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Abstract. In late September 2022, explosions of the Nord Stream pipelines caused what could be the largest anthropogenic

methane leak ever recorded. We report on Landsat 8 (L8) and Sentinel-2B (S-2B) observations of the sea foam patch produced

by the Nord Stream 2 (NS2) leak located close to Bornholm Island, acquired on September 29th and 30th, respectively. Usually,

reflected sunlight over sea is insufficient for these Earth-imagers to observe any methane signal in nadir-viewing geometry.

However, the NS2 foam patch observed here is bright enough to possibly allow the detection of methane above it. We apply the5

Multi-Band Single-Pass (MBSP) method to infer methane enhancement above the NS2 foam patch and then use the Integrated

Mass Enhancement (IME) method in a Monte Carlo ensemble approach to estimate methane leak rates and their uncertainties.

This very specific NS2 observation case challenges some of MBSP and IME implicit assumptions, and thus calls for customized

calibrations: (1) for MBSP, we perform an empirical calibration of sea foam albedo spectral dependence by using sea foam

observations in ship trails, and (2) for IME, we yield a tailored effective wind speed calibration that accounts for a partial plume10

observation, as methane enhancement may only be seen above the NS2 sea foam patch. Our comprehensive uncertainty analysis

yields large methane leak rate uncertainty ranges that include zero for single overpasses and, assuming they are independent, a

best estimate of 502±464 t/hr for the combined averaged L8 and S-2B emission rate. Within all our Monte Carlo ensembles,

positive methane leak rates have higher probabilities (80 − 88%) than negative ones (12 − 20%), thus indicating that L8

and S-2B likely captured a methane-related signal. Overall, we see our work both as a nuanced analysis of L8 and S-2B15

contributions to quantifying the NS2 leak emissions and as a methodological cautionary tale that builds insight on MBSP and

IME sensitivities.

1 Introduction

From September 26th to October 2nd, 2022, leaks occurred on the Nord Stream (NS) and Nord Stream 2 (NS2) pipelines in the

Baltic Sea. They caused intensive bubbling and extensive foam patches at the sea surface, as well as methane emissions that20

could be one of the strongest methane leak events ever recorded (Sanderson, 2022). The Southern NS2 sea foam patch close

to Bornholm Island was observed on September 29th and 30th by Landsat 8 and Sentinel-2B (respectively), two Earth-imaging

satellites that are sensitive to large methane point sources (Varon et al., 2021). We report on those two observations, and exhibit

the challenges they come with to evaluate the NS2 methane leak rate.
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Anthropogenic methane emissions are the second largest contributor to human-induced climate change, and their drastic25

reduction is required to keep global warming below 1.5◦C or 2.0◦C (IPCC, 2021). In the past decade, developments in space-

based methane observation have had a transformative impact on methane super-emitter detection and monitoring, and can

contribute to track progress towards the Paris Agreement goals (e.g. Nisbet et al., 2020). Among them, the TROPOspheric

Monitoring Instrument (TROPOMI, Veefkind et al., 2012; Lorente et al., 2021) measures back-scattered sunlight in the short-

wave infrared (SWIR) around 2.3 µm at 0.25 nm resolution, at a moderate 5.5×7 km2 spatial resolution at nadir and with daily30

global coverage. Global methane concentrations maps are drawn from these measurements using a full-physics approach which

accounts for geophysical variables besides methane (e.g. albedo, water vapour, aerosol optical depth, etc) that could interfere in

the retrieval process (Lorente et al., 2021). Its observations have been successfully used to detect and estimate anthropogenic

methane emissions arising from various point or localized sources (e.g. Pandey et al., 2019; Lauvaux et al., 2022; Schuit

et al., 2023). SWIR satellite instruments with higher spatial resolution (few tens of meters) have proved complementary by35

enabling the identification of methane emission sources at facility-scale. These notably include the methane-dedicated GHGSat

constellation (Jervis et al., 2021) and Earth-imagers such as Sentinel-2 or Landsat 8. Earth-imagers are not spectrally resolved

like TROPOMI and were not originally designed to measure greenhouse gases. However, under the right conditions (bright,

quasi-homogeneous land surface), their methane sensitive bands (∼ 100-200 nm in width) can be repurposed to retrieve large

methane concentration enhancements and image point source emission plumes (e.g. Varon et al., 2021; Irakulis-Loitxate et al.,40

2022b). Like any other SWIR instrument, these Earth-imagers do not typically offer coverage over water bodies, because the

water albedo is too dark at nadir pointing. However, sun-glint observations over sea can allow methane plume detection with

these satellites as well (Irakulis-Loitxate et al., 2022a).

When the NS and NS2 leaks occurred, and in the following week, TROPOMI was not able to acquire exploitable data over

land in the Baltic Sea vicinity due to cloudiness. However, thanks to their finer spatial resolution, Landsat 8 (L8) and Sentinel-45

2B (S-2B) have been able to perform nadir-pointing observations showing the Southern NS2 leak on September 29th and 30th,

respectively. They did not benefit from sun glint, but the bright foam patch produced by the bubbling leak at the sea surface

reflected enough sunlight to consider using the observations, and assess whether a methane signal can be sensed. Besides

L8 and S-2B, GHGSat could point their instruments towards the same NS2 leak on September 30th and observe a methane

emission plume in glint geometry twice (GHGSat, 2022). After initial Twitter reports by the International Methane Emissions50

Observatory (IMEO, 2022), Jia et al. (2022) published results for the Sentinel-2B observation, acknowledging significant

uncertainties in their methodology regarding the spectral reflectance of bubbles and the partial imaging of the methane plume.

This work first aims to show how Landsat 8 and Sentinel-2B observations of the Nord Stream 2 leak challenge implicit

assumptions in methods usually applied for Earth-imager methane plume analysis and emission rate quantification. It then

proposes to account for identified issues by using customized calibrations, and to assess the possibility of using Landsat 8 and55

Sentinel-2B to sense and quantify methane emissions from the Nord Stream 2 leak.

This paper is structured as follows: Section 2 describes general aspects about the materials and methods used in this work

as well as Nord Stream 2 specific calibrations. Section 3 presents the obtained methane leak rates. Finally, Section 4 highlights

the conclusions of this work.
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2 Materials and methods60

This section describes general aspects of the data and methods used here, as well as the custom calibrations that are necessary

to adapt them to this singular Nord Stream 2 observation case.

2.1 Landsat 8 and Sentinel-2B satellite observations

2.1.1 General aspects

Landsat 8 (hereafter L8) is an Earth-imaging satellite with a swath of 185 km and a revisit time of 16 days. It measures reflected65

sunlight over 10 different spectral bands located in the visible, short-wave infrared (SWIR) and thermal infrared, with spatial

resolutions ranging from 15 to 100 m (Roy et al., 2014).

The Copernicus Sentinel-2 mission comprises two Earth-imaging satellites (Sentinel-2A and Sentinel-2B, hereafter S-2B)

with a swath of 290 km and revisit time of 10 days each, and aims to monitor changes on our Earth’s surface. They measure

reflected sunlight over 12 different spectral bands located in the visible and SWIR, with spatial resolutions ranging from 10 to70

60 m (Drusch et al., 2012).

Here, we use Top Of the Atmosphere (TOA) reflectance data observed by L8 and S-2B for two methane sensitive SWIR

spectral bands around 1.6 µm (bands 6 and 11 for L8 and S-2B, respectively) and 2.2 µm (bands 7 and 12 for L8 and S-2B,

respectively). These L8 and S-2B SWIR observations have spatial resolutions of 30 and 20 m, respectively.

2.1.2 Nord Stream 2 leak observations75

Figure 1 shows L8 and S-2B TOA reflectance observations of the NS2 methane leak (top panels) and exhibits, using simple

empirically-determined thresholds (see Supplements), the different pixel types (dark still sea, NS2 leak, cloud) included in the

images by comparing s1 and s2 TOA reflectance values (bottom panels). The L8 image acquired on September 29th, 2022, is

composed of the bubbling sea foam patch at its center, surrounded by dark still sea and cloud pixels. The S-2B image acquired

on September 30th, 2022 is much cleaner and only includes the NS2 bubbling sea foam patch at its center, surrounded by dark80

still sea pixels.

2.2 Methane enhancement retrieval: the Multi-Band Single-Pass (MBSP) method

We use the Multi-Band Single-Pass (MBSP) method to retrieve local methane column enhancements from Earth imager obser-

vations. We first describe MBSP and its standard calibration approach, and then show how this specific NS2 case study calls

for a custom calibration.85

2.2.1 General description

The TOA reflectance data can be used to retrieve atmospheric methane concentration enhancements with the Multi-Band

Single-Pass (MBSP) method, first proposed by Varon et al. (2021). It relies on the relative change in TOA reflectance ∆R
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Figure 1. Landsat 8 (left, September 29th 2022) and Sentinel-2B (right, September 30th 2022) images of the Nord Stream 2 leak for s1 (top),

and s1 and s2 TOA reflectance comparisons depicting different pixel natures and showing the standard MBSP c calibration line (bottom).

The pixel natures of dark still sea (black), clouds (grey) and NS foam patch (red, all influenced by the methane leak) are separated using

empirically determined thresholds given in the Supplements. The standard MBSP calibration (dashed line) is provided here to illustrate why

it proves to be unsuitable for this specific NS2 case, as detailed in Sect. 2.2.2.

between two spectral bands s1 (around 1.6 µm, low sensitivity to methane) and s2 (around 2.2 µm, strong sensitivity to

methane) computed as:90

∆R=
c× s2 − s1

s1
(1)

with c, a linear calibration coefficient fitted on all the pixels included in the target image, to account for any non-methane-related

spectral effects between bands s1 and s2, most importantly the spectral dependence of the albedo. This calibration strategy was

proposed with the MBSP method by Varon et al. (2021), and implicitly assumes that image-wide pixels are representative of

the surface characteristics expected below the (potential) methane plume. Hereafter, we will refer to this "naïve" calibration95

strategy as the "standard MBSP calibration". The rationale of MBSP is that deviations in the methane-sensitive s2 band from the

expected s1/s2 ratio (captured in the fitted c coefficient) are interpreted as methane enhancements. Pixels with ∆R< 0 relate

to higher than expected atmospheric absorption and yield positive methane enhancements. The translation of ∆R to methane

enhancements is performed using pre-computed look-up tables, generated through radiative transfer simulations. Here, they
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are based on the 2020 version of the HITRAN spectroscopic database (Gordon et al., 2022), rely on a 21-layer atmospheric100

model representative of mid-latitudes and include the impact of the solar zenith angle.

2.2.2 Empirical calibration of the spectral dependence of sea foam reflectance in MBSP

Here, we seek to determine whether a methane enhancement signal can be retrieved from L8 and S-2B images of the NS2 sea

foam patch. No methane signal can be expected to be visible over the dark still sea or the clouds. Consequently, considering the

general description of MBSP given in Sect. 2.2.1, properly constraining the spectral dependence of sea foam albedo between105

s1 and s2 is critical to obtain non-biased methane enhancements through MBSP.

Whitlock et al. (1982) and Koepke (1984) show that we expect a reflectance ratio s1/s2 over sea foam of about 2 or slightly

lower (graphical reading). However, the only pixels representative of sea foam that can be observed in L8 and S-2B images

of the NS2 leak are the ones caused by the leak itself, above which we also expect a possible methane enhancement signal.

Unlike a land image, it is thus not possible to assess whether the standard MBSP calibration can separate the spectral impact110

of methane from the spectral dependence of the albedo for this specific NS2 case. This is particularly noticeable in Fig. 1 for

the S-2B image, where the standard MBSP calibration is driven by the NS2 sea foam patch (c= 1.96). This issue similarly

applies to the L8 NS2 observation, that also features an additional complication: very bright clouds are present in the image,

which in this case drive the standard MBSP calibration (c= 1.13). Thus, the standard MBSP calibration lines included in Fig.

1 illustrate why the NS2 observation case, that relies on a small sea foam patch, calls for an external calibration of the spectral115

dependence of sea foam albedo.

Figure 2. Example of sea foam observation in the Sentinel-2B image of a ship trail acquired on October 12th, 2022. Dark still sea and

ship pixels have been removed and are shown in grey and white, respectively. They are also excluded from the sea foam albedo spectral

dependence results presented later in Sect. 2.2.2 and in the Supplements.

We therefore empirically constrain the spectral dependence of sea foam albedo by using sea foam observations in ship

trails unaffected by methane plumes. We treat each satellite separately in order to account for their different instrumental

characteristics. By visual inspection of RGB Sentinel-2 and Landsat data on the EO Browser of Sentinel-Hub (2023), we gather

27 and 38 images of ship trails for L8 and S-2B, respectively, located in the North and Baltic Seas from September and October120
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2022. For each of these images, we separate ship and sea foam pixels from the dark still sea pixels by using an empirically

determined threshold τ1, such that s1 > τ1; and then separate sea foam from ship pixels by applying a second empirically

determined threshold τ2, such that s2 < τ2 (Supplement Tables 2 and 3). Figure 2 shows an example of sea foam pixels

extracted from an S-2B ship trail image. For each image, using sea foam pixels only, we perform a least-squares linear fit (with

an intercept set to zero) of s1 as a function of s2 to determine ci, the coefficient describing the spectral dependence of sea foam125

albedo for the i-th image (see individual ci values and fits obtained for each ship trail observation in the Supplements). For L8

and S-2B separately, we then compute c̄ as the mean of the individual calibrations. Figure 3 presents the results of this satellite-

specific empirical calibration of the spectral dependence of sea foam albedo. We obtain c̄= 1.96± 0.23 and c̄= 1.91± 0.22

for L8 and S-2B, respectively. These Top-of-the-Atmosphere reflectance ratios are overall consistent with results presented

by Whitlock et al. (1982) and Koepke (1984) that were measured on the ground. Comparing the S-2B result to the slightly130

higher standard MBSP calibration (c= 1.96) also confirms the above mentioned hypothesis that the standard calibration may

have captured some methane signal. Indeed, for given fixed {s1,s2} values, a decrease in the spectral dependence calibration

coefficient c (compared to the standard calibration) reduces ∆R= (cs2 − s1)/s1, which translates to an increase of methane

enhancement via the use of MBSP.

Figure 3. Empirically determined sea foam albedo spectral dependence between s1 and s2 for Landsat 8 (left) and Sentinel-2B (right). Sea

foam pixels for all ship images are depicted (dots with different colors indicating different ships, the legend only includes elements for the

first and last images), along with their respective calibration slopes (thin lines, each is detailed in the Supplements, the legend only includes

elements for the first and last images). These enable the computation of the mean and 1-σ standard deviation of the empirically determined

sea foam albedo spectral dependence (thick full and dashed blue lines). The standard MBSP calibration (thick dashed black line) is also

shown.

MBSP can then be applied using these newly determined empirical calibrations (computing ∆R using c̄). Figure 4 shows135

the methane enhancements obtained with the satellite-specific c̄ calibration values, and how s1 and s2 TOA reflectance values

compare to them. For the L8 observation of the NS2 leak, the sea foam patch pixels show an s1/s2 ratio of 2.09 (red line),

which is slightly higher than the average empirical calibration of the L8 sea foam albedo spectral dependence (c̄= 1.96±
0.23), but comprised within its ±1σ uncertainty interval. This ship-based c̄− s1/s2 negative difference overall translates to

positive methane enhancement through MBSP. On average, we obtain L8 methane enhancement values ranging from -2.5140
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Figure 4. Methane enhancement results obtained through MBSP for Landsat 8 (top left, September 29th 2022) and Sentinel-2B (top right,

September 30th 2022), pixels not belonging to the foam patch have been filtered out and shown in grey. Comparisons of s1 and s2 TOA

reflectance (bottom) depicting different pixel types and showing the empirically determined spectral dependence of sea foam albedo (thick

blue line, the individual ship trail observations underlying this result are shown in Fig. 3 and in supplementary Tables S2 and S3 for L8

and S-2B, respectively), and the s1/s2 ratio observed over the NS2 sea foam patch (red line). The higher slopes shown by the s1/s2 ratios

(red) compared to the empirical calibrations (blue) are driven by the brightest pixels at the center of the sea foam patch that offer a better

signal-to-noise ratio to observe methane absorption than darker pixels.

to 15 mol/m2. Negative enhancements are associated with pixels falling right of the s1/s2 empirical calibration line (low

TOA reflectance values, at the sea foam patch edges), and positive enhancements are associated with pixels falling left of the

empirical calibration line (high TOA reflectance values, at the sea foam patch center). The S-2B observation is similar but

exhibits more noise, overall showing enhancements from -2.5 mol/m2 on the sea foam patch edges to about 8 mol/m2 at its

brighter center.145

2.3 Emission rate quantification: the Integrated Mass Enhancement (IME) method

We use the Integrated Mass Enhancement (IME) method to quantify the methane emission rate from local methane column

enhancement retrievals that show an emission plume. Here, we first explain why we choose the IME method and how it works,

then we explain why this specific NS2 case study also calls for a custom calibration for the IME method.
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2.3.1 General description150

If a plume is observed in an image resulting from MBSP, the associated emission rate can be quantified using different ap-

proaches such as the Gaussian plume inversion (GP), source pixel (SP), Cross-Section flux (CSF) and Integrated Mass En-

hancement (IME) methods (Varon et al., 2018). Because GP and SP are not suited for the quantification of plumes detected

using high-resolution satellite observations, and the CSF relies on several transects drawn on an extended downwind plume,

we use the IME method. This method was first proposed by Frankenberg et al. (2016) and its calibration and operational use155

was improved by Varon et al. (2018). Given a plume, the IME method relates the emission rate Q to the plume’s total methane

mass and its residence time in the atmosphere. We have:

Q=
Ueff

L

∑
i

∆XCH4i × ai (2)

with Ueff, the effective wind speed transporting the plume, L=
√∑

i ai the plume extent, XCH4i, the total column methane

enhancement of the i-th plume pixel, and ai, the area of this pixel.160

Plume transport includes complicated three-dimensional and turbulent effects that require computer-intensive simulations to

be accounted for, if even possible given the randomness of turbulence. Through IME, the overall impacts of those effects are

presumably captured into a single effective wind speed, denoted Ueff. Ueff is calibrated against the 10-m wind speed provided

by meteorological models (U10m) over a set of Large Eddy Simulations (LES) made for known synthetic emission rates, and

re-sampled according to a given instrument characteristics (spatial resolution, noise model, etc.). Thus, Ueff can be calibrated165

for specific instruments and observing conditions. Varon et al. (2021) provide an effective wind speed calibration model for

Sentinel-2-like Earth imagers: Ueff = 0.33×U10m +0.45. This IME effective wind speed calibration slope which is lower than

1 reflects the fact that the plume extent L, defined as the square root of the plume area, is smaller than the actual plume length

for long narrow plumes observed over land. This definition of L is chosen for its simplicity and because the plume mask is

ventilated by turbulent diffusion rather than uniform transport (Varon et al., 2018). Besides, using this effective wind speed170

calibration implicitly assumes that the plume is observed in the same conditions as those used for the LES calibration, including

for instance that the full extent of the plume is visible as per the given instrument sensitivity.

2.3.2 Effective wind calibration of partial plume observation in IME

The IME method is critically sensitive to the plume mask extent. For a homogeneous plume of N pixels, the source rate

Q increases linearly with
√
N . In practice, the plume is not homogeneous and the number of pixels above the instrument175

detection threshold relates to the emission rate, and truncating the plume mask because of external factors (low albedo, clouds,

etc.) biases Q. This IME sensitivity stems from the effective wind speed calibration that relies on an LES sampling of whole

plume per the given instrument characteristics. Any systematic plume mask truncation therefore needs to be calibrated for. For

the NS2 observation, only the small sea foam patch provides a high enough signal that could allow observation of part of the

methane plume, above its source. This specific case therefore requires a custom effective wind calibration.180
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We consequently re-purpose an ensemble of LES simulations computed for a 275× 275 m2 source area (grossly the NS2

foam patch size) by Maasakkers et al. (2022), scale them to emission rates ranging from 100 to 1000 t/hr, re-sample them

according to L8/S-2B instrumental characteristics and perform an effective wind speed calibration that only includes the pixels

located above the source area in the plume mask. Following Varon et al. (2021), we perform a linear regression of Ueff against

U10m that is more appropriate for Sentinel-2-like instruments than the logarithm-based regression first proposed in Varon185

et al. (2018). We obtain the following NS2-custom effective wind speed calibration with an outlier-resilient Huber regression:

Ueff = 1.88×U10m +0.52, with a standard deviation of data to fit mismatch values of 1.1 m/s (the Figure supporting this

result is provided in the Supplements). This 1.88 calibration factor is significantly different from the slope value given in Sect.

2.3.1, applicable for ideal conditions over land. Its value higher than 1 reflects a different plume definition compared to ideal

conditions over land, and must be interpreted as methane excess observed above the area source under-representing the actual190

emission rate of the full area source. Indeed, only the downwind plume integrates emissions from the all the area source, not

the concentration field right above it. Actually, this IME effective wind speed calibration slope close to 2 is consistent with

expectations from mass balance of a uniformly ventilated area source (wind direction above it is unique and not changing, a

fair assumption at the scale of the NS2 leak) as shown by Buchwitz et al. (2017).

2.4 Monte Carlo ensemble approach for evaluating Nord Stream 2 leak rates as seen by Landsat 8 and Sentinel-2B195

We use a Monte Carlo ensemble approach to calculate the average methane leak rate from NS2, as seen by L8 and S-2B, using

MBSP and IME with our custom calibrations. We consider six different parameters that impact MBSP and/or IME results to

generate a Monte Carlo ensemble of leak rate quantifications:

(1) In MBSP, we use the distribution of sea foam albedo spectral dependence calibrations and randomly pick a calibration

value from the satellite-wise sets of sea foam observations in ship trails described in Sect. 2.2.2. By doing so, we implicitly200

follow the underlying distributions of each satellite-wise sea foam spectral dependence calibration values.

(2) To capture the uncertainty in the background, we estimate a non-enhanced methane background over the NS2 sea foam

patch. It is computed by applying MBSP using a calibration coefficient exactly equal to the fitted s1/s2 ratio obtained from the

NS2 sea foam pixels, thus compensating for possible methane enhancements. We then compute the standard deviation σXCH4
of

this background signal, and use it to randomly shift the MBSP background enhancement by sampling a Gaussian distribution205

with a standard deviation of σXCH4
, and centred on zero.

(3) We vary the plume mask extent by varying the minimum s1 TOA reflectance value for a pixel to be included in the plume

mask. These minimum s1 TOA reflectance thresholds sample uniform distributions covering [0,0.07] for L8 and [0,0.045] for

S-2B. We use different maximum thresholds for each satellite because the maximum TOA reflectance observed by L8 in the

NS2 patch is higher than for S-2B (see Fig. 1).210

(4) Following Schuit et al. (2023), we include four different 10-m wind speeds to better account for wind speed uncertainty.

Three come from meteorological re-analysis products: the European Centre for Medium-Range Weather Forecasts (ECMWF)

ERA5 (Hersbach et al., 2020), the Global Forcasting System (GFS) from NOAA National Centers for Environmental Prediction

(NCEP, 2000) and the Goddard Earth Observing System-Forward Processing (GESO-FP, Molod et al., 2012). Furthermore,
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we include the in-situ wind speed measured at Bornholm airport, which is located about 50 km away from the NS2 leak215

(IEM, 2023). For September 29th, we obtain wind speeds of 4.1, 6.6, 4.8 and 3.6 m/s from ERA5, GFS, GEOS-FP and airport

measurements, respectively; and for September 30th, we obtain wind speeds of 5.0, 6.3, 6.3 and 5.7 m/s, respectively. We

randomly pick one of these four wind speeds.

(5) To account for wind speed error, we evaluate the differences between the three re-analysis models (ERA5, GEOS-FP,

GFS) and in-situ measurements made at Bornholm airport for 2022. On average, we find a standard deviation of 1.6 m/s. We220

therefore sample the wind speed error from a Gaussian distribution with a 1.6 m/s standard deviation and centred on zero.

(6) We account for effective wind speed calibration errors by randomly sampling data − fit mismatch values from the distri-

bution shown in the Supplements (Figure S8). By doing so, we implicitly follow the slightly non-Gaussian skewed distribution

that these mismatches show.

We generate a Monte Carlo ensemble of 1,000,000 members for each satellite overpass, and report their averages, and225

standard deviations as uncertainty.

Besides these ensemble metrics, we also seek to determine which input parameters contribute most to the obtained ensemble

variance. Thus, we also compute the first-order sensitivity indices Si for our six parameters:

Si =
VXi

(E∼Xi
(Q|Xi))

V (Q)
(3)

with Xi and i ∈ {1,2,3,4,5,6}, the six parameters that we explore; Q, the leak rates that we compute; E∼Xi the expectation230

across all parameters values but Xi that is fixed; VXi , the variance across all Xi values; and V , the usual variance. Citing Lo

Piano et al. (2021), the plain language meaning of Si is "the fractional reduction in the variance of Q which would be obtained

on average if Xi could be fixed".

Here, we only rely on our single satellite-wise Monte Carlo ensembles and follow Lo Piano et al. (2021) to estimate Si by

directly calculating VXi
(E∼Xi

(Q|Xi)) as the variance of the smoothed Q against Xi scatter plot. As we randomly pick values235

from small sets for the sea foam albedo spectral dependence calibrations and wind speed products, we compute E∼Xi (Q|Xi)

for each discrete value that Xi can take. For wind speed and effective wind speed errors, as well as minimum albedo and

methane enhancement shifts, where we sample continuous distributions, we use 1000 bins of 1000 ensemble members to

smooth the Monte Carlo ensemble results.

3 Results and discussion: Nord Stream 2 leak rates240

Figure 5 shows the distribution of leak rate values within the Monte Carlo ensembles for L8 and S-2B. We obtain ensemble-

averaged methane leak rates of 507±673 t/hr and 496±640 t/hr for L8 and S-2B, respectively. In addition, Table 1 provides the

first-order sensitivity indices Si corresponding to these uncertainties (the smoothed scatter plots supporting these indices are

provided in the Supplements). From these indices, we conclude that the uncertainty of the sea foam albedo spectral dependence

calibration mainly drives these Monte Carlo ensemble uncertainties. This is illustrated by the colour scale applied to the245
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distributions included in Fig. 5: leak rates get lower and eventually negative with increasing empirical sea foam albedo spectral

dependence calibration values.

Figure 5. Distributions of methane emission rate values for the Landsat 8 (left) and Sentinel-2B (right) ensembles. Monte Carlo ensemble

means and standard deviations are shown inset, along with the fraction of null or negative emission rates, denoted as P (Q≤ 0). The color

scale shows the contributions of different sea foam albedo spectral dependence calibration values to the overall distribution of leak rates

within the ensemble.

Input parameter Landsat 8 Si Sentinel-2B Si

Empirical calibration of sea foam albedo spectral dependence 0.52 0.62

Shift of methane background 0.18 0.12

Minimum albedo to include a pixel in the plume mask 0.02 0.03

Wind speed product 0.03 0.01

Wind speed error 0.06 0.04

Effective wind speed calibration error 0.01 0.01
Table 1. First-order sensitivity indices Si, computed for each satellite observation and all six parameters included in our Monte Carlo

ensembles.

The individual L8 and S-2B ensemble distributions have ±1σ uncertainty intervals that include zero emissions, and both

show P (Q≤ 0) = 0.20. These separate L8 and S-2B estimates may not be independent. For example, similar look-up-tables

or IME effective wind calibration errors or biases may hamper them. However, if we opportunistically assume that they are,250

we can generate an ensemble representing the averaged combined L8 and S-2B NS2 leak rate. We obtain an averaged L8 and

S-2B NS2 methane leak rate of 502± 464 t/hr, with P (Q≤ 0) = 0.12. Both single and dual-overpass estimates show positive

means and higher probabilities for positive Q values (80% − 88%) than negative ones (12% − 20%). This result hints that

L8 and S-2B likely sensed a methane-related signal, which could be related to an emission magnitude of hundreds of tons per

hour.255

Because this NS2 observation case is singular and recent, very few results to compare to have been published. GHGSat

reports leak rates of 79 t/hr and 29 t/hr for their NS2 glint observations made on Sept 30th (GHGSat, 2022). Jia et al. (2022)
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report no result for L8, and a methane leak rate of 72± 38 t/hr for S-2B, while also acknowledging significant uncertainties

in their methodology regarding the spectral reflectance of bubbles and the partial imaging of the methane plume. The work

performed here precisely describes the origin of the challenges posed by these specific NS2 observations, addresses them260

through custom calibrations, and provides a comprehensive uncertainty analysis. All previously reported NS2 methane leak

rates for September 30th are comprised within our large zero-including uncertainty range obtained for S-2B on that day.

4 Conclusions

We have evaluated the possibility of extracting methane emission information from Landsat 8 (L8) and Sentinel-2B (S-2B)

observations of the Nord Stream 2 (NS2) pipeline leak.265

We have shown how the unusual observations of a sea foam patch surrounded by dark still sea (and clouds for L8) challenge

implicit underlying assumptions in both the Multi-Band Single-Pass (MBSP) and Integrated Mass Enhancement (IME) meth-

ods. For MBSP, we showed that an external empirical calibration of the sea foam albedo spectral dependence is needed, and

provided one by using sea foam observations in ship trails. This underlines how extreme surface heterogeneity can hamper the

standard albedo spectral dependence calibration in MBSP. For IME, we showed that emission rate quantifications are critically270

sensitive to plume mask truncation, and we provided an effective wind speed calibration customized to the NS2 leak, for a

plume only observed over a small sea foam patch. Plume masks over land can be truncated due to cloud coverage or dark

albedo artefacts (waterbodies like rivers, lakes, etc.), which then cause a similar emission rate underestimation.

Using these two-fold customized calibrations for MBSP and IME in a Monte Carlo ensemble approach, we have assessed

that no firm conclusion can be made about individual L8 or S-2B detection of the NS2 methane leak. Positive methane leak275

rates appear to be more likely than negative ones in both single and dual-overpass Monte Carlo ensemble estimates, and point

towards a best estimate of 502± 464 t/hr, assuming L8 and S-2B quantifications are independent.

Overall, we see our work as a methodological cautionary tale illustrating how implicit method assumptions need to be

considered and compensated for in unusual observation cases such as this one. Our nuanced results with large uncertainties

are not surprising: this exceptional Nord Stream leak event pushed Earth imagers that were not initially designed to observe280

greenhouse gases - even less over water - to their very limits.

Data availability. Landsat 8 and Sentinel-2B data used in this work are publicly available and were retrieved from the Google Earth Engine

as 2 km-side square images of given targets, from collections LANDSAT/LC08/C02/T1_TOA and COPERNICUS/S2_HARMONIZED,

respectively. All images are listed in the Supplements.
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