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Abstract. Accurate models for the viscous densification of snow and firn under mechanical stress are of primary importance

for various applications, including avalanche prediction and the interpretation of ice cores. Formulations of snow and firn com-

paction in models are still largely empirical, instead of using microstructures from micro-computed tomography to numerically

compute the mechanical behavior directly from the physics at the micro-scale. The main difficulty of the latter approach is the

choice of the correct rheology/constitutive law governing the deformation of the ice matrix, which is still controversially dis-5

cussed. Being aware of these uncertainties, we conducted a first systematic attempt of microstructure-based modeling of snow

and firn compaction. We employed the Finite Element suite ElmerFEM using snow and firn microstructures from different

sites in the Alps and Antarctica to explore which ice rheologies are able to reproduce observations. We thereby extended the

ParStokes solver in ElmerFEM to facilitate parallel computing of transverse isotropic material laws for monocrystalline ice.

We found that firn (density above 550 kg m−3) can be reasonably well simulated across different sites assuming a polycrys-10

talline rheology (Glen’s law) that is traditionally used in glacier or ice sheet modeling. In contrast, for snow (density below

550 kg m−3) the observations are in contradition with this rheology. To further comprehend this finding, we conducted a sensi-

tivity study on different ice rheologies. None of the material models is able to explain the observed high compactive viscosity

of depth hoar compared to rounded grains having the same density. While on one hand our results re-emphasize the limitations

of our current mechanical understanding of the ice in snow, they constitute on the other hand a confirmation of the common15

picture of firn densification as a foam of polycrystalline ice through microstructure-based simulations.

1 Introduction

Once deposited on the ground, snow and firn are subject to the overburden stress imposed by the weight of the overlying snow

or firn column. This causes the slow and viscous compaction of the snow and firn layers and their densification over time

(e.g. Kojima, 1975; Herron and Langway, 1980). Accurate prediction of the rate of the compaction is of primary importance20

for various applications of the cryospheric sciences. For instance, the densification of firn determines the time scale at which

atmospheric gases are enclosed in polar ice (Schwander et al., 1993). Faithful modeling of firn densification is thus a critical
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component for the interpretation of ice cores (Goujon et al., 2003; Witrant et al., 2012; Buizert, 2021). However, observed

variations in the densification rate of different layers still lack a conclusive explanation in view of either microstructural or

compositional origins (Hörhold et al., 2012; Fujita et al., 2016). This situation is in remarkable similarity to snow. The slow25

densification of seasonal snow determines the time scale for the existence of persistent weak layers as a major source of

avalanche danger (Schweizer and Lütschg, 2001). Faithful modeling of snow densification would greatly improve the capacity

of a detailed snowpack model to predict this time scale and the presence of persistent weak layers over the winter season.

Still, for snow there are well known differences in densification rates between different layers (rounded grains and depth hoar)

(Kojima, 1975; Calonne et al., 2020) that still lack a conclusive explanation. In view of these similarities, holistic approaches30

to snow and firn densification are desired to identify common microstructural controls.

Due to the progress in micro-computed tomography (µCT) in cryospheric sciences within the last decade, 3D microstruc-

tures of snow and firn samples are now widely used (e.g. Löwe et al., 2013; Calonne et al., 2019; Letcher et al., 2022). Based

on µCT, the effective material properties of snow or firn can now be derived in a physically consistent manner, based on the

underlying microstructure and the physics at the pore scale. This leads to an effective (upscaled) material characterization35

using homogenization methods and numerical simulations (Torquato, 2002; Auriault et al., 2009). For example, for the thermal

conductivity of snow and firn, upscaling methods have been widely used, yielding a fairly consistent picture of how the mi-

crostructure determines the effective thermal properties (Calonne et al., 2011; Löwe et al., 2013; Riche and Schneebeli, 2013;

Calonne et al., 2019; Fourteau et al., 2021). For snow and firn compaction, such a consistent picture is still lacking.

Despite the aforementioned requirement on accuracy, the formulation of slow compaction of snow and firn in models remains40

largely empirical (e.g. Vionnet et al., 2012; Lundin et al., 2017) and lacks a detailed microstructure-based justification. To the

best of our knowledge, only Theile et al. (2011), Chandel et al. (2014), and Wautier et al. (2017) have made the attempt

so far to estimate the effective viscous response of snow using µCT images and microstructure-based non-elastic (plastic or

viscoplastic) simulations. While all of them led to an apparent agreement with measurements, they were based on very different

assumptions about the rheology of the ice material accommodating the deformation at the micro-scale. The main difficulty45

for developing a microstructure-based formulation of compaction and its integration in snow and firn models, is the present

disagreement concerning the dominating mechanism(s) driving the mechanical deformation of ice at the micro-scale. While it

is generally accepted that firn densification occurs through creep in the ice matrix, several types of creep have been proposed

in the literature. For instance, Arthern et al. (2010) assumes the ice to deform according to a Nabarro-Herring creep, where

deformation occurs through vacancy diffusion in the crystals, while Barnola et al. (1991) or Salamatin et al. (2009) assume50

a power-law creep law that originates from dislocation creep. For snow, the mechanism of deformation remains even more

elusive. Some studies support the idea that the ice in snow deforms through a dislocation-creep mechanism (Kirchner et al.,

2001; Scapozza and Bartelt, 2003; Wautier et al., 2017). This led to the appealing concept of snow as foam of (polycrystalline)

ice (Kirchner et al., 2001). Other studies rather support the idea that the compaction of snow involves grain boundary sliding

(Alley, 1987; Salamatin et al., 2009; Schultz et al., 2022). This uncertainty is for instance reflected by the choice of Wautier55

et al. (2017) considering three different ice power-law rheologies with an ice fluidity about 1000 times higher than the usually
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reported value (e.g. in Chap. 3 of Cuffey and Paterson, 2010). Therefore, the most promising approach is to allow for flexibility

in the material model when comparing simulated densification rates with observations using diverse data sets.

The aim of this article is to study if the viscous compaction of snow and firn could be consistently simulated directly

from the microstructure using a similar numerical approach. We use different microstructures (rounded snow, faceted snow,60

and dense firn) to assess the validity of this modeling approach over a broad range of possible microstructures. Snow and

firn microstructures were obtained by µCT imaging of snow and firn cores from different sites in the Alps and Antarctica,

where independent estimates of observed densification rates are available through complementary measurements. We employ

and extend ElmerFEM as computational platform to make contact to established procedures in the ice flow community. In

this setup, we investigate which viscous ice matrix rheology (variants of Glen’s law) is able, or is not able to appropriately65

reproduce the observations of snow and firn compaction.

The manuscript is organized as follows. Section 2 presents the minimal theoretical background used throughout this work.

Section 3 details the data and numerical simulations set-up that were used for the study, and Section 4 presents and discusses

our results.

2 Theoretical background70

For snowpack and firn models, it is still impossible to represent the 3D microstructure of a whole snowpack or firn column

explicitly. Instead, these models rely on an upscaled (or volume averged) description where the snow/firn can be described as

a homogeneous medium characterized by effective material properties (Torquato, 2002; Auriault et al., 2009) that are often

referred to as macroscopic to emphasize the separation of scales from the characteristic (microscopic) length scales where the

theoretical description is formulated. Accordingly, the compaction of snow and firn is described in terms of a macroscopic75

strain rate Ė resulting from the macroscopic overburden stress Σ. For snow or firn modelling, purposes it is thus required

to derive macroscopic constitutive laws Ė as Ė = f(Σ), where f is a function that characterizes the mechanical response of

snow/firn that depends on the snow/firn microstructure and other relevant variables, such as the temperature (Arnaud et al.,

2000; Bartelt and Lehning, 2002; Vionnet et al., 2012). The aim of this section is to provide some general considerations on

the functional form of f .80

2.1 Conservation laws

We start from the equations governing the mechanical response at the micro-scale. As we are interested in the slow compaction

of snow and firn over timescales of days to years, we resort to the common assumption that elastic stresses have been relaxed

and that the ice in the microstructure is responding in a purely viscous fashion. This assumption is supported by the relaxation

time scale of elastic stresses in snow, that is of the order of hours (Theile et al., 2011). Technically, this assumption allows to85

describe the ice as an incompressible, (non-linear) viscous fluid and the deformation of the viscous ice matrix is then governed
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by the Stokes equations

∇ ·σ(x) = 0 x ∈ Ωi (1)

∇ ·u(x) = 0 x ∈ Ωi (2)

where x is the three dimensional position vector, σ(x) is the microscopic stress tensor field, u(x) is the microscopic defor-90

mation velocity field, Ωi is the three-dimensional domain that is occupied by the ice matrix, and ∇· denotes the divergence

operator. The Stokes equations need to be complemented by a constitutive law that characterizes the rheology of the ice.

2.2 Constitutive law

The constitutive laws considered in this work are variants of Glen’s law which involve a power-law non-linearity of the form

ϵ̇(x) = sn−1
eq a(x,T ) : s . (3)95

Here ϵ̇(x) is the microscopic strain rate tensor, s is the deviatoric part of the microscopic stress tensor σ, seq =√
sijsij is the

equivalent deviatoric stress, n is a non-linearity exponent, and a is referred to as the fluidity. In the general case, the fluidity

a is a fourth-order tensor that depends on temperature T and potentially on the position x in the microstructure, if e.g. the

c-axis orientation is allowed to vary in space. The tensorial nature of a is required to represent anisotropic materials, that

deform preferentially in some directions (such as the ice mono-crystal, e.g. Meyssonnier and Philip, 1996; Gagliardini and100

Meyssonnier, 1999). In the case of an isotropic rheology, the fluidity a is a scalar a times the unit tensor (e.g. Schulson and

Duval, 2009). The constitutive material law given by Eq. (3) corresponds to viscoplastic creep, where the deformation occurs

through dislocation movement within the ice material.

With the constitutive law Eq. (3), it can be shown (Tsuda et al., 2010) that the macroscopic strain rate of a sample under

compression in a snowpack or in a firn column can be expressed in the form105

Ė = A(µ,T )Σn (4)

where A is a scalar that does not depend on the overburden stress Σ, but depends on the snow/firn microstructure µ and

also potentially on the temperature T . Physically, A represents a form of fluidity, analogous to the fluidity tensor a at the

microscopic scale. We also stress that the macroscopic non-linearity exponent n in Eq. (4) is the same as in the microscopic

deformation law of Eq. (3). In snow sciences, the viscous compaction of snow and firn is traditionally expressed in the form110

Ė =
Σn

η
(5)

where we refer to η = A−1 as the compactive viscosity (factor). Again, η does not depend on the magnitude of the loading Σ,

but only on the microstructure and the temperature of the sample. We note that the compactive viscosity is sometimes defined

by the ratio Σ/Ė (e.g. Kojima, 1967; Wiese and Schneebeli, 2017) irrespective of the non-linearity of the constitutive law.

While only the latter definition of the compactive viscosity has also physical units of a viscosity (i.e. Pa s), we do not follow115
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this convention here as in this case the compactive viscosity is not an intrinsic (microstructure and temperature dependent)

property of the snow/firn sample. It would also depend on the overburden stress Σ.

Since the microscopic constitutive law characterizes visco-plastic processes in the ice, the microscopic rheology depends

on temperature. This temperature-dependence is inherited by the macroscopic compactive viscosity η (Kirchner et al., 2001).

Typically, the fluidity a in the microscopic law involves an Arrenhius factor with an activation energy Q, which implies the120

same temperature-dependence

A(µ,T ) = A0(µ)exp
[
Q

R

(
1
T0
− 1

T

)]
(6)

at the macroscopic scale. Here, A0 is a reference macroscopic fluidity that only depends on the microstructure, and T0 a

reference temperature. Re-expressed in terms of compactive viscosity this implies

η(µ,T ) = η0(µ)exp
[−Q

R

(
1
T0
− 1

T

)]
(7)125

where η0 = 1/A0 is a reference compactive viscosity that only depends on the microstructure.

2.3 Viscosity ratios

For the comparison of the macroscopic mechanical behavior of different microstructures, it is helpful to utilize viscosity ratios.

For two snow/firn samples under the same mechanical load Σ at the same temperature, the ratio of their respective macroscopic

strain rates ĖA and ĖB is given by130

ĖA

ĖB

=
ηB

ηA
=

η0B

η0A
(8)

The ratio is independent of any scalar prefactor in the microscopic deformation law. Indeed, halving the fluidity a results in

a doubling of both η0A and η0B , and thus their ratio remains unchanged. Viscosity ratios are an interesting metric to test the

applicability of different ice rheologies to snow/firn modelling, as they remove the influence of a potentially poorly constrained

scalar prefactor in the microscopic deformation law, leaving only the non-linearity exponent n and space dependence of the135

rheology as relevant parameters.

3 Data and Methods

3.1 Benchmark densification rates and µCT images

In order to compare our simulations with independent estimates, we selected different Alpine and Antarctic field campaigns

with available µCT data and complementary measurements that can be used to constrain observed densification rates. These140

estimates are used for the comparison.
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3.1.1 Alpine snow

For Alpine snow, we rely on the RHOSSA campaign (Calonne et al., 2020). This extensive data set provides daily density

profiles of a snowpack over the 2015-2016 snow season at the Weissfluhjoch observation site in the Swiss Alps. Four snow

layers have been carefully tracked and measured with several instruments over the entire season, including a RG snow layer145

and a DH snow layer (following the classification of Fierz et al., 2009). From these data, the observed, macroscopic strain rate

of a given layer can be estimated from

Ė =
ρ̇

ρ
(9)

where ρ and ρ̇ are the density of a layer and its time derivative, respectively. By convention, the strain rate is positive in the case

of compaction. The relevant overburden stress Σ imposed on a given layer can be obtained by integrating the density profile150

above that layer to the snow surface

Σ =

surface∫

layer

dz gρ(z) (10)

where ρ(z) is the density at height z in the snowpack, and g is the gravity acceleration.

The density time series of the layers were obtained on a daily basis using a snow penetrometer (SnowMicroPen; Calonne

et al., 2020). The resulting data includes an apparent day-to-day variability that stems from spatial variability, resulting in a155

strongly fluctuating strain rate estimate when using Eq. (9) directly. This variability can cause an apparent decrease in density

from one day to the other, which would be interpreted as a negative strain rate. To avoid such issues, the time evolution of the

tracked snow layers was smoothed by visually selecting tie-points in the profiles, in order to reconstruct a piece-wise linear

and strictly increasing density time series. In order to include the uncertainty of this method, a total of 25 time series were

manually created for both the DH and RG layers. Their median values were taken as the observed strain rate of the layer and160

used to deduce the compactive viscosity. The upper and lower bounds of this procedure were used to characterize the spread

of this method.

The density time series of the tracked layers in the RHOSSA campaign was regularly validated by µCT measurements,

however at a much lower temporal resolution. Therefore the snow was regularly sampled and the microstructure was obtained

with µCT at a resolution of 18 µm (Calonne et al., 2020). For our study, we selected µCT scans from the DH and RG layers, on165

the 13/01/2016 and 16/02/2016. This selection was motivated by the fact that on the 13/01/2016 the RG and DH samples have

a similar density but different compaction rates, while on the 16/02/2016 the two snow layers have a similar compaction rate

but different densities. Moreover, the DH and RG layer in the RHOSSA snowpack were almost adjacent, and therefore subject

to a similar overburden stress and a similar temperature of about −3◦C. Differences between these two layers thus cannot be

explained by a difference in stress or temperature, but should rather reflect a difference in their intrinsic mechanical properties.170

These RHOSSA layers provide an ideal benchmark for simulations, which should be able to predict that DH snow tends

to be much more resistant to compaction than RG snow (Kojima, 1967, 1975), an important feature of snow mechanics that

models need to account for (Vionnet et al., 2012).
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3.1.2 Antarctic firn

For the estimation of firn compaction rates with simultaneous microstructure measurements, we rely on an Antarctic field175

campaign. Our data originate from the B34 and B54 ice cores, both drilled on the East Antarctic plateau. The B34 core was

drilled at Kohnen Station, a site characterized by a 10 m borehole temperature of−44.5◦C (Weinhart et al., 2020), and the B54

was drilled near the OIR camp (displayed in Fig. 1 of Weinhart et al., 2020), a site with a measured 10 m borehole temperature

of −53◦C.

For each firn core, a bulk density versus depth and an ice-age versus depth profiles were produced based on firn core weight-180

ing and temporal synchronization with other cores. Assuming that the firn density profile is in steady-state, the compaction rate

of the firn column at a given depth can be estimated by

Ė =
1
ρ

dρ

dAge
. (11)

Here dρ
dAge is the derivative of the density profile with respect to the age profile. To obtain the density versus age profile, we

combine the density-depth and the age-depth profiles. Similarly to the case of the Alpine snowpack, the overburden stress Σ185

for a layer at a given depth is calculated from the integration of the density of the overlying firn column.

As the density profiles were obtained by weighting 1 m long cores, they do not resolve layer-to-layer variability and the

derived strain rate can already be regarded as an averaged (smoothed) bulk value. The strain rate of an individual layer in 1 m

core might still differ from this bulk value if its mechanical and microstructural properties differ from the average ones in the

core.190

While the firn density profiles are therefore sufficiently smooth and do not include any decrease of density with depth (which

would be interpreted as expansion in Eq. 11), the deduced strain-rate profiles are still fluctuating, resulting in large and non-

physical variations of the compactive viscosity at the meter scale. Consistent with the Alpine case, we therefore smoothed the

profiles by manually selecting tie-points to create a piece-wise linear profile from which the compactive viscosity is deduced.

In order to characterize the uncertainty of the method, profiles corresponding to the outer envelops of the strain rate profile195

were also created and used to derive upper and lower bonds for the strain-rate profiles.

Finally, these firn core data are complemented by 36 µCT scans (4 from B34 with a 40 µm resolution, 32 from B54 with a

30 µm resolution), with ice volume fractions ranging from 0.428 to 0.933 (that is to say densities ranging from about 390 to

860kgm−3, assuming a density of ice of 917kgm−3).

3.2 Finite Element Modeling200

The experimental observations of snow and firn compaction were complemented with simulations using the finite element

method (FEM). The goal of these simulations is to estimate the compaction rate of a sample based on its microstructure and a

given microscopic ice rheology. Our simulation workflow, from µCT scanning to the estimation of the compactive viscosity, is

schematically summarized in Fig. 1 and detailed below.
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Figure 1. Simulation workflow used in this study, in order to estimate the compactive viscosity of a snow/firn sample: 1- Production of a

tetrahedral mesh from the µCT images using CGAL, 2- Simulation of strain rate-imposed compaction using ElmerFEM (the color-scale

stands for the vertical velocity), 3- Computation of the resulting macroscopic stress exerted at the top and bottom of the sample, and 4-

Computation of the compactive viscosity of the microstructure.

3.2.1 Image segmentation and mesh generation205

The first step of our simulation workflow is to produce tetrahedral meshes representing the snow/firn microstructures. As de-

tailed below, we performed simulations using both isotropic and anisotropic constitutive laws for the ice. Depending on whether

a simulation is performed with an isotropic or an anisotropic material, the mesh generation process was slightly different.

For the isotropic ice simulations, each µCT image was first segmented into a binary voxel image of ice and air (as detailed210

in Calonne et al., 2020) which was used as input for the CGAL1 meshing library (Fabri et al., 2000) in order to produce a

tetrahedral mesh of the ice matrix. Disconnected parts of the mesh were removed by component labeling, in order to obtain a

simply connected region for the ice microstructure. The last step is necessary as disconnected regions cannot carry mechanical

loads and lead to an ill-defined mathematical problem in the finite element formulation.

As the goal of using an anisotropic ice material was to model snow microstructure as an ensemble of mono-crystals with a215

crystallographic texture, the µCT images were also segmented into individual ice crystals as in Theile and Schneebeli (2011),

Hagenmuller et al. (2014), or Willibald et al. (2020). As µCT does not carry any information about the crystallographic

orientation of the ice, this segmentation was done on a purely geometrical basis using a watersheding algorithm, following

Willibald et al. (2020). The resulting segmented images for two RHOSSA samples are shown in the left column of Fig. 2.

The segmentation appears to be realistic when compared to c-axis orientation measurements in snow from thin-sections (Riche220

et al., 2013, Fig. 3). The crystal-segmented µCT images were then meshed using the CGAL software and disconnected parts

removed, following the same procedure as for the standard binarized µCT images. Visualisations of segmented 3D FEM

meshes, composed of various individual ice crystals, are displayed in the right column of Fig. 2.

1https://www.cgal.org/
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Table 1. Description of the alpine snow and Antarctic firn µ-CT images used for finite elements simulations.

https://www.overleaf.com/project/64537e027d0b3cca12c87549

Sample(s) Voxel size (µm) Sample(s) size (cm3) Ice Volume Fraction Temperature (°C)

RHOSSA RG 13/01/2016 18 1.08× 1.08× 1.08 0.27 -3

RHOSSA DH 13/01/2016 18 1.44× 1.44× 1.44 0.28 -3

RHOSSA RG 16/02/2016 18 1.44× 1.44× 1.08 0.46 -3

RHOSSA DH 16/02/2016 18 1.44× 1.44× 1.44 0.30 -3

B34 40 1.2× 1.2× 1.2 0.43 to 0.93 -44.5

B54 30 1.8× 1.8× 1.8 0.60 to 0.80 -53

In each case, we used the full size of the µCT images in order to have as representative as possible volumes. Specifically,

the size of the RHOSSA snow samples corresponds to 1.44x1.44x1.44 cm3 cubes for both the DH samples and the RG sam-225

ple of the 16/02/2016, and a 1.08x1.08x1.08 cm3 cube for the RG sample of the 13/01/2016. The B34 samples correspond

to 1.2x1.2x1.2 cm3 cubes and the B54 samples to 1.8x1.8x1.8 cm3 cubes. The samples used for FEM modeling and their

characteristics are summarized in Table 1.

3.2.2 Finite element solution230

Once a tetrahedral mesh is obtained, the Stokes equations Eq. (1) are solved using the finite element method to estimate the

compactive viscosity of a given microstructure for a given microscopic rheology as outlined in Section 2. The simulations were

carried out with the ElmerFEM2 software, regularly used in ice sheets modeling. In this way, we can build on existing work

in the context of ice flow that is typically done on larger scales (Gagliardini et al., 2013; Law et al., 2023). As our meshes

typically contain ten millions of elements, we used the ParStokes equation solver, that was specifically developed for solving235

the Stokes equations for a large number of elements on a parallel computer (used for instance in Schannwell et al., 2020).

However, the ParStokes solver was originally developed for isotropic materials only. For the purpose of our study, we extended

the ParStokes solver to cope also with a linear transverse isotropic material (see Appendix A), in order to emulate the behavior

of ice monocrystals (Gagliardini and Meyssonnier, 1999; Burr et al., 2017). With this transverse isotropic rheology, shearing

in the basal plane (the plane perpendicular to the c-axis of the crystal) is set to be 100 times faster than shearing perpendicular240

to it (Burr et al., 2017).

For solving the linearized FEM equations, we relied on the BiCGSTAB or the GMRES iterative methods, and convergence

was assumed when the relative residual of the system reached at least 5×10−5 (some simulations reached a lower convergence

criterion, but others showed quite slow convergence rates after passing 1× 10−4 which prevented reaching smaller criteria).

2http://www.csc.fi/elmer
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Figure 2. Geometrical segmentation of µCT images into individual grains (left) and the corresponding 3D meshes (right). Each grain is

represented by a given color. Samples correspond to the DH and RG snow sampled on the day 13/01/2016 of the RHOSSA campaign.

For non-linear problems, the non-linear iterations were considered to have converged when the relative difference between two245

consecutive iterations was smaller than 1× 10−4.

3.2.3 Boundary conditions

For the simulations, boundary conditions need to be prescribed. For the compression of snow and firn samples, we used the

so-called Periodicity compatible Mixed Uniform Boundary Conditions (PMUBC; Pahr and Zysset, 2008). The vertical strain

rate is imposed by prescribing the top and bottom vertical velocities, while a vanishing normal velocity is imposed on the sides.250

The advantage of such boundary conditions is twofold. First, these conditions mimic the natural, laterally constrained situation

during compaction in snowpacks and firn columns. Second, these boundary conditions require the smallest volumes to achieve

a representative behavior (Pahr and Zysset, 2008).

Once the simulation has completed, the total reaction forces acting on the top and bottom faces are calculated. The macro-

scopic overburden stress is computed as the resulting average force divided by the sample surface area. Finally, the compactive255

viscosity η of the sample is obtained as the ratio between the macroscopic stress, with the appropriate non-linearity exponent,

and the prescribed macroscopic strain rate, as given by Eq. (5).
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Figure 3. Stress versus Strain rate curve characterizing the response of a microstructure composed of isotropic ice under compression. The

macroscopic response follows a power-law with the same exponent as the ice material, here with n = 3. A cut-view of the microstructure, a

cube with a hollow sphere inside, is displayed in the top left corner. The blue-to-red color scale indicates the vertical velocity field.

3.3 Testing the finite element setup

To provide some confidence in the correctness of the finite element setup, we conducted two numerical test experiments.

First, we verified that the macroscopic response of a microstructure with the microscopic constitutive law (3) follows the260

same power-law with the same stress-exponent n. To this end we used a simple, spherical inclusion microstructure consisting

of a cube with a hollow sphere in its center (displayed in the top left corner of Fig. 3). The deformation law chosen for the

constituting material is an isotropic power-law with n = 3 and a fluidity pre-factor a = 1Pa−3 s−3. Using our finite element

framework, the microstructure was deformed with different imposed macroscopic strain rates, and the macroscopic stress was

obtained from the output of the simulations. The results are shown in Fig. 3 and confirm that the macroscopic strain rate265

versus stress curve indeed follows a power-law with n = 3, as predicted by Eq. 5. The corresponding compactive viscosity of

this simple microstructure can be evaluated to η = 85.1 Pa3 s (and this value of course depends on the specific choice of the

non-linear exponent n and of the fluidity pre-factor a).

Second, we tested the anisotropic behavior of the implemented transverse isotropic constitutive law which is supposed to

represent the rheology of an ice mono-crystal. To this end, we performed simulations of the compression of cylinder composed270

of a single mono-crystal with flatten top and bottom which is referred to as the flattened Brazilian test (Wu et al., 2018).

For the boundary conditions, the bottom boundary of the sample is fixed while a constant vertical velocity is imposed at the

top. The results of the simulations are displayed in Fig. 4, and show the appearance of the well-known shear band when the

crystallographic orientation is tilted compared to the direction of compression. While the precise position and orientation of

this shear band are non-trivial and depend on the geometry of the sample (notably through stress concentrations developping275

near corners, as visible in e.g. Fig. 8 of Patel and Martin, 2018), such a shear band is characteristic for an anisotropic material
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Figure 4. Compressive response of a flattened cylinder composed of a transverse isotropic material, depending on the orientation of the

crystal axis (0◦ and 30◦ compared to the vertical). The small gray arrows indicate the velocity of the ice material, and the color-scale

indicates the vertical component of the velocity field.

and does not appear in the isotropic case. Moreover, the resulting macroscopic stress required to obtain the same imposed

macroscopic strain rate is about 23 times smaller in the case of a tilted c-axis, showing the softening of the material depending

on the respective orientation between the compression and the crystal.

4 Results and Discussion280

We start with the simplest rheology for the ice matrix commonly used in literature, namely Glen’s law for isotropic, polycrys-

talline ice.

4.1 Firn is a foam of polycrystalline ice - snow is not.

Several works in literature proposed that the deformation of the ice matrix in snow and firn is similar to the deformation

of isotropic polycrystalline ice, i.e. glacier ice. This idea dates back to Mellor and Smith (1966), where the deformation of285

snow was experimentally studied alongside polycrystalline ice to unravel the similarities between the two. This approach has

been supported by subsequent work of Kirchner et al. (2001), who concluded that the viscous compaction of snow has the

same non-linear properties as polycrystalline ice. In this respect, snow is viewed as a "foam of ice" (Kirchner et al., 2001), or

more precisely a foam of polycrystalline ice. The viscoplastic deformation of polycrystalline ice is nowadays reasonably well

understood and usually cast into Glen’s law for an isotropic power-law rheology with n = 3 and tabulated fluidity values de-290

pending on the temperature of the ice (Schulson and Duval, 2009; Cuffey and Paterson, 2010). As the benchmark densification

rates for snow and firn were obtained with temperatures around −3, −44.5, and −53◦C, the corresponding ice fluidity are as

1.7× 10−24, 5.2× 10−27, and 1.4× 10−27 Pa−3 s−1 respectively.

Our first attempt was thus to simulate the deformation of snow and firn assuming Glen’s law as the rheology for the ice

matrix. Fig. 5 shows the comparison between the compactive viscosities obtained with FEM simulations and those derived295

from the experimental data.
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Figure 5. Comparison between simulated and observed compactive viscosities of snow and firn samples, assuming Glen’s law for the ice

rheology. The Depth Hoar and Rounded Grains samples and data are taken from the RHOSSA campaign, and the B34 and B54 ones from

the firn cores. The ice volume fractions of the simulated points are computed based on the CT scans. The shaded areas correspond to the

uncertainties in deriving the compactive viscosity values, as described in Section 3.1

.

Concerning firn (ice volume fraction above 0.6), the Figure shows a general agreement, despite a cluster of simulated B54

samples that appear not viscous enough. Our interpretation is that since all these samples were taken at a similar location in

the firn, this very location in the firn column may not be representative for the bulk and steady-state firn column due to the

vertical variability existing in firn (Hörhold et al., 2011; Fourteau et al., 2019). Concerning snow (ice volume fraction below300

0.6), Fig. 5 reveals a large overestimation of the compactive viscosities for all samples. This overestimation of the compactive

viscosity when using Glen’s law is consistent with the results of Theile et al. (2011), that reached a similar conclusion. The

overestimation also exceeds the uncertainties in the observations that were computed as explained in Sec. 3 and shown as

shaded areas in Fig. 5. Moreover, while the RHOSSA observations indicate that on the 13/01/2016 and 16/02/2016 the DH

sample is, respectively, about 5 times and 1 times as viscous as the RG sample, our simulations using Glen’s law predict a305

DH sample that is, respectively, 0.83 and 0.0093 times as viscous as the RG sample. Thus, not only is Glen’s rheology largely

overestimating the viscosity of snow, it also fails in explaining relative differences (viscosity ratios) and as to why DH is such

a viscous snow type compared to RG at the same density, temperature, and overburden stress.

Our results confirm that Glen’s law is appropriate to model firn compaction, but clearly another microscopic ice rheology is

required to explain the viscous compaction of snow.310
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Figure 6. Comparison of simulated compactive viscosity ratios (DH over RG, markers) with observations (dashed lines) from 13/01/2016

and 16/02/2016 for different versions of the micro-scale constitutive law (x-axis).

4.2 Sensitivity study of isotropic rheologies

The disagreement of Glen’s (isotropic polycrystalline) law could be resolved in a pragmatic but physically unjustified way,

by artificially increasing the fluidity a in Glen’s law. Such a rheology could still be an interesting trade-off between physical

rigor and practical considerations, as long as the obtained simulated compactive viscosities reasonably reproduce experimental

observations. For instance, by using an ice rheology with adjusted parameters, different from Glen’s law, Wautier et al. (2017)315

was able to simulate compaction rates that are much more in line with experimental observations. However, such a fudge-factor

would still be in contradiction with our results: As explained in Section 2, the viscosity ratio between samples is independent

of any potential (unjustified) modification of the ice fluidity a. In other words, while modifying the fluidity of the ice can be

used to attenuate the general overestimation of the simulated snow viscosity, it would still fail in explaining why the simulated

compactive viscosity of rounded grains is (relatively) too high when compared to DH snow Fig. 5. Since this relative difference320

between RG and DH is a prominent feature in the densification of snow, we conclude that isotropic power-law rheologies with

n = 3 are not suited for snow modeling.

Detailed snow models rather employ a Newtonian rheology (n = 1) instead (Bartelt and Lehning, 2002; Vionnet et al.,

2012). Macroscopic Newtonian rheologies are also used in low-density firn studies (Schultz et al., 2022). Though employing

the same rheology on the micro-scale in our simulations cannot be directly motivated by an underlying physical argument,325

related numerical experiments will comprehend our understanding of homogenization in snow compaction. Accordingly, we

conducted a sensitivity analysis on microscopic, isotropic constitutive laws using different exponents (n = 1, n = 2, and n = 4)

as similarly done by Wautier et al. (2017). For these simulations, physically-constrained values for the scalar fluidity a of

the ice rheologies are not available. Hence, comparing simulated and observed absolute values of compactive viscosities is
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not meaningful. We therefore focus here on viscosity ratios of DH and RG during the RHOSSA campaign, as this ratio is330

independent of the ice fluidity.

The results of our sensitivity study are shown in Fig. 6 and summarized in Table 2. Similar to Glen’s law for both investigated

days, and independent of the microscopic rheology, the simulations predict a viscosity ratio that is not in agreement with the

observations. One may either consider this as RG snow being too viscous or DH snow being not viscous enough. Moreover,

increasing the non-linearity exponent n leads to a decrease in the viscosity ratio moving farther away from the observations.335

We interpret this result through the differences in geometry between RG and DH. DH is characterized by smaller necks than

RG. This leads to higher local stress concentrations in DH than in RG, which can be confirmed from the stress distribution in

the DH and RG samples. These higher stress concentrations result in higher local strain rates, which are exacerbated by the

non-linear nature of the power-law rheology (for n > 1). This effect is particularly marked on the DH and RG samples from

the 16/02/2016, as shown by the sharp decrease of the DH viscosity compared to that of RG as n increases. Thus, further340

increasing the value of n beyond n = 4 appears unlikely to explain the compactive behavior of DH and RG snow. The insight

from this sensitivty study consolidates our conclusion that the viscous compaction of snow cannot be explained by assuming

that the ice matrix deforms according to a simple isotropic power-law, might it be linear or non-linear.

4.3 Snow as an ensemble of monocrystals

The inability of Glen’s (isotropic polycrystalline) law to explain snow viscous compaction is consistent with the fact that345

microstructural geometrical grains in snow are in fact mono-crystalline units (Riche et al., 2013). The mechanical behavior of

polycrystalline ice arises from the collective behavior of neighboring mono-crystals blocking each other as their preferential

directions of deformation are not compatible with one another. In contrast, the monocrystalline grains in snow have many

free surfaces at the ice/pore interfaces, where the crystals are free to deform (Scapozza and Bartelt, 2003). Thus, the ice

matrix composing snow can be expected to deform much more easily than polycrystalline ice. Note that this reasoning is also350

compatible with the applicability of Glen’s law in firn. Here, due to the lower porosity, there are not so many interfaces with

the pores, and individual ice-crystals tend to block one another, resulting in an ice rheology close to that of polycrystalline ice.

Such a transition in behavior, which is driven by as a transition in density, is widely adopted (Alley, 1987; Arnaud et al., 2000;

Salamatin et al., 2009; Morris et al., 2022)

Therefore, as a natural generalization of our work on snow compaction, we extended our study to an anisotropic rheology,355

in order to advance in the direction of representing the grains in snow as monocrystals. To this end, we conducted simulations

using a transverse isotropic rheology (Meyssonnier and Philip, 1996; Gagliardini and Meyssonnier, 1999). In contrast to the

isotropic rheologies used above, this anisotropic rheology introduces a novel feature at the micro-scale, namely anisotropic

deformations of grains, that shear much more easily in their basal plane than in other directions (Montagnat et al., 2014b).

This idea of modelling snow as an ensemble of monocrystals has been previously proposed by Theile et al. (2011). They found360

that this rheology yielded smaller compactive viscosities, more in line with observed values. However, Theile et al. (2011)

considered only RG microstructures on geometrically simplified meshes. Therefore, the relative comparison between DH and
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Table 2. Ratio between the DH and RG compactive viscosities from various ice rheologies.

Day Isotropic n = 1 Isotropic n = 2 Isotropic n = 3 Isotropic n = 4 Anisotropic Observations

13/01/2016 1.13 1.0 0.87 0.75 0.67 ∼5

16/02/2016 0.18 0.041 0.0093 0.0021 0.11 ∼1

RG in terms of viscosity ratios using the full microstructure constitutes an important cross-validation of this finding related to

the aim of the present work.

For the simulation, the ice crystals were randomly binned into 100 different crystallographic orientation classes, each with365

a given random c-axis orientation. The distribution of the c-axes orientation corresponds to an isotropic texture (i.e. with no

preferential orientation for the c-axes). In order to simplify the comparison between the DH and RG snow simulations, the

same c-axes distribution was used for snow samples taken from the same day. For the present purpose, we limited ourselves to

the linear transverse isotropic rheology that has been proposed for ice (as in Gagliardini and Meyssonnier, 1999).

Results of the simulations for the anisotropic rheology are shown in Fig. 6 and Table 2. They confirm the same disagreement370

that was found with the simulations for the isotropic rheology: the viscosity ratio between DH and RG is too low. Comparing

the viscosity ratios from the anisotropic model with their isotropic counterpart with the same exponent (n = 1) shows that the

performance is even reduced, with a slight decrease of the viscosity of DH relative to RG. The use of a linear transverse isotropic

rheology, meant to represent monocrystal behavior, cannot be considered more realistic. While we have only considered the

linear anisotropic case here, it can be expected that a non-linear anisotropic material law (when using exactly the same grain375

segmentation) would further increase the difference to the observations, for the same reasons as detailed in the isotropic case.

To illustrate the main differences between the anisotropic and the isotropic constitutive law, we computed the deviatoric

stress field in the RHOSSA 13/01/2016 RG microstructure for both material laws. The distribution of the s33 component (i.e.

vertical component) of the deviatoric tensor is displayed in Fig. 7 a. It reveals that overall the two deviatoric stress distributions

are relatively similar, once normalized by the macroscopic stress. Only the tails of the distribution differ. Thus, while stress380

concentrations could be expected due to deformation incompatibilities of neighbouring crystals, they appear to be relatively

limited. This is confirmed by Fig. 7 b, which displays the spatial field of the normalized s33 component within a slice of the

RG microstructure. The anisotropic and isotropic cases show similar spatial patterns of stress concentrations, which appear

to be dictated by ice matrix geometry rather than crystallographic effects. In our simulations, the stress pattern driving the

deformation is only little affected by the use of an anisotropic material with crystallographic orientations. In the case of an385

isotropic crystallographic texture, where crystal orientations are not correlated with zones of stress concentration, the RG and

DH can be expected to be impacted in a similar fashion by their random crystal orientation in zones of stress concentrations.

Thus, the use of an anisotropic material with planes of preferential deformation modifies the compactive viscosity of a given

sample compared to the isotropic case, but the viscosity ratio between two samples remains relatively constant (cf. Fig. 6).

390
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Figure 7. a): Distribution of the s33 component of the deviatoric tensor normalized by the macroscopic stress Σ in an RG microstructure,

using either an isotropic or anisotropic constitutive law for the ice matrix. b): Field of the normalized s33 component of the deviatoric tensor

in a RG microstructure, using either an isotropic or anisotropic constitutive law for the ice matrix. Red colors stand for compressive zones

and blue colors for tensile zones.

4.4 Perspectives for the viscous compaction of snow and firn

By considering the viscous compaction of snow and firn in the same computational, microstructure-based framework, we were

able to support and contradict underlying mechanisms that were previously hypothesized in the snow and firn literature.

The overall agreement of the isotropic simulations with observed firn densification rates using a published fluidity for the

actual firn temperature, supports the notion of firn as a foam of (isotropic, polycrystalline) ice (Kirchner et al., 2001) where the395

deformation stems from (intra-crystalline) dislocation creep(Schulson and Duval, 2009). We note that in our study, the rheology

for polycrystalline ice was taken from Cuffey and Paterson (2010), which reports a non-linear exponent n = 3. However, the

recent experimental study of Li and Baker (2022) on firn compaction rather reports a non-linear exponent of n∼ 4. As noted by

Li and Baker (2022), a non-linear exponent closer to 4 is also compatible with observations of polycrystalline ice (e.g. Goldsby

and Kohlstedt, 2001; Bons et al., 2018). While the question of the best choice for n remains open, these inconsistencies400

in the specific n value do not contradict our result that firn compaction can be adequately simulated using an ice rheology

adjusted on polycrystalline ice observations. Remaining differences between simulations and firn core observations could be

further explored if microstructure profiles were continuously available at high vertical resolution, similar to (Montagnat et al.,

2020). Thereby, the separation of scales between observations (strain rates averaged over one meter) and simulations (cm-sized

samples) and the associated uncertainty could be further narrowed down.405
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In contrast, the notion of snow as a foam of ice following the same creep mechanism as high density firn is clearly ruled out

by our study. While this result seems trivial in view of the number of studies highlighting the difference between snow and firn

(e.g. Herron and Langway, 1980; Arnaud et al., 2000; Morris et al., 2022) we stress that these differences were hitherto never

explored by microstructure-based simulations.

Our results for snow re-initiate the question about the dominant deformation mechanisms. By using viscosity ratios (cf. Fig.6),410

we were able to show that DH and RG snow cannot be consistently modelled by using the same micro-scale constitutive law

(isotropic or anisotropic), strongly suggesting a fundamental difference in the underlying physics. Viscosity ratios provide a

complementary benchmark, since biases resulting from the numerics or the prefactor in the micro-scale constitutive law should

cancel out.

On one hand, this raises the question of whether the agreement for the anisotropic rheology found in Theile et al. (2011)415

would still hold when including different snow types at the same temperature and relaxing the mesh simplification step in rep-

resenting the microstructure. Likewise, exploring anisotropic rheologies should be extended further, for instance by including

non-linearity effects (Schulson and Duval, 2009; Montagnat et al., 2014b) or a preferential orientation of the c-axes (Riche

et al., 2013). Our extension of the ParStokes solver in ElmerFEM could provide an efficient modelling starting point in the

direction of transverse-isotropic, viscous rheologies with a texture. Concurrent measurements of the texture are then unavoid-420

able. Alternatively, micro-scale constitutive laws may be directly adopted from crystal plasticity, and simulated using dedicated

numerical techniques based on Fast Fourier Transformation (Knezevic et al., 2009; Hure, 2019).

On the other hand, our viscosity ratios also raise the question of whether the density (of snow or firn) is actually the relevant

property that discerns between different deformation mechanisms (Alley, 1987; Morris et al., 2022). Our snow samples were

selected to include cases (Fig. 5) with virtually the same density but clear differences in the observed densification rates.425

While the comparison to observations (for snow and firn) is subject to the same uncertainty (separation of scales between

cm-sized simulations and layer-averaged densification rates in the observations) care needs to be taken in assuming a density-

driven transition to a different deformation mechanism, e.g. grain boundary sliding (GBS) (Raj and Ashby, 1971; Langdon,

2006). Such a GBS mechanism provides an alternative to the intra-crystalline deformation discussed so far (Theile et al.,

2011). Indeed, it is often assumed that at low density the deformation of snow occurs through localized stress relaxation at430

the junctions between grains (Alley, 1987; Salamatin et al., 2009; Schultz et al., 2022). However, the implementation of such

a deformation mechanism in FEM, and an extension of the sensitivity analysis Fig. 6 to fundamentally different forms of the

micro-scale constitutive law Eq. 3, is not straightforward. Standard FEM techniques are not suited for localized, discontinuous

deformations. Simulations of grain boundary sliding at the micro-scale would require more complex numerical methods, such

as the Extended Finite Elements Method (Khoei, 2014). This method has been developed to account for discontinuities and435

has been successfully applied to model grain boundary sliding in the past (Simone et al., 2006).

Finding the relevant drivers for transitions in the compactive viscosity is even complicated by recent experimental studies

such as Wiese and Schneebeli (2017). This work found an immediate increase of the compactive viscosity during temperature

gradient metamorphism (compared to isothermal samples), despite the absence of strong differences in structural parameters

such as density, SSA, or structural anisotropy. We believe that this kind of studies constitute a good experimental direction440
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to identify active, microscopic deformation mechanism(s), and should be able to explain why very small microstructural dif-

ferences can lead to large compactive viscosity differences. Moreover, the acquisition of µCT images during the controlled

deformation of snow in the laboratory could help to identify the microscopic mechanism(s) at play during deformation and be

a guide to select the appropriate physics for microstructure-based simulations.

Besides snow compaction, the simulations using a transverse isotropic rheology showcased that the ability of ElmerFEM’s445

ParStokes solver to handle highly-parallelized simulations (as in Schannwell et al., 2020) can be extended to account for

complex anisotropic rheologies. Such a possibility could for instance be useful for large-scale ice sheet modeling, where the

ice material can present an anisotropic behavior due to texture development (e.g. Gillet-Chaulet et al., 2006; Montagnat et al.,

2014a). As mentioned in the Appendix A, the ParStokes solver relies on an approximation of a Schur-complement for block-

preconditioning. A path of future development for the ParStokes solver, and its ability to robustly handle anisotropic materials,450

could be to derive a better approximation of the Schur-complement, which could improve the block-preconditioning stage.

5 Conclusions

Modelling the viscous densification of snow and firn directly from the microstructure of samples constitutes an important

step towards replacing empirical parametrizations in models with physics-based laws. These computationally demanding,

microstructure-based simulations can now be conveniently carried out with the required accuracy (mesh representation) using455

parallel computing. A holistic snow and firn densification picture is still hampered though by the limited insight into the micro-

scale rheology of the ice matrix. This study explored several rheologies in microstructures taken from field campaigns and

compared them to independent estimates. Using firn cores drilled in East Antarctica, our simulations largely confirmed that

the ice matrix deforms according to an isotropic polycrystalline rheology, as classically used to model glacier or ice sheet

ice. For snow, none of the tested rheologies (isotropic vs anisotropic, linear vs non-linear) is able to quantitatively predict the460

large viscosity ratio between depth hoar and rounded grains, which is a critical requirement in snowpack modelling. Future

(experimental and numerical) work is urgently needed to further constrain the form and the parameters in the micro-scale

constitutive law of ice in snow.

Appendix A: Implementation of an anisotropic rheology in ElmerFEM

For the implementation in ElmerFEM (or any other FEM framework) of an anisotropic ice rheology, one needs to define the465

constitutive law that relates the deviatoric stress tensor s to the strain rate tensor ϵ̇. In the case of a linear and anisotropic

rheology, this constitutive law can be applied thanks to a fourth-order viscosity tensor M , i.e. s = M : ϵ̇. While we do not

consider this case in our study, one could also use a non-linear rheology. For this purpose, this constitutive law would need to

be linearized around the current estimate of the solution, and this linearized law expressed through a fourth-order tensor. The

solution would then be iteratively approached (typically through Picard or Newton iterations).470

19

https://doi.org/10.5194/egusphere-2023-1928
Preprint. Discussion started: 6 September 2023
c© Author(s) 2023. CC BY 4.0 License.



To represent the deformation of a monocrystal, we used the constitutive law of Gagliardini and Meyssonnier (1999), given

in Voigt notation in Eq. 7 of their article. This constitutive law represents a transverse isotropic ice material with its c-axis

orientated towards the vertical. The viscosity while shearing in the plane perpendicular to this c-axis is assumed to only be a

fraction of the viscosity while shearing in the planes containing the c-axis. In our case, we set this fraction to be 0.01 (following475

Burr et al., 2017). Note that in Gagliardini and Meyssonnier (1999) the constitutive law is expressed as the relation yielding ϵ̇

as a function of s, i.e. ϵ̇ = a : s, with a a fluidity tensor. For the implementation in ElmerFEM, such law needs to be inverted in

order to have s = M : ϵ̇. Due to the incompressibility of ice, the computation of M from a is not unique (Loredo and Klöcker,

1997). However, as the Voigt representation of the a tensor in Gagliardini and Meyssonnier (1999) is invertible, we can simply

take the inverse as the tensor M .480

The tensor M obtained following the expression of Gagliardini and Meyssonnier (1999) is only valid for an ice crystal

having its c-axis orientated vertically. In order to be applied in a 3D FEM simulation, this constitutive law needs to be rotated

according to the actual orientation of the crystal. This is achieved through rotations matrices and using the co-latitude and

longitude angles of the c-axes (Meyssonnier and Philip, 1996; Gagliardini and Meyssonnier, 1999).

Finally, one of the particularities of the ParStokes Solver used in this work is its use of block-preconditioning. Ideally,485

this block-preconditioner would be based on a Schur-complement (similarly to e.g. Worthen et al., 2014). However, as the

computation of a Schur-complement can be costly, the isotropic version of the ParStokes solver approximates it as a FEM mass

matrix divided by the element-wise scalar viscosity. However, in the case of anisotropy, the viscosity is not a scalar anymore.

For the approximation of the Schur-complement in the anisotropic version of ParStokes, we instead used the first invariant

of the viscosity tensor (Betten, 1982), normalized such that it equals the scalar viscosity in the limiting case of an isotropic490

rheology.
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