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Abstract. Ocean surface wind speed (i.e., wind speed 10 m above sea level) is a critical parameter used by atmospheric models 15 

to estimate the state of the marine atmospheric boundary layer (MABL). Accurate surface wind speed measurements in diverse 

locations are required to improve characterization of MABL dynamics and assess how models simulate large-scale phenomena 

related to climate change and global weather patterns. To provide these measurements, this study introduces and evaluates a 

new surface wind speed data product from NASA Langley Research Center’s High Spectral Resolution Lidar – generation 2 

(HSRL-2) using data collected as part of NASA’s Aerosol Cloud meTeorology Interactions oVer the western ATlantic 20 

Experiment (ACTIVATE) mission. The HSRL-2 is a nadir-viewing lidar that can directly measure vertically resolved aerosol 

backscatter and extinction profiles without additional constraints or assumptions, enabling the instrument to accurately derive 

atmospheric attenuation and directly determine surface reflectance (i.e., surface backscatter). Also, the high horizontal spatial 

resolution of the HSRL-2 retrievals (0.5 s or ~75 m along track) allows the instrument to probe the fine-scale spatial variability 

of surface wind speeds over time along the flight track and breaks in broken cloud fields. A rigorous evaluation on these 25 

retrievals is performed by comparing coincident HSRL-2 and National Center for Atmospheric Research (NCAR) AVAPS 

dropsonde data, owing to the joint deployment of these two instruments on ACTIVATE’s King Air aircraft. These comparisons 

show correlations of 0.89, slopes of 1.04 and 1.17, and y-intercepts of -0.13 m s-1 and -1.05 m s-1 for linear and bisector 

regressions, respectively and the overall accuracy is calculated to be 0.15 m s-1 ± 1.80 m s-1. It is also shown that the dropsonde 

surface wind speed data most closely follows the HSRL-2 distribution of wave-slope variance using the distribution proposed 30 

by Hu et al. (2008) than the ones proposed by Cox and Munk (1954) and Wu (1990) for surface wind speeds below 7 m s-1, 

with this category comprising most of the ACTIVATE data set. The retrievals are then evaluated separately for surface wind 

speeds below 7 m s-1 and between 7 m s-1 and 13.3 m s-1 and show that the HSRL-2 retrieves surface wind speeds with a bias 

of ~0.5 m s-1 and an error of ~1.5 m s-1, a finding not apparent in the cumulative comparisons. Also, it is shown that the HSRL-
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2 retrievals are more accurate in the summer (-0.18 m s-1 ± 1.52 m s-1) than winter (0.63 m s-1 ± 2.07 m s-1), but the HSRL-2 is 35 

still able to make numerous, (N = 236) accurate retrievals in the winter. Overall, this study highlights the abilities and assesses 

the performance of the HSRL-2 surface wind speed retrievals and it is hoped that further evaluation of these retrievals will be 

performed using other airborne and satellite data sets.  

1 Introduction 

The layer between the ocean and free troposphere, known as the marine atmospheric boundary layer (MABL), hosts various 40 

processes such as the modulation of sensible and latent heat fluxes, the exchange of gases such as carbon dioxide, the evolution 

of clouds, and the transport of aerosol particles (Neukermans et al., 2018). Improved characterization of MABL dynamics is 

required to accurately simulate large-scale phenomena related to climate change and global weather patterns (Paiva et al., 

2021). This characterization relies on a combination of global numerical weather prediction (NWP) models and real 

observations (Carvalho, 2019). One of the most influential parameters that drive these MABL processes is ocean surface wind 45 

speeds or wind speeds at 10 m above sea level (hereafter called surface wind speeds). Therefore, instruments such as lidar are 

used to provide accurate surface wind speed measurements in various geographical locations to improve estimations of the 

MABL state globally. For instance, satellite lidar systems that measure aerosol and cloud vertical distributions, such as the 

lidar on board the NASA Cloud-Aerosol Lidar and Infrared Pathfinder Observation (CALIPSO) satellite, also have the 

capability to provide horizontally-resolved surface wind speed data. The underlying principle of lidar surface wind speed 50 

retrievals was first derived by Cox and Munk (1954), where bidirectional reflectance measurements of sea-surface glint are 

used to establish a Gaussian relationship between surface wind speeds and the distribution of wind-driven wave slopes. To 

probe these surface wave slopes, lidar instruments emit laser pulses into the atmosphere and measure the reflectance (or 

backscatter) of those laser pulses from particles, molecules, and the ocean surface. The magnitude of the measured signal is 

then used to estimate the variance of the wave-slope distribution (i.e., wave-slope variance) and therefore surface wind speed. 55 

Note that reflectance and backscatter are used interchangeably throughout this paper.  

 

Although many studies have expanded upon the original Cox-Munk relationship (e.g., Hu et al., 2008; Josset et al., 2008; 

Josset et al., 2010a; Kiliyanpilakkil and Meskhidze, 2011; Nair and Rajeev, 2014; Murphy and Hu, 2021; Sun et al., 2023), 

these parameterizations do not account for atmospheric attenuation by aerosols and therefore have difficulty in calibrating the 60 

measured ocean surface reflectance accurately. This presents a difficulty for elastic backscatter lidars like CALIPSO, for which 

the signal is typically calibrated high in the atmosphere where molecular backscatter dominates and aerosol backscatter is 

insignificant or can be accurately estimated. The problem lies in the transfer of this calibration to the ocean surface, which 

entails accounting for the attenuation of the transmitted and backscattered light by the intervening atmosphere between the 

calibration region and the ocean surface. If coincident aerosol optical depth (AOD) data are available (e.g., from MODIS in 65 

the case of CALIPSO detailed in Josset et al. (2008)) then they may be used to estimate the intervening attenuation and transfer 
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the calibration. However, such data from passive sensors including MODIS are only available during daytime, are typically 

not produced in the vicinity of clouds and may have unacceptably high uncertainties for accurately accounting for aerosol 

attenuation. Estimation of the attenuation from the lidar data alone requires an assumption of the aerosol extinction-to-

backscatter ratio (or “lidar ratio”), so errors in the assumed value can lead to an incorrect estimate of attenuation, especially 70 

when AOD is high. Because of this, the surface wind speed estimates in Hu et al. (2008) were limited to scenes with no clouds 

and negligible aerosol loading.  

 

This study addresses retrieving surface wind speed directly from a lidar without other assumptions or external constraints by 

employing the high-spectral-resolution lidar (HSRL) technique through NASA Langley Research Center’s (LaRC’s) airborne 75 

High Spectral Resolution Lidar – generation 2 (HSRL-2) instrument (Hair et al., 2008). The HSRL-2 can directly measure 

vertically resolved aerosol backscatter and extinction profiles without relying on an assumed lidar ratio or other external aerosol 

constraints, enabling accurate estimates of the attenuation of the atmosphere. Therefore, the surface reflectance can be directly 

determined, providing a measure of the wave-slope variance and thus surface wind speed. Note that the HSRL-2 operates at a 

nadir-viewing geometry, which is detailed more in Sect. 2.4. At nadir or near-nadir incidence angles, the surface contribution 80 

of the lidar surface backscatter signal is the largest and is therefore sensitive to changes in wind speed (Josset et al., 2008; 

Josset et al., 2010a; Josset et al., 2010b), making it possible to introduce relatively simplified models of sea surface reflectance. 

However, Li et al. (2010) demonstrated that at the higher incidence angle lidar systems (> 15°), the sensitivity of the lidar 

surface signal would rapidly decrease as these highly non-nadir incidences shift the signal towards a subsurface contribution 

rather than a surface one. A more recent lidar study based on the highly non-nadir (~37°) Aeolus UV HSRL lidar (Labzovskii 85 

et al., 2023) indirectly confirms this phenomenon by showing low agreement between passive remote sensing reflectivity and 

Aeolus surface reflectivity parameters over water surfaces such as oceans. For these reasons, an opportunity to retrieve ocean 

surface wind speeds using lidar ocean backscattering has been shown to be effective only for nadir or near-nadir lidar systems 

such as the HSRL-2. 

 90 

This study details the HSRL-2’s surface wind speed retrieval methodology and evaluates this surface wind speed product 

through comparison with measurements from National Center for Atmospheric Research (NCAR) Airborne Vertical 

Atmospheric Profiling System (AVAPS) dropsondes. This work leverages an extensive data set from NASA’s Aerosol Cloud 

meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE) mission, which had multiple scientific and 

technological objectives described in Sect. 2.1 (Sorooshian et al., 2019). The mission consisted of six deployments between 95 

2020 and 2022 and featured the joint deployment of the HSRL-2 and dropsonde launcher on one of its two aircraft to enable 

direct comparison between the two instrument data sets. The mission, dropsonde and HSRL-2 instrumentation, HSRL-2 

algorithm, and the methods and results of using/evaluating the HSRL-2 and dropsonde surface wind speed data sets are all 

detailed in the following discussion.  
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2 Methods 100 

2.1 ACTIVATE Mission Description 

The HSRL-2 ocean surface wind speed product is assessed during the ACTIVATE campaign, which is a NASA Earth Venture 

Suborbital-3 (EVS-3) mission. The primary aim of ACTIVATE is to improve knowledge of aerosol-cloud-meteorology 

interactions, which are linked to the highest uncertainty among components contributing to total anthropogenic radiative 

forcing (Bellouin et al., 2020). There are three major scientific objectives: (i) characterize interrelationships between aerosol 105 

particle number concentration (Na), CCN concentration, and cloud drop number concentration (Nd) with the goal of decreasing 

uncertainty in model parameterizations of droplet activation; (ii) advance process-level knowledge and simulation of cloud 

microphysical and macrophysical properties, including the coupling of aerosol effects on clouds and cloud effects on aerosol 

particles; and (iii) assess remote sensing capabilities to retrieve geophysical variables related to aerosol-cloud interactions. 

This study focuses on the third objective, which has already received attention with ACTIVATE data for retrievals other than 110 

ocean surface wind speeds (Schlosser et al., 2022; Van Diedenhoven et al., 2022; Chemyakin et al., 2023; Ferrare et al., 2023). 

ACTIVATE built a high volume of flight data statistics over the Western North Atlantic Ocean (WNAO) by flying six 

deployments across three years (2020 – 2022), with a winter and summer deployment each year (Sorooshian et al., 2023). 

Winter deployments included the following date ranges: 14 February – 12 March (2020), 27 January – 2 April (2021), 30 

November 2021 – 29 March (2022). Summer deployments were as follows: 13 August – 30 September (2020), 13 May – 30 115 

June (2021), 3 May – 18 June (2022). Across all three years, 90 King Air flights during the winter deployment were performed 

with 373 dropsondes launched while 78 flights during the summer deployment took place with 412 dropsondes launched. 

 

Two NASA Langley aircraft flew in spatial and temporal coordination for the majority of the total flights (162 of 179). A 

“stacked” flight strategy was developed where a low-flying (< 5 km) HU-25 aircraft collected in situ data in and just above 120 

the MABL while a high-flying (~9 km) King Air aircraft simultaneously provided remote sensing retrievals and dropsonde 

measurements in the same altitude range. In doing so, the stacked aircraft would simultaneously obtain data relevant to aerosol-

cloud-meteorology interactions in the same column of the atmosphere and provide a complete picture of the lower troposphere 

(Sorooshian et al., 2019). In situ measurements of gases, particles, meteorological variables, and cloud properties were 

conducted by the HU-25 Falcon. The King Air’s payload included the NASA Goddard Institute for Space Studies (GISS) 125 

Research Scanning Polarimeter (RSP) and the two instruments relevant to this work: the NASA LaRC HSRL-2 and the NCAR 

AVAPS dropsondes (Sorooshian et al., 2023). An advantage of the joint deployment of HSRL-2 and AVAPS dropsondes on 

the King Air is that the data are spatially synchronized at launch, with wind drift of the dropsondes during descent accounted 

for with procedures summarized in Sect. 2.3.  

 130 

The rationale to fly over the WNAO in different seasons was to collect data across a wide range of aerosol and meteorological 

regimes, with the latter promoting a broad range of cloud conditions (Painemal et al., 2021). A significant meteorological 
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feature is the North Atlantic Oscillation, which is the oscillation between the Bermuda-Azores High (high pressure system) 

and the Icelandic Low (low pressure system) (Lamb and Peppler, 1987). In the summer, the Bermuda-Azores High is at its 

peak and introduces easterly and southwesterly trade winds (Sorooshian et al., 2020). Starting in the fall, the Icelandic Low 135 

becomes prominent and introduces westerly winds in the boundary layer. The balancing act between these pressure systems 

dictates the climate of the North Atlantic and the prevailing transport processes (Li et al., 2002; Creilson et al., 2003; 

Christoudias et al., 2012). These transport processes that vary seasonally explain why winter flights coincided with more 

offshore (westerly) flow containing aerosol types impacted by anthropogenic influence (e.g., Corral et al., 2022), whereas 

summer flights included more influence from wildfire emissions and African dust among other sources both natural and 140 

anthropogenic in nature (Mardi et al., 2021; Aldhaif et al., 2020). Winds and turbulence tend to be stronger in the winter due 

to higher temperature gradients between the air and the ocean (Brunke et al., 2022), resulting in a higher fraction of available 

aerosol particles in the MABL that activate into cloud droplets in winter coinciding with cold air outbreaks as compared to 

summer (Dadashazar et al., 2021; Kirschler et al., 2022; Painemal et al., 2023). Therefore, this study region allows the HSRL-

2 surface wind speed retrievals to be evaluated in various meteorological and aerosol loading conditions. 145 

2.2 Dropsondes 

The AVAPS system deployed during the ACTIVATE mission utilized the newer, more reliable NRD41 mini sondes. Their 

smaller form factor along with updates to their launching hardware increased reliability for launches since these instruments 

could be used with more aircraft and launcher configurations (Vömel and Dunion, 2023). A variable number of dropsondes 

were launched per flight, usually 3 to 4 for routine flights, with more being launched for specific targeted flight opportunities. 150 

With response times much less than 1 second, AVAPS samples position, wind speed (with 0.5 m s-1 uncertainty) (Vömel and 

Dunion, 2023), and state variables such as pressure, temperature, and humidity all the way to ~6 m above the ocean surface. 

The data are then post-processed via NCAR’s Atmospheric Sounding Processing Environment (ASPEN) software where any 

spurious data are removed including any data returned from the ocean surface itself (Martin and Suhr, 2021). More details on 

the AVAPS system and its usage on other aircraft and missions can be found in (Vömel et al., 2021) and details of its usage in 155 

ACTIVATE specifically can be found in Vömel and Dunion (2023). Not many studies exist on surface wind speed validation 

of aircraft instruments with dropsondes (Bedka et al., 2021), so this study also highlights the potential of using dropsondes to 

validate aircraft surface wind speed data.  

2.3 HSRL-2 Instrument Description 

The NASA LaRC HSRL-2 is an airborne lidar instrument designed to enable vertically resolved retrievals of aerosol properties 160 

such as aerosol backscatter and depolarization at three wavelengths (355, 532, and 1064 nm), aerosol extinction at two 

wavelengths (355 and 532 nm) (Hair et al., 2008; Burton et al., 2018), and aerosol classification (Burton et al., 2012). In 

addition to these aerosol products, other retrieval capabilities include retrievals of atmospheric mixed layer height (Scarino et 

al., 2014), ocean subsurface particulate backscatter and attenuation coefficients (Schulien et al., 2017), cloud optical properties 
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(in development), and 10 m surface wind speeds, the latter of which is the focus of this study. Details of the laser receiver 165 

optics and detectors are described in detail in Hair et al. (2008). This analysis utilizes the 532 nm data channels that include a 

total scattering channel (both molecular and particulate scattering), molecular scattering only, and the cross polarized channel, 

which are internally calibrated during flight. Key to determining the optical transmission and subsurface signals is a molecular 

channel that filters essentially all the particulate and specular scattering using the iodine notch filter as described in Hair et al. 

(2008), determining both the laser transmission down to the surface and correction of the subsurface scattering contribution to 170 

the integrated surface backscatter signal.  

 

The laser is a custom built 200 Hz repetition rate Nd:YAG laser emitting at 1064 nm, which is converted to both the second 

and third harmonic wavelengths of 532 nm and 355 nm, respectively. The output laser energies are nominally 34 mJ (1064 

nm), 11 mJ (532 and 355 nm each) and each is set to a divergence (1/e2) of approximately 0.8 mrad, giving a beam footprint 175 

diameter on the ocean surface of ~7 m for the nominal 9 km King Air flight altitude. The telescope is set to a full field of view 

of 1 mrad, giving a viewing footprint diameter of 9 m at the ocean surface at nominal flight altitude. All three wavelengths are 

transmitted coaxially with the telescope through a fused silica window in the bottom of the aircraft are actively boresighted to 

the receiver. The HSRL-2 incorporates high speed photomultiplier tubes (PMTs) and custom amplifiers to allow data collection 

at 120 MHz sampling rates with 40 MHz bandwidths. Data are sampled at 120 MHz (1.25 m in the atmosphere and 0.94 m in 180 

the ocean) with 16-bit digitizers and single-shot profiles are summed over 100 laser shots during 0.5 s which is the fundamental 

acquisition interval before storing to a disk. The aircraft incorporates an Applanix Inertial Navigation System (INS) to record 

the aircraft altitude at 0.5 s time intervals corresponding to each 100-shot data profile.  

2.4 HSRL-2 Surface Wind Speed Retrieval Method 

As mentioned in the previous section, a lidar system emits laser pulses into the atmosphere and the backscattered light from 185 

particles (aerosols) and molecules is collected with a telescope and imaged onto optical detectors where the generated analog 

electrical signal is digitally sampled as a function of time. Backscatter is also received from the reflection of the laser pulse off 

the ocean surface and is referred to as the “surface return” signal. To derive surface wind speeds, the surface backscattered 

(180°) reflected radiance (𝛽𝑠𝑢𝑟𝑓 , units sr-1) is estimated from the surface return signal and related to the wave-slope variance 

(𝜎2), as detailed in Josset et al. (2010b), through  190 

𝛽𝑠𝑢𝑟𝑓 =
𝐶𝐹

4𝜋𝜎2𝑐𝑜𝑠5(𝜃)
𝑒

−
𝑡𝑎𝑛2(𝜃)

𝜎2 , 
 (2) 

where 𝐶𝐹 is the Fresnel coefficient and is set to 0.0205 as given in Venkata and Reagan (2016) and 𝜃 is the angle of incidence 

of the laser with the ocean surface. As noted in the Introduction, the HSRL-2 is operated in a nadir-only viewing geometry 

(i.e., not scanning). However, there is a small offset from this nadir incidence angle due to the pitch and roll angles of the King 

Air aircraft. This offset angle is measured by the Applanix INS and is then used in Eq. 2 to derive the wave-slope variance. 

The median pitch and roll angles depend on the flight conditions (e.g., wind and fuel loads), but ranged from 2 - 5° for pitch 195 
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and < 1° for roll during ACTIVATE flights. The surface wind speed data are screened to limit the pitch and roll to less than ± 

3° from the median values, resulting in HSRL-2 incidence angles of < 3° for roll and < 8° for pitch. This screening effectively 

selects cases where the aircraft is flying straight and level legs.  

 

The mean wind speed at 10 m above the sea surface (U) is then derived using a piecewise empirical relationship between 200 

surface wind speed and wave-slope variance from Hu et al. (2008), where: 

𝑈 =  (
〈σ2〉

0.0146
)

2

, 〈σ2〉  <  0.0386, 𝑈 < 7 𝑚 𝑠−1, 
 (3.1) 

𝑈 =  (
〈σ2〉−3.0𝐸−3

5.12𝐸−3
) , 0.0386 ≤ 〈σ2〉  <  0.0711, 7 𝑚 𝑠−1 ≤ 𝑈 < 13.3 𝑚 𝑠−1,   (3.2) 

𝑈 =  10
(

〈σ2〉+0.084

0.138
)
, 〈σ2〉  ≥  0.0711, 𝑈 ≥ 13.3 𝑚 𝑠−1.  

 (3.3) 

The relationships shown in Eqs. 3.1 – 3.3 were derived by Hu et al. (2008) using the comparisons between AMSR-E surface 

wind speeds and CALIPSO backscatter reflectance mentioned in Sect. 1 and agree identically with the Cox-Munk relationship 

for surface wind speeds between 7 m s-1 and 13.3 m s-1 and the log-linear relationship proposed by Wu (1990) for surface wind 

speeds above 13.3 m s-1.  205 

 

With respect to surface wind speed retrievals, the HSRL-2 instrument offers two major advantages over standard backscatter 

lidars such as CALIPSO: 1) it can account for atmospheric attenuation between the aircraft and the surface so retrievals can 

be performed without constraining the retrieval to low AOD conditions (i.e., negligible aerosol loading) or assuming the lidar 

ratio, and 2) it has high vertical resolution sampling (1.25 m) that enables accurate correction for ocean subsurface scattering, 210 

which makes a small but non-negligible contribution to the measured surface return. The equations for the HSRL-2 532-nm 

measurement channels are: 

𝑃𝑚𝑜𝑙(𝑟) = 𝐺𝑚𝑜𝑙

1

𝑟2
𝐹(𝑟)𝛽𝑚

∥ (𝑟)𝑇2(𝑟), 
 (4.1) 

𝑃𝑡𝑜𝑡(𝑟) = 𝐺𝑚𝑜𝑙𝐺𝑖2

1

𝑟2
[(𝛽𝑝

∥(𝑟) + 𝛽𝑚
∥ (𝑟)) + 𝐺𝑑𝑒𝑝 (𝛽𝑝

⊥(𝑟) + 𝛽𝑚
⊥ (𝑟))] 𝑇2(𝑟) 

 (4.2) 

where 𝑃𝑥 is the total measured signal per sampling interval by the lidar and 𝑟 denotes the range from the lidar. Here the mol 

subscript denotes the measured signal on the molecular channel, for which all particulate backscatter and the surface return is 

blocked by an iodine vapor filter. The tot subscript denotes the “total” backscatter calculated from the sum of two measurement 215 

channels, the co-polarized channel and the cross-polarized channel. These channels are essentially elastic backscatter lidar 

channels similar to the 532 nm channels on CALIPSO, in that they measure attenuated backscatter from both molecules and 

particles. The co-polarized channel measures backscatter that is polarized parallel to the linear polarization of the transmitted 

laser pulses, and the cross-polarized channel measures backscatter with polarization perpendicular to the laser pulses. The 

volume backscatter coefficient, 𝛽 (units m-1 sr-1), is separated into components arising from either molecular scattering (m) or 220 

particulate scattering (p) and by polarization parallel ( ∥)  and perpendicular (⊥)  to the laser. The combined collection 
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efficiency, optical efficiency, and the overall electronic gain for the signals is denoted by 𝐺𝑥. The 𝑇2 factor is the two-way 

transmission of the atmosphere, which accounts for both molecular and particulate scattering and absorption between the lidar 

and range 𝑟. A full description of the instrument channels are described in Hair et al. (2008). 

 225 

Eqs. 4.1 and 4.2 are generalized such that the backscatter coefficients and transmission factors can be either from the 

atmosphere or ocean, depending on the altitude (or depth) of the scattering volume. Also, the transmission of the molecular 

backscatter through the iodine vapor filter, F, is based on either the atmosphere (atm) or the ocean (ocn) scattering regions, as 

they have different backscatter spectra and thus different iodine filter transmission factors, both of which are determined by 

laboratory calibrations and modeled molecular scattering spectra (Hair et al., 2008). Calibration operations are conducted 230 

during each flight to provide the relative gain ratios between the molecular (mol) and co-polarized (par) channels, Gi2, and 

between the co-polarized and cross-polarized (per) channels, Gdep, such that  

𝐺𝑖2 =
𝐺𝑝𝑎𝑟

𝐺𝑚𝑜𝑙

,  𝐺𝑑𝑒𝑝 =
𝐺𝑝𝑒𝑟

𝐺𝑝𝑎𝑟

. 
 (5) 

After the internal gain ratios (Eq. 5) are applied, the two signals (Eqs. 4.1 and 4.2) have the same relative gain. As will be 

shown below, the retrieval implements ratios of these two signals, and therefore neither the absolute gain nor any other absolute 

calibration factor is required to determine the surface backscatter. 235 

To calculate the surface backscatter, the overall system response must be accounted for. The measured signal (𝑃) is the 

convolution of the normalized system response, (𝐿), with the ideal measured signal (i.e., infinite detection bandwidth and delta-

function-like laser pulse), this signal being the gain-scaled (G), range-scaled (
1

𝑟2), attenuated (𝑇2) backscatter coefficient (𝛽, 

units m-1sr-1), which can be written as  

𝑃𝑖𝑑𝑒𝑎𝑙(𝑟) = 𝐺
1

𝑟2
 𝛽(𝑟) 𝑇2(𝑟). 

 (6a) 

𝑃(𝑟) = 𝐺 ∫ 𝐿(𝑟 − 𝜌) 𝑃𝑖𝑑𝑒𝑎𝑙(𝜌) 𝑑𝜌
∞

−∞

. 
 (6b) 

The system response includes the impact of the laser’s temporal pulse shape, detector response, and analog electronic filter 240 

response.  

 

To account for different scattering media and to better understand how the system response impacts the surface backscatter 

calculation, it is helpful to separate the total scattering channel, 𝑃𝑡𝑜𝑡(𝑟), into three contributions: atmosphere [atm], surface 

[surf], and ocean [ocn] as follows:  245 

𝑃𝑡𝑜𝑡(𝑟) = 𝑃𝑡𝑜𝑡
𝑎𝑡𝑚(𝑟) + 𝑃𝑡𝑜𝑡

𝑜𝑐𝑛(𝑟) + 𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓(𝑟).  (7) 

Using Eq. 6, the last term in Eq. 7, 𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓(𝑟), can be written as  
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𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓(𝑟) = 𝐺𝑚𝑜𝑙𝐺𝑖2 ∫ 𝐿(𝑟 − 𝜌)

1

𝜌2
𝛽𝑠𝑢𝑟𝑓𝛿(𝜌 − 𝑟𝑠)𝑇2(𝜌)𝑑𝜌

∞

−∞

 
 (8a) 

𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓(𝑟) = 𝐺𝑚𝑜𝑙𝐺𝑖2𝐿(𝑟 − 𝑟𝑠)

1

𝑟𝑠
2

𝛽𝑠𝑢𝑟𝑓𝑇2(𝑟𝑠) 
 (8b) 

where the range to the ocean surface is rs and the volume backscatter coefficient for the ocean surface is represented as 

𝛽𝑠𝑢𝑟𝑓𝛿(𝜌 − 𝑟𝑠) (units m-1 sr-1), where 𝛿(𝜌 − 𝑟𝑠) is the Dirac delta function centered at rs. Figure 1 illustrates the vertical 

distributions of the measured signals 𝑃𝑡𝑜𝑡 (black) and 𝑃𝑚𝑜𝑙  (blue) along with the 𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓

 (green) component of 𝑃𝑡𝑜𝑡. Note that 

zero altitude is the location of the ocean surface. 250 

   

 

Figure 1: Visualization of HSRL-2 measurement signals as described in Eqs. 6 – 8. Dashed line denotes ideal total backscatter signal 

from the atmosphere, surface reflection, and the ocean subsurface. Blue and black lines denote measured signals from total and 

molecular scattering channels, respectively. Red and green lines show the ocean corrected signal and the ocean surface backscatter, 

respectively. Dots indicate the altitudes of digitized samples. The sampling rate is 120 MHz, resulting in a vertical spacing of 1.25 m 255 
in the atmosphere and 0.94 m in the ocean.  
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It is seen from Fig. 1 and Eq. 8b that the surface component 𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓

of the measured signal 𝑃𝑡𝑜𝑡 is not localized to the surface 

but is instead spread above and below the surface via convolution with the system response function. The atmosphere and 

ocean components of 𝑃𝑡𝑜𝑡 are also impacted by the convolution as is 𝑃𝑚𝑜𝑙 . Rearranging Eq. 8 and integrating the total surface 

backscatter component over the full vertical extent of the system response function (i.e., to z), the surface response function 260 

can be eliminated in the representation of 𝛽𝑠𝑢𝑟𝑓 as shown in Eq. 9.  

𝛽𝑠𝑢𝑟𝑓=

1

𝐺𝑚𝑜𝑙𝐺𝑖2

𝑟𝑠
2

𝑇2(𝑟𝑠)
∫ 𝑃𝑡𝑜𝑡

𝑠𝑢𝑟𝑓(𝑟)
𝑟𝑠+∆𝑧

𝑟𝑠−∆𝑧

𝑑𝑟 
 (9) 

Of course, the measurement that can be accessed is 𝑃𝑡𝑜𝑡, not the surface component 𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓

. If 𝑃𝑡𝑜𝑡 were substituted for 𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓

 

in Eq. 9, 𝛽𝑠𝑢𝑟𝑓 would be overestimated due to the contribution of ocean subsurface backscatter. The atmospheric contribution 

is negligible (i.e., <0.05%) and can be ignored. The magnitude of the contribution of the ocean subsurface scattering depends 

on the level of ocean particulate (hydrosol) and as well as molecular seawater backscatter. The magnitude of this scattering 265 

relative to the surface backscatter can impact the retrieved surface wind speed accuracy. For example, at U = 7 m s-1 and 

assuming pure seawater (i.e., no hydrosols), the integrated total surface signal would be 5.7% higher than the integrated surface 

backscatter. This results in a decrease of 0.75 m s-1 (-11% error) in the estimated surface wind speed. At a 20 m s-1 surface 

wind speed, the error in the calculated surface wind speeds results in a decrease by 2.7 m s-1 (-14% error). The ocean subsurface 

correction becomes less as the particulate scattering (or absorption) increases due to increased attenuation in the seawater and 270 

therefore contributes less over the integration window around the ocean surface. Therefore, the ocean subsurface contribution 

is higher for clear water compared to turbid water. For example, in the case illustrated in Fig. 1, the seawater particulate and 

molecular scattering are equal, resulting in a contribution of only 3.8% to the integrated surface backscatter as compared to 

the no particulate scattering noted above of 5.7%. The atmospheric signal contribution is much less (~100 times smaller) than 

the ocean subsurface signal and therefore its contribution is considered negligible. Fortunately, the high vertical resolution of 275 

the HSRL-2 instrument enables the ocean subsurface contribution to be estimated. The separation of the molecular signal also 

enables estimation of the two-way transmittance, 𝑇2, and gain factor, 𝐺𝑚𝑜𝑙 , in Eq. 9. 

 

For the HSRL-2 instrument, the two-way transmittance is determined directly from the measured molecular channel, 𝑃𝑚𝑜𝑙 . 

The two-way total (particulate and molecular attenuation) transmittance to the surface can be calculated as follows,  280 

𝑇2(𝑟𝑛𝑠) =
1

𝐺𝑚𝑜𝑙

𝑃𝑚𝑜𝑙(𝑟𝑛𝑠)𝑟𝑛𝑠
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹(𝑟𝑛𝑠)𝛽𝑚
∥ (𝑟𝑛𝑠)

, 
 (10) 

where F is the iodine vapor filter function (known from lab and in-flight calibration), 𝛽𝑚
∥ is the molecular backscatter coefficient 

for the atmosphere (computed from pressure and temperature data from a reanalysis model), and 𝑃𝑚𝑜𝑙(𝑟𝑛𝑠)𝑟𝑛𝑠
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is the range-

scaled molecular channel signal near the ocean surface (where rns is the near-surface range). In practice, this is computed by 

averaging data from 60 m to 180 m above the surface. This range is somewhat arbitrary but is chosen as a balance between 
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ensuring that the signal does not include any of the surface reflectance and low enough to capture most of the attenuation down 285 

to the surface. Substituting Eq. 10 into Eq. 9, one can solve for the surface backscatter,  

𝛽𝑠𝑢𝑟𝑓 =
1

𝐺𝑖2

∫ 𝑟2𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓(𝑟)𝑑𝑟

𝑟𝑠+∆𝑧

𝑟𝑠−∆𝑧

𝑃𝑚𝑜𝑙(𝑟𝑛𝑠)𝑟𝑛𝑠
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹(𝑟𝑛𝑠)𝛽𝑚
∥ (𝑟𝑛𝑠)

. 

 (11) 

To account for the ocean subsurface contributions to the measured signal, Eq. 6 can be rearranged as 

𝑃𝑡𝑜𝑡
𝑠𝑢𝑟𝑓(𝑟) = 𝑃𝑡𝑜𝑡 − 𝑃𝑡𝑜𝑡

𝑎𝑡𝑚(𝑟) − 𝑃𝑡𝑜𝑡
𝑜𝑐𝑛(𝑟).  (12) 

 

A benefit of the HSRL-2 retrieval algorithm is that one can use the molecular channel signal to determine the ocean signal 

near the surface (see Fig. 1). To determine the near-surface ocean signal, an estimate of the total ocean scattering ratio (TSR) 290 

is employed, which is the ratio of molecular + hydrosol backscatter divided by molecular backscatter. An estimate of the near-

surface TSR, (𝑇𝑆𝑅𝑜𝑐𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅) is computed using the quotient of the total and molecular channels (Ptot / Pmol) averaged over a small 

range of depths just below the depth at which the surface signal response goes to zero, as follows:  

𝑇𝑆𝑅𝑜𝑐𝑛
̅̅ ̅̅ ̅̅ ̅̅ ̅ ≡ (

𝛽𝑝 + 𝛽𝑚

𝛽𝑚

)
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅

=  
𝐹𝑜𝑐𝑛(𝑟)

𝐺𝑖2∆𝑟
∫

𝑃𝑡𝑜𝑡(𝑟)

𝑃𝑚𝑜𝑙(𝑟)
𝑑𝑟

𝑟𝑠+2∆𝑧

𝑟𝑠+∆𝑧

 
 (13) 

where 𝐹𝑜𝑐𝑛 accounts for the spectral transmission of the molecular seawater backscatter through the iodine vapor filter and is 

determined via in-flight and laboratory calibrations. The ocean subsurface component of the total channel backscatter is 295 

estimated as follows: 

𝑃𝑡𝑜𝑡
𝑜𝑐𝑛(𝑟) = 𝑇𝑆𝑅𝑜𝑐𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅𝐺𝑖2

𝑃𝑚𝑜𝑙(𝑟)

𝐹𝑜𝑐𝑛(𝑟)
, 𝑏𝑒𝑙𝑜𝑤 𝑡ℎ𝑒 𝑠𝑢𝑟𝑓𝑎𝑐𝑒 (𝑟 > 𝑟𝑠) 

  (14) 

Here the assumption is that the TSR is vertically constant near the surface over the 0.5 s (~75 m horizontal resolution) 

integration of the lidar signals. Combining Eqs. 11, 12, and 14 and ignoring the atmospheric contribution 𝑃𝑡𝑜𝑡
𝑎𝑡𝑚 to the total 

channel signal, one can compute the absolute surface backscatter using the two measured channels as 

𝛽𝑠𝑢𝑟𝑓 =

∫ (
𝑃𝑡𝑜𝑡(𝑟)

𝐺𝑖2
− 𝑇𝑆𝑅𝑜𝑐𝑛

̅̅ ̅̅ ̅̅ ̅̅ ̅ ∗ 𝑃𝑚𝑜𝑙(𝑟))
𝑟𝑠+∆𝑧

𝑟𝑠−∆𝑧
𝑟2𝑑𝑟

𝑃𝑚𝑜𝑙(𝑟𝑛𝑠)𝑟𝑛𝑠
2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝐹𝑎𝑡𝑚(𝑟𝑛𝑠)𝛽𝑚
∥ (𝑟𝑛𝑠)

. 

 (15) 

The use of the molecular channel in this way cancels out absolute system gain constant (Gmol), provides an estimate of the two-300 

way transmittance of the atmosphere, and enables subtraction of ocean subsurface backscatter. It does not require precise 

knowledge of the system response function or any other assumptions. With Eq. 15, one can calculate the wave-slope variance 

through Eq. 2 and then use Eqs. 3.1 – 3.3 to derive surface wind speeds. 

 

In addition to the specular reflection from the surface, whitecaps or sea foam can increase the lidar backscatter signal. As noted 305 

in Josset et al. (2010b), the contribution of scattering by the whitecaps on the ocean surface has been treated as Lambertian 
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scattering. There is a wavelength dependence of the scattering at longer wavelengths due to the water absorption, based on 

measurements presented by Dierssen (2019) covering wavelengths from 0.4 – 2.5 µm. Measurements presented here are at 

532 nm, a region of the visible spectrum where scattering from foam is relatively constant with wavelength. The contribution 

of whitecaps is typically modeled with a constant average reflectance and an effective area weighted fraction that varies with 310 

surface wind speed (Whitlock et al., 1982; Koepke, 1984; Gordon and Wang, 1994; Moore et al., 2000). Following Moore et 

al. (2000), we have estimated the average reflectance due to the whitecaps as a function of surface wind speed and the 

difference becomes > 1 m s-1 for surface wind speeds > 15 m s-1 based on this relationship. As presented below, there are 

limited data (49 data points) above 13.3 m s-1 that can be compared to the dropsonde surface wind speeds to evaluate this 

relationship. Moreover, since the correction depends on surface wind speed, an iterative calculation is required to use this 315 

relationship as the backscatter is dependent on wind speed. 

 

Figure 2. Estimated absolute difference in calculated surface wind speed if reflectance from whitecaps is not included. The lidar 

surface backscatter is higher than the specular reflectance if whitecaps are present, which results in a lower estimated surface wind 

speed if not accounted for in the retrieval. 320 
 

Alternatively, Hu et al. (2008) used a full month of CALIPSO integrated surface depolarization ratio (ratio of the integrated 

cross polarized channel to the integrated co-polarized channel across the surface) and applied an empirical correction to the 

reflectance that was determined using AMSR-E data as the ground-truth data set to increase the correlation of the data sets. The 

correlation was based on much more data than the ACTIVATE matchups between HSRL-2 and dropsondes, limiting the utility 325 
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of a similar analysis with the HSRL-2. In addition, there are significant differences in the configurations of CALIPSO and 

HSRL-2 that limit implementation of the same empirical relationship. First, CALIPSO’s integrated surface depolarization 

includes the subsurface contributions due to its 30 m vertical resolution, whereas the HSRL-2 surface depolarization is 

integrated over only a few meters as shown in Fig. 1. Second, the CALIPSO data is based on global data, which is dominated 

by oligotrophic (clear) waters, whereas a significant fraction of the HSRL-2 - dropsonde comparisons are from eutrophic and 330 

mesotrophic waters near the coast and along the shelf. Third, there is a significant difference in footprint size between HSRL-

2 and CALIPSO (8 m versus 90 m), with HSRL-2’s instantaneous footprint area being greater than 2 orders of magnitude 

smaller and, considering HSRL-2’s along-track averaging (100 laser shots) compared to CALIPSO’s single shot data, greater 

than one order of magnitude smaller in terms of area over which surface depolarization is integrated. 

2.5 Collocation and Statistical Procedures 335 

Since surface wind speeds are the focus of this study, first the dropsonde wind speed data points closest to 10 m (altitude of 

11.56 m ± 3.19 m for the 577 points) above sea level are recorded for each launch (multiple launches per flight) to allow 

meaningful comparison with the HSRL-2 surface wind speeds. Since one data point was taken per dropsonde for each flight, 

there are 160 recorded dropsonde measurements for 2020, 245 measurements for 2021, and 335 measurements for 2022. Then, 

the HSRL-2 surface wind speed retrieval closest in space and time to the corresponding dropsonde measurement is recorded. 340 

Collocation between the HSRL-2 and the dropsondes is constrained to below 30 km horizontally and below 15 minutes 

temporally to remove outliers while trying to maximize the number of data points to be used in the study. Further constraining 

these distance and time conditions would eliminate more data points with negligible improvement to the statistics as shown by 

Figs. S1 and S2 in the supplement. Due to missing data in the HSRL-2 data set and the removal of outliers based on collocation 

constraints, 577 data points are available for comparison between the dropsondes and the HSRL-2 (Fig. 3). 345 
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Figure 3: Map of 577 ACTIVATE dropsondes launched from the King Air between 2020 and 2022 that are used to evaluate the 

HSRL-2 surface wind speed retrievals introduced in this study. 

 

After the surface wind speed data are prepared using the procedure above, scatterplots along with the correlation coefficient 350 

(r), linear regression, and ordinary least squares bisector regression (OLS-bisector) are used to visually demonstrate how well 

HSRL-2 surface wind speed data match dropsonde data and show any potential variability in the data. Since OLS-bisector is 

less common than linear regression, a brief explanation of their differences is provided. In linear regression, X is treated as the 

independent variable while Y is treated as the dependent variable. In other words, one observes how Y varies with changes to 

fixed X values. OLS-bisector is known as an errors-in-variable regression technique, where X and Y are both dependent 355 

variables and thus both subject to error. OLS-bisector regresses Y on X (standard OLS) and then regresses X on Y (inverse 

OLS), then bisects the angle of these two regression lines (Ricker, 1973). Although other errors-in-variable techniques exist 

(e.g., Deming regression, orthogonal distance regression), OLS-bisector is chosen because it calculates the error present in 

both data sets using the bisector rather than assuming an error a priori like the examples mentioned (Wu and Yu, 2018). After 

performing these regressions, histograms of surface wind speed deltas, which are defined as HSRL-2 surface wind speed minus 360 

dropsonde surface wind speed, are created to show the distribution and spread of the data more easily. The mean and standard 

deviation (STD), of the surface wind speed deltas are computed and then used to define the mean error (mean ± STD). This 

metric is used to evaluate how accurately the HSRL-2 retrieves surface wind speeds.  
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3 Results and Discussion 

3.1 Case Studies 365 

Before delving into the HSRL-2 – dropsonde surface wind speed intercomparisons in full statistical detail, surface wind speed 

data from two ACTIVATE research flights are analyzed: Research Flight 29 on 28 August 2020 and Research Flight 14 on 1 

March 2020. These flights are analyzed to demonstrate the ability of the HSRL-2 to 1) provide profiles that show the spatial 

variability of surface wind speed over time, which are beneficial to observe phenomena like sea-surface temperature dynamics 

and cloud evolution and 2) sample the surface in broken cloud scenes, showing that the retrievals are not limited to cloud- and 370 

aerosol-free conditions like in Hu et al. (2008).  

3.1.1 Research Flight 29 on 28 August 2020 

Research Flight 29 was a near cloud-free day where an above average number of dropsondes were launched and ACTIVATE’s 

aircraft were coordinated with the CALIPSO satellite overpass. These conditions allow for the examination of how the high 

horizontal spatial resolution of the HSRL-2 (~75 m along track as mentioned in Sect. 2.4) influences its retrievals and how the 375 

data can be used to track sea surface temperature (SST) gradients common to the WNAO (Painemal et al., 2021) as seen in 

Fig. 4. Note that Fig. 4a uses SST data from Modern-Era Retrospective Analysis for Research and Applications, Version 2 

(MERRA-2) (Gelaro et al., 2017) to contextualize the SST gradients present in the WNAO, and no comparisons with MERRA-

2 surface wind speed data are performed in this study. 

 380 

 

Figure 4: a) Flight map of King Air (black line) and dropsondes (dark yellow circles) overlaid onto map of MERRA-2 mean sea-

surface temperature (SST) data (Gmao, 2015) for Research Flight 29 on 28 August 2020. White dashed line corresponds to the 

CALIPSO overpass coincident with King Air flight path. Time stamps represent where the King Air crosses over sharp SST changes 
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associated with the Gulf Stream. b) Time series of surface wind speed data from HSRL-2 and dropsondes for the same flight, where 385 
the black solid line signifies total HSRL-2 surface wind speed data and circles indicate collocated surface wind speed data points. 

Black dashed lines represent time stamps of interest as indicated in a). 

 

It is seen that changes in the HSRL-2 surface wind speeds (Fig. 4b) correspond with changes in SST (Fig. 4a), especially seen 

at 17:51 and 18:24 (UTC throughout paper). As the aircraft approaches and crosses the SST boundary at 17:51 (i.e., SST 390 

increasing), there is a corresponding increase in surface wind speeds. The reverse observation can be seen when the aircraft 

approaches and crosses the boundary at 18:24 (i.e., SST decreasing), where surface wind speeds noticeably decrease. Although 

further analysis is needed to rigorously examine the relationship between surface wind speed and SST, these observations 

show that the HSRL-2 has the high horizontal spatial resolution needed to probe the fine-scale variability of surface wind 

speeds and has the potential to improve atmospheric modeling of MABL processes. These profiles capture the spatial gradients 395 

in surface wind speeds that would otherwise not be available with the dropsondes alone, since these instruments can only take 

point measurements as they drop vertically to the surface and therefore cannot provide the horizontal spatial extent like the 

derived HSRL-2 surface wind speed product can.  

3.1.2 Research Flight 14 on 1 March 2020 

Next, Research Flight 14 is shown in Fig. 5 to demonstrate the ability of the HSRL-2 to sample in broken cloud scenes. This 400 

flight along with the associated morning flight on 1 March 2020 have been the subject of several studies owing to its 

coincidence with cold air outbreak conditions (see cloud streets in Fig. 5a) and a flight strategy that allowed for detailed 

characterization of the evolving aerosol-cloud system as a function of distance offshore (Seethala et al., 2021; Chen et al., 

2022; Li et al., 2022; Tornow et al., 2022; Sorooshian et al., 2023). The morning flight focused on a location with very detailed 

characterization including stacked level flight legs (i.e., termed a “wall”) with the Falcon flying below, in, and above clouds, 405 

with the King Air flying aloft to further characterize the same region. The afternoon flight consisted of both aircraft flying 

back to that same location, adjusting the sampling strategy to fly along the boundary layer wind direction in a quasi-Lagrangian 

fashion to keep studying the evolution of the air mass characterized in the morning. The afternoon flight is chosen because it 
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shows the full range of cloud conditions from clear to completely overcast. Therefore, the HSRL-2 surface wind speed 

retrievals are able to be evaluated in this range of conditions. 410 

Figure 5 : a) Flight map of the King Air (red line), Falcon (yellow line), and dropsondes (dark yellow circles) overlaid onto 

Geostationary Operational Environmental Satellite (GOES-16) cloud imagery for Research Flight 14 on 1 March 2020. Blue stars 

represent time stamps where the King Air crosses over from cloud-free to cloudy areas. b) Time series of surface wind speed data 

from HSRL-2 and dropsondes for the same flight, where lines signify total HSRL-2 surface wind speed data and circles indicate 415 
collocated surface wind speed data points. Blue dashed lines represent time stamps of interest as indicated in a). 

As the aircraft approaches the cloud scene at 19:18, there is a noticeable and steady increase of HSRL-2 surface wind speeds. 

The reverse observation is seen when the aircraft approaches 21:15, where the HSRL-2 surface wind speeds start to decrease 

steadily. As highlighted in the 28 August 2020 case study, the high horizontal spatial resolution of the HSRL-2 retrievals 

enables these spatial gradients to be observed. Another important takeaway is the HSRL-2 is still able to sample the surface in 420 

cloud scenes, as seen by the almost complete surface wind speed profile in Fig. 5b. Although a gap in data occurs at 20:15 

where cloud cover is most substantial, some retrievals are still present in that area. The reason is that the HSRL-2 can probe 

the surface through gaps between clouds, allowing for the surface wind speed retrievals to take place. Although the HSRL-2 

retrievals would be unavailable in overcast cloud scenes, the ability of the instrument to sample the surface in broken cloud 

fields and not just aerosol- and cloud-free scenes is a significant benefit of the lidar and the HSRL technique. 425 

3.2 HSRL-2 – Dropsonde Comparisons 

Now, the collocated HSRL-2 retrievals and dropsonde measurements of surface wind speed are compared and the results are 

shown in Fig. 6.  
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Figure 6: Scatterplots with associated histograms for HSRL-2 – dropsonde collocated surface wind speed data points using 430 
ACTIVATE’s 2020 – 2022 data set. N represents the number of data points. 

The comparison yields correlation coefficients of 0.89, slopes of 1.04 and 1.17, and y-intercepts of -0.13 m s-1 and -1.05 m s-1 

for linear and bisector regressions, respectively. Note that the correlation coefficients are the same for linear and bisector 

regressions throughout this analysis, so they are listed as one value throughout Sect. 3.2. Using the mean and STD values in 

the same figure, the mean error or accuracy of the HSRL-2 surface wind speed retrievals is 0.15 m s-1 ± 1.80 m s-1. These 435 

results show that on average, the HSRL-2 slightly overestimates surface wind speeds and the estimation can be off by about 2 

m s-1 in either direction.  

Now that the HSRL-2 retrievals have been broadly evaluated, Fig. 7 shows how their accuracy varies per 1 m s-1 interval in 

surface wind speed. This plot also provides the opportunity to compare the Hu et al. (2008) model with the models proposed 

by Cox and Munk (1954) and Wu (1990) to see if some of the error in the HSRL-2 retrievals can be attributed to model 440 

characteristics. 
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Figure 7: HSRL-2 surface wind speed using Hu, Cox-Munk, and Wu models versus mean dropsonde surface wind speed calculated 

per 1 m s-1 bin. A histogram of dropsonde surface wind speeds is also included to show their distribution. 

It is seen that the mean Cox-Munk and Wu surface wind speed values are higher than the mean Hu values from 0 m s-1 to 7 m 445 

s-1, showing that the Cox-Munk and Wu relationships overestimate dropsonde surface wind speeds more than the Hu 

relationship. The variability (i.e., STD) around the mean per bin is similar between the three models, which is 1.59 m s-1 for 

Hu, 1.43 m s-1 for Cox-Munk, and 1.55 m s-1 for Wu on average. Although similar, the STD of the Hu surface wind speeds 

found here is ~0.4 m s-1 lower than the one found in Fig. 6. This could be attributed to an STD not being able to be calculated 

for the 17 to 18 m s-1 bin since it only contained one point.  450 

Although it is apparent Cox-Munk and Wu retrievals overestimate dropsonde observations for surface wind speeds below 7 m 

s-1, it is still unclear which of the models perform better overall. Therefore, the y-axis from Fig. 7 is converted to wave-slope 

space and the result of this modification is shown in Fig. 8. HSRL-2 wave-slope is used because it directly reports the original 

measurements of surface reflectance rather than estimated values of surface wind speed. Using the original data ensures that 

uncertainty is coming from the actual HSRL-2 – dropsonde comparisons rather than from potential errors in the conversion 455 

from wave-slope to surface wind speed.  
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Figure 8: HSRL-2 wave-slope variance versus mean dropsonde surface wind speed calculated per 1 m s-1 bin. Ideal Hu, Cox-Munk, 

and Wu distributions are included to show how well observed dropsonde data match with each parameterization. A histogram of 460 
dropsonde surface wind speeds is also included to show their distribution. 

 

From Fig. 8, it is more easily seen how the dropsonde surface wind speed distribution compares with Hu, Cox-Munk, and Wu 

parameterizations. Dropsonde surface wind speeds match quite closely to Hu and Cox-Munk parameterizations as opposed to 

the Wu parameterization between 7 m s-1 and 13.3 m s-1, although some divergence is seen above ~10.5 m s-1. However, a 465 

critical observation that is more apparent in Fig. 8 than Fig. 7 is how the dropsonde data most resemble the Hu distribution for 

surface wind speeds below 7 m s-1. This improvement is substantial, especially since most of the surface wind speeds in 

ACTIVATE fall into this category. Surface wind speeds above 13.3 m s-1 substantially diverge from all models, especially 

above 16 m s-1. As mentioned previously, there are few surface wind speed observations in this category, so more 

measurements are necessary to make meaningful comparisons between the two data sets. Overall, Figs. 7 and 8 demonstrate 470 

the benefits of using the Hu parameterization in this study and why surface wind speeds above 13.3 m s -1 are not the main 

focus of the comparisons in this section. Further analysis is warranted to rigorously compare the performance of various surface 

reflectance models and potentially apply corrections (i.e., whitecap correction for surface wind speeds above 13.3 m s -1), but 
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the aim of this paper is to evaluate LARC’s HSRL-2 surface wind speed retrieval algorithm using the available ground-truth 

dropsonde measurements.  475 

Now that the Hu relationship has been deemed the more effective model through the preliminary analysis shown in Figs. 7 and 

8, a more rigorous statistical analysis is performed for surface wind speeds 1) below 7 m s-1 and 2) between 7 m s-1 and 13.3 

m s-1 to assess the overall accuracy of the HSRL-2 retrievals in these categories (Fig. 9).  

 

Figure 9: Scatterplots with associated histograms for HSRL-2 – dropsonde collocated surface wind speed data points for a) surface 480 
wind speeds < 7 m s-1 and b) surface wind speeds between 7 m s-1 and 13.3 m s-1. Note that x- and y-axis ranges vary to better showcase 

results in individual panels. N represents the number of data points. 

Intercomparisons for surface wind speeds below 7 m s-1 (Fig. 9a) show correlation coefficients of 0.66, slopes of 0.65 and 

0.99, and y-intercepts of 1.10 m s-1 and -0.49 m s-1 for linear and bisector regressions, respectively. The accuracy of the HSRL-

2 retrievals is calculated to be -0.54 m s-1 ± 1.34 m s-1, showing that the HSRL-2 on average underestimates surface wind 485 

speeds and this estimation could vary by ± 1.34 m s-1. For surface wind speeds between 7 m s-1 and 13.3 m s-1 (Fig. 9b), 
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correlation coefficients of 0.75, slopes of 0.64 and 0.85, and y-intercepts of 3.80 m s-1 and 1.87 m s-1 are reported for linear 

and bisector regressions, respectively. The mean error of 0.56 m s-1 ± 1.49 m s-1 shows that the HSRL-2 overpredicts surface 

wind speeds by about ~0.5 m s-1 on average with a variability of ± ~1.5 m s-1. Therefore, the means from both categories 

average out to ~0 m s-1 since they are approximately the same but in opposite directions. Separating the data into these 490 

categories highlight an important result that could not be seen in the cumulative data (Fig. 6): one can expect bias of up to ~0.5 

m s-1 in either direction and error of up to ~1.5 m s-1 on average for most HSRL-2 surface wind speed retrievals in ACTIVATE. 

 

The data are then divided into winter and summer deployments (dates provided in Sect. 2.1) as shown in Fig. 10 to assess the 

HSRL-2’s retrieval accuracy in different seasons.  495 

 

Figure 10: Scatterplots with associated histograms for HSRL-2 – dropsonde collocated surface wind speed data points for a) winter 

and b) summer deployments. Data are highlighted based on surface wind speed categories: 7 m s-1 ≤ Wind Speed < 13.3 m s-1, Wind 

Speed < 7 m s-1, and Wind Speed ≥ 13.3 m s-1. N represents the number of data points. 
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As seen in Fig. 10a, the winter surface wind speed intercomparisons show correlation coefficients of 0.88, slopes of 0.95 and 500 

1.08, and y-intercepts of 1.03 m s-1 and -0.08 m s-1 for linear and bisector regressions, respectively. The summer surface wind 

speed intercomparisons (Fig. 10b) have correlations of 0.87, slopes of 1.08 and 1.24, and y-intercepts of -0.69 m s-1 and -1.68 

m s-1. Finally, the mean errors for winter and summer, respectively, are reported as 0.63 m s-1 ± 2.07 m s-1 and -0.18 ± 1.52 m 

s-1. It is seen that the error in the HSRL-2 estimations of surface wind speeds is larger for winter than summer, most likely due 

to the higher fraction of surface wind speeds above 13.3 m s-1 and lower fraction of them below 7 m s-1 in the winter. This 505 

observation makes sense because of the increased presence of clouds, precipitation, and whitecaps for the higher surface wind 

speeds observed in the winter. These observations show that HSRL-2 retrievals of surface wind speed are more accurate in the 

summer over the winter. However, the HSRL-2 can still make numerous accurate retrievals as shown by the Fig. 10 and the 1 

March 2020 research flight discussions. Caution must still be exercised when using data from days featuring turbulent 

meteorological conditions that could induce whitecaps and/or substantial cloud cover that could limit or even prevent the 510 

HSRL-2 from sampling the surface. 

 

Statistics evaluating the HSRL-2 surface wind speed retrievals (Figs. 6, 9, 10) are summarized in Table 1 for convenience.  

 

Table 1: Summary of all HSRL-2 – dropsonde surface wind speed comparison statistics shown in Figs. 6, 9, and 10. The two values 515 

for slope and y-intercept refer to those for the linear and bisector regressions, in that order. R values are the same for both linear 

and bisector regressions, so they are listed as one value. 

 N r Slope 

 

Y-intercept 

[m s-1] 

Mean Error 

[m s-1] 

Overall 577 0.89 1.04/1.17 -0.13/-1.05 0.15 ± 1.80 

 Wind Speed < 7 m s-1 292 0.66 0.65/0.99 1.10/-0.49 -0.54 ± 1.34 

7 m s-1 ≤ Wind Speed < 13.3 m s-1 236 0.75 0.64/0.85 3.80/1.87 0.56 ± 1.49 

Winter 236 0.88 0.95/1.08 1.03/-0.08 0.63 ± 2.07 

Summer 341 0.87 1.08/1.24 -0.69/-1.68 -0.18 ± 1.52 

4. Conclusions 

This study introduces the High Spectral Resolution Lidar – generation 2 (HSRL-2) surface wind speed retrieval method, 

demonstrates its use, and evaluates its accuracy using NCAR AVAPS dropsonde data collected during the NASA ACTIVATE 520 

field campaign. ACTIVATE featured the joint deployment of the HSRL-2 and AVAPS dropsondes during six deployments 

from 2020 to 2022, enabling the accuracy of the HSRL-2 surface wind speed retrievals to be assessed using the coincident 

dropsonde measurements. Comparisons of HSRL-2 and dropsonde surface wind speeds show correlations of 0.89, slopes of 

1.04 and 1.17, y-intercepts of -0.13 m s-1 and -1.05 m s-1 for linear and bisector regressions, respectively. The accuracy of the 
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HSRL-2 retrievals, as denoted by mean error, is calculated to be 0.15 m s-1 ± 1.80 m s-1. It is also observed that the dropsonde 525 

surface wind speed measurements most closely match with the Hu et al. (2008) wind speed – wave-slope variance model than 

the Cox and Munk (1954) and Wu (1990) models for surface wind speeds below 7 m s-1, which is an important finding because 

most ACTIVATE surface wind speeds fall into this category. After this overview of model performance, the HSRL-2 retrievals 

for surface wind speeds separated into below 7 m s-1 and between 7 m s-1 and 13.3 m s-1 categories are then evaluated in more 

detail. For surface wind speeds below 7 m s-1, correlations of 0.66, slopes of 0.65 and 0.99, and y-intercepts of 1.10 m s-1 and 530 

-0.49 m s-1 are found and the accuracy of the retrievals is found to be -0.54 m s-1 ± 1.34 m s-1. Surface wind speeds between 7 

m s-1 and 13.3 m s-1 show correlations of 0.75, slopes of 0.64 and 0.85, and y-intercepts of 3.80 m s-1 and 1.87 m s-1 and the 

retrieval accuracy is shown to be 0.56 m s-1 ± 1.49 m s-1. Statistics are not reported for surface wind speeds above 13.3 m s-1 

because there are too few points in this category to make meaningful comparisons. These results showcase an important 

observation not seen in the cumulative results, which is that the HSRL-2 estimates surface wind speeds with a bias of ± ~0.5 535 

m s-1 and an error of ± ~1.5 m s-1. Lastly, the data are divided into winter and summer deployments (dates denoted in Sect. 2.1) 

to assess how the HSRL-2 performs between seasons. The winter surface wind speed data comparisons show correlations of 

0.88, slopes of 0.95 and 1.08, and y-intercepts of 1.03 m s-1 and -0.08 m s-1 and the summer data show correlations of 0.87, 

slopes of 1.08 and 1.24, and y-intercepts of -0.69 m s-1 and -1.68 m s-1 (linear and bisector regressions, respectively). The 

accuracy of the lidar retrievals is reported as 0.63 m s-1 ± 2.07 m s-1 and -0.18 m s-1 ± 1.52 m s-1 for winter and summer, 540 

respectively. These findings show that HSRL-2 retrievals are more accurate in the summer than in winter, but still provide 

substantial (N = 236) and accurate surface wind speed data in winter as well.  

 

This retrieval method offers a new path forward in airborne field work for the acquisition of surface wind speed data at a high 

spatial (~75 m along track) and time (0.5 s) resolution, as demonstrated with two case study flights (Research Flight 29 on 28 545 

August 2020 and Research Flight 14 on 1 March 2020). The high horizontal spatial resolution of the HSRL-2 allows it to probe 

the fine-scale variability of surface wind speeds over time. As a result, the instrument provides near-continuous profiles of 

surface wind speeds over time that correspond to MABL phenomena such as SST dynamics and cloud evolution. Another 

important conclusion about the HSRL-2 surface retrievals is that the instrument can detect the surface in broken cloud scenes 

and are not limited to aerosol-free conditions like in Hu et al. (2008). Overall, having such data can benefit model assimilation 550 

efforts and consequently several scientific applications related to air-sea interactions such as estimating heat fluxes, gas 

exchange, sea salt emissions and aerosol transport, and cloud life cycle.  

  

Forthcoming work will continue assessments of surface wind speed measurements during ACTIVATE by comparing 

dropsonde data to in situ measurements taken by the Turbulent Air Motion Measurement System (TAMMS) onboard the 555 

Falcon aircraft at its various altitude flight legs (between 120 m and 5 km) (Thornhill et al., 2003). Additional work is also 

warranted to assess the surface wind speed retrievals performed by ACTIVATE’s other remote sensor, the Research Scanning 

Polarimeter (RSP), to fully demonstrate ACTIVATE’s remote sensing capabilities.  
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