
We are thankful to all reviewers for their valuable feedback which helped us to improve the 

manuscript. In response, aside from several minor corrections, we have introduced the 

following main changes to the paper: 

- We have increased the amount of models considered in this study from 8 to 12.  

- The ELI is now calculated with the soil moisture averaged over the top meter, which 

better represents effective water availability for terrestrial evaporation, as opposed to 

total column soil moisture.  

- Hot spot region “NAS” has been moved northwards slightly and extended eastwards, 

as the regional pattern of largest changes in temperature excess has shifted slightly 

following the inclusion of additional models in the analysis.  

 

As a result of these changes, the figures and main conclusions are even more pronounced or 

remain similar, which reflects the robustness of the methodology. 

 

--- 

 

Using a small ensemble of CMIP6 simulations, the authors show that areas with increasing 

ecosystem water limitation tend to feature stronger warm season maximum temperature trends 

(compared to mean temperature changes). While the mechanisms behind this have long been 

known, most analyses focus on past changes and it is an interesting, well-designed study that 

I consider to be relevant for a broad audience. Nevertheless, I list a few suggestions below 

that could be helpful in further improving the manuscript. 

 

Main comments 

1.) I am not convinced by the choice of “mrso” to indicate root-zone soil moisture. “mrso” is 

simply the total column soil moisture, and the actual depth that is represented varies from 

model to model and can easily exceed 2 meters (Qiao et al., 2022). In the Supplementary, it 

becomes clear that you use ERA5-Land soil moisture down to 100 cm (first 3 layers), and I 

think this is a good choice as the bottom layer extending to nearly 3m depth is arguably more 

uncertain. However, it would probably make sense to use the very same definition for the 

CMIP6 models, and not rely on the column soil moisture. 1m soil moisture could be calculated 

by using all layers within 100 cm and adding a fraction of the respective lowermost layer (e.g., 

0.5 if it extends from 80 to 120 cm). 

 

We agree with the reviewer here. We have recomputed the ELI and remade all figures with 

soil moisture from layers averaged over the top meter of the soil. Using this root-zone soil 

moisture is more representative for the water availability that ecosystems experience. As a 

result of these changes, the figures and main conclusions are even more pronounced or 

remain similar, which reflects the robustness of the methodology. 

 



 
Figure 1. Similarity of global patterns of change in temperature excess and ecosystem water 

limitation. Multi-model means of trends based on decadal time series per respective CMIP6 

model of a) temperature excess) and b) Ecosystem Limitation Index (ELI). c) Multi-model 

means of Kendall’s rank correlation coefficient between model-specific time series of ELI and 

temperature excess. The insets display the fraction of the warm land area with positive or 

negative trends or correlations, respectively (at least 8 out of 12 models agreeing on the sign 

of the trend or correlation are hued darker). Stippling indicates that at least 8 out of 12 CMIP6 

models agree on the sign of the trend or correlation. All trends and correlations are calculated 

over the warm season and are only displayed if at least 8 CMIP6 models have full time series 

available, such that white areas denote regions with no or insufficient data. The dashed boxes 

indicate regions of interest, which are regions where temperature excess increases are 

particularly rapid and spatially coherent: North and South America (NAM and SAM), Central 

Europe (CEU) and Northern Asia (NAS). 

 



 
Figure 2. Global multi-model mean distribution and trends of Evaporative Fraction (EF). Multi-

model mean of trends based on decadal time series per respective CMIP6 model of a) EF and 

b) Ecosystem Limitation Index (ELI). c) Multi-model mean of Kendall’s rank correlation 

coefficient between model-specific time series of ELI and temperature excess. The insets 

display the fraction of the warm land area that with positive or negative trends or correlations, 

respectively (at least 8 out of 12 models agreeing on the sign of the trend or correlation are 

hued darker). Stippling indicates that at least 8 out of 12 CMIP6 models agree on the sign of 

the trend or correlation. All trends and correlations are calculated over the three hottest 

months-of-year, defined as the 3 months–of-year which have the highest average temperature 

over 1980 - 2100. The dashed boxes indicate regions of interest.  

 



 
Figure 3. Changes in global and regional temperature excess with increasing ecosystem water 

limitation. Temporal evolution of a) temperature excess and of b) Ecosystem Limitation Index 

(ELI) globally and for the regions of interest. Solid lines depict multi-model mean time series. 

Global and regional averages are calculated over land grid cells that have complete time series 

for all models and variables and are weighted according to the surface area per grid cell. 

 

 
Figure 4. Changes in global and regional temperature excess in concert with increasing 

ecosystem water limitation from CMIP6 models and ERA5-Land. Temporal evolution of a) 

temperature excess and of b) Ecosystem Limitation Index (ELI) globally and for the regions of 



interest. The black solid lines depict global and regional time series from the CMIP6 models, 

while the black dashed line represents ERA5-Land. The grey ribbon displays the envelope 

which encapsulates all the CMIP6 results. Global averages are calculated over land grid cells 

that have complete time series for all models and variables and are weighted according to the 

surface area per grid cell. The same mask is applied for CMIP6 models and ERA5-Land.  

 

 
Figure 5. Relation between temperature excess and ecosystem water limitation. a) Multi-

model mean Ecosystem Limitation Index (1980 - 2010). Solid lines depict the time series of 

multi-model means inferred from globally (black) and regionally (colored) decadally averaged 

model simulations for b) temperature excess and c) Ecosystem Limitation Index. The 

classification is defined based on the model-specific mean ELI over 1980 - 2010 

(Supplementary Figure 9): Energy limited (ELI < -0.2), transitional (-0.2 < ELI < 0.2) and water 

limited (ELI > 0.2). d) Points denote the global (black) and regional (colored) decadal multi-

model means of ELI (x-axis) and temperature excess (y-axis), expressed as change since 

1980. The lines denote linear regressions, with a shaded colored 95% confidence interval. 

Land grid cells that do not have complete time series for all models are excluded (white 



regions, Methods). Global and regional averages are weighted according to the surface area 

per grid cell. 

 

 
Figure 6. Temperature excess trends increase with stronger trends in ecosystem water 

limitation. The bars denote the multi-model mean and model-specific temperature excess 

trends (y-axis) binned according to their respective ELI trends (x-axis) for the multi-model 

mean trends (black) and all individual models (colors). The numbers display the fraction of 

warm vegetated land area in which respective temperature excess and ELI trends occur. 

These area fractions may not add up to 100%, because values outside of the defined bins on 

the x-axis are possible. 

 

2.) I am quite surprised to see how few models seem to have all the required variables, 

especially since you only need them in monthly resolution. I get at least 40 different models 

(not simulations, as for some models such as, e.g., CanESM5, MPI-ESM-LR or MIROC6, there 

are dozens of initial condition ensemble members) for each variable, and while I did not check 

the overlap for all variables, I am absolutely sure that far more than 8 models remain. It should 

be close to or even more than 30... 

I would also like to point out that according to Qiao et al. (2022), the BCC-CSM2-MR model 

constitutes a rather unfortunate “choice”, as it does not perform well with regards to soil 

moisture. Moreover, to quote Qiao et al. (2022), “For deep soil moisture, the top-five best-

performing models are CESM2, MPI-ESM1-2-LR, ACCESS-ESM1-5, CESM2-WACCM, and 

CNRM-ESM2-1, [...]”, of which only CNRM-ESM2-1 is used here. While such evaluations are 

particularly challenging for variables that are hardly observed/measured and notoriously 

spatially inhomogeneous, I still think it is a pity that a) only few models were used in the first 

place, and b) that state of the art models such as CESM2 with plant hydraulics (see, e.g., Zhao 

et al., 2022) are not included. I thus 

 strongly encourage the authors to check an alternative data source if they cannot obtain 

the required variables for more than the 8 models used thus far. 

 

Retrieving data from the Earth System Grid Federation 

(https://aims2.llnl.gov/search/?project=CMIP6/) instead of the Google cloud CMIP6 public data 

has led to a larger sample of 12 CMIP6 models that could be retrieved. These are the only 

models that meet the criteria described in the methodology (see lines below). The biggest 

https://aims2.llnl.gov/search/?project=CMIP6/


bottlenecks that prevented obtaining an even larger number of CMIP6 models were the 

unavailability of total water content per soil layer (mrsol), which excluded CIESM, HadGEM3-

GC31-MM, INM-CM4-8, INM-CM5-0 and MIROC-ES2H, and/or unavailability of maximum 

daily temperature (tasmax), which excluded CESM2, CESM2-WACCM, CMCC-CM2-SR5, 

EC-Earth3-Veg and EC-Earth3-Veg-LR. Further, amongst the selected models, we have 

increased the amount of models with a better representation of deep soil moisture.  

 

“We only selected models that provide i) historical (1980 - 2015) and “worst-case” SSP5-8.5 

(2015 - 2100 (O’Neill et al., 2016)) simulations, ii) the necessary variables (Table 1) and iii) 

sufficient spatial (2˚x2˚ or finer grid cell resolution) and temporal (monthly) resolutions.” 

 

3.) I appreciate that the authors state that land–atmosphere coupling does not necessarily 

account for all of the “temperature excess”, but it also makes me wonder what else could 

contribute to stronger maximum than mean temperature trends. I agree that (changes in) 

advection could play a role, but I think there is another, perhaps even more important 

mechanism at play: in several regions around the world, aerosol emissions have decreased 

substantially and are projected to decrease further in the ongoing century. This results in more 

shortwave radiation reaching the surface compared to past decades due to higher atmospheric 

transmission, which noticeably alters the surface energy budget and hence near-surface 

temperatures (e.g., Nabat et al., 2014), particularly in the warm season when incoming 

shortwave radiation is typically highest. Maximum temperatures tend to occur between noon 

and late afternoon and are arguably closer related to incoming shortwave radiation than mean 

temperatures, which, during nighttime, are primarily governed by the longwave radiation 

budget (which is directly altered by anthropogenic greenhouse gas emissions and water vapor 

feedbacks). The study of Qian et al. (2011) supports this rationale by reporting that aerosol-

related temperature effects mostly occur through (daytime) maximum temperatures. I would 

thus not be surprised if shortwave radiation changes — which can, of course, also be mediated 

by changes in cloudiness and not just aerosol absorption (although at least for central Europe, 

this aspect has been far less important since 1980; see, e.g., Wild et al., 2021) — also 

contributed to the temperature excess patterns shown in Fig. 1a. In some regions such as, 

e.g., China (Qian et al., 2011), India and central Africa, shortwave radiation has decreased in 

the last decades, so my example provided above should not be generalized. Showing 

downward shortwave radiation trends (rsds) for all models could be helpful to understand why 

areas where the sign of temperature excess and ELI trends is inconsistent. 

 

We agree with the reviewer. We have inserted the multi-model mean incoming shortwave 

radiation trends in Figure 1b and show model-specific incoming shortwave radiation trends in 

Supplementary Figure 4. We have elaborate on incoming shortwave radiation trends in the 

following lines in the results section.  

 

“There is a widespread increase in incoming shortwave radiation in about 71% of the warm 

vegetated land area, with high inter-model models agreement (Supplementary Figure 4), which 

can directly affect near-surface temperature through the surface energy balance. These trends 

could result from projected decreases in aerosol emissions (Nabat et al., 2014), or from 

changes in cloud cover. As daily maxima of incoming shortwave radiation roughly co-occur 

with daily temperature maxima, increased incoming shortwave radiation links more strongly to 

increased in maximum temperatures rather than mean temperatures (Qian et al., 2011), which 

are more strongly governed by the longwave radiation budget.“ 



 

“Further deviations from a positive relationship between temperature excess and ELI might 

result from alternative processes such as (changes in) advection of warm air masses through 

large-scale circulation patterns and changes in incoming shortwave radiation (Supplementary 

Figure 4).” 

 

 
Supplementary Figure 4: Multi-model mean trend in incoming shortwave radiation based on 

decadal time series per respective CMIP6 model. The insets display the fraction of the warm 

land area with positive or negative, respectively (at least 8 out of 12 models agreeing on the 

sign of the trend are hued darker). Stippling indicates that at least 8 out of 12 CMIP6 models 

agree on the sign of the. All trends are calculated over the warm season and are only displayed 

if at least 8 CMIP6 models have full time series available, such that white areas denote regions 

with no or insufficient data. The dashed boxes indicate regions of interest, which are regions 

where temperature excess increases are particularly rapid and spatially coherent: North and 

South America (NAM and SAM), Central Europe (CEU) and Northern Asia (NAS) (see Figure 

1). 

 

Additional comments 

- Some citations should be double-checked; e.g., “(Eyring et al., 2016))” comes with an 

additional right bracket. 

 

All double brackets were checked and removed if possible.  

 

- L. 85: I recommend changing “[...] please refer to Denissen et al. (Denissen et al., 2022)” to 

“please refer to Denissen et al. (2022)”. Same thing for “from Teuling et al. (Teuling, 2018)” on 

L. 321. 

 

We have done as the reviewer suggested. 



 

- L. 167 onwards: “Moreover, ET is generally significantly correlated with both temperature 

excess and ELI, respectively, establishing the physical link between these quantities”. The 

authors acknowledge themselves later on in the manuscript that their correlative analysis 

cannot establish causal links, so perhaps something like, e.g., “[...] , suggesting a physical link 

[...] ” would be more appropriate. 

 

We have done as the reviewer suggested.  

 

- L. 200 onwards: ERA5-Land is an offline land surface model simulation that does not 

assimilate any observations. The meteorological forcing provided by ERA5 does indeed make 

use of data assimilation, but this is largely restricted to “classic” variables such as 2-meter 

temperature and humidity. Surface soil moisture data from scatterometers is also assimilated, 

but this only affects the top soil layer and does not help much with regards to root-zone soil 

moisture. 

 

We have adjusted the discussion accordingly: 

 

“Note that ERA5-Land is only indirectly supported by data assimilation, as meteorological 

forcing from ERA5 assimilates observations only for 2m temperature, relative humidity and 

surface soil moisture. Therefore, temperature excess benefits more directly from data 

assimilation than ELI, which is based on ET and (root-zone) soil moisture which are not readily 

observed across the globe.” 

 

- L. 315: “[...] increased entrainment of dry air above the atmospheric boundary layer”, I think 

rephrasing this to “[...] increased entrainment of dry air from above the [...]” or similar would be 

a good idea, the current version could be a bit confusing. 

 

We have done as the reviewer suggested.  
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