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Abstract  8 
 9 
Droughts and heatwaves are among the most impactful climate extremes. Their co-occurrence can have adverse 10 
consequences on natural and human systems. Early information on their possible occurrence on seasonal 11 
timescales is beneficial for many stakeholders. Seasonal climate forecasts have become openly available to the 12 
community but a wider use is currently hindered by limited skill in certain regions and seasons. Here we show 13 
that a simple forecast metric from a multi-system ensemble, the signal to noise ratio, can help overcome some 14 
limitations. Forecasts of mean daily near surface air temperature and precipitation in boreal summers with high 15 
signal to noise ratio tend to coincide with observed larger deviations from the mean than summers with small 16 
signal to noise ratio. The signal to noise ratio of the ensemble predictions may serve as a complementary measure 17 
of forecast reliability that could benefit users of climate predictions.              18 
 19 
1. Introduction  20 
 21 
Droughts are typically slow onset climate extreme events (Mishra and Singh, 2010), yet they can be disruptive 22 
and affect millions of people every year (Below et al., 2007; Enekel et al., 2020). Heatwaves can intensify and 23 
trigger a faster drought evolution (Bevacqua et al., 2022). Compound drought and heatwaves can strongly impact 24 
socio-economic and ecological systems, and may even compromise our ability to reach the UN sustainable 25 
development goal on climate action while strongly reducing the Earth system's current natural capacity to absorb 26 
and store carbon (Yin et al., 2023). The use of seasonal climate forecasts can provide actionable information to 27 
reduce the risks and the impacts of these events on key sectors like agriculture, energy, transport, water supply 28 
(Buontempo et al 2018; Ceglar and Toreti 2021).  29 
 30 
In the last couple of decades, climate predictions have shown important progress in anticipating the evolution of 31 
various components of the climate system across the subseasonal to decadal time range (Merryfield et al., 2020; 32 
Meehl et al., 2021). A combination of multiple forecast systems has shown overall benefits as compared with 33 
single systems, and can improve forecast quality up to a certain extent (Hagedorn et al., 2005; Mishra et al., 2019). 34 
In spite of the recent progress, climate predictions still exhibit low to moderate skill in many regions and seasons 35 
(e.g. European summer; Mishra et al. 2019), something that limits their use and represents a barrier for 36 
stakeholders. Furthermore, multiple studies have shown that large ensembles are required to achieve skillful 37 
predictions, something that seems to be related to the forecast systems being more skillful at predicting real climate 38 
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than at predicting their own realizations (i.e. ensemble members). This odd phenomenon has been called the signal 39 
to noise paradox (Eade et al., 2014; Scaife and Smith, 2018; Smith et al., 2020). It is particularly evident in the 40 
Euro Atlantic region during winter both on seasonal and decadal timescales. However boreal summer predictions 41 
have been generally overlooked. A recent study based on a single forecasting system has shown that sampling 42 
years with high SNR results in more skillful predictions of monthly temperatures in Japan throughout the year 43 
(Doi et al., 2022).     44 
  45 
In this study we exploit multi-system ensembles to test whether specific boreal summers with higher than normal 46 
predictability can be detected through the local relation between skill and SNR. We explore this for near surface 47 
air temperature and precipitation, both locally and on large aggregated mid-latitude regions of the Northern 48 
Hemisphere.   49 
 50 
2. Methods  51 
 52 
This analysis is based on seasonal re-forecasts (also known as hindcasts) of mean boreal summer precipitation 53 
and 2-meter mean daily temperature (T2m) for the period 1993-2016 from ECMWF SEAS5 (S5, Johnson et al., 54 
2019), UKMO GloSea6 (S600, MacLachlan et al., 2015), MeteoFrance (S8, Batté et al., 2021), CMCC (S35, 55 
Gualdi et al., 2020) and DWD (S21, Baehr et al., 2015), available from the Copernicus C3S Climate Data Store. 56 
The observationally based datasets to evaluate the re-forecasts are ERA5 (Hersbach al., 2020) for T2m and GPCC 57 
(Schnider et al., 2011) for precipitation. The use of summer mean T2m is not intended to characterize single 58 
heatwaves, but to estimate average daily deviations from the mean on a seasonal scale. In a climatological sense, 59 
more intense, more frequent or longer heatwaves than usual generally define hot summers and hence average T2m 60 
may be seen as a seasonal integrator of heatwave activity. Forecast skill is evaluated with the anomaly correlation 61 
coefficient (ACC) between the ensemble mean and the observational reference. To complement the skill estimates 62 
of ACC, two additional deterministic skill metrics are computed: the mean squared skill score (MSSS, Murphy, 63 
1988) and the Gilbert skill score (GSS, WMO, 2014). The mean squared skill score compares the mean square 64 
error of the forecasts with the mean square error of the climatological value. It ranges from minus infinity to 1 65 
and values above 0 indicate skill in the predictions. The GSS measures the fraction of correctly predicted events 66 
over the total number of predicted events plus misses, and takes into consideration the randomly predicted events. 67 
The thresholds to define event/non event are the top and bottom 25% summers for T2m (hot) and precipitation 68 
(dry), respectively. Standardization of the anomalies of each ensemble member and the observational reference 69 
data is performed prior to the analysis. This step guarantees that each member from each system has a comparable 70 
year-to-year variability to the observed one. Additionally, the standardized T2m anomalies are linearly detrended 71 
at the grid level and for each member of the re-forecasts and in ERA5 to isolate as much as possible the impact of 72 
the long term warming. 73 
 74 

Following Doi et al. (2022), the SNR is calculated as: 𝑆𝑆𝑆𝑆𝑆𝑆 =  𝜇𝜇𝑒𝑒
𝜎𝜎𝑒𝑒

, where  𝜇𝜇𝑒𝑒 is the multi-system ensemble mean 75 

and 𝜎𝜎𝑒𝑒 is the multi-system standard deviation after standardization, computed across ensemble members for every 76 
summer (June - August) and for each gridbox. 25 members per system are used to have an equal contribution from 77 
each system.  78 
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 79 
3. Signal to noise ratio and forecast skill  80 
 81 
Figure 1 displays spatial maps of mean (boreal) summer T2m ACC, time averaged SNR, and a scatter plot which 82 
shows the local relation between ACC and SNR. On average, skill values over land increase with higher SNR 83 
values. Negative values of ACC are nearly non-existent when the threshold of SNR exceeds the value of about 84 
0.5 in the same gridbox. Statistically significant skill in T2m is mostly confined to the tropics and sub-tropics. 85 
However, significant skill is also found in western North America, the eastern Mediterranean, central Asia and 86 
southern South America. Notable exceptions in the tropics are Congo and parts of the Amazon rainforests. The 87 
patterns of SNR largely mirror those of ACC. Generally, there is a good agreement between areas of high skill 88 
(ACC) and areas with high SNR, something that is further confirmed by the local relation between ACC and SNR 89 
(Fig. 1c). 90 
 91 

 92 
Figure 1: June-August Skill (ACC), time averaged SNR and scatterplots of local relation between ACC and SNR for 93 
T2m (a-c) and precipitation (d-f). Each gray dot in (c,f) represents the values of ACC and SNR at each gridbox. Only 94 
statistically significant values with a 90% confidence based on a t-test are displayed in (a,d). The re-forecasts are 95 
initialized every May.  96 
 97 
Precipitation follows a similar behavior in terms of ACC and SNR, although statistically significant skill is less 98 
widespread (Fig. 1d-f). Areas under the influence of El Niño Southern Oscillation (ENSO; Lenssen et al., 2020) 99 
appear as regions with significant ACC and high SNR. Skillful values are mostly located in the Americas, the 100 
Maritime continent and Australia. Precipitation skill and SNR in Africa and Asia are much lower, making these 101 
the regions with the largest qualitative differences between the two variables.  102 
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 103 

 104 
Figure 2: June-August time averaged ensemble coherence and scatterplots of the local relation between ACC and 105 
ensemble coherence for T2m (a-b) and precipitation (c-d). Each gray dot in (b,d) represents the values of ACC and 106 
ensemble coherence at each gridbox. The re-forecasts are initialized every May.  107 
 108 
In Figure 2 we show the effect of the ensemble coherence on skill. Ensemble coherence is defined as the inverse 109 
of the ensemble standard deviation (𝜎𝜎𝑒𝑒), minus one. The spatial distribution of time averaged ensemble coherence 110 
displays many similarities to the SNR for both T2m and precipitation, although the signal is clearly dominated by 111 
the tropics and subtropics with virtually no contribution from the extra-tropics, except for a minor one from T2m 112 
in western North America and from precipitation in the Middle East (Fig. 2a,c). In terms of the local relation 113 
between ensemble coherence and skill, T2m displays a clear increase in skill with higher values of coherence (Fig. 114 
2b). Skill is virtually always positive when coherence values exceed 0.3, implying that ensemble spread may also 115 
be a good indicator of skill for T2m, similar to SNR. For precipitation there is weaker relation between skill and 116 
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ensemble coherence than for T2m as there appear to be as many locations of high coherence with little skill as 117 
locations with high skill and high coherence (Fig. 2d). This can be a result of a weaker relation between skill and 118 
ensemble coherence than between skill and SNR, but may also be at least partially a result of the large uncertainty 119 
in observed precipitation in many regions.  120 
 121 
Based on the observed link between skill and SNR, we use the latter one as the single criterion to exclude from 122 
the re-forecasts years with very low and very high values to understand their impact on skill. When 25% of the 123 
years (6 in total) with the highest SNR (Fig. 3a) are excluded, the results overall show much lower values of ACC 124 
than when only 25% of the years with the lowest SNR are excluded (Fig. 3b). Furthermore, differences between 125 
the latter and the former result (in many cases) in higher statistically significant values than the ACC computed 126 
when selecting only years without the highest SNR (Fig. 3a,c). This result highlights the importance that these 127 
extreme SNR years can have on skill. In fact, only skill values that are computed by excluding the bottom 25% of 128 
SNR years (Fig. 3b) are comparable to the ones estimated when all years are used for the computation (Fig. 1a). 129 
 130 

   131 
Figure 3: Skill (ACC) of T2m predictions excluding 25% of the years with highest (a) and lowest (b) local SNR. (c) 132 
Difference between (a) and (b). (d) Difference in the time-averaged absolute deviation from the mean in ERA5 T2m, 133 
excluding years having 25% of the lowest and highest local SNR, respectively. Only statistically significant values with 134 
a 90% confidence based on a t-test are displayed in (a-c). The re-forecasts are initialized every May.  135 
 136 
Interestingly, using the same criterion to select ERA5 T2m values reveals that in general, excluding years with 137 
high ensemble SNR results in lower absolute deviations from the mean than when the low SNR years are excluded 138 
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(Fig. 3d). Additionally, these differences overall coincide with regions with significant skill differences (Fig. 139 
3c,d). This implies that years with more extreme deviations from the mean (in the observations/reanalysis) may 140 
be identified a priori by calculating the ensemble SNR of the forecast, and that forecast systems are in general 141 
more skillful when large deviations from the mean occur.    142 
 143 

 144 
Figure 4: Same as Figure 3, but for precipitation.  145 
 146 
Similar to T2m, the exclusion of years with high SNR also results in lower overall precipitation skill values than 147 
the one obtained when excluding low SNR years (Fig. 4a,b). Important skill differences appear in the Iberian 148 
Peninsula, Brazil, Australia and Indonesia (Fig. 4c), and in most cases imply a shift from non-significant to 149 
significant skill (Fig. 4 a and b, respectively).  Contrasting with T2m, the relation between ACC and mean absolute 150 
deviation from the mean in the observations is not obvious for precipitation (Fig. 4c,d). To further investigate this 151 
behavior, we analyzed the relationship between skill differences and the differences in absolute deviation from 152 
the mean for T2m and precipitation, as usual by using the re-forecasts that exclude the 25% of the years with the 153 
lowest and the highest SNR, respectively. This analysis (not shown) confirms a statistically robust relationship 154 
between skill and large deviations from mean observed precipitation, but still weaker than for T2m.   155 
 156 
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 157 
Figure 5: The same as Figure 3, but for re-forecasts initialized every June. Boxes in (a) show the areas used in Figures 158 
6 and 7.   159 
 160 
Figure 5 shows a clearer relation between the impact on skill of the most extreme years in terms of SNR and the 161 
absolute T2m anomalies in ERA5, as compared with Figure 3. There is a good correspondence in all continents, 162 
including parts of Europe (Fig. 5 c,d). The only difference between the two Figures is that they show the results 163 
from re-forecasts with different initialization dates. Both target the boreal summer months (June-August), but 164 
Figure 3 shows the results from the May initialization while Figure 5 shows the results from the June initialization. 165 
Similar qualitative conclusions can be made for precipitation (not shown).         166 
 167 
In Figure 6 we use the same methodology to sample years based on T2m SNR, but applied to specific northern 168 
hemisphere mid-latitude regions: the Mediterranean, North and Central Europe, north western Asia, east Asia, 169 
western North America and eastern North America. All the three skill metrics computed show that sampling the 170 
18 years with highest SNR, generally results in more skillful T2m predictions than when sampling all 24 years or 171 
the 18 years with lowest SNR. The only exceptions are observed in North and Central Europe, where there is 172 
basically no skill, as well as in eastern North America, where all the three selection methods show similar skill 173 
levels. Examples of successful prediction of extreme (high) T2m years and high SNR are 1999 and 2003 in the 174 
Mediterranean, 2002 in northern/central Europe, 1998 in northwestern Asia, 2006 and 1998 in western and eastern 175 
North America, respectively. There are also some examples of extreme (high) T2m and low SNR, such as 2012 176 
in the Mediterranean, or 1994 and 2016 in East Asia. However, higher overall GSS for the top T2m positive 177 
anomalies indicates that on average, sampling years with high SNR results in better prediction of the extreme 178 
events.  179 
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 180 
A similar analysis on precipitation is shown in Figure 7. The results of precipitation qualitatively agree with those 181 
of T2m. Precipitation skill is highest for years with highest SNR and lowest for years with lowest SNR, the only 182 
exception being northern/central Europe, again a region with no skill in either precipitation or T2m predictions. 183 
Years of successful predictions of low precipitation and high SNR are 1994 and 2000 in the Mediterranean, 2015 184 
in northern/central Europe, 1997 and 2001 in East Asia, 2003 in western North America, and 2011 in eastern 185 
North America. Similar to T2m, GSS for low precipitation summers is generally higher for the top 18 years (in 186 
terms of SNR) than for the bottom 18 years or for all 24 years. It is worth noting that skill scores for precipitation 187 
are generally lower than those of T2m. This is primarily due to the lower overall predictability of precipitation 188 
compared to T2m.  . Note also that the same conclusions are obtained for both T2m and precipitation when 189 
separately sampling only the half of years with highest and lowest SNRs and/or when varying the threshold to 190 
define the most extreme years used in the GSS calculations (not shown).  191 
 192 

 193 
Figure 6: Area-averaged time series of observed and predicted, detrended and standardized mean summer T2m (right 194 
axis) and SNR (left axis) in (a) the Mediterranean (10W-35E, 30-45N), (b) North and Central Europe (10W-35E, 45-195 
65N), (c) northwestern Asia (35-70E, 40-65N), (d) East Asia (90-130E, 25-45N), (e) western North America  (123-100W, 196 
30-50N) and (f) eastern North America (90-70W, 30-55N). Skill metrics are provided separately for the 18 years with 197 
highest SNR (excluding blue circles), the 18 years with the lowest SNR (excluding red circles) and for all 24 years. The 198 
skill metrics are linear correlation, mean square skill score and Gilbert skill score (See methods). The p-values of the 199 
linear correlation coefficients are also displayed for each region. The results are from the re-forecasts initialized in 200 
June.  201 
  202 
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 203 
Figure 7: The same as Figure 6, but for precipitation.  204 
 205 
4. Discussion  206 
 207 
The SNR measures the relative weight of the ensemble mean anomalies with respect to the ensemble coherence. 208 
Its close resemblance in terms of spatial patterns with a skill metric like ACC indicates that it can provide 209 
complementary information related to seasonal climate predictability. We have shown that in regions where the 210 
forecasts are skillful, years with high SNR exhibit on average larger observed deviations from the mean than years 211 
with low SNR, for both T2m and precipitation. This means that forecast systems are on average more reliable at 212 
predicting extremes when there is a higher coherence. This has been further demonstrated for several Northern 213 
Hemisphere mid-latitude regions during boreal summer. Ensemble coherence is also a good indicator of T2m and 214 
precipitation predictability, although appears to be only suitable for tropical and subtropical locations. 215 
 216 
Despite the well-known limitations of climate forecast systems (e.g. the signal to noise paradox), we have shown 217 
that in a multi-system ensemble, the SNR may provide valuable information as it represents an intrinsic measure 218 
of reliability for T2m and precipitation forecast. The short span of 24 years defining the common hindcast period 219 
is a limitation of this study. Hence, longer hindcasts would be necessary to obtain more robust results, but are 220 
currently unavailable for most of the multiple systems analyzed.  221 
 222 
Data availability 223 
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