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Abstract

Droughts and heatwaves are among the most impactful climate extremes. Their co-occurrence can have adverse
devastating-consequences on natural and human systems. Early information on their possible occurrence on
seasonal timescales is beneficial for many stakeholders. Seasonal climate forecasts haves gradualhy-become
openly available to the communitymere-widelyused: but a widerits use is currently hindered by limited skill in
certain regions and seasons. Here we show that a simple forecast metric from a multi-system ensemble, the signal
to noise ratio, can help overcome some limitations-in-the-bereal-summer. Forecasts of mean maximum-daily near
surface air temperature and precipitation in boreal summers with high signal to noise ratio tend to coincide with
observed larger deviations from the mean than summers years-with small signal to noise ratio. The signal to noise
ratio of the ensemble predictions serves as a complementary measure of forecast reliability that could potentlallv
beneflt users of climate predictions.

1. Introduction

Droughts are typically slow onset climate extreme events (Mishra and Singh, 2010), yet they can be disruptive
and affect millions of people every year (Below et al., 2007; Enekel et al., 2020). Heatwaves can intensify and
trigger a faster drought evolution (Bevacqua et al., 2022). Compound drought and heatwaves can have-strongly
devastating-conseguences-on impact socio-economic and ecological systems, and may even compromise our
ability to reach the UN sustainable development goal on climate action while strongly reducing the Earth system's
current natural capacity to absorb and store carbon (Yin et al., 2023). The use of seasonal climate forecasts can
provide actionable information to reduce the risks and the impacts of these events on key sectors like agriculture,
energy, transport, water supply (Buontempo et al 2018; Ceglar and Toreti 2021).

In the last couple of decades, climate predictions have shown important progress in anticipating the evolution of
various components of the cllmate system across the subseasonal to decadal time range (Merryfleld etal., 2020
Meehl et al., 2021) : A 5 :

stakehelde#%A comblnatlon of multlple forecast systems has shown overall beneflts as compared with single
systems, and can improve forecast quality up to a certain extent (Hagedorn et al., 2005-; Mishra et al., 2019). In
spite of the recent progress, climate predictions still exhibit low to moderate skill in many regions and seasons

(e.g. European summer; Mishra et al. 2019), something that limits their use and represents a barrier for
stakeholders. Furthermore, multiple studies have shown that large ensembles are required to achieve skillful
predictions, something that seems to be related to the forecast systems being more skillful at predicting real climate
than at predicting their own realizations (i.e. ensemble members). This odd phenomenon has been called the signal
to noise paradox (Eade et al., 2014; Scaife and Smith, 2018; Smith et al., 2020). It is particularly evident in the
Euro Atlantic region during winter both on seasonal and decadal timescales. However boreal summer predictions
have been generally overlooked. A recent study based on a single forecasting system has shown that sampling
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years with high SNR results in more skillful predictions of monthly temperatures in Japan throughout the year

(Doi et al., 2022).

In this study we exploit multi-system ensembles to test whether specific boreal summers years-with higher than
normal predictability can be detected through the local relation between skill and SNR. We explore this for near
surface air temperature and precmltatlon predlctlons both Iocallv and on large aqqreqated mid-latitude regions of
the Northern Hemlsphere

2. Methods

Thise analysis is based on seasonal re-forecasts (also known as hindcasts) of mean boreal summer precipitation
and 2-meter mean daily-maximum temperature (T2mTmax) for the period 1993-2016 from ECMWEF SEASS (S5,
Johnson et al., 2019), UKMO GloSea6 (S600, MacLachlan et al., 2015), MeteoFrance (S8, Batté et al., 2017S8;
Guérémy-etal;2021), CMCC (S35, Gualdi et al., 2020) and DWD (S21, Baehr et al., 2015), available from the
Copernicus C3S Climate Data Store. The observationally based datasets to evaluate the re-forecasts are ERAS
(Hersbach al., 2020) for T2m+max and GPCC (Schnider et al., 2011) for precipitation. The use of summer mean
T2m¥max is not intended to characterize single heatwaves, but to estimate average-maximum daily deviations
from the mean on a seasonal scale. In a climatological sense, more intense, more frequent or longer heatwaves
than usual generally define hot summers and hence average T2mTmax may be seen as a seasonal integrator of
heatwave activity. Forecast skill is evaluated with the anomaly correlation coefficient (ACC) between the
ensemble mean and the observational reference._ To complement the skill estimates of ACC, two additional
deterministic skill metrics are computed-tn-Figures-5-and-6: tFhe mean squared skill score (MSSS, Murphy, 1988)
and the Gilbert skill score (GSS, WMO, 2014). The mean squared skill score compares the mean square error of
the forecasts with the mean square error of the climatological value. It ranges from minus infinity to 1 and values
aboveever 0 indicate skill in the predictions. The GSS measures the fraction of correctly predicted events over the
total number of predicted events plus misses, and takes into consideration the randomly predicted events. The
thresholds to define event/non event are the top and bottom 25% summers for T2m (hot) and precipitation (dry),
respectively.-GSS-values-abeve O-indicate-skitiful predictions. Standardization of the anomalies of each ensemble
member and the observational reference data is performed prior to the analysis. This step guarantees that each
member from each system has a comparable year-to-year variability to the observed one. Additionally, the
standardized T2m¥max anomalies are linearly detrended at the grid level and for each member of the re-forecasts
and in ERADb to isolate as much as p055|ble the impact of the long term warmlng -In-Section-4,-the-Sea-Surface

precipitation-as: SNR = % where ., is the multi-system ensemble mean and o, is the multi-system standard
e

deviation after standardization, computed across ensemble members for every summer (June - August) and for
each gridbox. 25 members per system are used to have an equal contribution from each system.

3. Signal to noise ratio and forecasts skill

Figure 1 displays spatial maps of mean (boreal) summer T2mmax ACC, time averaged SNR, and a scatter plot
which shows the local relation between ACC and SNR. On average, skill values over land increase with higher
SNR values. Negative values of ACC are nearly non-existent when the threshold of SNR exceeds the value of
about 0.5 in the same gridbox. Statistically significant skill in T2m¥max is mostly confined to the tropics and sub-
tropics. However, significant skill is also found in western North America, the eastern Mediterranean, central Asia
and southern South America. Notable exceptions in the tropics are the-Congo and parts of the Amazon rainforests.
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The patterns of SNR largely mirror those of ACC. Generally, there is a good agreement between areas of high
skill (ACC) and areas with high SNR, something that is further confirmed by the local relation between ACC and
SNR (Fig. 1c).
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Figure 1: June-August Skill (ACC), time averaged SNR and scatterplots of local relation between ACC and SNR
for T2mmax (a-c) and precipitation (d-f). Each gray dot in c,f represents the values of ACC and SNR at each
gridbox. OnlyGray-dets-in{a;d)-indicate statistically nen-significant values with a 90% confidence based on a t-
test are displayed in (a,d). The re-forecasts are initialized every May.

Precipitation follows a similar behavior in terms of ACC and SNR, although statistically significant skill is less
widespread (Fig. 1d-f). Areas under the influence of EI Nino Southern Oscillation (ENSO; Lenssen et al., 2020)
appear as regions with significant ACC and high SNR. Skillful values are mostly located in the Americas, the
Maritime continent and Australia. Precipitation skill and SNR in Africa and Asia are much lower, making these
the regions with the largest qualitative differences between the two variables.

Based on the observed link between skill and SNR, we use the latter one as the single criterion to exclude from
the re-forecasts years with very low and very high values to understand their impact on skill. When 25% of the
years (6 in total) with the highest SNR (Fig. 2a) are excluded, the results overall show much lower values of ACC
than when only 25% of the years with the lowest SNR are excluded (Fig. 2b). Furthermore, differences between
the latter and the former result (in many cases) in higher_statistically significant values and—mere-statistical
significanee-than the ACC computed withhen enby-selecting_only years without the highest SNR (Fig. 2a,c). This
result highlights the importance that these extreme SNR years can have on skill. In fact, only skill values computed
bywhen excluding the bottom 25% of SNR years (Fig. 2b) are comparable to the ones estimated when all years
are used for the computation (Fig. 1a).
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Figure 2: Skill (ACC) of T2mTmax predictions excluding 25% of the years with highest (a) and lowest (b) local
SNR. (c) Difference between (a) and (b). (d) Difference in the time-averaged absolute deviation from the mean in
ERA5 T2mTmax, excluding years having 25% of the lowest and highest local SNR, respectively. OnlyGray-dots
in-{a~e)y-indicate statistically nen-significant values with a 90% confidence based on a t-test are displayed in (a-
c). The re-forecasts are initialized every May.

Interestingly, using the same criterion to select ERAS T2m¥max values reveals that in general, excluding years
with high ensemble SNR results in lower absolute deviations from the mean than when the low SNR years are
excluded (Fig. 2d). Additionally, these differences overall coincide with regions with significant skill differences
(Fig. 2c¢,d). This implies that years with more extreme deviations from the mean (in the observations/reanalysis)
may be identified a priori by calculating the ensemble SNR of the forecast, and that forecast systems are in general
more skillful when large deviations from the mean occur. A-notable-exceptionis-nerth-western-Europewhere-an

e how
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Figure 3: Same as Figure 2, but for precipitation.

Similar to T2m¥max, the exclusion of years with high SNR also results in lower overall precipitation skill values
than the one obtained when excluding low SNR years (Fig. 3a,b). Important skill differences appear in the Iberian
peninsula, Brazil, Australia and Indonesia (Fig. 3c), and in most cases imply a shift a-trerease-from non-significant
to significant skill (Fig. 3 a and b, respectively).

Contrasting with T2mTmax, the relation between ACC and mean absolute deviation from the mean in the
observations is not obvious for precipitation (Fig. 3c,d). To further investigate this behavior, we analyzed the
relationship between skill differences and the differences in absolute deviation from the mean for T2mTmax and
precipitation, as usual using the re-forecasts that exclude the 25% of the years with the lowest and the highest
SNR, respectively. This analysis (not shown) confirms a statistically robust relationship between skill and large
deviations from mean observed precipitation, but still weaker than for T2mTmax.
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Figure 4: The same as Figure 2, but for re-forecasts initialized every June.

Figure 4 shows a clearer relation between the impact on skill of the most extreme years in terms of SNR and the
absolute T2mTmax anomalies in ERAS, as compared with Figure 2. There is a good correspondence in all
continents, including parts of Europe (Fig. 4 c,d).-as-eppesed-to-theresulispresented-in-Figure—2. The only
difference between the two Ffigures is that they show the results from re-forecasts with different initialization
dates. Both target the boreal summer months (June-August), but Figure 2 shows the results from the May
initialization while and-Figure 4 shows the results from the June initialization.-tn-addition; Ssimilar qualitative
conclusions can be made for precipitation (not shown).

In Figure 5 we use the same methodology to sample years based on T2m--SNR, but applied in-thiscase-to the
specific northern hemisphere mid-latitude regions: the Mediterranean, North and Central Europe, north western
Asia, east Asia, western North America and eastern North America. All the three skill metrics computed show
that sampling the 18 years with highest SNR, generally results in more skillful T2m predictions than when
sampling all 24 years or the 18 years with lowests SNR. The only exceptions are observedseen in North and
Central Europe where there is basically no skill or in eastern North America, where all the three selection methods
show similar skill levels. Examples of successful prediction of extreme (high) T2m years and high SNR are 1999
and 2003 in the Mediterranean, 2002 in Northern/Central Europe, 1998 in northwestern Asia, 2006 and 1998 in
western and eastern North America, respectively. There are also some examples of extreme (high) T2m and low
SNR, such as 2012 in the Mediterranean, or 1994 and 2016 in East Asia. However, higher overall GSS for the top
T2m positive anomalies indicates that on average, sampling years with high SNR results in better prediction of
the extreme events.

A similar analysis on precipitation is shown in Figure 6. The results of precipitation qualitatively agree with those
of T2m. Precipitation skill is highest for years with highest SNR and lowest for years with lowest SNR, the only
exception being North and Central Europe, again a region with no skill in either precipitation or T2m predictions.
Years of successful predictions of low precipitation and high SNR are 1994 and 2000 in the Mediterranean, 2015
in Northern/Central Europe, 1997 and 2001 in East Asia, 2003 in western North America, and 2011 in eastern
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North America. Similar to T2m, GSS for low precipitation summers is generally higher for the top 18 years (in
terms of SNR) than for the bottom 18 years or for all 24 years. Overall precipitation predictability is lower than
T2m predictability in the regions analyzed, since skill scores for precipitation are generally lower than those of
T2m. Note also that the same conclusions are obtained for both T2m and precipitation when separately sampling
only the half of years with highest and lowest SNRs and/or when varying the threshold to define the most extreme
years used in the GSS calculations (not shown).
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Figure 5: Area-averaged time series of observed and predicted, detrended and standardized mean summer T2m
(right axis) and SNR (left axis) in (a) the Mediterranean (10W-35E, 30-45N), (b) North and Central Europe (10W-
35E, 45-65N), (c) northwestern Asia (35-70E, 40-65N), (d) East Asia (90-130E, 25-45N), (e) western North
America (123-100W, 30-50N) and (f) eastern North America (90-70W, 30-55N). Skill metrics provided separately
for the 18 years with highest SNR (excluding blue circles), the 18 years with the lowest SNR (excluding red circles)
and for all 24 years. The skill metrics are linear correlation, mean square skill score and Gilbert skill score (See
methods). The values are taken from the re-forecasts initialized in June.
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Figure 6: The same as Figure 5, but for precipitation.
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4. Discussion

The SNR measures the relative weight of the ensemble mean anomalies with respect to the ensemble coherence.
Its close resemblance in terms of spatial patterns with a skill metric like ACC, indicates that it can provide
complementary information related to seasonal climate predictability. We have shown that in regions where the
forecasts are skilful, years with high SNR exhibit on average larger observed deviations from the mean than years
with low SNR, both for T2m and precipitation. This means that forecast systems are on average more reliable at
predicting extremes when excluding years with low SNR. This has been further demonstrated for several Northern
Hemisphere mid-latitude regions during boreal summer.

Despite the well known limitations of climate forecast systems (e.q. the signal to noise paradox), wM/e have shown
that in a multi-system ensemble, the SNR may provide valuableesntains-valuable information as it represents an
|ntr|nS|c measure of rellabllltv for T2m and precmltatlon forecast—wMeh—e&n—be—used—te—miemq—m—advanee—en

W alies: The short span of 24 years defining
the common hlndcast period is a I|m|tat|on of thls study. Hence Ionqer hindcasts would be necessary to obtain
more robust results, but are currently unavailable for most of the multiple systems analyzed.
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