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In this contribution, Annan et al. attempt to reconstruct mid-Pliocene Warm Period (mPWP) surface
temperatures by combining an ensemble of PMIP-based model simulations with prior compilations of
mPWP sediment proxies (namely, alkenones and Mg/Ca). They report a likely mean global
atmospheric surface warming of ~3.6 &+ 1°C (for their “preferred” solution) relative to the pre-industrial
state, with estimates ranging anywhere from 1.0 to 4.7°C average warming depending on the particulars
of their chosen proxies (Table 2).

The analysis is interesting, insofar as it represents the first (that ’'m aware) attempt at assimilating the
mPWP. However, numbers like those mentioned above matter — they get passed on in the literature
for generating model boundary conditions or climate-relevant constraints like ECS. Given such, I
cannot in good faith recommend this manuscript for publication. The overarching concerns I have are
that 1) the reconstruction decisions being made seem almost entirely ad hoc and otherwise unsupported
in the present context and, to this end, 2) no validation efforts have apparently been attempted by the
authors. From a paleoclimate- and proxy-interpretative standpoint, the study’s scientific explorations
feel rather cursory (e.g., the Discussion comprises only a paragraph or two of text), and I do not feel
Annan et al. clearly answer their manuscript’s own title, “Can we reliably reconstruct the mid-Pliocene
Warm Period with sparse data and uncertain models?” I elaborate:

1. As a statistical methodology, offline data assimilation permits one to turn various “knobs” when
generating paleoclimate reconstructions. While to first order this includes decisions on which models
and proxies to include in the assimilation (aspects I am generally fine with in the authors’ study, though
please see Specific Point ¢), below), other important knobs include the degree of covariance localisation
applied and the amount of uncertainty attributed to the individual proxy observations. Despite having
considerably less proxy constraints as well as different models, Annan et al. are largely content to
simply follow the empirical methodology presented in AHM22 without providing supporting evidence
(such as careful validation testing; see Point 2, below) relevant to the present datasets / context. Further,
Annan et al. include several pre-processing steps in their assimilation approach that do not appear
supported in this study or in the prior paleoclimate literature outside of AHM?22. I elaborate:

1. The authors apply a localisation of 2500km as in AHM22. While I am highly sceptical of
such a low value in general (based on prior validation efforts using similar data/methods,
e.g., Tardiff et al., 2019, Tierney et al., 2020, Osman et al., 2021, , Erb et al., 2022 etc., each
of whom use localisation >12,000 to 24,000 km for significantly larger proxy compilations),
I am willing to accept its use in AHM22 where some, if limited, validation efforts were
performed and where proxy data coverage was well over an order-of-magnitude larger. This
is not the case in the present study, wherein only a maximum of 23 locations are assimilated
(and only 14 in the “preferred” set-up), and thus the majority of points on Earth (given
regional clustering of those proxies that do exist) never even “feel” an update in the
assimilation process. Indeed, I suspect this small localisation radius is likely why the authors
feel compelled to bias-adjust (“re-center”, see Point iii. below) their multi-model ensemble
mean to the proxies in the first place, given all grid cells outside the collective proxies’
2500km radii will simply remain at the proxy-adjusted multi-model ensemble mean state.
See also Specific Point ¢), below.

il. Second, given the core importance of error quantification in data assimilation, the authors
are rather ad hoc in their treatment of proxy uncertainties in assuming a constant 2°C error
(10) across their proxies. While I understand this is an approach the authors have attempted
to justify in their past work (again, AHM22) and even later in the present manuscript (see
Specific Point f), below), I would appreciate greater effort be taken here in exploring the
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influence of proxy uncertainties across sites and proxy types. Prior authors (e.g., Tardif et
al., 2019, Tierney et al., 2020, Erb et al., 2021) have gone through considerable effort to
validate proxy uncertainties and test their sensitivity. Further, modern proxy system models
have been designed specifically to attempt to formalise (in the Bayesian sense, albeit still
using empirical relationships) the magnitude-dependent uncertainties assigned to alkenones
and Mg/Ca either in temperature or proxy space, yet the authors curiously disregard use of
such tools (e.g., page 5, lines 10-13).

iii. Third, the authors invoke various pre-assimilation steps involving EOF’s truncations and
bias-adjustments of their multi-model mean. It is noted, however, that this re-centering step
is not used nor recommended by the vast majority of paleo-data assimilation practitioners,
given that it can precondition the posterior result significantly (c.f., the authors’ Fig. 3a and
Fig. 3b vs. 3c), and thus potentially bias the answer further from the “true” state which is
unknown. While I can imagine such re-centering may be permissible in certain instances in
a modern context where the true state is more or less understood (e.g., operational weather
forecasting), who’s to say that proxies are perfectly reliable (non-biased) representations in
the paleo world? Indeed, this paper’s subsequent claims that many of their proxies are not
reliable indicators of the mPWP (Pg. 7, L34-35) implies a logical inconsistency with their
re-centering step more generally.

Thus, the authors’ pre-assimilation steps should be either supported by mathematical
derivation (not provided in AHM22), reference to the prior relevant literature (also not
provided in AHM22%*), or, at minimum, empirical validation testing (provided in some
capacity in AHM22). Furthermore, the authors’ suggestion that rank histograms (Fig. 2, Pg.
6, L15-25) provide such missing validation to support their re-centering step is flawed:
discovering a more uniform rank histogram (indicating that roughly half the proxy-derived
temperatures sit below the re-centered median PlioMIP temperature, half above) after re-
centering the model priors around the proxies is nothing more than the expected outcome of
the same re-centering process! And, there are other caveats to the rank histograms still: for
example, whereas prior approaches (e.g., Tierney et al., 2020) have tested rank histograms
using withheld validation data only — a much more challenging test — this is almost certainly
not the case here given the authors’ lack of validation testing. In fact, it’s unclear how these
rank histograms were even calculated. Overall, if the authors wish to use their re-centering
step, then use this technique should be subject to stringent validation testing using withheld
or independent proxy constraints, mathematical underpinning, and (or) reference to the prior
relevant literature showcasing its utility™*.

*In introducing their re-centering step in AHM22, the authors cite only their previous study, Annan and
Hargreaves (2013), which does not entail a data assimilation-based reconstruction approach and thus does not
appear to be a relevant citation in the present context.

2. The authors do not validate their assimilated results using withheld or independent data. I often tell
colleagues: “Anyone can create a data assimilation reconstruction (given the various toolsets and data
compilations now openly available to do so) but not every reconstruction can be reliably validated.” To
me, this is what Annan et al. have provided: an interesting data analysis, to be sure, but without
validating their reconstructions it’s impossible to gauge which (if any) of the authors’ various
assimilated results should be believed, or whether any of their results actually improve upon the models
or proxies in isolation? There are numerous approaches to validating a paleoclimate data assimilated
result — the least stringent I’d hazard being leave-one-out proxy validation, the more stringent options
being random sample without replacement, regional proxy withholding, or validation using independent
(e.g., terrestrial) proxies. When rationalizing each of the various assimilation decisions and “knobs”
noted above, the authors should be showcasing targeted validation efforts that support their claims.

Specific Points (Authors’ text in quoted italics)

a) Pg. 5 L27-29 “The Mg/Ca might be considered less reliable as their relationship to SST may depend
on site-specific factors including the species analysed, the calibration used, or the seasonality or depth



habitat of the foraminifera.” And, subsequently, Pg. 8 L16-18 “...we (argue) that the Mg/Ca may be
less reliable. We do not explore possible reasons for this here, but they may include site-specific factors

including the species analysed, the calibration used, or the seasonality or depth habitat of the
foraminifera (e.g. McClymont and Ho et al., 2023).”

Yet, this is exactly what I feel this manuscript should be exploring. Several tools, imperfect or not, do
exist to facilitate these aims (e.g., Tierney et al., 2019, Gray and Evans, 2019; see also review by
Rosenthal et al., 2022). Indeed, understanding the sensitivity of proxy systems during past warm
intervals is, to me, a key research area where paleoclimate data assimilation stands to permit real
intellectual gains. Past efforts (Tardif et al., 2019, Tierney et al., 2020, Osman et al., 2021) have chosen
to assimilate in proxy units precisely for the reason that doing so permits possibility of exploring
sensitivity of the assimilation results to, e.g., underlying seasonal bias, depth-habitat influences, species
sensitivities, pH, carbon dissolution effects, and sea surface salinity (SSS; among others). Assuming
Mg/Ca reflects annual temperatures does not permit such explorations, unfortunately. Taking one
example, recent results have suggested a much stronger change in SSS during the past several Ma than
previously recognised, which could have influenced Mg/Ca-derived SST during the mPWP; this was
not considered in the PlioVar data used here (Rosenthal et al., 2022). Finally, as a minor note, the
authors’ decision to omit BAYMAG-derived SST-estimates seems unfounded (Pg. 5, L10-13)
especially given their decision to average alkenone-derived SST based on two separate estimates.

Speaking of ...

b) Pg 5, L4-5. “The UK37 SST values we take here are the simple average of the calibration of Miiller
et al. (1998), and the BAYSPLINE calculation, as presented in McClymont et al. (2020).”

Averaging Muller and Tierney alkenone-derived SST values will be problematic for the tropics, where
Tierney and Tingley (2018) illustrated a clear non-linearity of UK37 to SST as UK37 values approach
their limit at 1. As this was not accounted for in the Muller et al. (1998) relations, Tierney should not
be averaged with Muller-derived SST values in the tropics. (And, given the separation that will be
required there, it would be more preferrable that alkenone-derived SST estimates be separated
everywhere else.)

c) Pg 2, L31-34 “While this has the unfortunate effect of reducing the number of usable data points,
we note that the points that are masked in this way are coastal in location, which are potentially
problematic for data-model comparisons due to the local nature of upwelling dynamics that is not
always adequately captured by models.”

And, subsequently, Pg 4 1.22-24 “This PRISM4 compilation contains 37 data points, reducing to 34
distinct grid points on the regular 5 x 5 degree grid that we use for our SST analysis, of which 23
locations remain after masking to the ocean grid of our ensemble.”

Not all coastal regions are necessarily areas of downwelling, and in an interval as data sparse as the
mPWP it would be useful to know where data are being lost and what effect they would have had on
the assimilation should they have been kept. It is concerning that the authors are losing nearly 40% of
their potential constraints due to their coarse re-gridding procedure alone. I’d ask that the authors
explore this assumption further by either not masking their 5x5° grids that intersect land or,
alternatively, assimilating these near-coastal points against the nearest available SST value.

d) Pg 6, L24-25 “We then adopt this recentred ensemble as a prior for a standard Ensemble Kalman
Filter (EnKF) assimilation step using the proxy data, similar to that of AHM22 and Tierney et al.
(2020).”

Tierney et al. (2020) did not apply this approach.

e) Pg7, L18-23 “Ifwe do not perform the recentering and instead just perform the single step standard
EnKF update to the original PlioMIP ensemble, the update is slightly greater than the EnKF step in the



two-step method, and generally more positive, due to the data being warmer than the ensemble mean.
However the increment is still small, as the data are sparse and uncertain. Large areas of the globe are
almost unaffected by the assimilation, with a temperature change of less than 0.1°C. This is an inevitable
consequence of having limited sparse data, and points to the influence of the model prior on the final
result. Thus, with so few and uncertain data points the final result using a one-step framework would
be very heavily based on the initial ensemble.”

I find most of this text framed in a very misleading way. First, the fact that large areas of the globe are
largely unaffected by the assimilation is not a surprise at all: it’s an inevitable consequence of the fact
that the assimilation is based on a mere 14 to 23 regionally clustered data points, each with a rather
small 2500km localization radius. As noted earlier, this means that a substantial portion of the globe
isn’t even being updated in the assimilation. In fact, if the color scheme used by the authors in Fig. 3¢
were centered with, for example, a white color value atop AT = 0°C, I’d wager most of the globe would
show in white rather than (the somewhat misleading) red or blue it currently is. Second, the authors’
suggestion that their two-step process (involving an initial re-centering of their multi-model mean atop
the proxy estimates prior to assimilation) is somehow “improving” upon the one-step process
(assimilation only) is similarly misleading. Given that updates in the two-step process are even smaller
than those without it (as expected given the reduced model-proxy offset, c.f., Fig. 3b), the two-step data
assimilation could reasonably be viewed as being less of an improvement over the one-step method in
the absence of validation efforts, since the two-step posterior remains closer to its prior state.

f) Pg. 7, L28-33 “We take a uniform uncertainty of 2°C on all of our data points. With so few data
points, this estimate is necessarily itself uncertain, but we consider it reasonable for the following
arguments. The RMS difference between the original PlioMIP ensemble members and the data points
is around 2.6 °C averaged across the ensemble members, or 2.2 °C relative to the ensemble mean, which
precludes a much higher error value since the data should not be closer to the models than they are to
reality under the assumption that model errors and data errors are independent. Conversely, our
posterior mean estimate after fitting to the data only achieves a residual RMS difference of 1.7°C.”

First, rationalizing the choice of proxy uncertainty by comparing proxy-inferred offsets to the same
models you wish to assimilate appears to be a circular argument, since the true temperature state is
unknown. Second, the RMS difference of the Mg/Ca-inferred temperatures to the posterior is also a
meaningless comparison, given that any updated RMS difference will simply be an uncertainty-
weighted reflection of the same Mg/Ca data that went into the assimilation! Indeed, had you increased
the uncertainty to infinity, the RMS difference would remain 2.2°C; for increasingly small uncertainty,
the RMS difference would converge toward 0°C. Please see Point lii., above.

g) Pg. 8, L8, L1-4 “We adopt the same parameters for the algorithm that were shown to work well in
AHM?22, of 4 EOFss, and a localisation length scale of 2500km. While changing these values altered the
regional patterns somewhat (for example, using a larger number of EOFs introduced more spatial
variability) they made little difference to the large scale results such as global mean temperature
anomalies.”

The authors should either illustrate this visually or via statistical validation testing.
h) Table 1. More information on each model would be appreciated. At minimum, the degree of mPWP

warming / cooling (SAT’s and SST’s) relative to their PI-reference would be useful to reference for
each model.
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