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Abstract  9 
 10 
Droughts and heatwaves are among the most impactful climate extremes. Their co-occurrence can have adverse 11 
devastating consequences on natural and human systems. Early information on their possible occurrence on 12 
seasonal timescales is beneficial for many stakeholders. Seasonal climate forecasts haves gradually become 13 
openly available to the communitymore widely used; but a widerits use is currently hindered by limited skill in 14 
certain regions and seasons. Here we show that a simple forecast metric from a multi-system ensemble, the signal 15 
to noise ratio, can help overcome some limitations in the boreal summer. Forecasts of mean maximum daily near 16 
surface air temperature and precipitation in boreal summers with high signal to noise ratio tend to coincide with 17 
observed larger deviations from the mean than summers years with small signal to noise ratio. The signal to noise 18 
ratio of the ensemble predictions serves as a complementary measure of forecast reliability that could potentially 19 
benefit users of climate predictions.  The same metric also helps identify processes relevant to seasonal climate 20 
predictability. Here we show that a positive phase of boreal spring sea surface temperature dipole index in the 21 
North Atlantic may favor the occurrence of dry and hot summers in Europe.             22 
 23 
1. Introduction  24 
 25 
Droughts are typically slow onset climate extreme events (Mishra and Singh, 2010), yet they can be disruptive 26 
and affect millions of people every year (Below et al., 2007; Enekel et al., 2020). Heatwaves can intensify and 27 
trigger a faster drought evolution (Bevacqua et al., 2022). Compound drought and heatwaves can have strongly 28 
devastating consequences on impact socio-economic and ecological systems, and may even compromise our 29 
ability to reach the UN sustainable development goal on climate action while strongly reducing the Earth system's 30 
current natural capacity to absorb and store carbon (Yin et al., 2023). The use of seasonal climate forecasts can 31 
provide actionable information to reduce the risks and the impacts of these events on key sectors like agriculture, 32 
energy, transport, water supply (Buontempo et al 2018; Ceglar and Toreti 2021).  33 
 34 
In the last couple of decades, climate predictions have shown important progress in anticipating the evolution of 35 
various components of the climate system across the subseasonal to decadal time range (Merryfield et al., 2020; 36 
Meehl et al., 2021). In spite of this progress, climate predictions still have low to moderate skill in many regions 37 
and seasons (e.g. European summer; Mishra et al. 2019); this limits their use and represents a barrier for 38 
stakeholders. A combination of multiple forecast systems has shown overall benefits as compared with single 39 
systems, and can improve forecast quality up to a certain extent (Hagedorn et al., 2005 ; Mishra et al., 2019). In 40 
spite of the recent progress, climate predictions still exhibit low to moderate skill in many regions and seasons 41 
(e.g. European summer; Mishra et al. 2019), something that limits their use and represents a barrier for 42 
stakeholders. Furthermore, multiple studies have shown that large ensembles are required to achieve skillful 43 
predictions, something that seems to be related to the forecast systems being more skillful at predicting real climate 44 
than at predicting their own realizations (i.e. ensemble members). This odd phenomenon has been called the signal 45 
to noise paradox (Eade et al., 2014; Scaife and Smith, 2018; Smith et al., 2020). It is particularly evident in the 46 
Euro Atlantic region during winter both on seasonal and decadal timescales. However boreal summer predictions 47 
have been generally overlooked. A recent study based on a single forecasting system has shown that sampling 48 
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years with high SNR results in more skillful predictions of monthly temperatures in Japan throughout the year 49 
(Doi et al., 2022).     50 
  51 
In this study we exploit multi-system ensembles to test whether specific boreal summers years with higher than 52 
normal predictability can be detected through the local relation between skill and SNR. We explore this for near 53 
surface air temperature and precipitation predictions, both locally and on large aggregated mid-latitude regions of 54 
the Northern Hemisphere.   signal to noise ratio (SNR; section 3). We then use this proposed approach to explore 55 
sources of summer climate predictability in Europe (Section 4). 56 
 57 
 58 
2. Methods  59 
 60 
Thise analysis is based on seasonal re-forecasts (also known as hindcasts) of mean boreal summer precipitation 61 
and 2-meter mean daily maximum temperature (T2mTmax) for the period 1993-2016 from ECMWF SEAS5 (S5, 62 
Johnson et al., 2019), UKMO GloSea6 (S600, MacLachlan et al., 2015), MeteoFrance (S8, Batté et al., 2017S8, 63 
Guérémy et al., 2021), CMCC (S35, Gualdi et al., 2020) and DWD (S21, Baehr et al., 2015), available from the 64 
Copernicus C3S Climate Data Store. The observationally based datasets to evaluate the re-forecasts are ERA5 65 
(Hersbach al., 2020) for T2mTmax and GPCC (Schnider et al., 2011) for precipitation. The use of summer mean 66 
T2mTmax is not intended to characterize single heatwaves, but to estimate average maximum daily deviations 67 
from the mean on a seasonal scale. In a climatological sense, more intense, more frequent or longer heatwaves 68 
than usual generally define hot summers and hence average T2mTmax may be seen as a seasonal integrator of 69 
heatwave activity. Forecast skill is evaluated with the anomaly correlation coefficient (ACC) between the 70 
ensemble mean and the observational reference. To complement the skill estimates of ACC, two additional 71 
deterministic skill metrics are computed in Figures 5 and 6: tThe mean squared skill score (MSSS, Murphy, 1988) 72 
and the Gilbert skill score (GSS, WMO, 2014). The mean squared skill score compares the mean square error of 73 
the forecasts with the mean square error of the climatological value. It ranges from minus infinity to 1 and values 74 
aboveover 0 indicate skill in the predictions. The GSS measures the fraction of correctly predicted events over the 75 
total number of predicted events plus misses, and takes into consideration the randomly predicted events. The 76 
thresholds to define event/non event are the top and bottom 25% summers for T2m (hot) and precipitation (dry), 77 
respectively. GSS values above 0 indicate skillful predictions. Standardization of the anomalies of each ensemble 78 
member and the observational reference data is performed prior to the analysis. This step guarantees that each 79 
member from each system has a comparable year-to-year variability to the observed one. Additionally, the 80 
standardized T2mTmax anomalies are linearly detrended at the grid level and for each member of the re-forecasts 81 
and in ERA5 to isolate as much as possible the impact of the long term warming. In Section 4, the Sea Surface 82 
Temperature (SST) and Geopotential Height (500 hPa, GPH500) fields are taken from ERA5 and ERSSTv5 83 
(Huang et al., 2017), respectively.  84 
 85 
Following Doi et al. (2022)In addition to the ACC, the SNRmetric computed is calculated as the product of the 86 
average multi-system ensemble mean anomaliesdeviation from the long term mean and the intrinsic ensemble 87 
coherence (inverse of standard deviation) is calculated  with the signal to noise ratio for both T2mTmax and 88 
precipitation as: 𝑆𝑆𝑆𝑆𝑆𝑆 =  𝜇𝜇𝑒𝑒

𝜎𝜎𝑒𝑒
, where  𝜇𝜇𝑒𝑒 is the multi-system ensemble mean and 𝜎𝜎𝑒𝑒 is the multi-system standard 89 

deviation after standardization, computed across ensemble members for every summer (June - August) and for 90 
each gridbox. 25 members per system are used to have an equal contribution from each system.  91 
 92 
3. Signal to noise ratio and forecasts skill  93 
 94 
Figure 1 displays spatial maps of mean (boreal) summer T2mmax ACC, time averaged SNR, and a scatter plot 95 
which shows the local relation between ACC and SNR. On average, skill values over land increase with higher 96 
SNR values. Negative values of ACC are nearly non-existent when the threshold of SNR exceeds the value of 97 
about 0.5 in the same gridbox. Statistically significant skill in T2mTmax is mostly confined to the tropics and sub-98 
tropics. However, significant skill is also found in western North America, the eastern Mediterranean, central Asia 99 
and southern South America. Notable exceptions in the tropics are the Congo and parts of the Amazon rainforests. 100 



The patterns of SNR largely mirror those of ACC. Generally, there is a good agreement between areas of high 101 
skill (ACC) and areas with high SNR, something that is further confirmed by the local relation between ACC and 102 
SNR (Fig. 1c). 103 
 104 

 105 
Figure 1: June-August Skill (ACC), time averaged SNR and scatterplots of local relation between ACC and SNR 106 
for T2mmax (a-c) and precipitation (d-f). Each gray dot in c,f represents the values of ACC and SNR at each 107 
gridbox. OnlyGray dots in (a,d) indicate statistically non-significant values with a 90% confidence based on a t-108 
test are displayed in (a,d). The re-forecasts are initialized every May.  109 
 110 
Precipitation follows a similar behavior in terms of ACC and SNR, although statistically significant skill is less 111 
widespread (Fig. 1d-f). Areas under the influence of El Nino Southern Oscillation (ENSO; Lenssen et al., 2020) 112 
appear as regions with significant ACC and high SNR. Skillful values are mostly located in the Americas, the 113 
Maritime continent and Australia. Precipitation skill and SNR in Africa and Asia are much lower, making these 114 
the regions with the largest qualitative differences between the two variables.  115 
 116 
Based on the observed link between skill and SNR, we use the latter one as the single criterion to exclude from 117 
the re-forecasts years with very low and very high values to understand their impact on skill. When 25% of the 118 
years (6 in total) with the highest SNR (Fig. 2a) are excluded, the results overall show much lower values of ACC 119 
than when only 25% of the years with the lowest SNR are excluded (Fig. 2b). Furthermore, differences between 120 
the latter and the former result (in many cases) in higher statistically significant values and more statistical 121 
significance than the ACC computed withhen only selecting only  years without the highest SNR (Fig. 2a,c). This 122 
result highlights the importance that these extreme SNR years can have on skill. In fact, only skill values computed 123 
bywhen excluding the bottom 25% of SNR years (Fig. 2b) are comparable to the ones estimated when all years 124 
are used for the computation (Fig. 1a). 125 



    126 

  127 
Figure 2: Skill (ACC) of T2mTmax predictions excluding 25% of the years with highest (a) and lowest (b) local 128 
SNR. (c) Difference between (a) and (b). (d) Difference in the time-averaged absolute deviation from the mean in 129 
ERA5 T2mTmax, excluding years having 25% of the lowest and highest local SNR, respectively. OnlyGray dots 130 
in (a-c) indicate statistically non-significant values with a 90% confidence based on a t-test are displayed in (a-131 
c). The re-forecasts are initialized every May.  132 
 133 
Interestingly, using the same criterion to select ERA5 T2mTmax values reveals that in general, excluding years 134 
with high ensemble SNR results in lower absolute deviations from the mean than when the low SNR years are 135 
excluded (Fig. 2d). Additionally, these differences overall coincide with regions with significant skill differences 136 
(Fig. 2c,d). This implies that years with more extreme deviations from the mean (in the observations/reanalysis) 137 
may be identified a priori by calculating the ensemble SNR of the forecast, and that forecast systems are in general 138 
more skillful when large deviations from the mean occur. A notable exception is north-western Europe, where an 139 
opposite behavior is identified; however,  it vanishes when a later initialization (June) is used.    140 
 141 



 142 
Figure 3: Same as Figure 2, but for precipitation.  143 
 144 
Similar to T2mTmax, the exclusion of years with high SNR also results in lower overall precipitation skill values 145 
than the one obtained when excluding low SNR years (Fig. 3a,b). Important skill differences appear in the Iberian 146 
peninsula, Brazil, Australia and Indonesia (Fig. 3c), and in most cases imply a shift n increase from non-significant 147 
to significant skill (Fig. 3 a and b, respectively).  148 
 149 
Contrasting with T2mTmax, the relation between ACC and mean absolute deviation from the mean in the 150 
observations is not obvious for precipitation (Fig. 3c,d). To further investigate this behavior, we analyzed the 151 
relationship between skill differences and the differences in absolute deviation from the mean for T2mTmax and 152 
precipitation, as usual using the re-forecasts that exclude the 25% of the years with the lowest and the highest 153 
SNR, respectively. This analysis (not shown) confirms a statistically robust relationship between skill and large 154 
deviations from mean observed precipitation, but still weaker than for T2mTmax.   155 
 156 



 157 
Figure 4: The same as Figure 2, but for re-forecasts initialized every June.  158 
 159 
Figure 4 shows a clearer relation between the impact on skill of the most extreme years in terms of SNR and the 160 
absolute T2mTmax anomalies in ERA5, as compared with Figure 2. There is a good correspondence in all 161 
continents, including parts of Europe (Fig. 4 c,d). as opposed to the results presented in Figure 2. The only 162 
difference between the two Ffigures is that they show the results from re-forecasts with different initialization 163 
dates. Both target the boreal summer months (June-August), but Figure 2 shows the results from the May 164 
initialization while and Figure 4 shows the results from the June initialization. In addition,  Ssimilar qualitative 165 
conclusions can be made for precipitation (not shown).         166 
 167 
In Figure 5 we use the same methodology to sample years based on T2m- SNR, but applied in this case to the 168 
specific northern hemisphere mid-latitude regions: the Mediterranean, North and Central Europe, north western 169 
Asia, east Asia, western North America and eastern North America. All the three skill metrics computed show 170 
that sampling the 18 years with highest SNR, generally results in more skillful T2m predictions than when 171 
sampling all 24 years or the 18 years with lowests SNR. The only exceptions are observedseen in North and 172 
Central Europe where there is basically no skill or in eastern North America, where all the three selection methods 173 
show similar skill levels. Examples of successful prediction of extreme (high) T2m years and high SNR are 1999 174 
and 2003 in the Mediterranean, 2002 in Northern/Central Europe, 1998 in northwestern Asia, 2006 and 1998 in 175 
western and eastern North America, respectively. There are also some examples of extreme (high) T2m and low 176 
SNR, such as 2012 in the Mediterranean, or 1994 and 2016 in East Asia. However, higher overall GSS for the top 177 
T2m positive anomalies indicates that on average, sampling years with high SNR results in better prediction of 178 
the extreme events.  179 
 180 
A similar analysis on precipitation is shown in Figure 6. The results of precipitation qualitatively agree with those 181 
of T2m. Precipitation skill is highest for years with highest SNR and lowest for years with lowest SNR, the only 182 
exception being North and Central Europe, again a region with no skill in either precipitation or T2m predictions. 183 
Years of successful predictions of low precipitation and high SNR are 1994 and 2000 in the Mediterranean, 2015 184 
in Northern/Central Europe, 1997 and 2001 in East Asia, 2003 in western North America, and 2011 in eastern 185 



North America. Similar to T2m, GSS for low precipitation summers is generally higher for the top 18 years (in 186 
terms of SNR) than for the bottom 18 years or for all 24 years. Overall precipitation predictability is lower than 187 
T2m predictability in the regions analyzed, since skill scores for precipitation are generally lower than those of 188 
T2m. Note also that the same conclusions are obtained for both T2m and precipitation when separately sampling 189 
only the half of years with highest and lowest SNRs and/or when varying the threshold to define the most extreme 190 
years used in the GSS calculations (not shown).  191 
 192 

 193 
Figure 5: Area-averaged time series of observed and predicted, detrended and standardized mean summer T2m 194 
(right axis) and SNR (left axis) in (a) the Mediterranean (10W-35E, 30-45N), (b) North and Central Europe (10W-195 
35E, 45-65N), (c) northwestern Asia (35-70E, 40-65N), (d) East Asia (90-130E, 25-45N), (e) western North 196 
America  (123-100W, 30-50N) and (f) eastern North America (90-70W, 30-55N). Skill metrics provided separately 197 
for the 18 years with highest SNR (excluding blue circles), the 18 years with the lowest SNR (excluding red circles) 198 
and for all 24 years. The skill metrics are linear correlation, mean square skill score and Gilbert skill score (See 199 
methods). The values are taken from the re-forecasts initialized in June.  200 
  201 



 202 
Figure 6: The same as Figure 5, but for precipitation.  203 
 204 
 205 
3.2 Sources of climate predictability in Europe   206 
 207 
Figure 5 shows how the ensemble SNR can also be applied to explore and understand sources of predictability 208 
and related climate processes. Figure 5a displays the time series of the SNR ratio (black) of the June initialized 209 
re-forecasts and the absolute value of the standardized ERA5 T2mTmax anomalies (gray) over Europe (defined 210 
in the area within 35-65N - 10W-35E, green box in Fig. 5d). The six years with the highest T2mTmax SNR in 211 
Europe are 1994, 2003, 2004, 2006, 2013 and 2015 (green dots in Fig. 5a), while the years with the lowest and 212 
the highest T2mTmax anomalies in Europe (after detrending) are 1993, 1996 and 2004, and 1994, 2003, and 2006, 213 
respectively (blue and red dots in Fig. 5a, respectively).  214 
 215 
In terms of precipitation the largest SNR values are reached in 1994, 1997, 2003, 2006, 2011 and 2015, while the 216 
highest and lowest observed precipitation anomalies occur in 1997, 2010 and 2011 and 1994, 1996 and 2003, 217 
respectively. Common years with high absolute anomalies and high ensemble SNR are 1994, 2003, 2004, and 218 
2006 for T2mTmax and 1994, 1997, 2003 and 2011 for precipitation. The summers of 1994 and 2003 have been 219 
documented as both dry and hot in Europe (e.g. Toreti et al., 2019) and also show high ensemble SNR for both 220 
T2mTmax and precipitation. This makes these years good candidates to explore possible sources of predictability. 221 
Anomalies of 1994 and 2003 of observed summer SST and GPH500 reveal a dipole of positive SST anomalies in 222 
the western North Atlantic and negative SST anomalies in the central/eastern North Atlantic (Fig. 5d), and a 223 
stationary Rossby wave pattern in the summer with anticyclonic anomalies in the western North Atlantic, 224 
western/central Europe and central Russia, and cyclonic anomalies in the central/eastern North Atlantic, eastern 225 
Europe/western Asia and northeastern Asia. 226 
 227 



 228 
Figure 5: (a) Time series of mean spatial SNR (black line) and absolute deviation from mean (gray) for T2mTmax 229 
over Europe in ERA5 (green box in panel d). Blue and red dots in (a) show the top three coldest and hottest 230 
summers in Europe (after detrending), while green dots indicate the top six years in terms of T2mTmax SNR. (b) 231 
The same as (a) but for precipitation. Blue and red dots in (b) show the three driest and wettest summers in 232 
Europe, while green dots indicate the top six years in terms of precipitation SNR. The re-forecasts used in (a-b) 233 
are from the June initialization. (c) Time series of the index estimated as the difference between the western and 234 
central/eastern North Atlantic SST in spring (March-May). Blue and red dots indicate the 25% lowest and highest 235 
values, respectively. (d) Mean summer anomalies of SST and GPH500 for the years 1994 and 2003. (e) 236 
Composites of summer SSTs and GPH500 for years with high minus low March-May SST index in the period 237 
1982-2022.    238 
 239 
We hypothesize that years with a strong dipole in North Atlantic SST anomalies could precondition atmospheric 240 
flow, affecting hydroclimatic summer conditions in Europe. To test this hypothesis, we created an observed spring 241 
SST index (Fig. 5c) measuring the dipole strength defined as the difference in mean SST in the western and 242 
central/eastern centers of action (green boxes in Fig. 5e). Between 1982 and 2022, the years with the strongest 243 
dipole are identified before 1994 and after 2014, while years with the weakest dipole are almost exclusively found 244 
in the period 1995-2010, pointing to decadal/multi-decadal variability. A composite of summer SSTs and GPH500 245 
(Fig. 5e), defined as the respective difference between the top 25% and the bottom 25% years based on the spring 246 
index, reveals very similar patterns than those observed in 1994 and 2003 (Fig. 5d). The SST index estimated in 247 
spring is associated with persistent SST anomalies well into the summer. These long lasting SST anomalies appear 248 
to force (or reinforce) a stationary Rossby wave train that induces both dry and hot summer conditions over most 249 
of Europe.  250 
 251 
To further demonstrate the importance of this North Atlantic dipole for European summer climate, Figure 6 252 
displays the added value of selecting each year the 60% of ensemble members that better reproduce the North 253 
Atlantic dipole index in the summer. The ranking is based on the values of the squared error of the index from 254 
each member with respect to ERA5. The reduced ensemble shows a clear, consistent and statistically significant 255 
improvement of skill of summer T2mTmax (Fig. 6a,b) and precipitation (Fig. 6c,d) in central and northwestern 256 
Europe for re-forecasts initialized in May (Fig 5a,c) and June (Fig 5b,d) as compared to the full ensemble. These 257 
improvements are only achieved by subsampling the members based on the summer dipole index for re-forecasts 258 
initialized in May and June. When the subsampling of members is based on the May index of the May initialized 259 
re-forests, there are no improvements of summer T2mTmax or precipitation skill in Europe, most likely because 260 
there is neither an improvement in the representation of the dipole in the summer (not shown). 261 
 262 



 263 
Figure 6: Skill difference (ACC) between a selection of 60% of the members with the best JJA SST index score 264 
(lowest RMSE) and the full ensemble for summer a) T2mTmax in forecasts initialized in May, b) T2mTmax in 265 
forecasts initialized in June, c) precipitation in forecasts initialized in May and d) precipitation in forecasts 266 
initialized in June. Gray dots indicate statistically non-significant values with a 90% confidence based on a t-test.   267 
 268 
4. Discussion  269 
 270 
The SNR measures the relative weight of the ensemble mean anomalies with respect to the ensemble coherence. 271 
Its close resemblance in terms of spatial patterns with a skill metric like ACC, indicates that it can provide 272 
complementary information related to seasonal climate predictability. We have shown that in regions where the 273 
forecasts are skilful, years with high SNR exhibit on average larger observed deviations from the mean than years 274 
with low SNR, both for T2m and precipitation. This means that forecast systems are on average more reliable at 275 
predicting extremes when excluding years with low SNR. This has been further demonstrated for several Northern 276 
Hemisphere mid-latitude regions during boreal summer.  277 
 278 
Despite the well known limitations of climate forecast systems (e.g. the signal to noise paradox), wWe have shown 279 
that in a multi-system ensemble, the SNR may provide valuablecontains valuable information as it represents an 280 
intrinsic measure of reliability for T2m and precipitation forecast. which can be used to inform in advance on 281 
possible exceptional years with large temperature and precipitation anomalies. The short span of 24 years defining 282 
the common hindcast period is a limitation of this study. Hence, longer hindcasts would be necessary to obtain 283 
more robust results, but are currently unavailable for most of the multiple systems analyzed.  284 
  285 
The SNR also provides valuable information to detect potential sources of predictability. We have shown that, 286 
despite overall low skill, impactful events (i.e. anomalously dry and hot European summers) seem to be favored 287 
by a preceding dipole of high and low surface temperature anomalies in the western and central/eastern North 288 
Atlantic. These anomalies are identified in spring, persist through the summer and are associated with an 289 
anomalous stationary wave pattern showing anticyclonic conditions over most of Europe, a prime driver of hot/dry 290 
summer conditions. Dunstone et al. (20189) associate precipitation anomalies in central/northern Europe with a 291 
tripole pattern of North Atlantic SSTs in spring which has the two northernmost centers of action partially 292 
collocated with the two centers of action here identified, hence qualitatively agreeing with our findings. 293 
Nedderman et al. (2019) also show that ensemble subsampling selecting members that better reproduce a process 294 
involving North Atlantic Sea surface temperatures in spring followed by a Rossby wave train in late summer 295 
largely improves temperature forecasts in central/south-western Europe. Finally, the findings presented here also 296 



agree with the ones reported by Acosta Navarro et al. (2022), which show that improved forecasts of central North 297 
Atlantic Sea surface temperatures in late spring/early summer increase skill in Europe during late summer thanks 298 
to a better simulated atmospheric circulation. 299 
 300 
Significant skill improvements of T2mTmax and precipitation can be achieved in central and north-western 301 
Europe by subsampling ensemble members that better follow the evolution of the observed North Atlantic dipole 302 
temperature index during summer. Selecting members of the re-forecasts initialized in May that better agree with 303 
the observed dipole index in May, results in no clear improvement in the summertime dipole index or in the 304 
European climate.  This points to the need for further efforts and analyses to understand this unexpected behavior. 305 
The proposed detection method based on ensemble SNR and North Atlantic SST pattern found here is nonetheless 306 
useful as a means to explore sources of atmospheric predictability for summer forecasts in Europe and could likely 307 
be applied to other regions and seasons. 308 
        309 
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