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Abstract. Instruments measuring aerosol light absorption, such as the Aecthalometer and the Multi-Wavelength
Absorbance Analyzer (MWAA), have been extensively used to characterize optical absorption of atmospheric particulate
matter. Data retrieved with such instruments can be analysed with mathematical models to apportion different aerosol
sources (Aethalometer model) and components (MWAA model). In this work we present an upgrade to the MWAA
optical apportionment model. In addition to the apportionment of the absorption coefficient by,,¢ in its components (Black
Carbon and Brown Carbon) and sources (Fossil Fuel and Wood Burning), the extended model allows the retrieval of the
Absorption Angstrém Exponent of each component and source, thereby avoiding initial assumptions regarding these
parameters. We also present a new open-source software toolkit, the MWAA Model Toolkit, written in both Python and

R, that performs the entire apportionment procedure.

1 Introduction

Atmospheric Particulate Matter (PM) plays an important role in environmental issues such as human health, air quality
and climate change (Seinfeld and Pandis, 2016). Several chemical species and aggregates, present in the atmosphere,
affect the energy balance of the Earth system by absorbing and scattering solar radiation (Laj et al., 2020). A variety of
sources contribute to the emission of light absorbing or scattering PM: their identification and quantification are necessary
to mitigate the harmful effects of PM, especially in the climate change issue.

Between other constituents, Black Carbon (BC) and Brown Carbon (BrC) are the most light-absorbing components of
PM (Bond et al., 2013). BC consists of fractal-like chains of submicron particles, and it is formed by incomplete
combustion processes. Due to the wavelength independence of the imaginary part of its refractive index, it is a strong
light absorber across the entire visible range. BrC represents a more elusive class of organic carbonaceous compounds
whose defining characteristic is to absorb radiation more efficiently at shorter visible bands than at longer wavelengths,
where its absorption is considered negligible (Poeschl, 2003; Andreae and Gelencser, 2006). The composition of BrC is
still poorly understood, due to its chemical complexity and spatiotemporal variability; it consists of a number of molecular
weight compounds, generally prone to oxidation and chemically unstable (Forrister et al., 2015). BrC is emitted directly
through combustion of biomass but can also be formed as a product of secondary processes in the atmosphere (Liu et al.,

2015, Tang et al., 2016).
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Other aerosol compounds exhibit strong, albeit more selective, light-interaction properties. One such example is mineral
dust, which is the most widespread aerosol type in terms of total mass, with a consequent important impact on the Earth’s
energy balance due to its light absorption properties (Alfaro et al., 2009, Caponi et al., 2015 Schepanski, 2018, Di Biagio
et al, 2019). However, in this work, we restrict our attention to carbonaceous aerosol and its sources.

In general, the spectral dependence of light absorption by small particles can be parameterized with a power-law function.
In particular, the aerosol absorption coefficient b,;,, can be written as a function of the wavelength of the incoming
radiation as bg;,s(A) = cA™%, where c is a proportionality factor and a, the Absorption Angstrém Exponent (AAE), defines
the spectral dependence of the absorption. Different aerosol types correspond to different values of o, which has been
shown to depend on particle size, morphology, chemical composition, and mixing/ageing state (Moosmiiller et al 2011;
Utry et al 2014). For BC in its ideal form (spherical particles with no wavelength-dependence of the imaginary part of the
refractive index), the literature is consistent in indicating the a value of 1, both for real-world (Bond and Bergstrom, 2006)
and produced in controlled conditions (Vernocchi et al., 2022) samples, whereas much more variation is encountered in
the value of o for BrC, with reported values ranging up to 9.5 (Hoffer et al., 2006; Harrison et al., 2013; Lack and
Langridge; 2013). This is likely due to the broader range of chemical composition and effects of ageing. Intermediate
values of a are observed for aerosols containing both BC and BrC (Massabo et al., 2019). This significant difference in
the wavelength-dependent behaviour of light-absorbing components can be used as an efficient tool for the source and
component apportionment of light-absorbing aerosol.

Source apportionment models exploiting the power-law behaviour of b,;,; have been successfully applied to multi-A
measurements of absorption. The Aethalometer model (Sandradewi et al., 2008), allows the apportionment of the
absorption coefficient to two different sources, namely Fossil Fuel (FF) and Wood Burning (WB), exploiting the different
a that characterizes the aerosol produced by the two sources. The MWAA (Multi-Wavelength Absorbance Analyzer)
model extends the Aethalometer model by explicitly including the apportionment of optical absorption due to BC and
BrC, resulting in an algorithm that allows the differentiation of both aerosol sources and components, based on at least
5 — A absorption measurements (Massabo et al., 2015; Bernardoni et al., 2017). Both the Aethalometer model and the
MWAA model are effective in apportioning aerosol absorption, but they have a conceptual drawback: the values of some
physical parameters must be fixed prior to the analysis in order to run the algorithm. These parameters are the o for FF
and WB (azr and ay,p for the Aethalometer model, and, in addition, ag. for the MWAA model). Since the a depends
on a variety of factors, as mentioned above, fixing these exponents for the analysis, according to the literature, can lead
to errors, since the actual value of these exponents may be different for the specific aerosol analysed. The only way to
avoid this problem is to retrieve these crucial parameters by using information obtained by independent
techniques/methods (e.g., Levoglucosan, '“C, receptor models, others), as stated in several recent publications in the
literature (Massabo et al., 2015; Martinsson et al., 2017; Titos et al., 2017, Helin et al., 2018; Ivanci¢ et al., 2022).

In this work we propose: 1) a toolkit that implements a revised version of the original MWAA model, as published in
Massabo et al., 2015. This toolkit has been rewritten and optimized in Python and R, and is available for use by the
scientific community. It has been also extended with the possibility to use an arbitrary number of spectrally resolved
absorption coefficients, as long as at least 5 wavelengths are available. This model is self-consistent and can be applied
to purely optical data without the need of any other information. 2) An upgrade to the original MWAA model that directly
allows source and component apportionments of absorption data without the need to set any parameters before running
the model. This is achieved by performing the apportionment analysis along with a correlation study with independent
measurements such as chemical speciation or elemental composition. The parameters are then automatically set by the

algorithm, based on the values that give the best correlation with the independent measurements. The new software toolkit
2
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presented here is written in two of the most widely used scientific programming languages, Python and R, to perform this
analysis automatically. Output of the presented toolkit (MWAA_ MT) are the following quantities: agr, Qywg, Agc, Agres
and the carbonaceous masses for fossil fuels and wood burning: ECrr/OCrr, and ECws/OCws, respectively, where EC
(OC) stands for Elemental (Organic) Carbon. Finally, to demonstrate the capability of the upgraded model, we provide

an example application to data published elsewhere (Bernardoni et al., 2017).

2 Model description

The MWAA model has been extensively described elsewhere (Massabo et al., 2015). Here we will only report the main
points to establish the notation and describe the upgrades.

The measured aerosol absorption coefficient b,y at different wavelengths is decomposed in two different ways:

baps(X) = bghs(A) + by () = AA~9BE + BA~Bre €Y
and

baps(A) = b,’;};(%) + b,%?(k) = A')\"9FF 4 B'A"9wB )

Equation (1) represents the decomposition of the measured aerosol absorption coefficient, at each wavelength, into its
contributions due to carbonaceous components, BC and BrC. Both species are assumed to absorb radiation according to
a negative power law by, (1) o« A%, with a different absorption exponent for BC (ag) and BrC (ag,¢).

Equation (2) has the same structure as the Aethalometer apportionment model (Sandradewi 2008), whereby the absorption
coefficient is decomposed into contributions from different sources, FF and WB. As in Eq. (1), these terms are also
assumed to contribute to the total optical absorption following negative power law whose exponents are different for FF
(arr) and WB (ows).

The parameters A, B, A’ and B’ are scaling factors proportional to the Mass Absorption Cross-section (MAC) of each
component. In the original MWAA model, all but one of the exponents (ag,) are fixed to appropriate values according
to the literature (Sandradewi et al., 2008; Favez et al., 2010; Herich et al., 2011: Harrison et al., 2013; Massabo et al.,
2015; Zotter et al., 2017; Forello et al., 2019), most commonly ags = azr = 1 and oy, = 1.8 or 2. Then, the multi-A
measurements of b, are fitted using Eq. (1) and (2), obtaining 4, B, A, B’ and ag,¢. The contribution of the different

sources and species to the optical absorption is obtained as follows:

bepa P(A) = (A — A)A~“BC

abs

bEEFF () = A'AaBc 3)

abs

b2 0) = BAeore

The upgraded model we present eliminates the need to arbitrarily specify ag¢, opr and a5 by instead adjusting their
values so that the apportioned contributions found in (3) have the best correlation with independent measurements. Figure
1 shows a streamlined version of the upgraded MWAA model, in which the independent measurement for the adjustment

of the exponents is the levoglucosan content in the sample, as determined by chromatography. Levoglucosan is a strong

BrC

tracer for biomass burning (Simoneit et al., 1999) and should therefore correlate well with bE7¢ and bZ5"”

abs
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The three parameters ag¢, apr and oy 5 are each varied within their range, while the others are held constant. In the first
step, Qg is varied in the set {0.8,0.9, 1.0, 1.1, 1.2}. For each ap value, Eq. (1) is used to fit the data and b57€ is calculated
for the shortest available wavelength, using Eq. (3). The coefficient of determination R? for a linear regression between
bErC and the levoglucosan concentration for all samples is calculated, and the ap, value that maximizes R? is selected.
In the second step, a5 is set to 2 and a similar procedure as described for the first step is performed for on agg. Finally,
in the third step, the procedure is repeated to find a best value for 5. It is worth noting that the permutation of the steps
to minimize opp and oy, 5 leads to the same preprocessing results. These three steps are repeated N = 3 times, restricting
the range of variability for the parameters in each iteration to increase the accuracy of the search for the best values. To
avoid statistically insignificant results, and to obtain a more robust result, a tolerance parameter A is introduced. If the
increase of R? in each minimization routine is less than the tolerance, the previous value of the relevant o is retained.

In addition to the component and source apportionment of the optical absorption coefficient, the MWAA model provides

a method to perform the apportionment of EC and OC masses to the fossil fuel and wood burning contributions:

Bl = — Lo O o
Fr babs O\l) - bggsc (xl)
ECyp = bope 00 ___ o
babs O\l) - bggf(xl)
EC:ECFF+ECWB (4)
OCFF = klbgbcéFF()\l) + OCNC

OCWB = kzbggg(}\s) + OCNC
ocC = OCFF + OCWB + OCNC

In the above equations, A; and A, represent the longest and shortest wavelengths for which a measurement is available,

respectively; OCy is the organic carbon produced by biogenic sources which is considered optically inactive; k; and k,

2

are coefficients, in g m™¢, obtained by a linear regression of Eq. (4.3) and (4.4), in subsets of samples in which the OC

concentration is low (for k;) and high (for k,). The coefficients k; and k, are related to the Mass Absorption Cross-



mass apportionment procedure, see Massabo et al., 2015.

sections (MACs) of BC and BrC, respectively, and to the ratios OCrr/BCrr and OCy5/BrC. For more details on the
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Figure 1: Flowchart illustrating the pre-processing step in the improved MWAA model. c oy, is the levoglucosan concentration in
the samples, R? is the coefficient of determination in the linear regression, and the subscripts best and prev refer to, respectively,
the best correlation in the present iteration, and the best correlation in the previous iteration relative to the same a; A is a tuneable
150 tolerance that prevents statistically insignificant fluctuations to assume a physical meaning.

3 Software features

The software toolkit that performs the above-mentioned analysis has been released in the public domain (Isolabella and
Bigi, 2023). Currently, it can only be run in a Linux distribution (for example Ubuntu or Linux Mint).
MWAA_ MT (the MWAA Model Toolkit) can perform optical and mass apportionment of data obtained with instruments

155  measuring light absorption at least at five wavelengths, such as a multi — A Aethalometer.

The toolkit works in four separate steps:
Step I It retrieves the best values for the three parameters a g, @pr and a5 following the method detailed in the
Sect. 2.
Step I The values of 4, B, A’, B' and ag, are obtained from fitting Eq. (1) and (2) with the remaining exponents
fixed to the best values found in the previous step.
Step Il  Equations (3) are employed to apportion the absorption coefficient at every wavelength.

Step IV Following Eq. (4) the mass apportionment is performed for each sample.

The first step of the analysis is the most innovative aspect of the tool we introduce here, since the three values of

pc, dpp and ayyp are directly retrieved by the toolkit itself. However, if data from at least one independent analysis (e.g.,

5
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Levoglucosan, C, PMF, etc.) are not available, the user can still set these three parameters manually. In addition, the
mass apportionment step is optional depending on the availability of carbonaceous mass measurements: if EC and OC
are not available for the samples, the user can decide to skip the fourth step.

Similarly, the user can set many of the analysis hyperparameters. To perform the first step of the analysis, the current
version of the toolkit allows comparison of the optical apportionment with levoglucosan measurements, as described
above. Future versions of MWAA MT will likely allow the user to choose between different types of preprocessing
analysis, considering different types of data such as '*C measurements or source apportionment results obtained with
independent techniques such as Positive Matrix Factorization or Multilinear Engine ME-2 receptor models. Another
possibility could be to constrain the model to maximise the correlation with tracers of traffic emission such as NO,.

Any number of samples can be provided for an analysis run; for the main optical apportionment procedure, steps II and
111, each sample is processed independently, whereas for the steps I and IV the entire dataset is considered for the
regression analyses. Therefore, extra care must be taken to avoid entering obvious outliers as input to the software, and
the analysis may need to be run twice, with the first run serving to weed out potential outliers and adjust the range of

parameter variation.

4 Example of application: black and brown carbon optical apportionment of MWAA data

As an example of the application of MWAA MT, we examine the results of the apportionment of two datasets previously
published (Bernardoni et al., 2017). The first dataset is from a sampling campaign conducted in fall/winter 2014 in
Propata, a rural site in northern Italy, while the second dataset is from a campaign conducted in winter 2016 at an urban
background site in Milan, one of the largest cities in Italy. In these campaigns, PM10 samples were collected on quartz
fibre filters, with each filter sampled (for 48h in Propata, for 12h in Milan) and then analysed with the MWAA instrument
to obtain the wavelength resolved absorption coefficients of the aerosol. All samples were analysed by liquid
chromatography (HPLC-PAD) to determine the Levoglucosan concentration (Piazzalunga et al., 2010). No information
on chemical speciation (except Levoglucosan) was available at the two sites; the average PM10 concentration measured
at Propata and Milan was 8.3 + 6.0 ug m and 68.3 + 25.6 pg m=, respectively. Further details on the measurements can
be found in Bernardoni et al. (2017). In the current study, we apply the updated MWAA model (MWAA MT) to 28
samples from the Propata campaign (hereinafter referred to as “P” samples) and 25 samples from the Milan campaign
(“AIN” samples). The aim of the comparison is to verify whether the particulate sampled in a rural area has a different
optical behaviour than the aerosol sampled in an urban area. The following steps were performed identically for both

datasets.
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4.1 Preliminary: comparison with levoglucosan concentrations
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Figure 2: Correlation between the levoglucosan concentration and the apportioned absorption coefficient of BrC at 375 nm (left
plov), and the absorption coefficient of BC due to wood burning at 850 nm (right plot). The rural site, Propata (red dots) exhibits a
higher correlation than the urban site Milan (black triangles).

To determine the goodness of the apportionment procedure even without the extra pre-processing step, default values for
the free parameters were chosen (age = apr = 1, ayp = 2) and the standard MWAA model for optical apportionment
(steps II and III above) was run. Figure 2 shows the correlation plots between the levoglucosan concentration and the
relevant apportionment results, namely bZ7¢ (A = 375 nm) and bZ-"® (A = 850 nm). The linear regression equations

and coefficients of determination are given in Table 1.

Table 1: Results of the correlation analysis between the apportioned data and the independent measurement, in this case
levoglucosan concentration. The goodness-of-fit of the correlation, represented by the coefficient of determination R?, is much
higher in Propata than in Milan.

Fit equation y =mx + q

Location Absorption R?
{m}=Mmpg~'cm® {q}=Mm™?
m = 184 + 1.8,
Milan bEIC(A = 375 nm) 0.82
g =93 +14
m = 9.6 +1.1,
Milan b2 WP (A = 850 nm) 0.75
g =10 £09
Propat bETC (A = 375 nm) m= 73203 0.96
ropata = nm :
P abs g = 048 +0.10
m = 2.02 +0.07,
Propata bfgs’WB (A =850 nm) 0.97
q = 0.15 +0.03




4.2 Analysis step 1

205 As described in Sect. 2, the first step of the upgraded apportionment model is to find the values of the absorption exponents

that maximise the correlation between some of the model’s output values and one or more independent techniques. In this
case, since the concentration of levoglucosan (hereinafter ¢;) was measured on all samples, the following set of

optimizations (‘Levoglucosan’ analysis preset in MWAA MT) was carried out:

210 e vary ap. to maximise the correlation between b (A = 375 nm) and ¢;;

e vary gy to maximise the correlation between h25"® (A = 850 nm) and c;;

e vary ayp to maximise the correlation between bgbCfF (A =850 nm) and c;.

The resulting sets of exponents were (e, app, ayp)” = (1.00 £ 0.05; 1.00 + 0.02; 2.00 + 0.05) for Propata and
215 (age %pp, ap)™ =(0.90 4+ 0.05; 0.90 4+ 0.02; 1.70 £ 0.05) for Milan. Figure 3 shows the variation of the R?
coefficient, in the two sites: the change of aws value does not produce any sizeable impact in the analysis of the rural
dataset whereas in Milan the best choice turned out to be aws = (1.70 + 0.05). Through the sensitivity tests we performed
on the preprocessing step, we discovered that the apportioned optical absorption coefficients can vary by up to 10% by
adjusting the values of the a parameters within their uncertainty brackets. We estimated the uncertainty of the o
220 parameters by considering the steepness of the R? vs. a curves. The curve of ogr is very steep, which led us to estimate an

uncertainty of 0.02, whereas the R? vs o curves for the other two parameters were flatter, indicating a larger uncertainty
for these parameters.
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Figure 3: Trend of the R? correlation coefficient between the levoglucosan concentration and the apportioned optical absorption
coefficient vs. the value of the a exponents: Propata (left panel) and Milan dataset (vight panel). The values of a parameter which

maximize the R? coefficient, are marked with a brown triangle. The plots are shown only for the last iteration of the preprocessing
step.

230 This justifies the choice of setting o5 = 2.0 for the rural site, while the same choice is less robust for the urban site,



where a5 = 1.7 would be the more appropriate setting. The analysis confirms the usual choice of oz = 1.0 for the
rural site, while ag. = 0.9 gives the optimal value for the urban dataset, possibly indicating a further reprocessing and
ageing of pure BC particles in the urban environment (Minderyté et al, 2022). As with azp, the analysis yields orr = 1.0

and arr = 0.9 for the rural and urban site/dataset, respectively.
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235 Figure 4: Absorption coefficient plots for a representative sample from the rural site in Propata (left) and the urban site in Milan
(right). The experimental data points are marked with uncertainty crosses. Superimposed on the graphs are the results of the fits
carried out with the two different decompositions from Sect. 1.

4.3 Analysis step 11

240 The parameters found in Step I are then fixed for each dataset, and a complete double fit of the experimental data is
performed for each sample following Eq. (1) and (2). An example of such fits for a sample belonging to each of the two

datasets is shown in Fig. 4.
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Figure 5: Values of the parameter ag,. for all the samples in the datasets: Propata/rural (top) and Milan/urban (bottom).

One of the parameters determined during the fitting procedure is ag,.c. Its range of variability over the entire dataset and
the uncertainty associated with its value allow an estimation of the physical and chemical variability of the analysed
particulate. Figure 5 shows the determined values of ag, for the entire sampling period at the two sites. At a rural site
such as Propata, where wood burning is the predominant source of carbonaceous particulate in the atmosphere during
winter, BrC corresponds to a well-defined sub-category of organic carbon and its absorption properties are therefore
constant. This is confirmed by the very small range of variation in the value of ag,.. obtained for all Propata samples,
with af,.. = 3.79 4 0.04, where the uncertainty is due to inherent systematic variations in the minimization routine. At
the Milan urban site, the range of variability of ag,.c is much higher. This can be due to the fact that the urban aerosol is
much more complex and contains a larger number of organic carbon compounds from different types of wood burned
under different conditions, some of which could affect the optical behaviour of the aerosol. Moreover, stagnation
conditions that favour ageing processes are typical of Milan (and the Po Valley in general): they generally lead to an
increase in the molecular weight of organic matter, possibly enhancing light-absorption properties. Therefore, our model,
based on this simple decomposition, does not retrieve a sharp value for ag,, since the optical properties of BrC vary
strongly in Milan, unlike in Propata where the sampled particulate was comparatively simpler. The determined absorption

exponent for BrC in Milan is therefore alf.. = 3.5 + 1.1.

4.4 Analysis step 111

The optical apportionment of the absorption coefficient is performed for all available wavelengths according to Eq. (3).

Figures 6 and 7 show the apportioned b,;s at UV (375 nm) and IR (850 nm) wavelengths for Propata and Milan,

respectively. The main difference between the two sites is the correlation between bZ}< and bgbcs'WB

. In Propata (Fig. 6)
the correlation is high, as can be inferred by the blue and black lines having the same time trend. This means that most of
the BrC is produced via WB. On the other hand, in Milan (Fig. 7) this correlation is lower, and BrC cannot be entirely

attributed to WB. In fact, in Milan the particulate is impacted by a number of different sources, and it is heavily processed

10



due to stagnation. A general feature common to both datasets is the negligible absorption attributed to BrC at long

wavelengths; this is consistent with previous work (Massabo et al., 2015).
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4.5 Analysis step IV

Mass apportionment was performed for both datasets using the approach detailed in Sect. 2. The toolkit allows the user
to choose to automatically determine the coefficients k; and &, from the linear regressions (see Eq. 4), or to set them
manually. The latter approach is indicated when the dataset does not contain suitable candidate samples for the k;
regression analysis (i.e. when there are no samples whose EC content is predominant as evidenced by an a close to 1),
and especially when the values for k; and k, can be estimated by complementary methods or by previous analyses of
aerosol samples taken at the same location during a comparable period of the year.

For this example application, the second approach was followed. For Milan, the regression coefficients were set to k}! =
0.33 gm™2, kX = 0.34 g m™2, while for Propata they were set to k¥ = 0.24 gm™2, kf = 0.35 gm™2 as described
in Bernardoni et al., 2017.

The average E Cpr/EC ratio turned out to be (49% + 20%) and (58% + 15%), and complementary ECy/EC resulted
(51% =+ 20%) and (42% =+ 15%), respectively in Milan and Propata. For the organic aerosol, the average OCryr/0C
was found to be (25% + 14%) and (18% =+ 9%), while OCy,5/0C was (58% + 17%) and (61% =+ 14%), in Milan
and Propata respectively. The non-combustion component of the organic aerosol, OCy, contributed (17% =+ 15%) and
(21% + 15%) of the total OC measured in Milan and Propata. For all the reported results, the uncertainty is understood
as the standard deviation in the distribution of the mass-apportioned values of EC and OC for all the samples. These

results are in full agreement with those reported in Bernardoni et al., 2017.

5 Conclusions

In the aerosol community concerned with aerosol source apportionment, the possibility of apportioning carbonaceous
sources by exploiting optical properties has occupied much space in recent years. The main reasons for this growing
interest are the diffusion of optical instruments that are relatively easy-to-use, and allow high-time resolution
measurements. The main weakness of this apportionment methodology, based on optical measurements, is the practically
obligatory choice of the critical parameters necessary as input, in particular a5 and agp, whose values vary considerably
in the literature (Sandradewi et al., 2008; Favez et al., 2010; Herich et al., 2011: Harrison et al., 2013; Massabo et al.,
2015; Zotter et al., 2017; Forello et al., 2019). In this work, we show that it is possible to perform optical source and
component apportionment of carbonaceous aerosols without constraining any physical parameters with a priori
knowledge. Instead, the upgraded model presented here (MWAA_ MT) allows the determination of these parameters for
any specific receptor site, provided that a measurement using an independent technique able to trace biomass burning
emissions is available for comparison, also with different (lower) time resolution. This offers the advantage of an
apportionment routine based entirely on experimental data, where computational parameters are automatically adjusted
to best match the results with the data themselves. With this upgrade, it is possible to obtain o absorption exponents that
are related to the specific site and season, allowing better characterization of future measurements at the same site or at
sites with similarities (e.g., rural sites with similar geographical characteristics such as type of wood burnt). In addition,
the o parameters obtained from the analysis of robust, low-time resolution samples can be used to inform and fine-tune

the apportionment procedure on high-time resolution data.

We have also showed how sensitive the model is to the choice of some of these parameters: in our example, in particular,

the choice of oy has the greatest impact on the reliability of the subsequent apportionment. It should be emphasised that
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this could be a feature of these specific data/sites: other datasets could be more sensitive to the variation of another one
of the free parameters. It is therefore recommended that, whenever possible, such an analysis be performed to determine
the best value for any of these exponents.

We have applied this upgraded methodology to the apportionment of the optical absorption coefficient in two different
sites in northern Italy. The “pre-processing step” has shown that, for the example dataset we considered, the values for
Ogc, Opp and a5 at a rural site are consistent with the literature, while in the case of an urban site, values of ag. = 0.9,
apr = 0.9 and oy, = 1.7 seem to be a more appropriate choice. We would like to underline that the Milan case study is
to be considered as a stress test of our algorithm: the context is very complex due to the presence of a large number of
sources such as traffic, biomass combustion, industry, etc., in a city with over 1.3 million inhabitants. The city is also
subject to major regional transport events, high PM concentrations (average PM10 value during the campaign of 68.3 +
25.6 ug m>) and air stagnation conditions resulting in a high level of aerosol reprocessing. On the other hand, when it
comes to the Propata dataset, the correlation with levoglucosan is much higher (R?=0.96), indicating that within the
experimental uncertainties the assumption that BrC is only produced by WB is satisfied.

Finally, we have described the operation of the new software toolkit, MWAA MT, that we have used to perform this

analysis and is made available to the scientific community.

Code availability

The executable version for the code presented in the article is available at ZENODO LINK. The source code is available

at GITHUB LINK. Any updates will also be published on Zenodo and GitHub.
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