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Abstract. Instruments measuring aerosol light absorption, such as the Aethalometer and the Multi-Wavelength 

Absorbance Analyzer (MWAA), have been extensively used to characterize optical absorption of atmospheric particulate 15 

matter. Data retrieved with such instruments can be analysed with mathematical models to apportion different aerosol 

sources (Aethalometer model) and components (MWAA model). In this work we present an upgrade to the MWAA 

optical apportionment model. In addition to the apportionment of the absorption coefficient 𝑏𝑎𝑏𝑠 in its components (Black 

Carbon and Brown Carbon) and sources (Fossil Fuel and Wood Burning), the extended model allows the retrieval of the 

Absorption Ångström Exponent of each component and source, thereby avoiding initial assumptions regarding these 20 

parameters. We also present a new open-source software toolkit, the MWAA Model Toolkit, written in both Python and 

R, that performs the entire apportionment procedure. 

 

1 Introduction 

Atmospheric Particulate Matter (PM) plays an important role in environmental issues such as human health, air quality 25 

and climate change (Seinfeld and Pandis, 2016). Several chemical species and aggregates, present in the atmosphere, 

affect the energy balance of the Earth system by absorbing and scattering solar radiation (Laj et al., 2020). A variety of 

sources contribute to the emission of light absorbing or scattering PM: their identification and quantification are necessary 

to mitigate the harmful effects of PM, especially in the climate change issue.  

Between other constituents, Black Carbon (BC) and Brown Carbon (BrC) are the most light-absorbing components of 30 

PM (Bond et al., 2013). BC consists of fractal-like chains of submicron particles, and it is formed by incomplete 

combustion processes. Due to the wavelength independence of the imaginary part of its refractive index, it is a strong 

light absorber across the entire visible range. BrC represents a more elusive class of organic carbonaceous compounds 

whose defining characteristic is to absorb radiation more efficiently at shorter visible bands than at longer wavelengths, 

where its absorption is considered negligible (Poeschl, 2003; Andreae and Gelencser, 2006). The composition of BrC is 35 

still poorly understood, due to its chemical complexity and spatiotemporal variability; it consists of a number of molecular 

weight compounds, generally prone to oxidation and chemically unstable (Forrister et al., 2015). BrC is emitted directly 

through combustion of biomass but can also be formed as a product of secondary processes in the atmosphere (Liu et al., 

2015, Tang et al., 2016).  
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Other aerosol compounds exhibit strong, albeit more selective, light-interaction properties. One such example is mineral 40 

dust, which is the most widespread aerosol type in terms of total mass, with a consequent important impact on the Earth’s 

energy balance due to its light absorption properties (Alfaro et al., 2009, Caponi et al., 2015 Schepanski, 2018, Di Biagio 

et al, 2019). However, in this work, we restrict our attention to carbonaceous aerosol and its sources.  

In general, the spectral dependence of light absorption by small particles can be parameterized with a power-law function. 

In particular, the aerosol absorption coefficient 𝑏𝑎𝑏𝑠 can be written as a function of the wavelength of the incoming 45 

radiation as 𝑏𝑎𝑏𝑠(λ) = 𝑐λ−α, where 𝑐 is a proportionality factor and α, the Absorption Ångström Exponent (AAE), defines 

the spectral dependence of the absorption. Different aerosol types correspond to different values of α, which has been 

shown to depend on particle size, morphology, chemical composition, and mixing/ageing state (Moosmüller et al 2011; 

Utry et al 2014). For BC in its ideal form (spherical particles with no wavelength-dependence of the imaginary part of the 

refractive index), the literature is consistent in indicating the α value of 1, both for real-world (Bond and Bergstrom, 2006) 50 

and produced in controlled conditions (Vernocchi et al., 2022) samples, whereas much more variation is encountered in 

the value of α for BrC, with reported values ranging up to 9.5 (Hoffer et al., 2006; Harrison et al., 2013; Lack and 

Langridge; 2013). This is likely due to the broader range of chemical composition and effects of ageing. Intermediate 

values of α are observed for aerosols containing both BC and BrC (Massabò et al., 2019). This significant difference in 

the wavelength-dependent behaviour of light-absorbing components can be used as an efficient tool for the source and 55 

component apportionment of light-absorbing aerosol. 

Source apportionment models exploiting the power-law behaviour of 𝑏𝑎𝑏𝑠 have been successfully applied to multi-λ 

measurements of absorption. The Aethalometer model (Sandradewi et al., 2008), allows the apportionment of the 

absorption coefficient to two different sources, namely Fossil Fuel (FF) and Wood Burning (WB), exploiting the different 

α that characterizes the aerosol produced by the two sources. The MWAA (Multi-Wavelength Absorbance Analyzer) 60 

model extends the Aethalometer model by explicitly including the apportionment of optical absorption due to BC and 

BrC, resulting in an algorithm that allows the differentiation of both aerosol sources and components, based on at least 

5 − λ absorption measurements (Massabò et al., 2015; Bernardoni et al., 2017). Both the Aethalometer model and the 

MWAA model are effective in apportioning aerosol absorption, but they have a conceptual drawback: the values of some 

physical parameters must be fixed prior to the analysis in order to run the algorithm. These parameters are the α for FF 65 

and WB (α𝐹𝐹 and 𝛼𝑊𝐵 for the Aethalometer model, and, in addition, α𝐵𝐶  for the MWAA model). Since the α depends 

on a variety of factors, as mentioned above, fixing these exponents for the analysis, according to the literature, can lead 

to errors, since the actual value of these exponents may be different for the specific aerosol analysed. The only way to 

avoid this problem is to retrieve these crucial parameters by using information obtained by independent 

techniques/methods (e.g., Levoglucosan, 14C, receptor models, others), as stated in several recent publications in the 70 

literature (Massabò et al., 2015; Martinsson et al., 2017; Titos et al., 2017, Helin et al., 2018; Ivančič et al., 2022).  

In this work we propose: 1) a toolkit that implements a revised version of the original MWAA model, as published in 

Massabò et al., 2015. This toolkit has been rewritten and optimized in Python and R, and is available for use by the 

scientific community. It has been also extended with the possibility to use an arbitrary number of spectrally resolved 

absorption coefficients, as long as at least 5 wavelengths are available. This model is self-consistent and can be applied 75 

to purely optical data without the need of any other information. 2) An upgrade to the original MWAA model that directly 

allows source and component apportionments of absorption data without the need to set any parameters before running 

the model. This is achieved by performing the apportionment analysis along with a correlation study with independent 

measurements such as chemical speciation or elemental composition. The parameters are then automatically set by the 

algorithm, based on the values that give the best correlation with the independent measurements. The new software toolkit 80 
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presented here is written in two of the most widely used scientific programming languages, Python and R, to perform this 

analysis automatically. Output of the presented toolkit (MWAA_MT) are the following quantities: α𝐹𝐹, 𝛼𝑊𝐵, α𝐵𝐶 , α𝐵𝑟𝐶 , 

and the carbonaceous masses for fossil fuels and wood burning: ECFF/OCFF, and ECWB/OCWB, respectively, where EC 

(OC) stands for Elemental (Organic) Carbon. Finally, to demonstrate the capability of the upgraded model, we provide 

an example application to data published elsewhere (Bernardoni et al., 2017). 85 

2 Model description 

The MWAA model has been extensively described elsewhere (Massabò et al., 2015). Here we will only report the main 

points to establish the notation and describe the upgrades.  

The measured aerosol absorption coefficient 𝑏𝑎𝑏𝑠 at different wavelengths is decomposed in two different ways: 

 90 

𝑏𝑎𝑏𝑠(λ) = 𝑏𝑎𝑏𝑠
𝐵𝐶 (λ) + 𝑏𝑎𝑏𝑠

𝐵𝑟𝐶(λ) = 𝐴λ−α𝐵𝐶 + 𝐵λ−α𝐵𝑟𝐶                    (1) 

and  

𝑏𝑎𝑏𝑠(λ) = 𝑏𝑎𝑏𝑠
𝐹𝐹 (λ) + 𝑏𝑎𝑏𝑠

𝑊𝐵(λ) = 𝐴′λ−α𝐹𝐹 + 𝐵′λ−α𝑊𝐵                 (2) 

 

Equation (1) represents the decomposition of the measured aerosol absorption coefficient, at each wavelength, into its 95 

contributions due to carbonaceous components, BC and BrC. Both species are assumed to absorb radiation according to 

a negative power law 𝑏𝑎𝑏𝑠(λ)  ∝ λ−α, with a different absorption exponent for BC (α𝐵𝐶) and BrC (α𝐵𝑟𝐶). 

Equation (2) has the same structure as the Aethalometer apportionment model (Sandradewi 2008), whereby the absorption 

coefficient is decomposed into contributions from different sources, FF and WB. As in Eq. (1), these terms are also 

assumed to contribute to the total optical absorption following negative power law whose exponents are different for FF 100 

(αFF) and WB (αWB).  

The parameters 𝐴, 𝐵, 𝐴′ and 𝐵′ are scaling factors proportional to the Mass Absorption Cross-section (MAC) of each 

component. In the original MWAA model, all but one of the exponents (α𝐵𝑟𝐶) are fixed to appropriate values according 

to the literature (Sandradewi et al., 2008; Favez et al., 2010; Herich et al., 2011: Harrison et al., 2013; Massabò et al., 

2015; Zotter et al., 2017; Forello et al., 2019), most commonly α𝐵𝐶 = α𝐹𝐹 = 1 and  α𝑊𝐵 = 1.8  or 2. Then, the multi-λ 105 

measurements of 𝑏𝑎𝑏𝑠 are fitted using Eq. (1) and (2), obtaining 𝐴, 𝐵, 𝐴′, 𝐵′ and α𝐵𝑟𝐶 . The contribution of the different 

sources and species to the optical absorption is obtained as follows: 

 

𝑏𝑎𝑏𝑠
𝐵𝐶,𝑊𝐵(λ) = (𝐴 − 𝐴′)λ−α𝐵𝐶                   

𝑏𝑎𝑏𝑠
𝐵𝐶,𝐹𝐹(λ) = 𝐴′λ−α𝐵𝐶                        (3) 110 

𝑏𝑎𝑏𝑠
𝐵𝑟𝐶(λ) = 𝐵λ−α𝐵𝑟𝐶                                  

 

The upgraded model we present eliminates the need to arbitrarily specify α𝐵𝐶 , α𝐹𝐹 and α𝑊𝐵 by instead adjusting their 

values so that the apportioned contributions found in (3) have the best correlation with independent measurements. Figure 

1 shows a streamlined version of the upgraded MWAA model, in which the independent measurement for the adjustment 115 

of the exponents is the levoglucosan content in the sample, as determined by chromatography. Levoglucosan is a strong 

tracer for biomass burning (Simoneit et al., 1999) and should therefore correlate well with 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶 and 𝑏𝑎𝑏𝑠

𝐵𝐶,𝑊𝐵
. 



4 

 

The three parameters α𝐵𝐶 , α𝐹𝐹 and α𝑊𝐵 are each varied within their range, while the others are held constant. In the first 

step, α𝐵𝐶  is varied in the set  {0.8, 0.9, 1.0, 1.1, 1.2}. For each α𝐵𝐶  value, Eq. (1) is used to fit the data and 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶 is calculated 

for the shortest available wavelength, using Eq. (3). The coefficient of determination 𝑅2 for a linear regression between 120 

𝑏𝑎𝑏𝑠
𝐵𝑟𝐶 and the levoglucosan concentration for all samples is calculated, and the α𝐵𝐶  value that maximizes 𝑅2 is selected. 

In the second step, α𝑊𝐵 is set to 2 and a similar procedure as described for the first step is performed for on α𝐹𝐹. Finally, 

in the third step, the procedure is repeated to find a best value for α𝑊𝐵 . It is worth noting that the permutation of the steps 

to minimize  α𝐹𝐹 and α𝑊𝐵 leads to the same preprocessing results. These three steps are repeated 𝑁 = 3 times, restricting 

the range of variability for the parameters in each iteration to increase the accuracy of the search for the best values. To 125 

avoid statistically insignificant results, and to obtain a more robust result, a tolerance parameter Δ is introduced. If the 

increase of 𝑅2 in each minimization routine is less than the tolerance, the previous value of the relevant α is retained. 

In addition to the component and source apportionment of the optical absorption coefficient, the MWAA model provides 

a method to perform the apportionment of EC and OC masses to the fossil fuel and wood burning contributions: 

 130 

𝐸𝐶𝐹𝐹 =
𝑏𝑎𝑏𝑠

𝐵𝐶,𝐹𝐹(λ𝑙)

𝑏𝑎𝑏𝑠(λ𝑙) − 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶(λ𝑙)

 𝐸𝐶                           

𝐸𝐶𝑊𝐵 =
𝑏𝑎𝑏𝑠

𝐵𝐶,𝑊𝐵(λ𝑙)

𝑏𝑎𝑏𝑠(λ𝑙) − 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶(λ𝑙)

 𝐸𝐶                           

𝐸𝐶 = 𝐸𝐶𝐹𝐹 + 𝐸𝐶𝑊𝐵                                (4)             

𝑂𝐶𝐹𝐹 = 𝑘1𝑏𝑎𝑏𝑠
𝐵𝐶,𝐹𝐹(λ𝑙) + 𝑂𝐶𝑁𝐶                                 

𝑂𝐶𝑊𝐵 = 𝑘2𝑏𝑎𝑏𝑠
𝐵𝑟𝐶(λ𝑠) + 𝑂𝐶𝑁𝐶                                  135 

𝑂𝐶 = 𝑂𝐶𝐹𝐹 + 𝑂𝐶𝑊𝐵 + 𝑂𝐶𝑁𝐶                                  

 

In the above equations, λ𝑙  and λ𝑠 represent the longest and shortest wavelengths for which a measurement is available, 

respectively; 𝑂𝐶𝑁𝐶  is the organic carbon produced by biogenic sources which is considered optically inactive;  𝑘1 and 𝑘2 

are coefficients, in 𝑔 𝑚−2, obtained by a linear regression of Eq. (4.3) and (4.4), in subsets of samples in which the OC 140 

concentration is low (for 𝑘1) and high (for 𝑘2). The coefficients 𝑘1 and 𝑘2 are related to the Mass Absorption Cross-
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sections (MACs) of BC and BrC, respectively, and to the ratios 𝑂𝐶𝐹𝐹/𝐵𝐶𝐹𝐹  and 𝑂𝐶𝑊𝐵/𝐵𝑟𝐶. For more details on the 

mass apportionment procedure, see Massabò et al., 2015. 

 

 145 

 

Figure 1: Flowchart illustrating the pre-processing step in the improved MWAA model. 𝒄𝒍𝒆𝒗𝒐 is the levoglucosan concentration in 

the samples, 𝑹𝟐 is the coefficient of determination in the linear regression, and the subscripts best and prev refer to, respectively, 

the best correlation in the present iteration, and the best correlation in the previous iteration relative to the same 𝜶; 𝜟 is a tuneable 

tolerance that prevents statistically insignificant fluctuations to assume a physical meaning. 150 

3 Software features 

The software toolkit that performs the above-mentioned analysis has been released in the public domain (Isolabella and 

Bigi, 2023). Currently, it can only be run in a Linux distribution (for example Ubuntu or Linux Mint).  

MWAA_MT (the MWAA Model Toolkit) can perform optical and mass apportionment of data obtained with instruments 

measuring light absorption at least at five wavelengths, such as a multi − λ Aethalometer. 155 

 

The toolkit works in four separate steps:  

Step I It retrieves the best values for the three parameters 𝛼𝐵𝐶 , 𝛼𝐹𝐹  and 𝛼𝑊𝐵 following the method detailed in the 

Sect. 2. 

Step II The values of 𝐴, 𝐵, 𝐴′, 𝐵′ and 𝛼𝐵𝑟𝐶  are obtained from fitting Eq. (1) and (2) with the remaining exponents 

fixed to the best values found in the previous step. 

Step III Equations (3) are employed to apportion the absorption coefficient at every wavelength. 

Step IV Following Eq. (4) the mass apportionment is performed for each sample. 

 
 

The first step of the analysis is the most innovative aspect of the tool we introduce here, since the three values of 

𝛼𝐵𝐶 , 𝛼𝐹𝐹  and 𝛼𝑊𝐵 are directly retrieved by the toolkit itself. However, if data from at least one independent analysis (e.g., 
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Levoglucosan, 14C, PMF, etc.) are not available, the user can still set these three parameters manually. In addition, the 160 

mass apportionment step is optional depending on the availability of carbonaceous mass measurements: if EC and OC 

are not available for the samples, the user can decide to skip the fourth step. 

Similarly, the user can set many of the analysis hyperparameters. To perform the first step of the analysis, the current 

version of the toolkit allows comparison of the optical apportionment with levoglucosan measurements, as described 

above. Future versions of MWAA_MT will likely allow the user to choose between different types of preprocessing 165 

analysis, considering different types of data such as 14C measurements or source apportionment results obtained with 

independent techniques such as Positive Matrix Factorization or Multilinear Engine ME-2 receptor models. Another 

possibility could be to constrain the model to maximise the correlation with tracers of traffic emission such as NOx.  

Any number of samples can be provided for an analysis run; for the main optical apportionment procedure, steps II and 

III, each sample is processed independently, whereas for the steps I and IV the entire dataset is considered for the 170 

regression analyses. Therefore, extra care must be taken to avoid entering obvious outliers as input to the software, and 

the analysis may need to be run twice, with the first run serving to weed out potential outliers and adjust the range of 

parameter variation. 

4 Example of application: black and brown carbon optical apportionment of MWAA data 

As an example of the application of MWAA_MT, we examine the results of the apportionment of two datasets previously 175 

published (Bernardoni et al., 2017). The first dataset is from a sampling campaign conducted in fall/winter 2014 in 

Propata, a rural site in northern Italy, while the second dataset is from a campaign conducted in winter 2016 at an urban 

background site in Milan, one of the largest cities in Italy. In these campaigns, PM10 samples were collected on quartz 

fibre filters, with each filter sampled (for 48h in Propata, for 12h in Milan) and then analysed with the MWAA instrument 

to obtain the wavelength resolved absorption coefficients of the aerosol. All samples were analysed by liquid 180 

chromatography (HPLC-PAD) to determine the Levoglucosan concentration (Piazzalunga et al., 2010). No information 

on chemical speciation (except Levoglucosan) was available at the two sites; the average PM10 concentration measured 

at Propata and Milan was 8.3 ± 6.0 g m-3 and 68.3 ± 25.6 g m-3, respectively. Further details on the measurements can 

be found in Bernardoni et al. (2017). In the current study, we apply the updated MWAA model (MWAA_MT) to 28 

samples from the Propata campaign (hereinafter referred to as “P” samples) and 25 samples from the Milan campaign 185 

(“AIN” samples). The aim of the comparison is to verify whether the particulate sampled in a rural area has a different 

optical behaviour than the aerosol sampled in an urban area. The following steps were performed identically for both 

datasets. 
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4.1 Preliminary: comparison with levoglucosan concentrations 

 190 

Figure 2: Correlation between the levoglucosan concentration and the apportioned absorption coefficient of BrC at 375 nm (left 

plot), and the absorption coefficient of BC due to wood burning at 850 nm (right plot). The rural site, Propata (red dots) exhibits a 

higher correlation than the urban site Milan (black triangles). 

 

To determine the goodness of the apportionment procedure even without the extra pre-processing step, default values for 195 

the free parameters were chosen (α𝐵𝐶 = α𝐹𝐹 = 1, α𝑊𝐵 = 2) and the standard MWAA model for optical apportionment 

(steps II and III above) was run. Figure 2 shows the correlation plots between the levoglucosan concentration and the 

relevant apportionment results, namely 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶(λ = 375 𝑛𝑚) and 𝑏𝑎𝑏𝑠

𝐵𝐶,𝑊𝐵(λ = 850 𝑛𝑚). The linear regression equations 

and coefficients of determination are given in Table 1.  

 200 

Table 1: Results of the correlation analysis between the apportioned data and the independent measurement, in this case 

levoglucosan concentration. The goodness-of-fit of the correlation, represented by the coefficient of determination 𝑹𝟐, is much 

higher in Propata than in Milan.  

Location Absorption 
Fit equation y = mx + q 

{m} = 𝑴𝒎−𝟏𝛍𝒈−𝟏𝒄𝒎𝟑    {q} = 𝑴𝒎−𝟏 
𝐑𝟐 

Milan 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶(λ = 375 𝑛𝑚) 

𝑚 =  18.4 ± 1.8, 

𝑞 =  9.3 ± 1.4 
0.82 

Milan 𝑏𝑎𝑏𝑠
𝐵𝐶,𝑊𝐵(λ = 850 𝑛𝑚) 

𝑚 =  9.6 ± 1.1, 

𝑞 =  1.0 ± 0.9 
0.75 

Propata 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶(λ = 375 𝑛𝑚) 

𝑚 =  7.3 ± 0.3, 

𝑞 =  0.48 ± 0.10 
0.96 

Propata 𝑏𝑎𝑏𝑠
𝐵𝐶,𝑊𝐵(λ = 850 𝑛𝑚) 

𝑚 =  2.02 ± 0.07, 

𝑞 =  0.15 ± 0.03 
0.97 
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4.2 Analysis step I 

As described in Sect. 2, the first step of the upgraded apportionment model is to find the values of the absorption exponents 205 

that maximise the correlation between some of the model’s output values and one or more independent techniques. In this 

case, since the concentration of levoglucosan (hereinafter 𝑐𝑙) was measured on all samples, the following set of 

optimizations (‘Levoglucosan’ analysis preset in MWAA_MT) was carried out: 

 

• vary α𝐵𝐶  to maximise the correlation between 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶(λ = 375 𝑛𝑚) and 𝑐𝑙; 210 

• vary α𝐹𝐹 to maximise the correlation between 𝑏𝑎𝑏𝑠
𝐵𝐶,𝑊𝐵(λ = 850 𝑛𝑚) and 𝑐𝑙; 

• vary α𝑊𝐵 to maximise the correlation between 𝑏𝑎𝑏𝑠
𝐵𝐶,𝐹𝐹(λ = 850 𝑛𝑚) and 𝑐𝑙. 

 

The resulting sets of exponents were (α𝐵𝐶 ,  α𝐹𝐹 ,  α𝑊𝐵)𝑃 = (1.00 ±  0.05;  1.00 ± 0.02;  2.00 ± 0.05) for Propata and 

(α𝐵𝐶 ,  α𝐹𝐹 ,  α𝑊𝐵)𝑀 = (0.90 ± 0.05;  0.90 ± 0.02;  1.70 ± 0.05) for Milan. Figure 3 shows the variation of the 𝑅2 215 

coefficient, in the two sites: the change of WB value does not produce any sizeable impact in the analysis of the rural 

dataset whereas in Milan the best choice turned out to be WB = (1.70 ± 0.05). Through the sensitivity tests we performed 

on the preprocessing step, we discovered that the apportioned optical absorption coefficients can vary by up to 10% by 

adjusting the values of the α parameters within their uncertainty brackets. We estimated the uncertainty of the  

parameters by considering the steepness of the R2 vs. α curves. The curve of αFF is very steep, which led us to estimate an 220 

uncertainty of 0.02, whereas the R2 vs α curves for the other two parameters were flatter, indicating a larger uncertainty 

for these parameters. 

 

 
Figure 3: Trend of the R2 correlation coefficient between the levoglucosan concentration and the apportioned optical absorption 225 
coefficient vs. the value of the 𝜶 exponents:  Propata (left panel) and Milan dataset (right panel). The values of  parameter which 

maximize the R2 coefficient, are marked with a brown triangle. The plots are shown only for the last iteration of the preprocessing 

step. 

 

This justifies the choice of setting α𝑊𝐵 =  2.0  for the rural site, while the same choice is less robust for the urban site, 230 



9 

 

where α𝑊𝐵 = 1.7 would be the more appropriate setting. The analysis confirms the usual choice of α𝐵𝐶 = 1.0 for the 

rural site, while α𝐵𝐶 = 0.9 gives the optimal value for the urban dataset, possibly indicating a further reprocessing and 

ageing of pure BC particles in the urban environment (Minderytė et al, 2022). As with α𝐹𝐹, the analysis yields FF = 1.0 

and FF = 0.9 for the rural and urban site/dataset, respectively.  

Figure 4: Absorption coefficient plots for a representative sample from the rural site in Propata (left) and the urban site in Milan 235 
(right). The experimental data points are marked with uncertainty crosses. Superimposed on the graphs are the results of the fits 

carried out with the two different decompositions from Sect. 1.  

 

4.3 Analysis step II 

The parameters found in Step I are then fixed for each dataset, and a complete double fit of the experimental data is 240 

performed for each sample following Eq. (1) and (2). An example of such fits for a sample belonging to each of the two 

datasets is shown in Fig. 4.  
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Figure 5: Values of the parameter 𝜶𝑩𝒓𝑪 for all the samples in the datasets: Propata/rural (top) and Milan/urban (bottom).  

 245 

One of the parameters determined during the fitting procedure is α𝐵𝑟𝐶 . Its range of variability over the entire dataset and 

the uncertainty associated with its value allow an estimation of the physical and chemical variability of the analysed 

particulate. Figure 5 shows the determined values of α𝐵𝑟𝐶  for the entire sampling period at the two sites. At a rural site 

such as Propata, where wood burning is the predominant source of carbonaceous particulate in the atmosphere during 

winter, BrC corresponds to a well-defined sub-category of organic carbon and its absorption properties are therefore 250 

constant. This is confirmed by the very small range of variation in the value of α𝐵𝑟𝐶  obtained for all Propata samples, 

with α𝐵𝑟𝐶
𝑃 = 3.79 ± 0.04, where the uncertainty is due to inherent systematic variations in the minimization routine. At 

the Milan urban site, the range of variability of α𝐵𝑟𝐶  is much higher. This can be due to the fact that the urban aerosol is 

much more complex and contains a larger number of organic carbon compounds from different types of wood burned 

under different conditions, some of which could affect the optical behaviour of the aerosol. Moreover, stagnation 255 

conditions that favour ageing processes are typical of Milan (and the Po Valley in general): they generally lead to an 

increase in the molecular weight of organic matter, possibly enhancing light-absorption properties. Therefore, our model, 

based on this simple decomposition, does not retrieve a sharp value for α𝐵𝑟𝐶 , since the optical properties of BrC vary 

strongly in Milan, unlike in Propata where the sampled particulate was comparatively simpler. The determined absorption 

exponent for BrC in Milan is therefore α𝐵𝑟𝐶
𝑀 = 3.5 ± 1.1.  260 

4.4 Analysis step III 

The optical apportionment of the absorption coefficient is performed for all available wavelengths according to Eq. (3). 

Figures 6 and 7 show the apportioned 𝑏𝑎𝑏𝑠 at UV (375 nm) and IR (850 nm) wavelengths for Propata and Milan, 

respectively. The main difference between the two sites is the correlation between 𝑏𝑎𝑏𝑠
𝐵𝑟𝐶 and 𝑏𝑎𝑏𝑠

𝐵𝐶,𝑊𝐵
. In Propata (Fig. 6) 

the correlation is high, as can be inferred by the blue and black lines having the same time trend. This means that most of 265 

the BrC is produced via WB. On the other hand, in Milan (Fig. 7) this correlation is lower, and BrC cannot be entirely 

attributed to WB. In fact, in Milan the particulate is impacted by a number of different sources, and it is heavily processed 
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due to stagnation. A general feature common to both datasets is the negligible absorption attributed to BrC at long 

wavelengths; this is consistent with previous work (Massabò et al., 2015). 

 270 

Figure 6: Temporal variability of the apportioned absorption coefficients in Propata. Each sample covers a 48h period, starting 

from 07/11/2014 for P01. 

 

 

 275 

Figure 7: Temporal variability of the apportioned absorption coefficients in Milan. Each sample covers a 12h period, starting from 

21:00, 21/11/2016 for AIN01. 
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4.5 Analysis step IV 

Mass apportionment was performed for both datasets using the approach detailed in Sect. 2. The toolkit allows the user 280 

to choose to automatically determine the coefficients k1 and k2 from the linear regressions (see Eq. 4), or to set them 

manually. The latter approach is indicated when the dataset does not contain suitable candidate samples for the 𝑘1 

regression analysis (i.e. when there are no samples whose EC content is predominant as evidenced by an α close to 1), 

and especially when the values for 𝑘1 and 𝑘2 can be estimated by complementary methods or by previous analyses of 

aerosol samples taken at the same location during a comparable period of the year. 285 

For this example application, the second approach was followed. For Milan, the regression coefficients were set to 𝑘1
𝑀 =

0.33 𝑔 𝑚−2,  𝑘2
𝑀 = 0.34  𝑔 𝑚−2, while for Propata they were set to 𝑘1

𝑃 = 0.24  𝑔 𝑚−2,  𝑘2
𝑃 = 0.35  𝑔 𝑚−2 as described 

in Bernardoni et al., 2017. 

The average 𝐸𝐶𝐹𝐹/𝐸𝐶 ratio turned out to be  (49% ± 20%) and (58% ± 15%), and complementary 𝐸𝐶𝑊𝐵/𝐸𝐶 resulted  

(51% ± 20%) and (42% ± 15%), respectively in Milan and Propata. For the organic aerosol, the average 𝑂𝐶𝐹𝐹/𝑂𝐶 290 

was found to be (25% ± 14%) and (18% ± 9%), while 𝑂𝐶𝑊𝐵/𝑂𝐶 was (58% ± 17%) and (61% ± 14%), in Milan 

and Propata respectively. The non-combustion component of the organic aerosol, 𝑂𝐶𝑁𝐶 , contributed (17% ± 15%) and 

(21% ± 15%) of the total 𝑂𝐶  measured in Milan and Propata. For all the reported results, the uncertainty is understood 

as the standard deviation in the distribution of the mass-apportioned values of EC and OC for all the samples. These 

results are in full agreement with those reported in Bernardoni et al., 2017. 295 

5 Conclusions 

In the aerosol community concerned with aerosol source apportionment, the possibility of apportioning carbonaceous 

sources by exploiting optical properties has occupied much space in recent years. The main reasons for this growing 

interest are the diffusion of optical instruments that are relatively easy-to-use, and allow high-time resolution 

measurements. The main weakness of this apportionment methodology, based on optical measurements, is the practically 300 

obligatory choice of the critical parameters necessary as input, in particular 𝛼𝑊𝐵 and 𝛼𝐹𝐹, whose values vary considerably 

in the literature (Sandradewi et al., 2008; Favez et al., 2010; Herich et al., 2011: Harrison et al., 2013; Massabò et al., 

2015; Zotter et al., 2017; Forello et al., 2019). In this work, we show that it is possible to perform optical source and 

component apportionment of carbonaceous aerosols without constraining any physical parameters with a priori 

knowledge. Instead, the upgraded model presented here (MWAA_MT) allows the determination of these parameters for 305 

any specific receptor site, provided that a measurement using an independent technique able to trace biomass burning 

emissions is available for comparison, also with different (lower) time resolution. This offers the advantage of an 

apportionment routine based entirely on experimental data, where computational parameters are automatically adjusted 

to best match the results with the data themselves. With this upgrade, it is possible to obtain α absorption exponents that 

are related to the specific site and season, allowing better characterization of future measurements at the same site or at 310 

sites with similarities (e.g., rural sites with similar geographical characteristics such as type of wood burnt). In addition, 

the α parameters obtained from the analysis of robust, low-time resolution samples can be used to inform and fine-tune 

the apportionment procedure on high-time resolution data.  

 

We have also showed how sensitive the model is to the choice of some of these parameters: in our example, in particular, 315 

the choice of α𝐹𝐹 has the greatest impact on the reliability of the subsequent apportionment. It should be emphasised that 
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this could be a feature of these specific data/sites: other datasets could be more sensitive to the variation of another one 

of the free parameters.  It is therefore recommended that, whenever possible, such an analysis be performed to determine 

the best value for any of these exponents. 

We have applied this upgraded methodology to the apportionment of the optical absorption coefficient in two different 320 

sites in northern Italy.  The “pre-processing step” has shown that, for the example dataset we considered, the values for 

α𝐵𝐶 ,  α𝐹𝐹 and α𝑊𝐵 at a rural site are consistent with the literature, while in the case of an urban site, values of α𝐵𝐶 = 0.9,

α𝐹𝐹 = 0.9 and α𝑊𝐵 = 1.7 seem to be a more appropriate choice. We would like to underline that the Milan case study is 

to be considered as a stress test of our algorithm: the context is very complex due to the presence of a large number of 

sources such as traffic, biomass combustion, industry, etc., in a city with over 1.3 million inhabitants. The city is also 325 

subject to major regional transport events, high PM concentrations (average PM10 value during the campaign of 68.3 ± 

25.6 g m-3) and air stagnation conditions resulting in a high level of aerosol reprocessing. On the other hand, when it 

comes to the Propata dataset, the correlation with levoglucosan is much higher (R2=0.96), indicating that within the 

experimental uncertainties the assumption that BrC is only produced by WB is satisfied. 

Finally, we have described the operation of the new software toolkit, MWAA_MT, that we have used to perform this 330 

analysis and is made available to the scientific community. 
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