-3464,
- 470 https://doi.org/10.1016/j.atmosenv.2010.05.011, 2010.
- 471 Huang, X., Yun, H., Gong, Z., Li, X., He, L., Zhang, Y., and Hu, M.: Source apportionment and secondary

- 472 organic aerosol estimation of PM2.5 in an urban atmosphere in China, Sci. China-Earth Sci., 57, 1352-
- 473 1362, https://doi.org/10.1007/s11430-013-4686-2, 2014.
- 474 Jang, M. S., Carroll, B., Chandramouli, B., and Kamens, R. M.: Particle growth by acid-catalyzed
- 475 heterogeneous reactions of organic carbonyls on preexisting aerosols, Environ. Sci. Technol., 37, 3828-
- 476 3837, 10.1021/es021005u, 2003.
- 477 Jokinen, T., Berndt, T., Makkonen, R., Kerminen, V.-M., Junninen, H., Paasonen, P., Stratmann, F.,
- 478 Herrmann, H., Guenther, A. B., Worsnop, D. R., Kulmala, M., Ehn, M., and Sipilä, M.: Production of
- 479 extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric
- 480 implications, Proc. Natl. Acad. Sci. U. S. A., 112, 7123-7128,
 481 https://doi.org/doi:10.1073/pnas.1423977112, 2015.
- 482 Jonsson, A. M., Hallquist, M., and Ljungstrom, E.: Impact of humidity on the ozone initiated oxidation
- 483 of limonene, Δ^3 -carene, and α -pinene, Environ. Sci. Technol., 40, 188-194, 484 https://doi.org/10.1021/es051163w, 2006a.
- 485 Jonsson, A. M., Hallquist, M., and Ljungstrom, E.: Impact of humidity on the ozone initiated oxidation
- 486 of limonene, Delta(3)-carene, and alpha-pinene, Environ. Sci. Technol., 40, 188-194,
 487 https://doi.org/10.1021/es051163w, 2006b.
- 488 Jonsson, A. M., Hallquist, M., and Ljungstrom, E.: Influence of OH scavenger on the water effect on
- 489 secondary organic aerosol formation from ozonolysis of limonene, Δ^3 -carene, and α -pinene, Environ. Sci.
- 490 Technol., 42, 5938-5944, https://doi.org/10.1021/es702508y, 2008.
- 491 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C., Van Dingenen,
- 492 R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski, Y., Fuzzi, S., Horth, J.,
- 493 Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K., Vignati, E., Stephanou, E. G., and
- 494 Wilson, J.: Organic aerosol and global climate modelling: a review, Atmos. Chem. Phys., 5, 1053-1123,
- 495 https://doi.org/10.5194/acp-5-1053-2005, 2005.
- 496 Khamaganov, V. G. and Hites, R. A.: Rate constants for the gas-phase reactions of ozone with isoprene,
- 497 α and β -pinene, and limonene as a function of temperature, J. Phys. Chem. A, 105, 815-822,
- 498 https://doi.org/10.1021/jp002730z, 2001.
- 499 Kristensen, K., Cui, T., Zhang, H., Gold, A., Glasius, M., and Surratt, J. D.: Dimers in α-pinene secondary
- 500 organic aerosol: effect of hydroxyl radical, ozone, relative humidity and aerosol acidity, Atmos. Chem.

- 501 Phys., 14, 4201-4218, https://doi.org/10.5194/acp-14-4201-2014, 2014.
- 502 Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.: Chamber
- 503 studies of secondary organic aerosol growth by reactive uptake of simple carbonyl compounds, J.
- 504 Geophys. Res.-Atmos., 110, 10.1029/2005JD006004, 2005.
- 505 Kumar, M., Busch, D. H., Subramaniam, B., and Thompson, W. H.: Role of tunable acid catalysis in
- 506 decomposition of α -Hydroxyalkyl hydroperoxides and mechanistic implications for tropospheric
- 507 chemistry, J. Phys. Chem. A, 118, 9701-9711, https://doi.org/10.1021/jp505100x, 2014.
- 508 Leungsakul, S., Jaoui, M., and Kamens, R. M.: Kinetic Mechanism for Predicting Secondary Organic
- 509 Aerosol Formation from the Reaction of d-Limonene with Ozone, Environ. Sci. Technol., 39, 9583-9594,
- 510 https://doi.org/10.1021/es0492687, 2005.
- 511 Levy, H., II, Horowitz, L. W., Schwarzkopf, M. D., Ming, Y., Golaz, J.-C., Naik, V., and Ramaswamy,
- 512 V.: The roles of aerosol direct and indirect effects in past and future climate change, J. Geophys. Res.-
- 513 Atmos., 118, 4521-4532, https://doi.org/10.1002/jgrd.50192, 2013.
- 514 Li, J. Y., Zhang, H. W., Ying, Q., Wu, Z. J., Zhang, Y. L., Wang, X. M., Li, X. H., Sun, Y. L., Hu, M.,
- 515 Zhang, Y. H., and Hu, J. L.: Impacts of water partitioning and polarity of organic compounds on
- 516 secondary organic aerosol over eastern China, Atmos. Chem. Phys., 20, 7291-7306,
- 517 https://doi.org/10.5194/acp-20-7291-2020, 2020.
- 518 Li, K., Liggio, J., Lee, P., Han, C., Liu, Q., and Li, S.-M.: Secondary organic aerosol formation from α-
- 519 pinene, alkanes, and oil-sands-related precursors in a new oxidation flow reactor, Atmos. Chem. Phys.,
- 520 19, 9715-9731, https://doi.org/10.5194/acp-19-9715-2019, 2019a.
- 521 Li, X., Chee, S., Hao, J., Abbatt, J. P. D., Jiang, J., and Smith, J. N.: Relative humidity effect on the
- 522 formation of highly oxidized molecules and new particles during monoterpene oxidation, Atmos. Chem.
- 523 Phys., 19, 1555-1570, https://doi.org/10.5194/acp-19-1555-2019, 2019b.
- 524 Liu, Q., Liggio, J., Breznan, D., Thomson, E. M., Kumarathasan, P., Vincent, R., Li, K., and Li, S.-M.:
- 525 Oxidative and Toxicological Evolution of Engineered Nanoparticles with Atmospherically Relevant
- 526 Coatings, Environ. Sci. Technol., 53, 3058-3066, 10.1021/acs.est.8b06879, 2019.
- 527 Liu, Y., Liggio, J., Harner, T., Jantunen, L., Shoeib, M., and Li, S.-M.: Heterogeneous OH Initiated
- 528 Oxidation: A Possible Explanation for the Persistence of Organophosphate Flame Retardants in Air,
- 529 Environ. Sci. Technol., 48, 1041-1048, 10.1021/es404515k, 2014.

- 530 Ma, Y., Porter, R. A., Chappell, D., Russell, A. T., and Marston, G.: Mechanisms for the formation of
- 531 organic acids in the gas-phase ozonolysis of 3-carene, Phys. Chem. Chem. Phys., 11, 4184-4197,
- 532 https://doi.org/10.1039/b818750a, 2009.
- 533 Molteni, U., Bianchi, F., Klein, F., El Haddad, I., Frege, C., Rossi, M. J., Dommen, J., and Baltensperger,
- 534 U.: Formation of highly oxygenated organic molecules from aromatic compounds, Atmos. Chem. Phys.,
- 535 18, 1909-1921, https://doi.org/10.5194/acp-18-1909-2018, 2018.
- 536 Mot, M.-D., Gavrilaş, S., Lupitu, A. I., Moisa, C., Chambre, D., Tit, D. M., Bogdan, M. A., Bodescu, A.-
- 537 M., Copolovici, L., Copolovici, D. M., and Bungau, S. G.: Salvia officinalis L. essential oil:
- 538 characterization, antioxidant properties, and the effects of aromatherapy in adult patients, Antioxidants,
- 539 11, 808, https://doi.org/10.3390/antiox11050808, 2022.
- 540 Ng, N. L., Kroll, J. H., Chan, A. W. H., Chhabra, P. S., Flagan, R. C., and Seinfeld, J. H.: Secondary
- 541 organic aerosol formation from m-xylene, toluene, and benzene, Atmos. Chem. Phys., 7, 3909-3922,
- 542 https://doi.org/10.5194/acp-7-3909-2007, 2007.
- Odum, J. R., Hoffmann, T., Bowman, F., Collins, D., Flagan, R. C., and Seinfeld, J. H.: Gas/particle
 partitioning and secondary organic aerosol yields, Environ. Sci. Technol., 30, 2580-2585,
 https://doi.org/10.1021/es950943+, 1996.
- 546 Palm, B. B., Campuzano-Jost, P., Ortega, A. M., Day, D. A., Kaser, L., Jud, W., Karl, T., Hansel, A.,
- 547 Hunter, J. F., Cross, E. S., Kroll, J. H., Peng, Z., Brune, W. H., and Jimenez, J. L.: In situ secondary
- 548 organic aerosol formation from ambient pine forest air using an oxidation flow reactor, Atmos. Chem.
- 549 Phys., 16, 2943-2970, https://doi.org/10.5194/acp-16-2943-2016, 2016.
- 550 Pathak, R. K., Salo, K., Emanuelsson, E. U., Cai, C., Lutz, A., Hallquist, A. M., and Hallquist, M.:
- 551 Influence of ozone and radical chemistry on limonene organic aerosol production and thermal
- 552 characteristics, Environ. Sci. Technol., 46, 11660-11669, https://doi.org/10.1021/es301750r, 2012.
- 553 Peng, Z., Lee-Taylor, J., Orlando, J. J., Tyndall, G. S., and Jimenez, J. L.: Organic peroxy radical
- 554 chemistry in oxidation flow reactors and environmental chambers and their atmospheric relevance,
- 555 Atmos. Chem. Phys., 19, 813-834, https://doi.org/10.5194/acp-19-813-2019, 2019.
- 556 Pye, H. O. T., Ward-Caviness, C. K., Murphy, B. N., Appel, K. W., and Seltzer, K. M.: Secondary organic
- aerosol association with cardiorespiratory disease mortality in the United States, Nat. Commun., 12,
- 558 https://doi.org/10.1038/s41467-021-27484-1, 2021.

- 559 Ravichandran, C., Badgujar, P. C., Gundev, P., and Upadhyay, A.: Review of toxicological assessment of
- d-limonene, a food and cosmetics additive, Food Chem. Toxicol., 120, 668-680,
 https://doi.org/10.1016/j.fct.2018.07.052, 2018.
- 562 Sbai, S. E. and Farida, B.: Photochemical aging and secondary organic aerosols generated from limonene
- 563 in an oxidation flow reactor, Environ. Sci. Pollut. Res., 26, 18411-18420, https://doi.org/10.1007/s11356-
- 564 019-05012-5, 2019.
- 565 Seinfeld, J. H., Erdakos, G. B., Asher, W. E., and Pankow, J. F.: Modeling the formation of secondary
- 566 organic aerosol (SOA). 2. The predicted effects of relative humidity on aerosol formation in the α-Pinene-,
- 567 β -Pinene-, sabinene-, Δ^3 -Carene-, and cyclohexene-ozone systems, Environ. Sci. Technol., 35, 1806-
- 568 1817, https://doi.org/10.1021/es001765+, 2001.
- 569 Shaw, J. T., Lidster, R. T., Cryer, D. R., Ramirez, N., Whiting, F. C., Boustead, G. A., Whalley, L. K.,
- 570 Ingham, T., Rickard, A. R., Dunmore, R. E., Heard, D. E., Lewis, A. C., Carpenter, L. J., Hamilton, J. F.,
- 571 and Dillon, T. J.: A self-consistent, multivariate method for the determination of gas-phase rate
- 572 coefficients, applied to reactions of atmospheric VOCs and the hydroxyl radical, Atmos. Chem. Phys.,
- 573 18, 4039-4054, https://doi.org/10.5194/acp-18-4039-2018, 2018.
- 574 Shu, Y. G. and Atkinson, R.: Rate Constants for the gas-pahse reactions of O₃ with a series of terpenes
- and OH radical formation from the O_3 reactions with sesquiterpenes at 296 ±2K, Int. J. Chem. Kinet., 26,
- 576 1193-1205, 10.1002/kin.550261207, 1994.
- 577 Sindelarova, K., Granier, C., Bouarar, I., Guenther, A., Tilmes, S., Stavrakou, T., Müller, J. F., Kuhn, U.,
- 578 Stefani, P., and Knorr, W.: Global data set of biogenic VOC emissions calculated by the MEGAN model
- 579 over the last 30 years, Atmos. Chem. Phys., 14, 9317-9341, https://doi.org/10.5194/acp-14-9317-2014,
- 580 2014.
- 581 Sun, Y., Wang, Z., Fu, P., Jiang, Q., Yang, T., Li, J., and Ge, X.: The impact of relative humidity on
- aerosol composition and evolution processes during wintertime in Beijing, China, Atmos. Environ., 77,
- 583 927-934, https://doi.org/10.1016/j.atmosenv.2013.06.019, 2013.
- 584 Thomsen, D., Elm, J., Rosati, B., Skonager, J. T., Bilde, M., and Glasius, M.: Large discrepancy in the
- 585 formation of secondary organic aerosols from structurally similar monoterpenes, ACS Earth Space
- 586 Chem., 5, 632-644, https://doi.org/10.1021/acsearthspacechem.0c00332, 2021.
- 587 Varutbangkul, V., Brechtel, F. J., Bahreini, R., Ng, N. L., Keywood, M. D., Kroll, J. H., Flagan, R. C.,

- 588 Seinfeld, J. H., Lee, A., and Goldstein, A. H.: Hygroscopicity of secondary organic aerosols formed by
- 589 oxidation of cycloalkenes, monoterpenes, sesquiterpenes, and related compounds, Atmos. Chem. Phys.,
- 590 6, 2367-2388, https://doi.org/10.5194/acp-6-2367-2006, 2006.
- 591 Wang, L., Liu, Y., and Wang, L.: Ozonolysis of 3-carene in the atmosphere. Formation mechanism of
- 592 hydroxyl radical and secondary ozonides, Phys. Chem. Chem. Phys., 21, 8081-8091,
- 593 10.1039/c8cp07195k, 2019.
- 594 Wang, L. Y. and Wang, L. M.: The oxidation mechanism of gas-phase ozonolysis of limonene in the
- tmosphere, Phys. Chem. Chem. Phys., 23, 9294-9303, https://doi.org/10.1039/d0cp05803c, 2021.
- 596 Watne, A. K., Westerlund, J., Hallquist, A. M., Brune, W. H., and Hallquist, M.: Ozone and OH-induced
- 597 oxidation of monoterpenes: Changes in the thermal properties of secondary organic aerosol (SOA), J.
- 598 Aerosol Sci, 114, 31-41, https://doi.org/10.1016/j.jaerosci.2017.08.011, 2017.
- 599 Xu, L., Tsona, N. T., and Du, L.: Relative humidity changes the role of SO₂ in biogenic secondary organic
- aerosol formation, J. Phys. Chem. Lett., 12, 7365-7372, https://doi.org/10.1021/acs.jpclett.1c01550,
- 601 2021.
- 602 Ye, J., Abbatt, J. P. D., and Chan, A. W. H.: Novel pathway of SO₂ oxidation in the atmosphere: reactions
- 603 with monoterpene ozonolysis intermediates and secondary organic aerosol, Atmos. Chem. Phys., 18,
- 604 5549-5565, https://doi.org/10.5194/acp-18-5549-2018, 2018.
- 605 Yu, K. P., Lin, C. C., Yang, S. C., and Zhao, P.: Enhancement effect of relative humidity on the formation
- and regional respiratory deposition of secondary organic aerosol, J. Hazard. Mater., 191, 94-102,
- 607 https://doi.org/10.1016/j.jhazmat.2011.04.042, 2011.
- 608 Zhang, H., Wang, S., Hao, J., Wang, X., Wang, S., Chai, F., and Li, M.: Air pollution and control action
- 609 in Beijing, J. Clean Prod., 112, 1519-1527, https://doi.org/10.1016/j.jclepro.2015.04.092, 2016.
- 610 Zhang, Y., He, L., Sun, X., Ventura, O. N., and Herrmann, H.: Theoretical Investigation on the
- 611 Oligomerization of Methylglyoxal and Glyoxal in Aqueous Atmospheric Aerosol Particles, ACS Earth
- 612 Space Chem., 6, 1031-1043, 10.1021/acsearthspacechem.1c00422, 2022.
- 613 Zhao, R. R., Zhang, Q. X., Xu, X. Z., Zhao, W. X., Yu, H., Wang, W. J., Zhang, Y. M., and Zhang, W. J.:
- 614 Effect of experimental conditions on secondary organic aerosol formation in an oxidation flow reactor,
- 615 Atmos. Pollut. Res., 12, 392-400, https://doi.org/10.1016/j.apr.2021.01.011, 2021.
- 616 Ziemann, P. J. and Atkinson, R.: Kinetics, products, and mechanisms of secondary organic aerosol

617 formation, Chem. Soc. Rev., 41, 6582-6605, https://doi.org/10.1039/c2cs35122f, 2012.

Supplement of

Contrasting impacts of humidity on the ozonolysis of monoterpenes: insights into the multi-generation chemical mechanism

Shan Zhang et al.

Correspondence to: Lin Du (lindu@sdu.edu.cn) and Kun Li (kun.li@sdu.edu.cn)

Section S1. Calculation of equivalent aging days

The equivalent aging days can be calculated by Age (days)= $k \frac{O_{3exp}}{[O_3]} = k \frac{O_{3}]_0 \times RT}{[O_3]}$, where $[O_3]_0$ is the initial ozone concentration in OFR, *RT* is the residence time, *k* is a constant coefficient which is equals to 1.03 and $[O_3]$ is the mean ozone concentration in the atmosphere for 1 day, estimated to be 6.05×10^{16} molec cm⁻³ s (Sbai and Farida, 2019).

Section S2. Materials

Limonene (>99%, TCI), Δ^3 -carene (>97%, Sigma Aldrich), methanol (Optima[®] LC-MS grade, Fisher Scientific), formic acid (Optima[®] LC-MS grade, Fisher Scientific), pressured nitrogen gas (99.999%, DEYI) were directly used for nitrogen-blowing without further purification. Ultrapure water with a resistivity of 18.2 M Ω cm was generated with a water purification system (Millipore, France).

Section S3. Calculation of the pure-compound saturation concentrations

<u>The pure-compound saturation concentrations</u> (C₀) of SOA from limonene and Δ^3 -carene have been predicted using the following nonlinear expression (Li et al., 2016):

$$Log_{10}C_0 = (n_C^0 - n_C)b_C - n_O b_O - 2\frac{n_C n_O}{n_C + n_O}b_{CO}$$

The four free parameters n_{C}^{0} , b_{C} , b_{O} and b_{CO} represent the carbon number of 1 µg m⁻³ alkane, the carbon-carbon interaction term, the oxygen-oxygen interaction term and the carbon-oxygen nonideality respectively. The two independent variates n_{C} and n_{O} are the numbers of carbon and oxygen, respectively. Based on the calculated saturation mass concentration of organic aerosols, they can be classified into five groups (Donahue et al., 2012): extremely low-volatile organic compound (ELVOC; $C_0 < 3 \times 10^{-4} \ \mu g \ m^{-3}$); low-volatile organic compound (LVOC; $3 \times 10^{-4} < C_0 < 0.3 \ \mu g \ m^{-3}$); semi-volatile organic compound (IVOC; $300 < C_0 < 3 \times 10^6 \ \mu g \ m^{-3}$) and volatile organic compounds (VOC; $C_0 > 3 \times 10^6 \ \mu g \ m^{-3}$).

Groups	Monomers	Dimers	Trimers	Tetramers
Number (L) ^a	242	162	122	116
Number (H) ^b	272	187	134	105
Intensity	61.8%	25.7%	9.4%	3.1%
proportion (L) ^a				
Intensity	65.6%	24.4%	7.9%	2.0%
proportion (H) ^b				

Table S1. The number and intensity proportion of four groups for limonene

^a L means under low RH. ^b H means under high RH.

Table S2. The number and intensity proportion of four groups for Δ^3 -carene

Groups	Monomers	Dimers	Trimers	Tetramers
Number (L) ^a	239	178	76	4
Number (H) ^b	216	151	26	1
Intensity	69.8%	28.6%	1.6%	0.5%
proportion (L) ^a				
Intensity	72.5%	26.9%	2.0%	0.2%
proportion (H) ^b				

^a L means under low RH. ^b H means under high RH.

 Table S3. Intensity and partitioning coefficient for limonene products identified by MS (can be found in the proposed mechanism).

	Molecular	Low	RH	High	Partitioning coefficient		
	formula	Absolute	Relative	Absolute	Relative	Low	High
		intensity	intensity	intensity	intensity	RH	RH
	$C_{10}H_{16}O_2$	9.01×10^{2}	1.72×10 ⁻⁴	1.27×10^{3}	1.42×10 ⁻⁴	0.01	0.02
Monomers	$C_9H_{14}O_3$	1.49×10^4	2.85×10 ⁻³	3.00×10 ⁴	3.33×10 ⁻³	0.02	0.05
	$C_{10}H_{16}O_3$	4.99×10 ⁴	9.54×10 ⁻³	8.58×10^4	9.55×10 ⁻³	0.05	0.10

	$C_9H_{14}O_4$	1.29×10 ⁵	2.46×10 ⁻²	2.46×10 ⁵	2.73×10 ⁻²	0.13	0.25
	$C_{10}H_{18}O_3$	1.21×10 ³	2.31×10 ⁻⁴	1.64×10 ³	1.82×10 ⁻⁴	0.05	0.10
	$C_9H_{16}O_4$	7.60×10 ³	1.45×10 ⁻³	1.51×10 ⁴	1.68×10 ⁻³	0.13	0.25
	$C_{10}H_{16}O_4$	1.28×10 ⁵	2.45×10 ⁻²	2.24×10 ⁵	2.49×10 ⁻²	0.24	0.41
	C ₉ H ₁₄ O ₅	1.28×10 ⁵	2.45×10 ⁻²	2.08×10 ⁵	2.33×10 ⁻²	0.58	0.76
	C ₉ H ₁₄ O ₃	1.49×10^4	2.85×10 ⁻³	3.00×10 ⁴	-	0.02	0.05
	$C_8H_{12}O_4$	6.71×10 ⁴	1.28×10 ⁻²	1.35×10 ⁵	-	0.07	0.15
	$C_{10}H_{18}O_2$	2.62×10^2	5.01×10 ⁻⁵	4.60×10 ²	5.12×10 ⁻⁵	0.01	0.02
	C ₉ H ₁₆ O ₃	7.20×10 ³	1.38×10 ⁻³	1.48×10^4	1.64×10 ⁻³	0.02	0.05
	C ₁₀ H ₁₄ O ₃	7.34×10 ³	1.40×10 ⁻³	1.34×10 ⁴	1.50×10 ⁻³	0.05	0.10
	$C_9H_{12}O_4$	3.49×10 ⁴	6.66×10 ⁻³	5.94×10 ⁴	6.61×10 ⁻³	0.13	0.25
	C ₁₀ H ₁₄ O ₅	4.00×10 ⁴	7.64×10 ⁻³	5.44×10 ⁴	6.06×10 ⁻³	0.71	0.85
	$C_9H_{12}O_6$	1.25×10^4	2.38×10 ⁻³	2.08×10^4	2.31×10 ⁻³	0.94	0.97
	$C_{10}H_{16}O_{6}$	-	8.32×10 ⁻³	7.12×10 ⁴	7.93×10 ⁻³	0.96	0.98
	$C_{10}H_{18}O_4$	-	1.49×10 ⁻³	1.29×10 ⁵	1.44×10 ⁻³	0.24	0.41
	$C_9H_{16}O_5$	1.40×10 ⁴	2.67×10 ⁻³	2.76×10 ⁴	3.08×10 ⁻³	0.58	0.76
	$C_{10}H_{18}O_6$	-	1.39×10 ⁻³	1.31×10 ⁵	1.46×10 ⁻³	0.96	0.98
	C10H16O5	8.02×10 ³	1.53×10 ⁻²	1.49×10 ⁴	1.65×10 ⁻²	0.72	0.85
	$C_9H_{14}O_6$	-	-	9.40×10 ⁴	1.05×10 ⁻²	0.94	0.97
	$C_{10}H_{18}O_5$	9.05×10 ³	1.73×10 ⁻³	1.65×10 ⁴	1.84×10 ⁻³	0.72	0.85
	$C_9H_{16}O_6$	-	-	1.41×10^4	1.57×10 ⁻³	0.94	0.97
	$C_9H_{14}O_7$	-	4.19×10 ⁻³	4.44×10 ⁴	4.95×10 ⁻³	1.00	1.00
	$C_{10}H_{14}O_7$	8.75×10^{3}	1.67×10 ⁻³	1.32×10 ⁴	1.47×10 ⁻³	1.00	1.00
	$C_{10}H_{14}O_{11}$	-	-	3.68×10^2	4.10×10 ⁻⁵	1.00	1.00
HOME	$C_{10}H_{14}O_{13}$	-	-	3.88×10 ²	4.32×10 ⁻⁵	1.00	1.00
HOMs	C ₉ H ₁₆ O ₇	7.71×10^{3}	1.47×10 ⁻³	1.91×10 ⁴	2.13×10-3	1.00	1.00
	C ₁₀ H ₁₆ O ₇	1.63×10 ⁴	3.12×10 ⁻³	3.00×10 ⁴	3.35×10 ⁻³	1.00	1.00
	$C_9H_{14}O_8$	-	-	4.12×10 ³	4.60×10 ⁻⁴	1.00	1.00
	C ₁₀ H ₁₈ O ₇	4.70×10 ³	8.99×10 ⁻⁴	8.90×10 ³	9.91×10 ⁻⁴	1.00	1.00

	C9H16O8	-	-	2.54×10 ³	2.82×10 ⁻⁴	1.00	1.00
	$C_{10}H_{16}O_8$	3.63×10 ³	6.94×10 ⁻⁴	7.08×10^{3}	7.67×10 ⁻⁴	1.00	1.00
	$C_{20}H_{34}O_4$	-		4.98×10^{2}	5.55×10 ⁻⁵	1.00	1.00
	C ₁₈ H ₃₀ O ₆	-	-	2.74×10 ³	3.04×10 ⁻⁴	1.00	1.00
Dimers	C ₁₈ H ₂₈ O ₇	-	-	1.53×10 ⁴	1.70×10 ⁻³	1.00	1.00
	C ₂₀ H ₃₀ O ₈	3.61×10^2	1.97×10 ⁻⁴	1.25×10^4	1.40×10 ⁻³	1.00	1.00
	$C_{18}H_{26}O_8$	1.29×10^4	2.47×10 ⁻³	2.34×10 ⁴	2.62×10 ⁻³	1.00	1.00

Table S4. Δ^3 -carene-SOA identified under high RH in Fig. S3.

[M–H]-	Theo. Mass	Error (ppm)	DBE	Suggested Formula	Molecular Structure
167.10657	167.107753	7.081	3	C ₁₀ H ₁₆ O ₂	-
183.101733	183.102668	5.105	3	C ₁₀ H ₁₆ O ₃	→ → → → → → → → → → → → → → → → → → →

	1			r	
169.122233	169.123403	6.921	2	C ₁₀ H ₁₈ O ₂	он он
199.096239	199.097583	6.747	3	C ₁₀ H ₁₆ O ₄	
181.085655	181.087018	7.526	3	C ₁₀ H ₁₄ O ₃	
351.214938	351.217698	7.858	5	C ₂₀ H ₃₂ O ₅	
365.194982	365.196962	5.421	6	C ₂₀ H ₃₀ O ₆	
185.080938	185.081932	5.374	3	C9H14O4	ОН ОН

[M–H] ⁻	Theo. Mass	Error (ppm)	DBE	Suggested Formula	Molecular Structure
169.086288	169.087018	4.319	3	C9H14O3	$\mathcal{F}_{\mathcal{F}}$
					он он
183.065329	183.066282	5.208	4	C ₉ H ₁₂ O ₄	ОН ОН
167.107219	167.107753	3.198	2	C ₁₀ H ₁₆ O ₂	

Table S5. Limonene-SOA under high RH identified in Fig. 3 and Fig. 4.

183.102508	183.102668	0.874	3	C ₁₀ H ₁₆ O ₃	$ \begin{array}{c} \downarrow^{\circ} \\ \downarrow^{\circ} $
185.081203	185.081932	3.943	3	C9H14O4	$ \begin{array}{c} $
187.060122	187.061197	5.749	3	C ₈ H ₁₂ O5	

199.096857	199.097583	3.644	3	C ₁₀ H ₁₆ O ₄	
					О ОН
185.117126	185.118318	6.441	2	$C_{10}H_{18}O_3$	ОНООН
187.096428	187.097583	6.172	2	C ₉ H ₁₆ O ₄	ОНООН
201.075661	201.076847	5.896	3	C9H14O5	ООН
201.073001	201.070847	3.070		0911 405	

181.086015	181.087018	5.536	4	C ₁₀ H ₁₄ O ₃	
337.237472	337.238433	2.851	4	C ₂₀ H ₃₄ O ₄	OH O-O HO
341.196189	341.196962	2.266	4	C ₁₈ H ₃₀ O ₆	
355.17525	355.176227	2.749	5	C ₁₈ H ₂₈ O ₇	
369.154689	369.155491	2.174	6	C ₁₈ H ₂₆ O ₈	

Table S6. The intensity of dimers from multi-carbonyls under high RH and low RH									
Molecular formula	Absolute intensity	Relative intensity	Absolute intensity	Relative intensity					
	<mark>(Low RH)</mark>	<mark>(Low RH)</mark>	<mark>(High RH)</mark>	<mark>(High RH)</mark>					
C19H28O5	3.60×10 ²	<mark>6.87×10⁻⁵</mark>	<mark>9.28×10³</mark>	2.06×10 ⁻³					
C ₁₉ H ₂₈ O ₇	5.00×10 ³	<mark>9.50×10⁻⁴</mark>	2.73×10 ⁴	6.08×10 ⁻³					

C ₁₉ H ₂₈ O ₆	1.78×10 ³	3.40×10 ⁻⁴	1.39×10 ⁴	3.10×10 ⁻³
$\mathbf{C_{18}H_{28}O_6}$	3.19×10 ³	<mark>6.08×10⁻⁴</mark>	4.30×10 ³	<mark>9.56×10⁻⁴</mark>
$\rm C_{18}H_{24}O_6$			<mark>6.06×10²</mark>	1.35×10 ⁻⁴
$\rm C_{18}H_{26}O_5$			<mark>6.28×10²</mark>	1.40×10 ⁻⁴

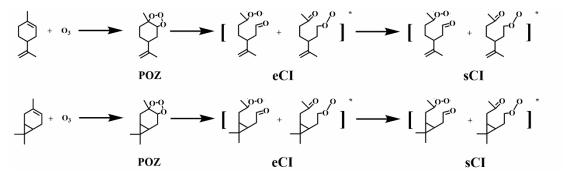
Table S7. Dimers: RH-dependent discoveries for limonene and Δ^3 -carene.

54 dimers exclusively d	etected under high RH	63 dimers exclusively detected under low RH				
(limo	nene)	(Δ ³ -ca	rene)			
Absolute intens		Mala a las famila	Absolute intensity			
Molecular formula	(High RH)	Molecular formula	(Low RH)			
C ₁₈ H ₂₆ O ₄	4.66×10 ²	$C_{17}H_{24}O_5$	1.59×10 ³			
$C_{16}H_{20}O_{6}$	7.24×10^{2}	$C_{10}H_{14}O_{11}$	3.90×10 ³			
$C_{13}H_{18}O_{9}$	3.36×10^{2}	$C_{14}H_{14}O_8$	4.02×10 ³			
$C_{17}H_{22}O_{6}$	6.63×10 ³	$C_{20}H_{40}O_2$	4.60×10 ³			
C ₁₈ H ₂₆ O ₅	6.28×10^{2}	$C_{12}H_{10}O_{10}$	4.00×10 ³			
$C_{19}H_{32}O_4$	1.58×10^{3}	$C_{13}H_{16}O_9$	8.34×10 ³			
$C_{15}H_{18}O_{8}$	1.65×10^{3}	$C_{19}H_{26}O_4$	4.96×10 ³			
$C_{13}H_{12}O_{10}$	8.85×10 ³	$C_{17}H_{22}O_6$	1.05×10^{3}			
$C_{14}H_{20}O_9$	8.44×10^{2}	$C_{13}H_{12}O_{10}$	5.46×10 ³			
$C_{16}H_{28}O_7$	9.89×10 ³	$C_{13}H_{18}O_{10}$	4.68×10 ³			
$C_{15}H_{26}O_8$	2.18×10 ³	$C_{15}H_{12}O_9$	4.22×10 ³			
$C_{10}H_8O_{13}$	6.33×10 ³	$C_{10}H_{12}O_{13}$	5.00×10 ³			
$C_{18}H_{24}O_{6}$	6.06×10 ²	$C_{22}H_{28}O_3$	8.88×10 ³			
$C_{11}H_{14}O_{12}$	7.70×10^{2}	$C_{19}H_{26}O_{6}$	1.54×10 ³			
$C_{21}H_{22}O_4$	4.80×10 ³	$C_{16}H_{20}O_9$	1.64×10 ³			
C20H34O4	2.53×10 ³	$C_{15}H_{18}O_{10}$	5.00×10 ³			
$C_{23}H_{32}O_2$	2.12×10 ³	$C_{16}H_{22}O_9$	1.69×10 ³			
$C_{18}H_{32}O_{6}$	3.68×10 ²	$C_{18}H_{22}O_8$	3.32×10 ³			
$C_{17}H_{30}O_{7}$	7.46×10 ³	$C_{12}H_{16}O_{13}$	4.00×10 ³			
$C_{14}H_{22}O_{10}$	4.04×10 ³	$C_{20}H_{32}O_{6}$	8.21×10 ³			
$C_{21}H_{36}O_4$	1.36×10^{4}	$C_{16}H_{18}O_{10}$	4.50×10 ³			
$C_{17}H_{30}O_8$	4.68×10^{2}	$C_{16}H_{20}O_{10}$	5.20×10 ³			
C ₁₂ H ₁₆ O ₁₃	2.43×10 ³	$C_{19}H_{24}O_8$	8.21×10 ³			
C ₁₁ H ₁₄ O ₁₄	4.46×10^{2}	$C_{20}H_{28}O_7$	2.38×10 ³			
$C_{18}H_{30}O_8$	4.46×10^{2}	C ₁₇ H ₂₀ O ₁₀	4.16×10 ³			
$C_{16}H_{26}O_{10}$	7.44×10^{2}	$C_{21}H_{36}O_{6}$	8.03×10 ³			
$C_{17}H_{20}O_{10}$	2.12×10 ³	$C_{16}H_{26}O_{11}$	1.16×10 ³			
C ₁₆ H ₂₄ O ₁₁	1.48×10 ³	C ₁₇ H ₂₆ O ₁₁	1.32×10^{3}			
$C_{20}H_{24}O_8$	3.96×10 ³	$C_{18}H_{18}O_{11}$	4.02×10 ³			
$C_{17}H_{22}O_{11}$	2.48×10 ³	$C_{18}H_{22}O_{11}$	4.54×10 ³			
$C_{21}H_{34}O_8$	1.28×10^{4}	$C_{18}H_{26}O_{11}$	1.49×10 ³			
C ₁₃ H ₂₂ O ₁₅	4.06×10 ²	$C_{22}H_{28}O_8$	4.62×10 ³			

$C_{19}H_{32}O_{10}$	5.30×10 ²	$C_{15}H_{18}O_{14}$	4.08×10 ³
$C_{22}H_{32}O_8$	5.90×10 ³	$C_{20}H_{32}O_{10}$	5.97×10 ³
$C_{20}H_{28}O_{10}$	1.53×10 ³	C ₁₇ H ₂₂ O ₁₃	5.10×10 ³
C ₁₈ H ₁₈ O ₁₃	4.49×10 ³	C ₂₁ H ₂₈ O ₁₀	4.25×10 ³
$C_{19}H_{24}O_{12}$	1.49×10^{4}	$C_{19}H_{22}O_{12}$	5.44×10 ³
$C_{19}H_{30}O_{12}$	6.10×10 ²	$C_{22}H_{34}O_9$	7.52×10 ³
$C_{15}H_{18}O_{16}$	1.14×10 ³	$C_{21}H_{34}O_{10}$	2.12×10 ³
$C_{23}H_{38}O_9$	4.34×10 ²	$C_{14}H_{24}O_{16}$	4.80×10 ³
$C_{32}H_{44}O_2$	8.96×10 ²	$C_{15}H_{22}O_{16}$	4.04×10 ³
$C_{21}H_{36}O_{11}$	3.74×10 ²	$C_{17}H_{30}O_{14}$	3.51×10 ³
$C_{14}H_{26}O_{17}$	1.00×10 ³	$C_{22}H_{36}O_{10}$	4.02×10 ³
$C_{20}H_{26}O_{13}$	1.26×10 ⁴	$C_{18}H_{24}O_{14}$	4.44×10^{3}
$C_{22}H_{34}O_{11}$	1.92×10 ³	$C_{19}H_{28}O_{13}$	6.68×10 ³
$C_{20}H_{30}O_{13}$	9.36×10 ²	C ₂₀ H ₂₂ O ₁₃	3.90×10 ³
$C_{18}H_{24}O_{15}$	2.05×10 ³	$C_{21}H_{26}O_{12}$	4.48×10^{3}
$C_{21}H_{38}O_{12}$	9.16×10 ²	$C_{22}H_{30}O_{11}$	2.29×10 ³
$C_{24}H_{38}O_{10}$	3.78×10 ³	$C_{15}H_{24}O_{17}$	4.70×10^{3}
$C_{16}H_{24}O_{17}$	1.26×10 ³	$C_{25}H_{38}O_9$	5.24×10 ³
$C_{21}H_{24}O_{14}$	4.80×10 ³	$C_{17}H_{26}O_{16}$	5.18×10 ³
$C_{20}H_{34}O_{4}$	4.98×10^{2}	$C_{21}H_{26}O_{13}$	4.82×10^{3}
$C_{18}H_{30}O_{6}$	2.74×10^{3}	$C_{22}H_{30}O_{12}$	2.47×10 ³
$C_{18}H_{28}O_7$	1.53×10^{4}	$C_{16}H_{24}O_{17}$	5.16×10 ³
		$C_{17}H_{28}O_{16}$	6.58×10 ³
		$C_{29}H_{44}O_6$	5.82×10 ³
		$C_{17}H_{30}O_{16}$	2.06×10 ³
		$C_{22}H_{38}O_{12}$	3.86×10 ³
		$C_{16}H_{32}O_{17}$	7.04×10 ³
		$C_{23}H_{30}O_{12}$	1.26×10 ³
		$C_{24}H_{34}O_{11}$	6.82×10 ³
		$C_{20}H_{30}O_{10}$	4.14×10 ³
		$C_{20}H_{32}O_{11}$	3.41×10 ³

Table S8. Intensity and partitioning coefficient for Δ^3 -carene products identified by MS (can be found

	Molecular	Low RH		High	Partitioning coefficient		
	formula	Absolute	Relative	Absolute	Relative	Low	High
		intensity	intensity	intensity	intensity	RH	RH
HOMs	$C_{10}H_{14}O_{11}$	3.41×10 ²	5.44×10 ⁻⁵	-	-	1.00	1.00


in the proposed mechanism).

	$C_{10}H_{16}O_8$	1.42×10 ³	2.26×10 ⁻⁴	8.31×10 ²	1.89×10 ⁻⁴	1.00	1.00
	$C_{10}H_{18}O_{11}$	2.32×10 ³	3.70×10 ⁻⁴	1.61×10 ³	3.65×10 ⁻⁴	1.00	1.00
	$C_{10}H_{18}O_8$	4.60×10 ²	7.34×10 ⁻⁵	-	-	1.00	1.00
	$C_{20}H_{30}O_{6}$	1.25×10 ⁴	1.97×10 ⁻³	7.55×10 ³	1.71×10 ⁻³	1.00	1.00
	$C_{20}H_{30}O_8$	6.99×10 ³	1.11×10 ⁻³	4.16×10 ³	9.44×10 ⁻⁴	1.00	1.00
Dimers	$C_{20}H_{30}O_{10}$	3.62×10 ³	5.77×10 ⁻⁴	-	-	1.00	1.00
	$C_{20}H_{32}O_7$	1.58×10 ⁴	2.51×10 ⁻³	7.45×10 ³	1.69×10 ⁻³	1.00	1.00
	$C_{20}H_{32}O_9$	1.31×10 ⁴	2.09×10 ⁻³	8.76×10 ³	1.99×10 ⁻³	1.00	1.00
	$C_{20}H_{32}O_{11}$	2.98×10 ³	4.76×10 ⁻⁴	-	-	1.00	1.00
	$C_{20}H_{32}O_{13}$	5.11×10 ²	8.15×10 ⁻⁵	3.12×10 ²	7.09×10 ⁻⁵	1.00	1.00

Table S9. The experimental data and results of β -caryophyllene oxidation.

Ewn	[Precursor]	[O]3	T (V)	RH	N(14.1-735nm) ^a	M(14.1-735nm) ^b	D(mean) ^c	SOA yield
Exp.	(ppb)	(ppm)	T (K)	K) (%) (no.c)		(µg m ⁻³)	(nm)	(%)
1	234.9	6.3	298	3.2	$(2.3\pm0.1)\times10^{6}$	168.2±13.8	49.9±2.5	$9.4 {\pm} 0.8$
2	255.3	6.4	298	58	$(3.6\pm0.5)\times10^{6}$	584.1±10.9	64.3±0.7	25.1±0.5

^a $N_{(14.1-735 \text{ nm})}$ means the total particle number concentration from size 13.8 nm to 723.4 nm. ^b $M_{(13.8-723.4 \text{ nm})}$ means the total particle mass concentration from size13.8 nm to 723.4 nm. ^c $D_{(mean)}$ means the particle mean diameter.

Fig S1. The formation of sCIs from the ozonolysis of limonene and Δ^3 -carene.

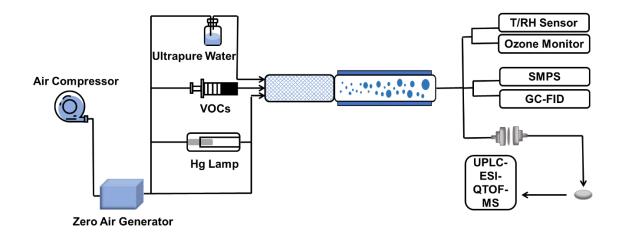
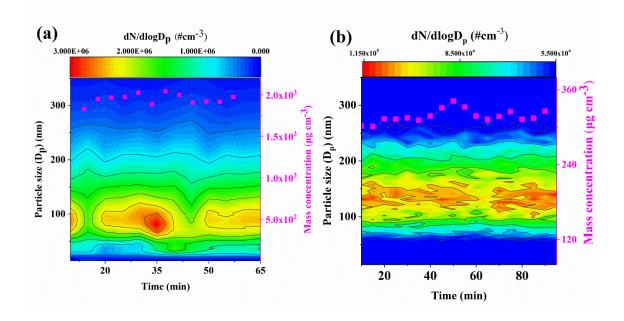
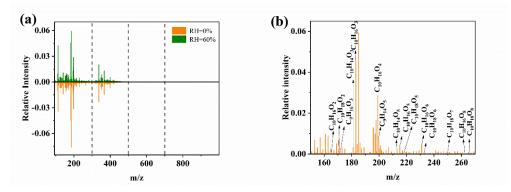
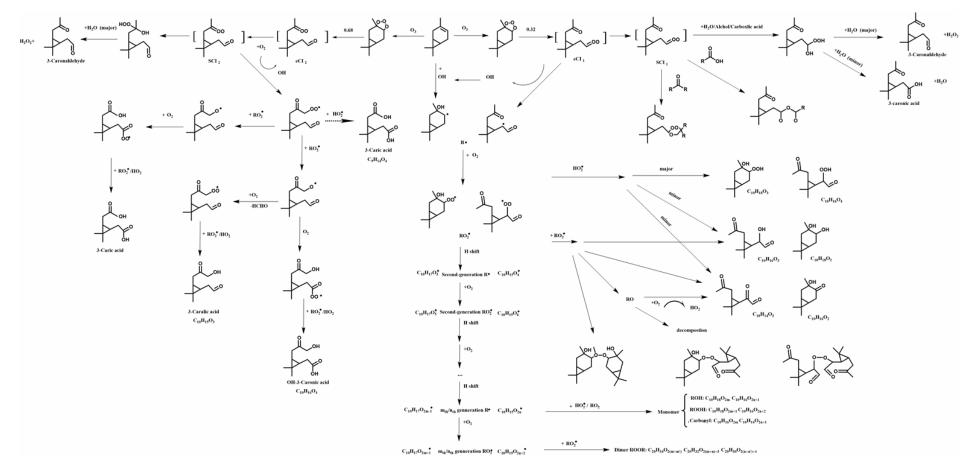
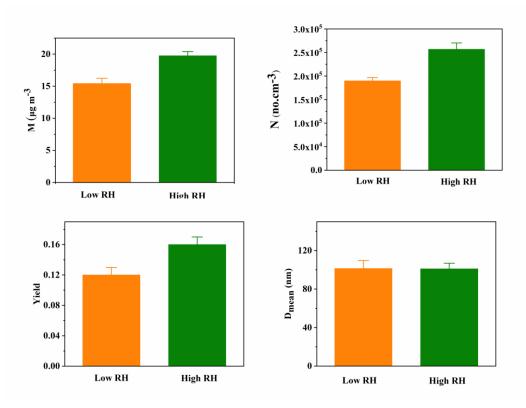


Figure S2. Schematic description of the experiment.


Figure S3. Time evolution of SOA size (electromobility diameter) and mass concentration obtained from limonene/O₃ and Δ^3 -carene/O₃ experiments (Exp. 6 and Exp. 11).

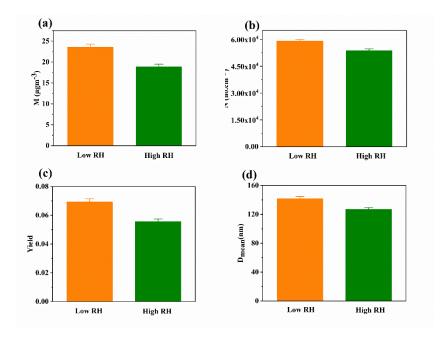

Fig. S4. UPLC/ (–) ESI-Q-TOF-MS mass spectra of SOA from Δ^3 -carene ozonolysis. (a) MS under high and low RH conditions; (b) the identification of monomers under low RH condition.

Figure S5. Proposed formation mechanisms for SOA formation from Δ^3 -carene ozonolysis under high RH.

Figure S6. The SOA formation of low-concentration limonene under low and high RH (a) mass concentration (b) number concentration (c) SOA yield (d) mean diameter.

Figure S7. The SOA formation from endocyclic ozonolysis of limonene under low and high RH (a) mass concentration (b) number concentration (c) SOA yield (d) mean diameter. The initial concentration of limonene is 450 ppb and the concentration of O_3 is 67 ppb. Limonene ozonolysis primarily took place on endo-double bonds, with a rate constant of 2.01×10^{-16} cm³ molec.⁻¹ s⁻¹ (Shu and Atkinson, 1994).

Based on this rate constant, it can be estimated that approximately 10% of the limonene was consumed by O_3 upon exiting the reactor.

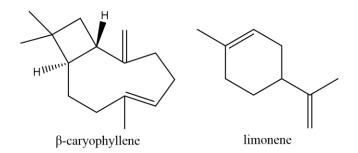


Figure S8. The molecular structure of β -caryophyllene and limonene.

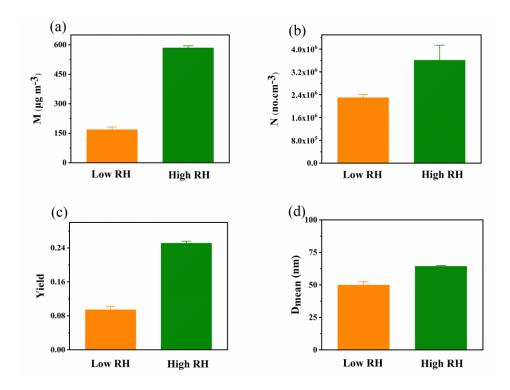


Figure S9. The SOA formation of β -caryophyllene under low and high RH (a) mass concentration (b) number concentration (c) SOA yield (d) mean diameter.

Reference

Donahue, N. M., Kroll, J. H., Pandis, S. N., and Robinson, A. L.: A two-dimensional volatility basis set - Part 2: Diagnostics of organic-aerosol evolution, Atmos. Chem. Phys., 12, 615-634, https://doi.org/10.5194/acp-12-615-2012, 2012.

Li, Y., Poeschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols, Atmos. Chem. Phys., 16, 3327-3344, https://doi.org/10.5194/acp-16-3327-2016, 2016.

Sbai, S. E. and Farida, B.: Photochemical aging and secondary organic aerosols generated from limonene in an oxidation flow reactor, Environ. Sci. Pollut. Res., 26, 18411-18420, https://doi.org/10.1007/s11356-019-05012-5, 2019.

Shu, Y. G. and Atkinson, R.: Rate Constants for the gas-pahse reactions of O_3 with a series of terpenes and OH radical formation from the O_3 reactions with sesquiterpenes at 296 ±2K, Int. J. Chem. Kinet., 26, 1193-1205, 10.1002/kin.550261207, 1994.