
We are thankful to all reviewers for their valuable feedback which helped us to improve the 

manuscript. In response, aside from several minor corrections, we have introduced the 

following main changes to the paper: 

- We have increased the amount of models considered in this study from 8 to 12.  

- The ELI is now calculated with the soil moisture averaged over the top meter, which 

better represents effective water availability for terrestrial evaporation, as opposed to 

total column soil moisture.  

- Hot spot region “NAS” has been moved northwards slightly and extended eastwards, 

as the regional pattern of largest changes in temperature excess has shifted slightly 

following the inclusion of additional models in the analysis.  

 

As a result of these changes, the figures and main conclusions are even more pronounced or 

remain similar, which reflects the robustness of the methodology. 

 

---  

 

Using CMIP6 model projections, Denissen et al evaluate the co-occurrence of increasing 

trends in extreme temperature and increasing trends in ELI, a water-limitation metric. They find 

that these trends co-occur in many regions of the world especially in transitional and more 

energy limited regions. Therefore, more energy-limited locations are becoming more water-

limited and experiencing more temperature extremes. This study is well done, carefully written, 

and concise which is always appreciated. I advocate for the use of ELI here which captures 

soil moisture and its nonlinear relation to energy fluxes. I find ELI to be a more direct variable 

to evaluate the questions here than soil moisture alone – something the authors could highlight 

more because it is a big strength compared to previous work. 

 

My main criticism is the removal of many dryland regions, which I think are important for the 

message. I study the water, carbon, and energy cycles of these dry regions, including the 

influence of vegetation on the surface energy balance (for example, 

https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16455; no expectation to cite). I am 

concerned that many of these regions are not fully included in the study and could bias 

overarching conclusions since they can respond so differently (see my #1 comment below). 

Nevertheless, I think it is a great study and ask the authors to consider several points. 

 

-Andrew Feldman 

 

 Main Comments 

 

1) I find the condition in L114-115 to remove pixels at <0.5 m2/m2 of LAI is quite restrictive 

and removes many drylands, including the Sahel, most of China, and nearly all of Australia. 

These are key water limited regions to remove, especially in the context of heatwaves where 

these regions may be most vulnerable. Drylands have been deemed an important part of the 

climate system. Dryland vegetation also plays a critical role in the surface energy balance. See 

some studies here (with no expectation to cite) where meaningful dryland vegetation energy 

balance studies were conducted with different results from expectations: 

 

https://www.science.org/doi/10.1126/science.abm9684  

 

https://www.science.org/doi/10.1126/science.abm9684


https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16455  

 

I suggest using a less restrictive condition. Or be very clear motivating why such a strict 

condition is used here to remove these dry places. 

 

Thanks - we agree with this argumentation. In response we have made the LAI threshold less 

restrictive, filtering grid cells that have a monthly LAI lower than 0.2. Therefore, but also 

because we use more and a different set of CMIP6 models, we retain more dryland regions in 

the Sahel and in Australia. This is addressed in the following lines in the methodology 

 

“Second, to additionally assure that we are investigating the active vegetation periods during 

the warm season, which would elicit vegetation responses to anomalies in energy and water 

supply affecting the surface flux partitioning, all months with Ta < 10˚C and Leaf Area Index 

(LAI) < 0.2 m2 m-2 are excluded from the analysis. Thereby, we disregard mainly grid cells in 

the most sparsely vegetated regions in Northern Africa and Western China and cold regions 

in the Northern latitudes, but retain major drylands including parts of the Sahel and the 

Australian interior (Supplementary Figure 2).” 

 

https://onlinelibrary.wiley.com/doi/abs/10.1111/gcb.16455


 
Supplementary Figure 2: Data points retained after masking. Columns denote the applied 

filtering procedures (from left to right: Ta < 10˚C, LAI < 0.5 and Ta < 10˚C & LAI < 0.5). Rows 

reflect the different individual models. The colors show the amount of values retained after 

filtering, where the maximum amount of values possible equals 3 hottest months per year over 

120 years (360 data points). No data is available in the white regions.  

 

These water-limited dryland regions play an important role in temperature excess trends, as 

sensitivity of temperature excess trends to ELI in such regions is the highest (Figure 5d). We 

clarify this in the following lines in the abstract, the results and the conclusion.  

 

“Sensitivity of temperature excess trends to ELI trends is highest in water-limited regions, such 

that in these regions relatively small ELI trends can amount to drastic temperature excess 

trends.” 

 

“Moving beyond trends we also analyze the sensitivity of decadal temperature excess with 

respect to ELI for energy-limited vs. transitional vs. water-limited areas and find the strongest 

relationship in the case of water-limited areas (Figure 5d), as evidenced by the largest increase 



in temperature excess with ELI. This confirms that changes in water-limited areas temperature 

excess trends are most sensitive to ELI trends. This stresses that evaporative cooling in 

already arid drylands is even further reduced, increasingly limiting their ability to mitigate future 

heat extremes (Feldman et al., 2023).“ 

 

 
Figure 5. Relation between temperature excess and ecosystem water limitation. a) Multi-

model mean Ecosystem Limitation Index (1980 - 2010). Solid lines depict the time series of 

multi-model means inferred from globally (black) and regionally (colored) decadally averaged 

model simulations for b) temperature excess and c) Ecosystem Limitation Index. The 

classification is defined based on the model-specific mean ELI over 1980 - 2010 

(Supplementary Figure 9): Energy limited (ELI < -0.2), transitional (-0.2 < ELI < 0.2) and water 

limited (ELI > 0.2). d) Points denote the global (black) and regional (colored) decadal multi-

model means of ELI (x-axis) and temperature excess (y-axis), expressed as change since 

1980. The lines denote linear regressions, with a shaded colored 95% confidence interval. 

Land grid cells that do not have complete time series for all models are excluded (white 

regions, Methods). Global and regional averages are weighted according to the surface area 

per grid cell. 



 

“Thereby, the relevance of trends in ecosystem water limitation for trends in temperature 

excess depends on (i) the magnitude of the ELI trends, which is largest in initially energy-

limited and transitional areas, and (ii) the initial ELI regime as (maximum) temperatures are 

more sensitive to evaporative cooling in initially water-limited regions.“ 

 

 2) In support of this study, I think a huge advantage of this study is the use of ELI rather than 

soil moisture alone. This point is not clear in the study and I think it is one of the main points 

to make up front on why this complements existing literature so well. Most studies typically 

evaluate the question of how the land surface influences temperature extremes with soil 

moisture. However, because soil moisture is nonlinearily related to energy fluxes, it limits soil 

moisture’s use to evaluate temperature by itself. A more important variable that captures this 

nonlinearity and soil moisture variability simultaneously is how water-limited versus energy 

limited a location is. ELI is one nice way to capture this (my variable of choice is time spent in 

the water-limited regime). I suggest making this over point clearer throughout. 

 

We have further clarified the benefits of using ELI over soil moisture alone in the introduction, 

the results and the conclusion.  

 

“In particular we use (i) a recently introduced ecosystem water stress index (Ecosystem 

Limitation Index (ELI), (Denissen et al., 2020)), a correlative index that evaluates directly the 

importance of water versus energy stress for terrestrial evaporation, thereby moving beyond 

the nonlinear relationship between soil moisture and evaporative cooling alone. Further, as 

this index directly captures evaporative cooling, it links more mechanistically with heat waves 

than general aridity or land-atmosphere coupling indices. Thereby other factors affecting 

water-limitation can be functionally addressed (e.g. groundwater, hydraulic failure as lag effect, 

CO2). Further, the ELI can be used to pinpoint regime transitions, as positive values are 

indicative of water-limited conditions, while negative values denote ecosystem energy 

limitation.” 

 

“The sensitivity of temperature excess to ELI trends is expected to depend on the initial regime 

and can be explained through the nonlinear relationship between soil moisture and EF 

(Supplementary Figure 20 in Denissen et al., 2022; Seneviratne et al., 2010): In initially energy-

limited grid cells (soil moisture exceeds critical soil moisture), ecosystems can sustain 

maximum EF, assuming sufficient available energy during the warm season. Hence, in such 

grid cells shifts towards water limitation, expressed by positive ELI trends or soil drying, do not 

amount to large changes in surface flux partitioning, nor in temperature excess, resulting in 

low sensitivity between ELI and temperature excess trends. In initially water-limited grid cells 

(soil moisture below critical soil moisture), further soil drying, or shifts towards water limitation, 

can reduce EF. This way, temperature excess trends are highly sensitive to ELI trends in water-

limited grid cells. Transitional grid cells, which are characterized by a soil moisture regime that 

transitions periodically from below to above the critical moisture content, effectively switch 

between energy- and water-limited conditions frequently. As such, evaporative cooling and 

consequently temperature excess are periodically sensitive to increasing water limitation. In 

extremely dry and water-limited conditions, where soil moisture values approach the wilting 

point, hardly any moisture can be extracted from the soil, rendering vegetation activity and 

associated EF too low to provide ample evaporative cooling. As such, shifts towards 



ecosystem water limitation should hardly decrease evaporative cooling further in extremely 

water-limited grid cells.” 

 

“In conclusion, we show the ability of the land surface to modulate the intensity of future heat 

extremes. We focus on novel indices by focusing on ecosystem water limitation and the 

temperature excess between warm-season mean and maximum temperatures. In this context, 

the ELI is used to represent the nonlinear relationship between soil moisture and evaporative 

cooling, as it considers the effect of hydrometeorological anomalies on ecosystem response.” 

 

3) Language and bias of thinking throughout seems to be about how ELI is influencing excess 

temperatures and that the direction of causality is from ELI to excess temperature. For 

example, see lines 275-276. Following that, it is nicely stated that this correlative analysis does 

not mean causality. However, I do suggest also noting in the discussion or elsewhere how 

excess temperature can influence ELI. This might help complete the loop on that discussion 

since I think the feedback in the opposite direction of heatwaves on ELI is also just as 

interesting and valuable. In other words, the authors might be limiting themselves in influencing 

the reader to think about ELI influencing on temperature extremes, when the other way around 

can give insights about sustaining heatwaves. 

 

A more elaborate discussion on the direction of causality between ELI and temperature excess 

is added in the results section. 

 

“This is evidenced by significant correlations in many areas (Figure 1c, Supplementary Figure 

6), suggesting that increasing ELI contributes to hotter temperature extremes. As correlations 

cannot distinguish the direction of causality, we stress that hotter temperature extremes can in 

turn further dry out terrestrial vegetation, thereby increasing water limitation. Additionally, heat 

extremes and related hydraulic failure could lead to plant mortality (McDowell & Allen, 2015), 

limiting evaporative cooling even more. As such, these pathways further strengthen positive 

correlations between ELI and temperature excess.“ 

 



 
Figure 1. Similarity of global patterns of change in temperature excess and ecosystem water 

limitation. Multi-model means of trends based on decadal time series per respective CMIP6 

model of a) temperature excess) and b) Ecosystem Limitation Index (ELI). c) Multi-model 

means of Kendall’s rank correlation coefficient between model-specific time series of ELI and 

temperature excess. The insets display the fraction of the warm land area with positive or 

negative trends or correlations, respectively (at least 8 out of 12 models agreeing on the sign 

of the trend or correlation are hued darker). Stippling indicates that at least 8 out of 12 CMIP6 

models agree on the sign of the trend or correlation. All trends and correlations are calculated 

over the warm season and are only displayed if at least 8 CMIP6 models have full time series 

available, such that white areas denote regions with no or insufficient data. The dashed boxes 

indicate regions of interest, which are regions where temperature excess increases are 

particularly rapid and spatially coherent: North and South America (NAM and SAM), Central 

Europe (CEU) and Northern Asia (NAS). 

 



 
Supplementary Figure 6: Kendall’s rank correlation coefficient between ecosystem water 

limitation and temperature excess per individual CMIP6 model (dots indicate significance: p < 

0.05).  

 

 4) Figure 3 is really neat. I think it could be a better facilitated display of results in Fig. 3 and 

lines 231-247 if the nonlinear ET-soil moisture (and maybe also ET-SWin) relationships are 

discussed/displayed more prominently. I think the authors are making claims about how EF is 

insensitive to water in energy limited regions and might become even insensitive at lower soil 

moisture in water-limited places. These would be better supported if the Budyko framework 

and/or EF-soil moisture relationships are introduced before these other points are made about 

Figure 3. 

 

We now explain the sensitivity of temperature excess to ELI trends at the hand of the nonlinear 

relationship between SM and EF as described by Seneviratne et al (2010). Further, we refer 

to Supplementary material in Denissen et al. (2020), where we find a strong link between the 

fraction of days with soil moisture below critical soil moisture and ELI: 

 

“The sensitivity of temperature excess to ELI trends is expected to depend on the initial regime 

and can be explained through the nonlinear relationship between soil moisture and EF 

(Supplementary Figure 20 in Denissen et al., 2022; Seneviratne et al., 2010): In initially energy-

limited grid cells (soil moisture exceeds critical soil moisture), ecosystems can sustain 

maximum EF, assuming sufficient available energy during the warm season. Hence, in such 



grid cells shifts towards water limitation, expressed by positive ELI trends or soil drying, do not 

amount to large changes in surface flux partitioning, nor in temperature excess, resulting in 

low sensitivity between ELI and temperature excess trends. In initially water-limited grid cells 

(soil moisture below critical soil moisture), further soil drying, or shifts towards water limitation, 

can reduce EF. This way, temperature excess trends are highly sensitive to ELI trends in water-

limited grid cells. Transitional grid cells, which are characterized by a soil moisture regime that 

transitions periodically from below to above the critical moisture content, effectively switch 

between energy- and water-limited conditions frequently. As such, evaporative cooling and 

consequently temperature excess are periodically sensitive to increasing water limitation. In 

extremely dry and water-limited conditions, where soil moisture values approach the wilting 

point, hardly any moisture can be extracted from the soil, rendering vegetation activity and 

associated EF too low to provide ample evaporative cooling. As such, shifts towards 

ecosystem water limitation should hardly decrease evaporative cooling further in extremely 

water-limited grid cells.” 

 

 5) This is a “devil’s advocate” position, but something I worry about in studies using models 

to learn about land-atmosphere interactions is how much model biases in the relationships 

between soil moisture and energy fluxes (here EF) cause errors in results such as those 

presented here. I always look at CMIP or reanalysis based results and hope that ensemble 

means teach us emergent behavior of the land surface, rather than only give us back the 

potentially flawed relationship between soil moisture and EF that some models might have. 

This study is valuable in presenting the model results and also adds the dimension that 

projections can be made, which is not directly possible with observations. However, at least in 

the discussion, I suggest advocating for the main figures being reproduced in an observation-

based study to test whether these model behaviors are reproduced in nature. For example, 

Figure 1c can be reproduced with satellite soil moisture and LST (or gridded air temperature) 

to give further support for the results here. 

 

We agree with the reviewer. We assume that by taking a mean of many models with varying 

underlying assumptions on soil moisture and other stress functions. Even if this approach does 

not favor one model's flaws over the other, it is still based on a collection of model assumptions 

that need to be validated by observation-based studies. As time series of 120 years, as are 

used in this study, are not available from observation-based data sets, doing such an analysis 

would require a change in the methodology. Therefore, we think that this is out of scope for 

this analysis. However, we now advocate the need for observation-based analyses in the 

discussion, as the reviewer suggested.  

 

“At the same time, the findings in this study are based on model-specific assumptions. 

Therefore, we advocate the need to reproduce the main findings in this study (Figure 1c, for 

example) with observation-based data to scrutinize the model-based findings in this study.”  

 

Further, we additionally advocate the use of observation-based data, as with time more and 

longer time series of observation-based variables will become available. 

 

“This way, changes of both CO2 and climate jointly affect ELI which in turn influences heat 

wave magnitudes. Given this situation, future research should focus on the link between ELI 

and heat wave intensities using observation-based datasets, particularly as longer-term 

interpolations or reconstructions of key variables become available. This can help to 



corroborate model-based findings, and to constrain the variable relevance of ELI across 

models.” 

 

 6) There are many figures in the SI that are discussed extensively in the results. For example, 

Figure S6 about ET in lines 164-174 and Figure S8 in lines 198-211. I suggest moving them 

to the main text if they are pivotal parts of the manuscript. 

 

We agree with the reviewer here and have moved supplementary figures 6 and 8 to the main 

text (now Figure 2 and 4). 

 

 
Figure 2. Global multi-model mean distribution and trends of Evaporative Fraction (EF). Multi-

model mean of trends based on decadal time series per respective CMIP6 model of a) EF and 

b) Ecosystem Limitation Index (ELI). c) Multi-model mean of Kendall’s rank correlation 

coefficient between model-specific time series of ELI and temperature excess. The insets 

display the fraction of the warm land area that with positive or negative trends or correlations, 

respectively (at least 8 out of 12 models agreeing on the sign of the trend or correlation are 

hued darker). Stippling indicates that at least 8 out of 12 CMIP6 models agree on the sign of 



the trend or correlation. All trends and correlations are calculated over the three hottest 

months-of-year, defined as the 3 months–of-year which have the highest average temperature 

over 1980 - 2100. The dashed boxes indicate regions of interest.  

 

 
Figure 4. Changes in global and regional temperature excess in concert with increasing 

ecosystem water limitation from CMIP6 models and ERA5-Land. Temporal evolution of a) 

temperature excess and of b) Ecosystem Limitation Index (ELI) globally and for the regions of 

interest. The black solid lines depict global and regional time series from the CMIP6 models, 

while the black dashed line represents ERA5-Land. The grey ribbon displays the envelope 

which encapsulates all the CMIP6 results. Global averages are calculated over land grid cells 

that have complete time series for all models and variables and are weighted according to the 

surface area per grid cell. The same mask is applied for CMIP6 models and ERA5-Land.  

 

 Specific Comments 

 

L12: note that the use of ecosystem (assuming both soil+vegetation) and vegetation are 

mentioned here which is making it unclear what the paper is about (is it only vegetation or 

soil+vegetation?). Potentially define what you mean by ecosystem here. 

 

We clarify the use of ecosystem (both plant transpiration and soil evaporation) in the abstract. 

 



“Heat extremes have severe implications for human health, ecosystems and the initiation of 

wildfires. Whereas they are mostly introduced by atmospheric circulation patterns, the intensity 

of heat extremes is modulated by terrestrial evaporation associated with soil moisture 

availability. Thereby, ecosystems provide evaporative cooling through plant transpiration and 

soil evaporation, which is reduced under drought stress.” 

 

 L70: The “|” symbol indicates conditioning in mathematics/probability. It is unclear how it is 

being used in the correlation function “cor(Ta’|SWin’,ET’).” It sounds like the correlation is 

either between Ta and ET or Ta and SWin based on line 75. Therefore, I think the “|” symbol 

is being used to somehow indicate this potential alternation in the metric. However, one can 

also interpret that notation as the correlation of Ta’ with ET’ while conditioning (or binning) Ta’ 

on SWin’. Can the authors be clearer about this notation? I know L85 says to refer to another 

study for details of ELI, but details like this should be shared here for completeness. 

 

We explain the notation in the following lines: 

 

“In this context, the | indicates the use of either Ta or SWin anomalies in the second term on 

the right hand side of Eq. 1, as ET in some regions is limited more strongly by lack of incoming 

shortwave radiation (Nemani et al., 2003) and in other regions more strongly by cold 

temperatures.” 

 

L95, Table 1: It might be worth noting what the difference in r1/r2 and f1/f2 mean since not all 

are the same in that column. 

 

In the current selection there are only differences in f1/f2/f3, which are now explained in the 

caption of Table 1.  

 

“*: in the CMIP6 members, or variants, differences exist in the forcing index (f). This index 

number indicates the forcing used for the respective realization and can be used to distinguish 

between CMIP6-recommended or other forcing data sets. Which forcing dataset f represents 

is defined per model.” 

 

 L114-115: The LAI condition at 0.5 m2/m2 might be overly restrictive and remove many 

drylands from the analysis that are important facets of the global climate. 

 

See answer to 1). 

 

 L115: Central Africa? Do you mean East Africa? 

 

We have adapted to “Northern Africa”. 

 

 L118: It should be the sum of radiative components minus the ground heat flux (G) (or Rn-G). 

 

We decided to neglect ground heat flux in our analysis, as we do not expect that it can 

significantly influence trends in ecosystem water limitation or excess heat. It is more relevant 

on a diurnal scale of course. 

 



 L150-152: This statement is tough to follow. This is only referring to the second term on the 

right side of Equation 1 or the energy limited component of ELI? I was thinking that water-

limitation should be a big component in the tropics (but it looks like water-limitation is not 

considered in Fig. S1) 

 

We have adapted the writing to more clearly explain that this indeed concerns only the second 

term on the right hand side of Equation 1: 

 

“cor(SM’,ET’) is a proxy for water limitation, whereas cor(Ta’ | SWin’,ET’) is a proxy for energy 

limitation. In this context, the | indicates the use of either Ta or SWin anomalies in the second 

term on the right hand side of Eq. 1, as ET in some regions is limited more strongly by lack of 

incoming shortwave radiation (Nemani et al., 2003) and in other regions more strongly by cold 

temperatures. Therefore, we test for each grid cell which energy proxy yields the highest 

correlation with ET (cor(Ta’,ET’) vs. cor(SWin’,ET’)), and is hence most relevant in this 

location, to then use it in the computation of ELI in the respective grid cell (Supplementary 

Figure 1).” 

 

 
Supplementary Figure 1: Spatial distribution of the sum of models that are temperature-

controlled. Colors show the sum of models for which cor(Ta’,ET’) > cor(SWin’,ET’) over 1980 

– 2100.  

 

 L157-158: It could be the other way around where temperature extremes contribute to 

increasing ELI. 

 

See answer to 3).  

 

 L158-L160: With removal of many drylands and some opposing results in these locations (see 

my comment 1), it would be worth discussing further what physical processes cause these 

regions to differ. 

 



We have added Supplementary Figure 4, which shows that in regions with insignificant or 

negative correlations between ELI and temperature excess, trends in incoming shortwave 

radiation are generally also negative. We discuss this in lines XXX-XXX 

 

Lines XXX-XXX 

“Further deviations from a positive relationship between temperature excess and ELI might 

result from alternative processes such as (changes in) advection of warm air masses through 

large-scale circulation patterns and changes in incoming shortwave radiation (Supplementary 

Figure 4).” 

 

 
Supplementary Figure 4: Multi-model mean trend in incoming shortwave radiation based on 

decadal time series per respective CMIP6 model. The insets display the fraction of the warm 

land area with positive or negative, respectively (at least 8 out of 12 models agreeing on the 

sign of the trend are hued darker). Stippling indicates that at least 8 out of 12 CMIP6 models 

agree on the sign of the. All trends are calculated over the warm season and are only displayed 

if at least 8 CMIP6 models have full time series available, such that white areas denote regions 

with no or insufficient data. The dashed boxes indicate regions of interest, which are regions 

where temperature excess increases are particularly rapid and spatially coherent: North and 

South America (NAM and SAM), Central Europe (CEU) and Northern Asia (NAS) (see Figure 

1). 

 


