
General Reply 

We thank all three reviewers for their constructive comments on the manuscript, which helped to improve it 

significantly. A detailed reply to all comments is provided below. For a better overview, the reviewers' comments 

are shown in black, our replies in blue and proposed changes in the manuscript bold and blue. 

We identify two primary points of the critique raised in the major comments of the three reviewers, which we 

would like to address first: 

i) Used climate scenario data: daily temporal and 0.11° spatial resolution does not represent the “state-of-

science” and the impact of the (substantial) biases in rainfall from these RCMs is not assessed 

The description of the climate model data used in this study was found to be inadequate and incorrect in certain 

sections, as highlighted in the referees' comments. We would like to start by providing more details regarding the 

climate model data we used and elucidating its appropriateness for our analysis. Specific modifications made to 

the manuscript in response to these concerns are listed in detail in the replies to the reviewers' comments below. 

Firstly, we acknowledge the reviewers' valid point that the climate scenarios used in this study may not fully 

represent the current 'state-of-science.' The driver of the climate models used in our analysis are based on the 

Representative Concentration Pathway (RCP) emission scenarios. The 'state-of-science' climate models are driven 

by a combination of the Shared Socioeconomic Pathways (SSPs) and the RCPs, as introduced in the IPCC 6th 

Assessment Report. However, it's essential to note that for this new generation of climate simulations (CMIP6), 

regionalized and bias-adjusted climate model data for Germany are not available yet. Therefore, in this study, we 

used climate model data from the CMIP5 simulations. Specifically, the core ensemble of the German Weather 

Service (DWD) was used for the two emission scenarios RCP 8.5 and RCP 4.5. These datasets were selected for 

our analysis of future changes in rainfall extreme values. We acknowledge that the initial description of the DWD 

core ensemble in the manuscript have been insufficient and needs to be revised. Nevertheless, it is worth 

emphasizing the advantages of the DWD core ensemble and why we have used it. 

The DWD core ensemble is a subset of the DWD reference ensemble consisting of six ensemble members. 

Importantly, the core ensemble retains the full climatic variability observed in the reference ensemble. The 

composition of Global Climate Models (GCM) and Regional Climate Models (RCM) is included in the manuscript. 

The DWD core ensemble is recommended by the DWD specifically for conducting impact analyses related to 

future climate changes. Its principal advantage lies in its spatial resolution, with a grid size of 5x5 km, tailored to 

the geographic extent of Germany. Additionally, the climate model data within the core ensemble underwent a 

bias adjustment, which significantly enhances its reliability for regional applications (Hänsel et al. 2020). Thus, 

for Germany, the DWD core ensemble represents the 'state-of-technic' in terms of regionalized and bias-adjusted 

climate model data. However, it's important to acknowledge one limitation of the DWD core ensemble, which lies 

in its daily temporal resolution. 

The first referee has suggested the utilization of climate model data from EURO-CORDEX for our analysis. It is 

noteworthy that EURO-CORDEX data offers a temporal resolution of 3 hours, a spatial resolution of 0.11° 

(approximately 12.5x12.5 km) and does not include further regionalization or bias adjustment. The absence of bias 

adjustment represents a substantial limitation of this climate scenario data. Nonetheless, the higher temporal 

resolution holds distinct advantages for the disaggregation and analysis of extreme values, making it a compelling 



option for future investigations. The same applies to the climate model data provided by Leduc et al. (2019), which 

was also proposed to use by the first referee. Regionalization and bias-adjustment for Germany are also missing 

in this data set. It is important to recognize that this study serves as a proof of concept, with the application of the 

disaggregation model on climate model data being just one facet of our research, alongside examining temperature 

dependencies and parameter reduction within the model. The transferability of our approach on different/upcoming 

climate model data, indicates its scientific importance for the analysis of sub-hourly rainfall extreme values. This 

aspect needs to be revisited and emphasized in the conclusion section. 

ii) Poorly formulated research questions 

The reviewers raised concerns about the poorly formulated research questions. We agree with their assessment 

and have rephrased them. Our intent is to ensure the research questions are more precise and accurately reflect our 

study's research focus. 

How can a cascade model be modified to improve the disaggregation results regarding rainfall extreme values 

with a minimum increase in model parameters? 

This research question pertains to the first segment of our study, which is dedicated to the analysis of parameter 

reduction and the influence of temperature-dependent cascade model parameters on the disaggregation results. 

Parameter reduction becomes especially important due to the increase of model parameters induced by the 

introduction of temperature dependency. To the author's knowledge a similar parameter reduction cannot be found 

in the existing literature. Although e.g., Bürger et al. (2019) introduced a temperature-dependency for a simpler 

cascade model, the resulting increase and possible reduction of model parameter were not investigated. 

How will rainfall extreme values with a temporal resolution of 5 min change in the future across Germany? 

This research question focusses on the future changes of rainfall extreme values with a temporal resolution of 5 

min for 45 locations across Germany. To the authors' knowledge, such an investigation has not been conducted so 

far on these scales. Only for a coarser temporal resolution (10min) and for a smaller spatial extent (Emscher-Lippe 

region in Germany) Bürger et al. (2019) conducted a study that involved the disaggregation of rainfall time series. 

In our research, we shift the focus to a finer temporal resolution (5 minutes) and extent the spatial scope to 45 

locations across Germany. 

 

Review by Benjamin Poschlod, Referee #1 

 
General comment: 

The authors present a two-fold study, which 1) modifies an existing micro-canonical disaggregation method to 

include temperature classes as covariate, and 2) applies this disaggregation on climate projections for future 

rainfall. The study area extends over Germany, where 45 locations are presented. Overall, the manuscript is well 

structured and the figures are clear. The method is relevant for impact modellers. However, I have major concerns 

regarding the disaggregation setup (daily to 5-min) and the investigated climate model ensemble. 

We thank Benjamin Poschlod for his useful and constructive comments and the time, he spent on the manuscript. 

A point-by-point reply is provided below. 

Major comments: 



The first part of the introduction (L29-63), which deals with climate modelling and scenarios, and section 2.2 have 

imprecise or uncommon vocabulary in several places (some are noted in the minor comments). This might confuse 

the reader and should be adapted. 

Both parts (introduction (L29-63) and sections 2.2) need to be and have been revised and are hopefully now more 

precise (please see our replies to the minor comments). 

In the introduction, the availability of sub-daily precipitation data from EURO-CORDEX is not correctly 

described. Here (https://doi.org/10.24381/cds.bc91edc3), 3-hourly data from many simulations are available. 

However, also the hourly resolution is often stored at the local model institute, but might be accessed only upon 

request (as e.g. by Berg et al., 2019: https://doi.org/10.5194/nhess-19-957-2019 ). At the same spatial resolution, 

the CRCM5-LE provides 50 members of hourly precipitation data (Leduc et al., 2019: 

https://doi.org/10.1175/JAMC-D-18-0021.1). Hence, I’d argue that the “main task” for rainfall disaggregation 

features the disaggregation from hourly to e.g. 5-min resolution. The relative error of the overall disaggregation 

(Tables 5 & 7) and of 2-year return levels (Figs. 5 & 7) could be possibly lowered by disaggregation from hourly 

to 5-min resolution instead of daily to 5-min. Hence, I strongly recommend to apply the disaggregation from 3-

hourly or hourly to 5-min resolution. 

The choice of the climate model ensemble (“DWD core ensemble”) at daily temporal and 0.11° spatial resolution 

does not represent the “state-of-science”. 0.11° simulations are available at 3-hourly and hourly resolution (see 

comment above). Furthermore, for the representation of convection and short-duration rainfall extremes, higher-

resolution set-ups (“convection-permitting”) are found to be beneficial (Coppola et al., 2021: 

https://doi.org/10.1007/s00382-018-4521-8; Purr et al., 2021: https://doi.org/10.1002/joc.7012). 

We agree with the reviewers’ comment in general. The description of the availability of sub-daily rainfall data 

from EURO-CORDEX in the manuscript was inadequate. This aspect has been revised to emphasize the existence 

of climate model data with sub-daily temporal resolutions. Consequently, our study is focused on analyzing rainfall 

extreme events with a temporal resolution of 5 minutes. Nevertheless, it's important to note that, currently, there 

are no climate model data available at this fine temporal resolution. 

One notable point is that the feasibility of using 3-hour time series as input for the disaggregation, instead of daily 

values, represents a significant aspect that will be incorporated into the revised discussion section. In addition to 

parameter reduction and temperature dependency of the cascade parameters, our study serves as a proof of concept 

regarding the statistical downscaling of climate model data with a cascade model to a temporal resolution of 5 min. 

Furthermore, the approach holds substantial promise in terms of transferability to other climate scenario data. In 

the revised Summary and Conclusion section, we have highlighted the potential to enhance the study results by 

utilizing 3-hour or 1-hour climate data time series as input for the disaggregation. 

We decided against using the climate model data from EURO-CORDEX in our study. Instead, we decided for the 

DWD core ensemble recommended by the DWD for future climate change impact studies in Germany due to 

distinct advantages, including its regionalization at a 5x5 km raster resolution and its bias adjustment (Hänsel et 

al. 2020). 

The reviewer argues that the "main task" of rainfall disaggregation is the disaggregation from 1 h to sub-hourly 

temporal resolution. We respectfully disagree with this perspective. Daily rainfall observations are widespread 



around the world and cover much longer periods compared to sub-daily or sub-hourly rainfall observations. To 

take advantage of these extensive records, the disaggregation from daily to finer temporal resolutions is of great 

importance and finds applications in various fields and studies (e.g. Acharya et al. 2022, Breinl & Di Baldassarre 

2019, Guan et al. 2023). So, although the second part of the manuscript focusses on climate change impact on 

rainfall extreme values, the parameter reduction and introduction of temperature-dependency remains an important 

step forward for the disaggregation of observed rainfall data, especially for sparsely observed regions. 

The possible post-processing (downscaling? bias-adjustment?) of the climate model data is totally unclear. Neither 

the article nor the provided reference (Delalane, 2021) does provide the necessary information. Convection-

permitting simulations would be available for Germany from the German Weather Service (journal article: Rybka 

et al., 2022, https://doi.org/10.1127/metz/2022/1147; data: 

https://dx.doi.org/10.5676/DWD/HOKLISIM_V2022.01; https://esgf.dwd.de/projects/dwd-cps/cps-hist-v2022-

01; https://esgf.dwd.de/projects/dwd-cps/cps-scen-v2022-01 ).  

We thank the reviewer for pointing at the missing references on the post-processing of the climate model data. The 

DWD core ensemble used in this study has undergone bias-adjustment and downscaling (Hänsel et al. 2020). Both 

processes were carried out by the Federal Ministry for Digital and Transport - Network of Experts Topic 1 (BMVI- 

Network of Experts Topic 1) and were not within the scope of this study. Nevertheless, it is essential to underscore 

that these downscaling and bias-adjustment procedures are pivotal when working with climate model data, offering 

a distinct advantage of the DWD core ensemble over climate model data from EURO-CORDEX. References on 

post-processing methods for climate model data should be incorporated into the manuscript, and a revision of 

section 2.2 will be undertaken to address this issue. 

In response to the availability of convection-permitting models, we acknowledge that such simulations were not a 

viable option for our study due to the currently limited selection of one available convection-permitting RCM.  

This contradicts with the ensemble-approach in climate change impact studies, to account for climate variations 

within the climate models. Therefore, we have analyzed in our study multiple ensemble members for each RCP 

scenario. 

The discussion section only discusses projected increases of sub-daily extreme rainfall and its temperature scaling 

compared to three other studies. However, the disaggregation procedure and its performance compared to other 

approaches is not discussed. Pui et al. (2012) follow that the method of fragments (MoF) outperforms a micro-

canonical cascade model. The systematic underestimation of the wet spell duration (Table 5) is also found by Pui 

et al. for the cascade model, whereas MoF can reproduce this rainfall characteristic (see also Poschlod et al., 2018: 

https://doi.org/10.1175/JHM-D-18-0132.1 for a comparison to convection-permitting climate model 

performance). The authors should at least discuss these drawbacks and elaborate on the advantages of a cascade 

model versus the MoF or other disaggregation approaches (e.g. Zhao et al., 2021: 

https://doi.org/10.1016/j.jhydrol.2021.126461 ). 

We thank the reviewer for his general questioning of the choice of the rainfall generator. We have mentioned other 

rainfall generators in the manuscript (L67: “Well-known disaggregation methods are the method-of-fragments 

(MoF, Westra et al. 2012), Bartlett-Lewis rectangular pulse model (BLRP, Koutsoyiannis and Onof, 2001, Onof 

and Wang, 2020) and cascade models (Molnar and Burlando 2005, Paschalis et al. 2012, Müller and Haberlandt, 

2018). An overview of different rainfall disaggregation methods is provided by Pui et al. (2012)“), but went for 



the cascade model because (in our opinion) it is the rainfall generator with the lowest restrictions for future climate 

data applications. 

The main restriction of the MoF is that only observed patterns of rainfall (fragments) can be reproduced, which 

disables the representation of a high-convective event in time if it is not included in the observations. The 

temperature-dependency introduced in this study uses temperature classes, which limits the amount of fragments 

for the highest temperatures and hence will lead to similar diurnal cycles for these temperatures. The cascade 

model is based on probabilities, which allow numerous different diurnal cycles based on the self-similarity of the 

temporal scales only. This enables rainfall extreme value changes of different magnitudes on different temporal 

scales (Derx et al., 2023). 

The main restriction of the pulse models is the assumption if model parameter distributions (pulse length, pulse 

rainfall amount, interarrival time of pulses,…) will change, and if yes, how. The probabilities used in the cascade 

model relate changes on a finer scale to changes on the coarser scale (which is provided on the daily scale by the 

climate scenario). So, the only assumption for the cascade model is that the physical rainfall process can be 

described in the future with the same statistics as done for the past - so that scaling behavior remains stationary. 

The possible extension to the rainfall generator choice in the manuscript would be: 

“Since for the method-of-fragments the amount of fragments is limited by the observation length (critical 

especially in combination with temperature-dependency), and for the Bartlett-Lewis rectangular pulse 

model assumptions about distribution function of pulse characteristics have to be made, the cascade model 

was chosen for this study. The ‘only’ assumption for the application of cascade models for the 

disaggregation of future climate model data is that the scaling behaviour of rainfall remains stationary, 

which is not questioned to the authors knowledge.” 

Regarding the wet spell duration: The wet spell is not systematically underestimated by the cascade model, also 

overestimations occur (Derx et al., 2023). However, the wet spell duration strongly depends on the threshold 

applied for considering a time step as wet or dry (e.g. Müller and Haberlandt, 2018, Fig. 5 vs. Fig. 6). As shown 

by Pidoto et al. (2022, supplementary material Fig. S1, provided below) the variation of the threshold influences 

the resulting statistics significantly. The concern raised by reviewer 3 with the dry duration considered for 

event/spell independency also has a crucial impact on this rainfall characteristic. Also, it remains unclear for the 

authors why the wet spell duration as a characteristic of all (small, moderate and high rainfall intensities) should 

be used as decision criteria while the focus of the submitted manuscript is on extreme values). 



 

Figure S1: Sensitivity of erosive event characteristics and R to measuring resolution. Thresholds on the x-axis 

were used to replace smaller rainfall amounts by 0 mm for each 5 min time step before estimating erosive event 

characteristics. Outliers were excluded due to image clarity. Results are based on all 5min stations in the study 

area (figure is from Pidoto et al., 2022, supplementary material) 

Furthermore, general uncertainties of the whole workflow need to be discussed: 1) The applied climate models 

have model biases. They parameterize convective processes. 2) What happens for temperature values under e.g. 

RCP8.5 LTF, which are outside the range of observed reference temperatures? 3) more generally: this empirical 

disaggregation method is calibrated on reference climate, but applied on strongly altered climate. This should be 

acknowledged from my perspective. 

We concur with the reviewer's observation that certain aspects of our workflow require more extensive discussion: 

1) It's important to note that the climate model data used in our study have undergone bias adjustment, effectively 

minimizing the impact of bias.  

2) Temperature values outside the range of observed reference temperatures are assigned to the lowest and highest 

temperature class, which has no lower and upper limits, respectively. However, it is worth to note that such 

temperature values were not identified in the RCP LTF.  

3) Regarding the disaggregation model, the model parameters were estimated from observations, under the 

assumption that the physical process behind rainfall and its statistical characterization will remain identical under 

future conditions. This assumption is a key aspect for the choice of this rainfall generator. The parameter estimation 

is carried out data-driven, so no calibration/iterative fitting or similar takes place. 

Minor comments: 

L30: "predicted" --> "projected" 

The word “predicted” was changed to “projected”. 

L35: How does disaggregation of daily rainfall relate to question 9: 'How do flood-rich and drought-rich periods 

arise, are they changing, and if so why?'? Can you elaborate on that? 

The disaggregation of daily rainfall is directly relevant to addressing question 9: 'How do flood-rich and drought-

rich periods arise, are they changing, and if so why?' This relevance is underscored by the fact that rainfall time 

series with sub-hourly temporal resolution play a pivotal role in understanding hydrological processes, particularly 

during flood-rich periods, on the micro- to meso-scale. 



However, it's essential to acknowledge that rainfall time series with sub-hourly resolution are not consistently 

available in space and time. To address this limitation, the disaggregation of daily rainfall time series serves as a 

viable solution. Furthermore, this process is of particular importance assessing changes in flood-rich periods at the 

micro- to meso-scale in the context of future climate scenarios. By disaggregating future daily rainfall time series 

to sub-hourly temporal resolutions, we enable a more comprehensive analysis of these changes. We would like to 

add: 

 “In particular, sub-hourly rainfall extreme events are important to analyze the number of pluvial floods, 

which are relevant for mesoscale and finer, rather than fluvial floods, which are relevant for meso- and 

macro-scale.” 

L39: RCP are emission scenarios not “climate scenarios”. 

The reviewer is correct the RCPs are emission scenarios and not “climate scenarios”. 

L40: IPCC 6th AR and the “state-of-science” in CMIP6 applied scenarios, which combine Shared Socioeconomic 

Pathways (SSPs) and the RCPs (Riahi et al., 2017: https://doi.org/10.1016/j.gloenvcha.2016.05.009). EURO-

CORDEX is driven by CMIP5. Please clarify in this paragraph. 

We agree with the reviewer regarding the application of 'state-of-science' scenarios in CMIP6, which integrate the 

Shared Socioeconomic Pathways (SSPs) and Representative Concentration Pathways (RCPs). Nonetheless, it's 

important to differentiate that while CMIP6 scenarios represent the 'state-of-science' on a broader level, they are 

notably limited when it comes to regionalized and bias-adjusted data at the moment. The term 'state-of-science' in 

our context was specifically linked to the availability of regionalized and bias-adjusted climate model data. This 

kind of data is predominantly accessible through simulations in CMIP5, which are driven only by the RCPs so far. 

We will make the following changes: 

  “In the sixth assessment report the IPCC established the “Shared Socioeconomic Pathways” (SSP) – 

scenarios representing a range of social-economic trajectories into the future. The Coupled Model 

Intercomparison Project (CMIP) coordinates the climate model simulations globally and is responsible for 

the new climate model generation of the sixth phase (CMIP6) in which the RCP and SSP scenarios are 

combined. However, for the CMIP6 there are no bias-adjusted and regionalized climate model data 

available for Germany so far, but for CMIP5 these climate model data exist. So CMIP5 is considered as 

'state-of-technic' climate simulations for Germany.” 

L41: Please rephrase: GCMs do not model RCP scenarios, as the emissions are provided as part of the external 

forcing to the GCMs. 

The sentence should be rephrased to: 

“In CMIP5 the RCP scenarios are provided as part of the external forcing to the Global Climate Models 

(GCMs), which simulate climate projections on the global scale.” 

L91-104: Here, you already introduce quite specific features of the cascade model in order to discuss the parameter 

reduction. However, the reader does not know about the parameters beforehand. I’d recommend to shift this 

paragraph to Sect. 3.2. 



We propose to relocate L102-104 to section 3.2 and added: 

“A detailed description of the intra-event similarities can be found in Sec. 3.2 to avoid technical details in 

this section.” 

This decision aligns with the structure of our paper. In the paragraph, we provide the literature background for 

both approaches for parameter reduction, with the first part (L91-99) focusing on the scale dependency of model 

parameters. This portion does not delve deeply into specific model properties and can be comprehended by readers 

without in-depth knowledge of the Cascade model. 

L127: Updated reference to Köppen-Geiger climates is available from Beck et al., 2018: 

https://doi.org/10.1038/sdata.2018.214 

The reference has been updated to: “Beck et al., 2018” 

L132: The sentence is not well connected; first you describe the overall climatology and then jump to availability 

of temperature data. I’d recommend to reorganize 2.1 into paragraphs on 1) climatology of Germany, 2) station 

data, 3) radar data. 

The section 2.1 will be reorganized to the structure recommended by the reviewer. 

L139 / Fig. 1: Please provide a readable legend for elevation. 

The legend of Fig. 1 will be updated. 

L162: The spatial resolution is described in the abstract (5km, L17), but misses here. How is the spatial 

downscaling from 0.11° to 5km carried out? Are the data bias-adjusted? Is drizzle considered/removed? 

The spatial downscaling from 0.11° to 5km of the DWD core ensemble was conducted by the Federal Ministry for 

Digital and Transport - Network of Experts Topic 1 (BMVI-Network of Experts Topic 1). Prior to this spatial 

downscaling process, the climate projections underwent bias adjustment, a procedure also administered by BMVI-

Network of Experts Topic 1 (Hänsel et al. 2020). For the bias adjustment of rainfall data, the quantile mapping 

method was employed. Quantile mapping methods serve to align the frequency distributions of projected data, 

which are prone to errors, with those derived from real observations through an average mapping rule. This 

adjustment encompasses parameters like the mean, standard deviation, individual quantiles, and even extrema. It 

is important to note that this methodology operates under the assumption of stationary frequency distributions. 

Nevertheless, it is recognized that this assumption may not hold true for all climate parameters in a changing 

climate. 

The spatial downscaling of the bias-adjusted results from regional climate models involved the use of multiple 

linear regression, where typical distribution patterns of the respective climate variables served as predictors. This 

process was followed by the interpolation of the regression residuals. The underlying assumption was that regional 

climate models accurately reproduce the coarse-scale patterns of the climate variables being regionalized. In the 

regionalization process, the fine-scale structures of these climate variables are incorporated using the typical 

patterns derived from high-resolution reference data. 



It is worth noting that we have thoroughly revised the entirety of section 2.2 to provide a more detailed description 

of the DWD core ensemble, with a particular focus on spatial downscaling and bias adjustment methods. However, 

both processes were not in the scope of this study, hence we will add the reference for it at the respective locations. 

L174ff.: The explanation of the cascade model should be rearranged. A general explanation of the working 

principle of a cascade model is missing. In L183, you mention the model parameters are scale-dependent without 

having introduced the model parameters (only the parameter b; parameters are fully introduced in L204 for the 

first time). The paragraph should be revised and understandable by a reader without pre-knowledge about the 

cascade model. 

Section 3.1 has been revised and some paragraphs have been rearranged. At the start of the section a short 

explanation of the working principle of a cascade model should be added.  

“A cascade model is used to increase the temporal resolution of a rainfall time series by distributing a coarse 

rainfall time step into finer time steps. This process is known as disaggregation. The number of resulting 

wet time steps and their rainfall amount depends on the cascade generator. However, in each disaggregation 

step the rainfall amount is exactly conserved. The cascade model parameters are estimated from observed 

time series.” 

L209: How sensitive is the resulting disaggregation to the choice of the volume class threshold (q=0.998)? Are 

there any “jumps” in the resulting rainfall frequency/intensity around the q=0.998? I would like to see a figure of 

resulting sorted rainfall intensities of different durations above q=0.99.  

The volume class threshold of q=0.998 is only applied for first disaggregation step with b=3 (24h->8h). For b=2, 

the mean rainfall volume is used as the threshold.  

The choice of the threshold value, q=0.998, is motivated by the fact that only a limited number of daily rainfall 

values surpass this quantile and are subsequently distributed across a single or two 8-hour intervals. This specific 

threshold value leads to significant distinctions in the parameters of the volume classes, as demonstrated in Müller 

(2016). The threshold is identified with the same method for other study regions as well (e.g. Switzerland, Ghana), 

although not mentioned in the respective manuscripts. 

For q > 0.99 there are no discernible 'jumps' within the data (Fig.below). 

 

Figure: Rainfall intensity for various rainfall durations and quantiles (q > 0.99) at location A. 

L232: Can you additionally provide a measure of the intra-event similarity for all 45 locations? 

One approach to assess intra-event similarity across all 45 locations involves measuring the change between the 

parameters for both similarities (Fig. S3). A smaller change indicates a higher degree of parameter similarity. For 



all disaggregation steps and both volume classes the absolute change are low (0 – 2 %). We propose to add this 

figure with the following text in the manuscript: 

“In Fig. 4 the intra-event similarity for all 45 locations is showing only minimal changes (0-2 %) between 

the parameters for both similarities underlying our assumption. For similarity 1 the differences between 

Pstarting(0/1) and Pending(1/0) in V1 are slightly higher compared to V2. Contrary, in similarity 2 changes 

between the parameters are slightly higher in V2. However, the difference is negligible and it can be assumed 

that the parameters are almost the same at all locations.” 

 

Figure: Absolute difference [%] of the cascade model parameters from Pstarting(0/1) to Pending(1/0) (Similarity 1) and 

from Pstarting(1/0) to Pending(0/1) (Similarity 2) in both volume classes across all 45 stations and disaggregation steps. 

L238/Tab 3: V index seems not correct. 

The V index has been corrected. 

L252ff: As the temperature-dependent cascade model performs better only for rainfall extremes (see Tab. 7, Fig. 

6 and 7), the dependency could only be introduced for the volume class V2? In Section 3.3, the temperature 

dependency is estimated for temperature classes at 5°C steps, for all rainfall intensities > 0 mm / 5 min. However, 

the temperature dependency is expected to be different for different rainfall generating mechanisms (stratiform vs. 

convective), which are associated with different rainfall intensities. 

We thank the reviewer for this suggestion, which would be a new kind of parameter reduction of the temperature-

dependent cascade model. Especially for days with rainfall volumes close to the threshold applied for the volume 

classes this suggestion could lead to an alternate and hence inconsistent usage of temperature-dependent and 

temperature-independent parameters in different disaggregation steps, e.g. temperature-dependent model 

parameters for ∆t={8h→4h, 2h→1h→30min} and temperature-independent model parameters for ∆t={4h→2h, 

30min→15min}. An inconsistent parameter usage in different disaggregation steps questions the self-similarity of 

rainfall on neighboring scales, which is the basic principle of the cascade model. A decision for temperature-

(in)dependent model parameters only on the coarse starting scale (here daily) accompanies with other issues (sub-

daily high-intense events will be ignored).  

So, an implementation of the suggested parameter reduction requires additional scale-dependent investigations, 

especially regarding a possible violation of the cascade model principles. This would be a rather theoretical study, 



which can’t be implemented in the current manuscript. So, although the suggestion sounds interesting and 

promising, we can add it as outlook only, unfortunately: 

“The results of this study show that a temperature dependency of the cascade model parameters is relevant 

especially for the rainfall extreme events. Hence it is worth to analyze if the application of temperature-

dependent cascade model parameters can be reduced to time steps with high rainfall intensities only.” 

L270: What are the advantages of the DWA approach over the well-established extreme value theory approaches, 

such as peak-over-threshold sampling and Generalized Pareto distribution fit (Davison and Smith, 1990: Davison, 

A. C. and Smith, R. L.: Models for exceedances over high thresholds, J. Roy. Stat. Soc., 52, 393–442, 1990)? 

The DWA approach is a peak-over-threshold approach (described in L269), which is complied with the extreme 

value theory. Instead of the GPD the plotting position formula is used as recommended in the national guidelines 

for the design and planning of drainage systems, such as DIN 1986. These guidelines rely on calculated rainfall 

extreme values, as outlined in the DWA-A 531 guideline. 

Given the relevance of our study to rainfall extreme values in Germany, it was a logical choice to incorporate the 

DWA approach into our research. However, the usage of a different distribution function as GPD could only lead 

to a systematic deviation of the extreme values of certain return periods (e.g. rainfall intensities for T=10yrs could 

be in general higher or lower), so the results of the study (change from C20 to NTF or LTF) remain unaffected. 

L279: Rainfall characteristics should be already introduced and defined in Section 3.4. How are wet spell duration, 

dry spell duration, and wet spell amount defined? 

Wet spell duration, dry spell duration, and wet spell amount are first mentioned in section 2.1 L145. However, the 

definition of the individual rainfall characteristics can be a bit more detailed: 

“Following the event definition of Dunkerley (2008) a rainfall event is defined as a rainfall period enclosed 

by at least one dry time step. A dry time step refers to a rainfall intensity of 0 mm /5 min. The wet spell 

duration represents the duration of a rainfall event enclosed by two dry time steps. The wet spell amount is 

the sum of rainfall occurred during the wet spell. Dry spell duration is the duration of a dry period enclosed 

by wet time steps.” 

L359: “scatter” means variance or inter-quartile range? 

In this context scatter refers to the difference between the q25 and q75 and thus describes the inter-quartile range. 

To be more precise scatter was changed to inter-quartile range: 

“Furthermore, the temperature-dependency results in a smaller inter-quartile range of mE …” 

L470 / L604: The article in the references (L604: https://doi.org/10.5194/essd-13-983-2021) describes the 

evaluation of sub-daily extreme precipitation compared to observational products, whereas the article in the text 

(L470: https://doi.org/10.1088/1748-9326/ac0849) investigates future projections and temperature scaling of 

extreme rainfall. 

The reviewer is correct. The article in the reference is wrong and has been corrected:  



“Poschlod, B. and Ludwig, R.: Internal variability and temperature scaling of future sub-daily rainfall 

return levels over Europe, Environ. Res. Lett., 16, 64097, https://doi.org/10.1088/1748-9326/ac0849, 2021.” 
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Review by anonymous Referee #2 

 

Review of 'Estimation of future rainfall extreme values by temperature-dependent 

disaggregation of climate model data' by Ebers et al. 

The study analyzes a set of 45 sub-hourly rainfall stations, uniformly distributed over Germany, with respect to 

the occurrence of rainfall extremes. Future projections of corresponding quantities are obtained from an existing 

micro-canonical cascade model (Müller and Haberlandt 2018) that is extended to include temperature as a 

covariate. The resulting model parameters are reduced in two directions, one by assuming scaling behavior across 

the relevant time scales, and one by assuming certain intra-event symmetries; this reduces the number of 

parameters from 144 to 40. 

The so optimized disaggregation is then applied to 6 GCM/RCM model simulations, each driven by a modest 

(RCP4.5) and by a pessimistic (RCP8.5) emission scenario. 



The main results are: 

– disaggregation performance with respect to key quantities (e.g. intensity) is improved by using T dependency 

– in the near future, changes in the intensity of extreme (2y) events are moderate 

– in the long term, especially for RCP8.5, changes are +12% without and +21% with T dependency. 

It is also reported, but not discussed much, that core statistics such as wet spell duration or rainfall intensity deviate 

considerably for the disaggregation model, with relative errors of -22% and 23%, respectively. 

We thank the reviewer for the effort and the time spend on this manuscript. His/her major concerns are the research 

questions of the study and the climate model data used in the study. Both concerns are pointed out in the general 

reply above. A point-by-point reply can be found below.  

Major comments: 

As they are posed, the three research questions of the study 

i) Is there a temperature-dependency of sub-daily rainfall extreme values? 

ii) How can the temperature-dependency be integrated in the cascade model parameters for temporal rainfall 

disaggregation? 

iii) How will rainfall extreme values change in the future? 

are not new. iii) is a core topic of IPCC since more than two decades, i) belongs to the folklore at least since the 

seminal Lenderink and Meijgaard (2008) paper, and the more specific point ii) has already been addressed e.g. by 

Bürger et al. (2019). To become publishable, the study evidently needs to re-formulate its goals decisively. One 

options is to dive more deeply into the strong biases (see above) and their dependency on parameterization. It is 

not clear, for example, why one should have parameter reduction at all (apart of course from the general validity 

of Occam's razor). Another is to emphasize more clearly the regional structure (the 45 stations) of the main results. 

At the suggestion of the reviewer, we have adapted the research question of the study. The revised research 

question are more precise and are intended to better represent the research focus of this study. 

“i) How can a cascade model be modified to improve the disaggregation results regarding rainfall extreme 

values with a minimum increase in model parameters?” 

“ii) How will rainfall extreme values with a temporal resolution of 5 min change in the future across 

Germany?” 

Another weakness is the uncritical and un-adjusted use of climate models, whose biases confound the 

disaggregation bias. What are the biases? Which models have which bias? And where? On this background, are 

relative projections (e.g. +21% intensity) still reliable and have added value? 

The climate model data used in this study has been bias-adjusted. However, this aspect was not explicitly detailed 

within the paper, as it was not part of our work. The regionalization and bias adjustment of the climate model data 

was conducted by the Federal Ministry for Digital and Transport - Network of Experts Topic 1 (BMVI-Network 

of Experts Topic 1).  In section 2.2, we have revised the description of the climate model data to provide a more 



comprehensive account, including a method description for the regionalization of 0.11° to 5 km raster and the bias 

adjustment of both temperature and rainfall data. 

Furthermore, it's crucial to recognize that the parameters of the cascade model were estimated from observed 

values. In the context of disaggregating future values, the only assumption for the cascade model is that the 

physical rainfall process can be described in the future with the same statistics as done for the past - so that scaling 

behavior remains stationary. 

Although a bias-adjustment was carried out, there is a wide range between the climate models. Therefore, absolute 

values resulting from the individual climate ensembles are not provided and only the relative change is analyzed, 

which enables comparability between the climate models. 

Specific comments: 

l. 40: developments --> evolutions 

Rephrased to “evolutions”. 

l. 40: but IPCC AR6 uses SSPs 

We agree with the reviewer that the IPCC AR6 employs Shared Socioeconomic Pathways (SSPs) scenarios. 

However, it's noteworthy that simulations for the SSPs are limited in terms of regionalization and bias adjustment 

so far. Consequently, for our study, we decided to use simulations from CMIP5, which are driven solely by the 

Representative Concentration Pathways (RCPs). It's important to emphasize that CMIP5 simulations exist as 

regionalized and bias-adjusted data for Germany. 

We have made revisions to the relevant section to ensure clarity and alignment with our approach: 

  “In the sixth assessment report the IPCC established the “Shared Socioeconomic Pathways” (SSP) – 

scenarios representing a range of social-economic trajectories into the future. The Coupled Model 

Intercomparison Project (CMIP) coordinates the climate model simulations globally and is responsible for 

the new climate model generation of the sixth phase (CMIP6) in which the RCP and SSP scenarios are 

combined. However, for the CMIP6 there are no bias-adjusted and regionalized climate model data 

available for Germany so far, but for CMIP5 these climate model data exist. So CMIP5 is considered as 

'state-of-technic' climate simulations for Germany.” 

l. 76-78: I don't understand this argument. 

The cascade model parameters relate the distribution of rainfall amounts on finer time steps to the rainfall amount 

on the coarser time step. These parameters describe only probabilities for splitting possibilities of the total rainfall 

amount. They do not prescribe the precise values of wet spell duration or amount as in other rainfall generators at 

finer scale. Consequently, we assume that the cascade parameters can be applied for the disaggregation of future 

time series. This line will be rephrased to: 

“Since for the method-of-fragments the amount of fragments is limited by the observation length (critical 

especially in combination with temperature-dependency), and for the Bartlett-Lewis rectangular pulse 

model assumptions about distribution function of pulse characteristics have to be made, the cascade model 

was chosen for this study. The ‘only’ assumption for the application of cascade models for the 



disaggregation of future climate model data is that the scaling behaviour of rainfall remains stationary, 

which is not questioned to the authors knowledge.” 

l. 82: Kelvin units are "K" not "k". 

The typo was corrected to “K”. 

l. 94: note that already Olsson (1998) uses parameter reduction (by averaging over several levels). 

The sentence will be revised to: 

“Olsson (1998) tested before an averaged parameter set estimated from coarser resolution (17h aggregated 

up to 5.7 days) for the disaggregation of time steps from ~17h to ~1h and found only a minor worsening of 

the disaggregation results. Olsson (1998) also showed that parameters estimated from time series with a 

temporal resolution <1 h differ from parameters estimated from a time series with a coarser temporal 

resolution.” 

l. 108: All central questions have been addressed in previous work already:   i) has populated the scientific debate 

at least since the seminal paper by Lenderink    and Meijgaard (2008) and does not really fit as a core research 

question. 

  ii) has been thoroughly addressed by the Bürger et al. papers. 

  iii) is probably one of the most addressed questions in climate research of the past 3  decades or so. 

Please see our general reply at the beginning of this document and the replies to the major comments. 

l. 148: It is not clear to me why you used the YW data at all, and not just stick to the station data? 

We aim to disaggregate climate model data with a spatial resolution of 5x5 km, and the cascade model parameters 

are estimated from observed data. To ensure spatial consistence for these parameters, we also estimated them using 

a 5x5 km raster. It's essential to note that rainfall observations at a 5x5 km raster are accessible through the 

aggregation of the 1x1 km YW data. 

Rainfall statistics at a single rain gauge/point can differ significantly from rainfall statistics at a 5x5 km raster cell, 

particularly concerning rainfall extreme events (which is the main reason for the existence of areal reduction 

factors (ARFs). 

l. 159: 'climate scenario' and 'climate emission' inadequate 

The reviewer is correct, the RCPs are emission scenarios and not “climate scenarios”. It has been corrected. 

l. 164: there is a big resolution gap between the 50km/12.5km resolution of EURO-CORDEX and the 5km of the 

DWD. Please explain! 

The spatial downscaling of the DWD core ensemble, from 0.11° to 5 km, was executed by the Federal Ministry 

for Digital and Transport - Network of Experts Topic 1 (BMVI- Network of Experts Topic 1) employing the 

multiple linear regression technique (Hänsel et al. 2020). In response to the reviewer's comment, we have revised 

section 2.2, providing a more comprehensive description of the climate model data, including an in-depth account 

of the spatial downscaling method and the bias adjustment process. 



l. 172: Since for the main part a branching number of b=2 is used, it is unclear how the cascade model is different 

from the Olsson model. 

The main difference to the Olsson model is the choice of the branching number, with b=3 in the first disaggregation 

step. This selection results in a cascade of disaggregation steps as follows: 24h->8h->4h->2h->1h->30min-

>15min->7.5min. This structure offers the advantage of commencing with a daily time step and achieving precisely 

1-hour time steps, and later the 5 min by a linear transformation of the 7.5 min time steps. The use of b=3 in the 

initial disaggregation steps involves three weights for distributing the rainfall amount, as opposed to the two 

weights used in the Olsson (1998)-model, which maintains b=2 throughout. In the Olsson model, to achieve 1-

hour time steps, the disaggregation progresses from 5.7 days -> 17 hours -> 8.5 hours -> 4.24 hours -> 2.125 hours 

-> 1.0625 hours (~1 hour). Conversely, employing b=2 in a cascade from a daily time step would result in: 24h -

> 12h -> 6h -> 3h -> 1.5h -> 0.75h. In this scenario, a 1-hour time step is not achieved directly; instead additional 

modifications are required (Güntner et al., 2001, Müller und Haberlandt, 2015). As shown before by Müller and 

Haberlandt, with the here applied method with b=3 (“uniform splitting”) better results can be achieved than with 

the “diversion” approach by Güntner et al. (2001) for the temporal resolution of 1h. The application of purely b=2 

throughout the disaggregation process to achieve 5min time steps is only possible with a so-called fine-graining 

down to a few seconds and subsequent aggregation to 5min. However, the cascade model parameters for these 

temporal resolutions (<1min) cannot be estimated with the data used in our study, hence this is no possible option 

here. 

l. 184: Why 'unbounded'? 

This sentence highlights the difference between a bounded and an unbounded cascade model. In an unbounded 

cascade model, it is assumed that the model parameters are scale-independent. This implies that a single-parameter 

set is used for all disaggregation levels. In contrast, the bounded model operates on the assumption that the model 

parameters are scale-dependent. As a result, this approach employs a distinct single-parameter set for each 

disaggregation step. Line 183 was modified for clarification: 

“For each disaggregation step the model uses a single-parameter set (bounded cascade model).” 

l. 186: You may consider putting this at the beginning near l. 174 

Thank you for this comment, this part was placed at an earlier point in section 3.1. 

l. 193: The relative fraction definition does not make sense as it stands. 

Unfortunately, we are not sure what the reviewer refers to exactly with ‘does not make sense’. A x/(1-x)-splitting 

is a mechanism for distributing the rainfall volume from one coarse time step across two finer time steps. This 

distribution is determined by the weights W1=x and W2=1-x. Importantly, the sum of W1 and W2 equals 1, which 

necessitates that the value of x must lie within the range of 0 < x < 1. Here, x signifies the fraction of the coarse 

time steps allocated to the first finer time step. Hence, the relative fraction definition holds significance as stated. 

We have rephrased the sentence as follows: 

“The relative fraction x of the rainfall amount of the coarser time step assigned to the first time step is 

defined as 0 < x < 1.” 

l. 195: Is it uniform, or U-shaped? – How does it look? 



In Fig. S4 the distribution function f(x) is shown. It has a U-shaped pattern. 

 

Figure: Distribution function f(x) at location A within the lower volume class and the enclosed position class for 

the disaggregation step from 1 hour to 30 minutes. 

l. 211: This sentence is awkward, and seems to bring back the confusion about the target quantity. 

The sentence was confusing and will be revised: 

“The parameters of the cascade model and f(x) are estimated for each location with 5 min time series for 

the period 01.01.2001 – 31.12.2021. The 5 min time series are extracted from a 5 km rainfall raster 

aggregated from the 1 km YW data. The aggregation from the YW data to a 5 km raster was used to ensure 

spatial consistence of the cascade model parameters to disaggregate the climate model data which also have 

a 5 km spatial resolution.” 

l. 218: How does your implementation compare to e.g. Bürger et al. (2019) and Pons et al. (2022) who also aim at 

parsimonious implementation of temperature dependency? How do the 12 parameters of (an updated version of) 

the original cascade model of Olsson (Willems and Olsson, 2012) compare to the 40 parameters from your S1-P1 

implementation? 

Pons et al. (2022) introduced temperature dependency exclusively for the zero-weight generator, only for 

distributing the total rainfall amount from the coarse time step in only one of the two finer time steps (1/0- and 

0/1-splitting). In contrast, our study incorporates temperature dependency to all cascade model parameters. 

Another distinction lies in the structure of the cascade model. Pons et al. used a branching number of b=2 for all 

disaggregation steps, resulting in a final time step of 5.625 minutes, which is no suitable for e.g. subsequent 

rainfall-runoff model applications. In our cascade model, we employ a branching number of b=3 in the initial step, 

with a 7.5-minute time step in the final disaggregation step. This 7.5-minute time step is further evenly divided 

into three 2.5-minute time steps, followed by an aggregation of two non-overlapping time steps (suitable for 

subsequent rainfall-runoff model applications). 

The disaggregation model used by Bürger et al. (2019) is a simpler model compared to the model by Müller and 

Haberlandt (2018). A difference is the scale dependency of the parameters. Although e.g., the slope parameter c2 

in the model by Bürger et al. (2019) is a scale-dependent parameter, it is ‘counted’ as only one parameter and not 



counted per scale. Comparable parameters in the model presented in our study are counted per applied scale n, 

which leads to a higher total parameter number. So, for a fair comparison of parameter numbers the scale-

dependent parameters in Bürger et al. (2018) should be counted scale-dependent, e.g. the parameter should be 

counted n*c2 times instead of only once. 

l. 228: event-connecting systematic is an awkward term. 

We have rephrased the term to „event-cohesive”. 

l. 228-230: This should be removed. Unless being unity, the probabilities do not imply anything about the 

connectedness of the disaggregated events. 

We have included an additional time step numbering in Fig. 3 to better demonstrate the connectedness of the 

disaggregated events. We have modified for clarification:  

“A connected disaggregation event can only occur if an enclosed time step (Z1,3) is disaggregated with P(x/(1-

x) into two wet time steps. For an enclosed time step the probability of P(x/(1-x) is very high. If a time step 

is disaggregated in the Starting Position Class (Z1,2) and the next time step is enclosed (Z1,3), there is a high 

probability of a 0/1-spilting, whereby the disaggregation event remains connected.” 

 

Figure: Disaggregation of a wet time step (Z1,2 & Z1,4) to describe the similarities of probability parameters in the 

start and end position class (for the same volume class) for continuous rainfall events (A) and non-continuous 

rainfall events (B). 

Table 4: This should go to the results section (# of T classes) 

We would prefer not to relocate this table to the results section. This table functions as an overview of the quantity 

of cascade model parameters within each model variant. Therefore, the table primarily serves as a summary of the 

different model approaches and is not considered as a result. 

Section 3.4: Consider removing this as NHESS readers are most likely familiar with the basic statistics. 

We prefer to not remove section 3.4. The relative Error rE and mean Error mE are calculated over all locations 

and for each location over all 30 realizations. This may not be understandable for every reader. In addition, in this 

section the validation of the extreme values is described. The extreme value analysis is the focus of the study, so 

it is useful to have a brief description of the extreme values analysis 



Table 5: For intensity, an 25% error in the mean and 50% error in stddev is quite something. Are future projections 

reliable given such errors? 

The reviewer refers to Table 5. It is important to note that the cascade models leading to these results were not 

used for the disaggregation of the climate model data concerning future extreme values. For the analysis of future 

extreme values, a cascade model with temperature-dependent parameters was used. The results for this are shown 

in Table 7. For the rainfall intensity, the mean rE is 20 % and the mean standard deviation of the rE is 22 %. As 

this is a mean rE over all 45 locations, there will be locations with a lower rE and higher rE. At the locations with 

a lower rE (rE < 20%) the future projections are more reliable compared to locations where the rE is higher. This 

should be taken into account for the interpretation of the results from the climate model data. However, the 

overestimation of the intensity is a bias which is assumed to be stationary, so it will hold for C20 as for NTF and 

LTF. With the focus on extreme values, the error is smaller and reduced due to the introduction of the temperature-

dependency. Nevertheless, since absolute values can be questioned, we decided to quantify the change of extreme 

values, which can then be applied to observed data. 

Figure 4: Are you only counting events on wet days in all cases? 

Only wet days are considered for the analysis of the q99.9. 

l. 327: Are you describing here the exponential dependency? 

Yes, the temperature dependency is not as high for lower temperatures compared to high temperatures. For 

example, the difference of rainfall intensity between the lowest three temperature classes (Diff is 0.4 mm/5min for 

T<13°C) is not as high as between the highest classes (Diff is 5.2 mm/5min for T>13°C). 

l. 330: If you only analyze wet days in Fig. 4, it may well be that the total number of high rainfall events does not 

occur at the highest temperatures. 

The reviewer is right, in Fig. we only analyze wet days. However, in Tab. 6 we identified the 20 highest rainfall 

events and the temperature class in which they occur showing that the highest rainfall events do not solely occur 

in the highest temperature class. 

Fig. 6: While the modeling error is certainly interesting, I would have found it more illuminating to have Fig. 4 

repeated with T dependency (overlayed). Could that be done? 

In the Fig. below the cascade model approach with temperature dependency (S1-P1-TD) has been added. Since 

we also think that this figure is very interesting, we propose to included it in the manuscript with the following 

text: 

“In Fig. 5 the impact of temperature-dependency on the q99.9 is shown in detail for the location A-E. Notably, 

the exponential behavior over all temperature classes can be represented with the temperature-dependent 

disaggregation, which was not possible before. While for the highest temperature class (>18 °C), all model 

variants without temperature dependency show a great underestimation of q99.9. S1-P1-TD leads to a better 

representation. A slight overestimation of q99.9 for the highest temperature class is identified in general, but 

also strong overestimations are possible (location C). In the lower temperature classes (≤18 °C) there are 

also overestimations of q99.9.” 



 

Figure: Impact of temperature-dependency and parameter reduction on the q99.9 rainfall intensity [mm/ 5min] for the 
disaggregated and the observed (quasi-gauge-adjusted radar data) time series in the temperature classes for selected 
locations (A-E) and the daily mean temperature. 

l. 411: Is it justified to apply the daily climate models data uncorrected? 

Using uncorrected climate model data would be unjustified. But as explained in the general replay the climate data 

used in this study has been bias-adjusted. 

l. 487: The term 'physical extension' should be avoided and replaced with, e.g., physically inspired extension' or 

similar. 

The term 'physical extension' has been replaced with 'physically inspired extension’. 

l. 514: Fortran code can be shared like any other code. So please consider sharing the code as well. 

The Fortran code contains a few more extensions, which are not published yet and still under development, hence 

we prefer to share only the executable file. However, if someone is interested in a certain part of the code we would 

be happy to share a ‘clean’ version of it. We will try to share the Fortran code as far as possible. We have rephrased 

the line to: 

“..and can be shared on request.” 

References: 

Bürger, G., Pfister, A., and Bronstert, A.: Temperature-driven rise in extreme sub-hourly 

rainfall, Journal of Climate, 32, 7597–7609, 2019. 

Hänsel, S., Brendel, C., Fleischer, C., Ganske, A., Haller, M., Helms, M., Jensen, C., Jochumsen, K., Möller, J., 

Krähenmann, S., Nilson, E., Rauthe, M., Rasquin, C., Rudolph, E., Schade, N., Stanley, K., Wachler, B., 

Deutschländer, T., Tinz, B., Walter, A., Winkel, N., Krahe, P., and Höpp, S.: Vereinbarungen des Themenfeldes 

1 im BMVI-Expertennetzwerk zur Analyse von klimawandelbedingten Änderungen in Atmosphäre und 

Hydrosphäre, https:// https://doi.bafg.de/BfG/2020/ExpNHS2020.2020.01.pdf, 2020. 

Pons, V., Benestad, R., Sivertsen, E., Muthanna, T. M., and Bertrand-Krajewski, J.-L.: 

Forecasting green roof detention performance by temporal downscaling of precipitation 

time-series projections, Hydrology and Earth System Sciences, 26, 2855–2874, 

https://doi.org/10.5194/hess-26-2855-2022, 2022. 

Willems, P. and Olsson, J. (Eds.): Impacts of Climate Change on Rainfall Extremes and 

Urban Drainage Systems, IWA Publishing, 2012. 



 

Review by anonymous Referee #3 

 

The authors use cascade modelling to disaggregate RCM rainfall at 45 locations in Germany from 1-day to 5-min 

resolution, in order to estimate future changes in short-duration extremes. The model is first developed and 

calibrated using observations. In this procedure some reduction of parameters is attained and a temperature 

dependency is implemented. The model is then applied to three 30-year periods of RCM ensemble output at the 

same 45 locations and future changes are estimated. 

The challenge of estimating future changes in short-duration rainfall extremes indeed deserves to be tackled, by 

different complementary approaches, one of which is combining dynamical and statistical downscaling techniques 

as done here. The paper is quite clear, the calculations seem well performed and everything is reasonably well 

presented. Still there are several deficiencies that need to be resolved before publication, in my opinion. 

First of all, I agree with the criticism provided by Reviewers 1 and 2. Main issues here are, in my opinion (partly 

copied from previous reviews): 

-    daily temporal and 0.11° spatial resolution does not represent the “state-of-science”; 

-    the impact of the (substantial) biases in precipitation from these RCMs is not assessed; 

-    the research questions are poorly formulated. 

I also share the rest of the concerns raised by Reviewers 1 and 2 and thus I do not need to repeat them here. In 

addition, I have the following comments. 

Reviewer #3 is gratefully acknowledged for her/his efforts and the time spend on the manuscript. In the general 

reply above the main concerns of the reviewer are addressed. A point-by-point reply can be found below. 

General: 

-    Some parts (mainly in the introduction and methods sections) are overly wordy, as also commented by the other 

reviewers, and more or less repeat what is found in other papers on this topic. I suggest to keep it more compacts 

(but still stand-alone, of course) and refer to other papers for more information, when need. 

Some sections of the manuscript have already been revised with the help of specific comments by the reviewers. 

However, we will try to further minimize the wordiness in the revised manuscript. 

-    It would be interesting to see the difference between data disaggregated from the YW data and RCM data in 

the C20 period, respectively. Even if the periods differ they supposedly represent present climate and one wonders 

about the realism in the RCM-based disaggregation. 



In the Fig. below rainfall characteristics are presented for climate periods representing the present climate, using 

data from the YW data set (observation period, 2001-2021) and RCM data (C20 period, 1971-2000) at location D. 

The results of the RCM-based disaggregation show values for wet spell duration, wet spell amount, and dry spell 

duration that closely align with the observed values derived from the YW dataset. However, it's essential to be 

cautious comparing observed values to climate scenario data, as historical climate model data does not replicate 

the observed climate. Additionally, to analyze future climate conditions the focus is on the relative changes 

between climate periods rather than the absolute values. This approach adheres to the guidance provided by the 

German Weather Service for handling climate model data. In this study, we have taken these considerations into 

account, presenting future changes in extreme values as relative changes concerning the C20 period. 

 

Figure: Difference between YW data set (observation period, 2001-2021) and RCM data (C20 period, 1971-2000) 

at location D for different rainfall characteristics. The range in the RCM data results from the minimum and 

maximum value of the climate ensemble. 

-    The Conclusions is in my opinion a Summary. Conclusions need more of…well, conclusions; what do the 

results mean in a broader context, how can they be used, what research remains, etc. 

The reviewer is right about the current conclusion section. We propose renaming the section to "Summary and 

conclusion". Furthermore, we would like to offer more specific conclusions that provide valuable insights: 

- Rainfall disaggregation proves to be a valuable tool for enhancing the temporal resolution of climate 

scenario data. This approach allows for a analysis of finer temporal rainfall patterns and their impacts. 

- The methodology outlined in this study, particularly the disaggregation process, is not limited to the 

specific climate model data used. It can be applied to other climate scenario data, including the 

disaggregation of e.g. 3 h climate model data. This expansion of applicability has the potential to further 

enhance the accuracy of climate model results and research studies. 

- The high temporal resolution future rainfall time series generated through this method offers significant 

potential for various applications, e.g. rainfall-runoff modeling, urban hydrological models und hydraulic 

models. The accuracy and effectiveness of these models depend on the temporal resolution, especially at 

small temporal and spatial scales. 



Specific: 

 

-    L51: Berne et al. needs a year. 

The year has been added. 

-    145: To have just one dry time step (i.e. 5 dry minutes) separating wet spells is very unusually short, which 

also make the wet spells very short (around 20 min) and small (around 0.5 mm). I recommend a separation of 

hours to really encapsulate the full events. Maybe this is one reason for the quite weak performance in terms of 

spell durations (Table 6). 

According to Dunkerley (2008), rainfall events are defined as having a minimum of one dry time step both before 

and after the occurrence of rainfall. In the context of 5-minute rainfall time series analysis, a dry time step is 

specifically defined as a period with a rainfall intensity of 0 mm/5 min. This consistent definition of rainfall events 

allows for direct comparisons with the findings of e.g. Müller & Haberlandt (2018) or Derx et al. (2023). In our 

study, we've adhered to the same definition for wet spell amount and wet spell duration analyzing 5-minute rainfall 

time series.  

The Tab. below shows the rE [%] of continuous rainfall characteristics with rainfall events separated by 1 h dry 

time steps as proposed by the reviewer. Compared with the results in Tab. 5 in the manuscript a worthening of the 

wet spell amount and dry spell duration is notably. The difference between the model variants is comparable to 

the results from our study. As there are no improvements of the disaggregation results, we suggest to continue to 

use the one dry time step definition of rainfall events. In addition to the quite weak performance in terms of wet 

spell durations, the wet spell duration also strongly depends on the threshold applied for considering a time step 

as wet or dry (e.g. Müller and Haberlandt, 2018, Fig. 5 vs. Fig. 6). As shown by Pidoto et al. (2022) in Fig. S1, the 

variation of the threshold influences the resulting statistics significantly. 

For the rainfall extreme events, we have chosen minimum of 4 hours without to ensure independency. This 

criterion aligns with the requirements outlined in the German guideline DWA 351 for the analysis of rainfall 

extremes. 

Table: Relative Error (rE) [%] of continuous rainfall characteristics between disaggregated and observed time series for 

rainfall time steps (mean across 45 stations) with rainfall events separated by 1 h dry time step. 

Rainfall characteristic rE [%] 

S0-P0 S1-P0 S0-P1 S1-P1 S2-P0 S2-P1 

Wet spell duration [min]       

Mean -30 -28 -30 -28 -4 -3 

Standard deviation -42 -41 -42 -41 -20 -20 

Rainfall intensity [mm/5 

min] 
      

Mean 24 23 24 23 19 19 

Standard deviation 52 51 52 51 45 50 

Wet spell amount [mm]       

Mean -30 -30 -30 -30 -26 -26 

Standard deviation -32 -32 -33 -32 -24 -23 

Dry spell duration [min]       



Mean -30 -30 -30 -30 -28 -28 

Standard deviation -30 -32 -30 -32 -34 -34 

 

-     L167: Here NTF is written as 2051-2070, later in the paper it is 2021-2050 (e.g Fig. 8). Which is correct? 

The correct time period for NTF is 2021-2050. The wrong period has been corrected. 

-    L194: Which f(x) is used here? 

f(x) is an empirical distribution function. The sentence will be revised: 

“Considering x as a random variable for all disaggregation steps, an empirical distribution function f(x) is 

estimated from the observed time series.” 

-    L379: od -> of 

Thanks, it has been corrected. 

-    L385: Delete the first “temperature”. 

The first “temperature” has been deleted.  
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