Supplementary Material for manuscript "On the timescale of drought indices for monitoring streamflow drought considering catchment hydrological regimes"

Oscar M. Baez-Villanueva^{1,2}, Mauricio Zambrano-Bigiarini^{3,4,*}, Diego G. Miralles¹, Hylke E. Beck⁵, Jonatan F. Siegmund⁶, Camila Alvarez-Garreton⁴, Koen Verbist⁷, René Garreaud^{8,4}, Juan Pablo Boisier^{8,4}, and Mauricio Galleguillos^{9,4}

¹Hydro-Climate Extremes Lab (H-CEL), Ghent University, Ghent, Belgium

²Institute for Technology and Resources Management in the Tropics and Subtropics (ITT), TH Köln, Cologne, Germany

³Department of Civil Engineering, Universidad de la Frontera, Temuco, Chile

⁴Center for Climate and Resilience Research, Universidad de Chile, Santiago, Chile

*Corresponding author

⁵Climate and Livability Initiative, Physical Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia

⁶Ernst & Young GmbH, Wirtschaftsprüfungsgesellschaft, Stuttgart, Germany

⁷UNESCO International Hydrological Programme, Paris, France

⁸Department of Geophysics, Universidad de Chile, Santiago, Chile

⁹Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Santiago, Chile

1. Selection of soil moisture and SWE products

To our knowledge, there has not been a comprehensive evaluation of soil moisture and *SWE* datasets over Chile. Therefore, we included four different soil moisture datasets to calculate the ESSMI and two to calculate the SWEI to account for their uncertainty. Specifically, we used ERA5 (Hersbach et al., 2020), ERA5-Land (Muñoz-Sabater et al., 2021), SMAP-L3E (O'Neill

5 et al., 2016), and SMAP-L4SM (Reichle et al., 2018) to compute the ESSMI at different scales (1, 3, 6, and 12 months) and ERA5 and ERA5-Land to compute the SWEI (at 1, 3, and 6 months).

ERA5 (Hersbach et al., 2020) is an hourly reanalysis product that provides estimates of *P*, soil moisture at different depths (0-7, 7-28, 28-100, and 100-289 cm), and *SWE*, as well as other variables, from 1940 to the present with a spatial resolution of 0.25° . This product has a better representation of rain and snow than its predecessor, ERA-Interim, with a more realistic

- 10 parameterisation of microphysics and mixed-phase clouds (Hersbach et al., 2020). Although ERA5 has a relatively coarse spatial resolution compared to other products, we included it in the analysis because reanalysis products tend to outperform purely observational datasets in high latitudes (Beck et al., 2017; Baez-Villanueva et al., 2021). The soil moisture depth used in this study is 0–7 cm for consistency with the other soil moisture products.
- The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) mission originally aimed to provide global measurements of soil moisture and freeze/thaw state using an L-band (active) radar and an L-band (passive) radiometer (Entekhabi et al., 2010). After the failure of the radar in early 2015, the radiometer remained as the only on-board sensor providing measurements (Chan et al., 2016). The SMAP mission incorporated radio frequency interference detection and mitigation to provide more continuous high-quality estimates of soil moisture (Oliva et al., 2012; Mohammed et al., 2016). The observed radiometric brightness *T* comes from the land surface L-band emission, and is thus determined by
- 20 the physical *T* and dielectric constant of the respective scene, which is related to soil moisture in the top \sim 5 cm surface soil moisture (Entekhabi et al., 2014).

The enhanced level-3 SMAP soil moisture product (SMAP-L3E; Entekhabi et al., 2010; O'Neill et al., 2016) provides global daily estimates of soil moisture derived from the SMAP level-1C interpolated brightness T with a 2–3 day average revisiting time. The SMAP level-4 soil moisture product (SMAP-L4SM; Entekhabi et al., 2010; Reichle et al., 2018) assimilates

25 brightness *T* observations into the Goddard Earth Observing System (GEOS) Catchment land surface model. It has been validated against numerous ground-based measurements (Tavakol et al., 2019; Beck et al., 2021) and provides global 3-hourly volumetric soil moisture estimates of the top 5 cm.

To select a specific soil moisture and *SWE* product, we performed a simple correlation analysis between these indices at their respective temporal scales and the SSI-1. The selection of the products (one for each variable) was made considering

30 the highest correlation and longest time series of the products, as we aim to assess the ability of these indices to serve as a proxy for streamflow droughts. The selection of these products was based on the assumption that the product with the highest correlation with the SSI-1 represents better the spatio-temporal patterns of each variable across Chile. This assumption is not too far from reality since *i*) a correlation between different components of the water cycle at the monthly scale could indicate agreement between the gridded products and in-situ Q data, and ii) any systematic bias that the products may present do not

35 affect the computation of the standardised drought indices.

45

Table S1 shows the cross-correlation values for all indices and the SSI-1. For the case of soil moisture, SMAP-L4SM has slightly better overall median cross-correlation values between ESSMI and SSI-1 (0.51), while ERA5 and ERA5 Land closely follow SMAP-L4SM (both products with a value of 0.50). However, ERA5 Land was selected as the best soil moisture product to compute the ESSMI drought index because i) SMAP-L4SM is only available from 2015, which is much than the 32 years

40 of record of ERA5-Land (although its evaluation starts in 1983) instead of gaining 0.01 in the cross-correlation evaluation, and *ii*) although ERA5 performed similarly to ERA5-Land, the latter has a higher spatial resolution.

In the case of SWEI, ERA5-Land was selected because it had the highest overall cross-correlation values compared to ERA5, and was therefore used to calculate the ESSMI and SWEI in the manuscript. Although Muñoz-Sabater et al. (2021) found mixed performance of ERA5 Land related to *SWE* for some geographical locations and altitudes of the world, the product presents coherent *SWE* fields over continental Chile, which are very similar to those of ERA5.

Table S1. Median correlation values between the ESSMI and SWEI, and the SSI-1 over the 100 near-natural catchments presented in Figure 1 of the manuscript for 1979–2020.

Index	Product	Pearson's correlation coefficient
	ERA5	Scale 1 (0.50); Scale 3 (0.49); Scale 6 (0.42); Scale 12 (0.30)
ESSMI	ERA5-Land	Scale 1 (0.50); Scale 3 (0.47); Scale 6 (0.42); Scale 12 (0.29)
	SMAP-L3E	Scale 1 (0.34); Scale 3 (0.36); Scale 6 (0.26); Scale 12 (0.17)
	SMAP-L4SM	Scale 1 (0.51); Scale 3 (0.39); Scale 6 (0.27); Scale 12 (0.07)
SWEI	ERA5	Scale 1 (0.20); Scale 3 (0.21); Scale 6 (0.24)
	ERA5-Land	Scale 1 (0.23); Scale 3 (0.21); Scale 6 (0.22)

2. Conceptual figure of hydrological regimes

Figure S1. Conceptual illustration of the hydrological regimes used to classify the 100 near-natural catchments used in this study extracted from Baez-Villanueva et al. (2021).

3. Summary of scales with highest cross-correlation and event coincidence rates

Index	Temporal scale	Cross-correlation	Event coincidence			
muex	iomporur scure		thr=-1.0	thr=-1.5		
	3	0.57	0.52			
SPI	6	0.58	0.53	0.46		
	9	0.57	0.50	0.45		
SPEI	3	0.52	0.50			
	6	0.52	0.51	0.41		
	9		0.50	0.40		
	1	0.50	0.27			
ESSMI	3	0.47	0.31	0.18		
	6		0.29	0.21		
	1	0.23	0.27			
SWEI	3		0.29	0.10		
	6	0.22	0.29	0.08		

Table S2. Median correlation (lag zero) and event coincidence rates for the selected indices and temporal scales with the highest values when calculated over 100 near-natural Chilean catchments.

Table S3. Temporal scale with the highest median correlation values (lag zero) for SPI, SPEI, ESSMI and SWEI calculated over 100 nearnatural Chilean catchments. The number presented in parenthesis indicates the numeric value of the linear cross-correlation at the given temporal scale.

	Nival	Nivo-pluvial	Pluvio-Nival	Pluvial
	12 (0.75)	12 (0.52)	3 (0.73)	3 (0.66)
CDI	18 (0.75)	6 (0.51)	6 (0.79)	1 (0.53)
311	24 (0.73)	3 (0.51)		
		9 (0.48)		
	12 (0.58)	3 (0.48)	3 (0.68)	3 (0.63)
SPEI	18 (0.60)	6 (0.43)	1 (0.67)	1 (0.55)
	24 (0.59)	12 (0.43)	6 (0.66)	
		1 (0.38)		
		9 (0.36)		
	6 (0.53)	3 (0.49)	1 (0.55)	1 (0.52)
ESSMI	3 (0.48)	1 (0.48)	3 (0.50)	
	1 (0.38)			
SWEI	1 (0.38)	1 (0.25)	1 (0.25)	3 (0.10)

Table S4. Temporal scale with the highest median precursory coincidence rates for SPI, SPEI, ESSMI and SWEI calculated over 100 nearnatural Chilean catchments. Numbers in parentheses indicate the numeric value of the precursory coincidence rate at the given temporal scale. This table corresponds to moderate drought events (thr = -1.0).

	Nival	Nivo-pluvial	Pluvio-Nival	Pluvial
	24 (0.74)	6 (0.48)	6 (0.68)	3 (0.55)
SPI	18 (0.68)	9 (0.47)		
		12 (0.46)		
	18 (0.52)	9 (0.50)	3 (0.60)	3 (0.49)
SPEI		6 (0.49)	1 (0.55)	
		12 (0.45)		
ECOMI	1 (0.23)	1 (0.26)	3 (0.37)	6 (0.38)
ESSIMI	3 (0.22)			3 (0.37)
SWEI	-	-	-	-

Table S5. Temporal scale with the highest median precursory coincidence rates for SPI, SPEI, ESSMI and SWEI calculated over 100 nearnatural Chilean catchments. Numbers in parentheses indicate the numeric value of the precursory coincidence rate at the given temporal scale. This table corresponds to severe drought events (thr = -1.5).

	Nival	Nivo-pluvial	Pluvio-Nival	Pluvial
	24 (0.66)	6 (0.32)	6 (0.73)	-
SPI		9 (0.31)		
		3 (0.31)		
	12 (0.25)	6 (0.32)	6 (0.48)	12 (0.30)
SPEI		9 (0.31)	3 (0.47)	
SPI SPEI ESSMI SWEI		12 (0.30)		
ECOMI	-	-	6 (0.25)	1 (0.23)
ESSIMI			3 (0.23)	3 (0.22)
SWEI	-	-	-	-

3 All catchments — Boxplots for different temporal scales 50 and lag times

3.1 Cross-correlation

Figure S2. cross-correlation among the selected drought indices (SPI, SPEI, ESSMI, SWEI) and the SSI-1, for different temporal scales (from 1 to 24 months) and lag times (from 0 to 12 months). The solid coloured boxplots indicate lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S3. cross-correlation results between the SPI and the SSI-1 at different lag periods (ranging from 0 to 12 months). The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S4. cross-correlation results between the SPEI and the SSI-1 at different lag periods (ranging from 0 to 12 months). The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

3.2 Event coincidence analysis

Figure S5. Event coincidence analysis results of the selected drought indices and the SSI-1 at a lag of zero months for severe droughts (thr = -1.5). The coloured boxplots indicate lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S6. Event coincidence analysis results of the selected drought indices and the SSI-1 at different lag periods (ranging from 0 to 12 months) for a threshold of -1.0 (moderate droughts). The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S7. Event coincidence analysis results of the selected drought indices and the SSI-1 at different lag periods (ranging from 0 to 12 months) for a threshold of -1.5 (severe droughts). The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

4 All catchments — Spatial analysis for different temporal scales and lag times

4.1 Cross-correlation

Figure S8. Spatial distribution of the cross-correlation results between the SPI at different scales and the SSI-1 over 100 near-natural catchments at different lags (0, 1, 3, 6, 9, and 12 months).

Figure S9. Spatial distribution of the cross-correlation results between the SPEI at different scales and the SSI-1 over 100 near-natural catchments at different lags (0, 1, 3, 6, 9, and 12 months).

Figure S10. Spatial distribution of the cross-correlation results between the ESSMI at different scales and the SSI-1 over 100 near-natural

21 Figure S11. Spatial distribution of the cross-correlation results between the SWEI at different scales and the SSI-1 over 100 near-natural catchments at different lags (0, 1, 3, 6, 9, and 12 months).

4.2 Event coincidence analysis

Figure S12. Spatial distribution of the event coincidence analysis results for severe droughts between the selected indices and the SSI-1 over 100 near-natural catchments and at a lag of zero months.

Figure S13. Spatial distribution of the event coincidence analysis results for moderate droughts between the SPI and the SSI-1 over 100 near-natural catchments and at different lags (0, 1, 3, 6, 9, and 12 months).

Figure S14. Spatial distribution of the event coincidence analysis results for severe droughts between the SPI and the SSI-1 over 100 nearnatural catchments and at different lags (0, 1, 3, 6, 9, and 12 months).

Figure S15. Spatial distribution of the event coincidence analysis results for moderate droughts between the SPEI and the SSI-1 over 100 near-natural catchments and at different lags (0, 1, 3, 6, 9, and 12 months).

Figure S16. Spatial distribution of the event coincidence analysis results for severe droughts between the SPEI and the SSI-1 over 100 near-natural catchments and at different lags (0, 1, 3, 6, 9, and 12 months).

Figure S17. Spatial distribution of the event coincidence analysis results for severe droughts between the ESSMI and the SSI-1 over 100

Figure S18. Spatial distribution of the event coincidence analysis results for severe droughts between the ESSMI and the SSI-1 over 100

Figure S19. Spatial distribution of the event coincidence analysis results for moderate droughts between the SWEI and the SSI-1 over 100 near-natural catchments and at different lags (0, 1, 3, 6, 9, and 12 months).

Figure S20. Spatial distribution of the event coincidence analysis results for severe droughts between the SWEI and the SSI-1 over 100 near-natural catchments and at different lags (0, 1, 3, 6, 9, and 12 months).

5. Cross-Correlation analysis – Hydrological Regimes

Figure S21. cross-correlation results of the SPI and the SSI-1 at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated catchments (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S22. cross-correlation results of the SPEI and the SSI-1 at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated catchments (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S23. cross-correlation results of the ESSMI and the SSI-1 at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated catchments (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S24. cross-correlation results of the SWEI and the SSI-1 at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated catchments (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

6. Event coincidence analysis – Hydrological Regimes

Figure S25. Event coincidence analysis results of the selected drought indices and the SSI-1 for severe droughts at a lag of zero months for *i*) nival; *ii*) nivo-pluvial; *iii*) pluvio-nival; and *iv*) pluvial catchments. The solid boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S26. Event coincidence analysis results of the SPI and the SSI-1 for moderate droughts at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S27. Event coincidence analysis results of the SPI and the SSI-1 for severe droughts at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S28. Event coincidence analysis results of the SPEI and the SSI-1 for moderate droughts at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S29. Event coincidence analysis results of the SPEI and the SSI-1 for severe droughts at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S30. Event coincidence analysis results of the ESSMI and the SSI-1 for moderate droughts at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S31. Event coincidence analysis results of the ESSMI and the SSI-1 for severe droughts at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S32. Event coincidence analysis results of the SWEI and the SSI-1 for moderate droughts at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

Figure S33. Event coincidence analysis results of the SWEI and the SSI-1 for severe droughts at different lag periods (ranging from 0 to 12 months) for *i*) snow-dominated (a); *ii*) nivo-pluvial (b); *iii*) pluvio-nival (c); and *iv*) rain-dominated (d) catchments. The solid coloured boxplots indicate those lags where at least 75% of the catchments presented significant results at the 95% confidence interval, while the white boxplots indicate the opposite. The blue line indicates the optimal cross-correlation. The solid line within each box represents the median value, the edges of the boxes represent the first and third quartiles, and the whiskers extend to the most extreme data point which is no more than 1.5 times the interquartile range from the box.

7. Difference between parametric and non-parametric

60

65

approach for soil moisture

To provide with insights into how the choice between parametric and non-parametric approaches may influence the analysis of drought indices, we computed a standardised soil moisture index using both a parametric approach with the gamma distribution and the non-parametric approach proposed by Carrão et al. (2016) (ESSMI) across all catchments. As expected, there are variations in the values computed through applying both approaches. Figure S34 illustrates these differences, computed as the "parametric approach" minus the "non-parametric approach", focusing on a nival and pluvial catchment.

Figure S34. Differences between a standardised soil moisture index calculated with a parametric (gamma distribution) and non-parametric (ESSMI) approach for scales ranging from 1 to 12 months. Panel a shows these differences over a Nival catchment, while panel b over a pluvial catchment.

8. Summary of the selected catchments

Table S6: Summary of the catchments used in this study with their respective hydrological regimes and distinct properties. Mean *Q*, Mean *P*, Aridity Index, Baseflow Index, *P* seasonality represents mean annual values computed based on CR2MET data for April 1979 - March 2011, following the definitions provided in CAMELS-CL Alvarez-Garreton et al. (2018)

ID	Station Name	Long.	Lat.	Hydrological Regime	Area [km2]	Dominant Land Cover (%)	Dominant Geology	Min. Elev. [m asl]	Mean Q [mm/d]	Mean P [mm]	Aridity Index	Baseflow Index	P Seas.
1310002	Rio San Jose En	-69.81	-18.58	Pluvial	1281.47	Shrublands	Acid volcanic rocks	1246	NA	184.47	4.71	NA	1.48
1410004	Rio Codpa En Cala-	-69.67	-18.83	Pluvial	370.66	Shrublands	Intermediate vol-	2242	NA	204.86	4.16	NA	1.45
1730003	Rio Coscaya En Saitoco	-68.93	-19.86	Pluvial	171.18	Shrublands (70.5)	Pyroclastics	3964	NA	203.83	3.6	NA	1.44
2101001	Rio Loa Antes Represa Lequena	-68.66	-21.66	Pluvial	2053.28	Barren (84.27)	Intermediate vol-	3289	0.02	169.27	5.1	0.89	1.42
3414001	Rio Pulido En Vert-	-69.94	-28.09	Nival	2021.8	Barren (63.39)	Acid plutonic rocks	1295	0.07	130.59	6.05	0.83	-0.96
3430003	Rio Copiapo En Pastillo	-69.97	-28	Nivo-pluvial	7463.88	Barren (70.75)	Acid plutonic rocks	1136	NA	100.99	7.93	NA	-0.92
4311001	Estero Derecho En Alcohuaz	-70.49	-30.22	Nival	338.24	Barren (69.04)	Acid plutonic rocks	1647	0.36	245.47	2.81	0.81	-1.12
4313001	Rio Cochiguaz En El Peñon	-70.43	-30.12	Nival	675.35	Barren (66.49)	Acid plutonic rocks	1338	0.39	195.6	3.61	0.84	-1.13
4314002	Rio Claro En Riva- davia	-70.55	-29.98	Nival	1512.82	Barren (61.51)	Acid plutonic rocks	803	0.27	208.66	3.82	0.83	-1.11
4511002	Rio Grande En Las Ramadas	-70.58	-31.01	Nival	568.53	Barren (66.62)	Acid plutonic rocks	1377	0.76	323.42	2.37	0.78	-1.12
4512001	Rio Tascadero En Desembocadura	-70.66	-31.01	Nival	241.01	Barren (51.09)	Acid plutonic rocks	1219	0.56	344.37	2.61	0.7	-1.23
4513001	Rio Grande En Cuyano	-70.77	-30.92	Nival	1286.61	Barren (49.02)	Acid plutonic rocks	871	0.58	315.59	2.89	0.75	-1.21
4514001	Rio Mostazal En Cuestecita	-70.61	-30.81	Nival	393.68	Barren (50.17)	Acid plutonic rocks	1235	0.41	402.68	1.72	0.76	-0.99
4515002	Rio Mostazal En Caren	-70.77	-30.84	Pluvio-nival	640.15	Shrublands (57.63)	Acid plutonic rocks	690	0.22	365.46	2.32	0.69	-1.07
4520001	Rio Los Molles En Ojos De Agua	-70.44	-30.74	Nival	155.32	Barren (70.11)	Acid plutonic rocks	2372	0.09	368.51	1.35	0.72	-0.86
4522002	Rio Rapel En Junta	-70.87	-30.71	Pluvio-nival	820.55	Shrublands (59.82)	Acid plutonic rocks	494	0.21	349.18	2.38	0.67	-1.05
4523002	Rio Grande En Pun- tilla San Juan	-70.92	-30.7	Nivo-pluvial	3529.4	Shrublands (60.05)	Acid plutonic rocks	425	0.29	323.57	2.87	0.72	-1.15
4530001	Rio Cogoti En Fra- guita	-70885	-31.11	Nivo-pluvial	490.52	Shrublands (50.35)	Acid plutonic rocks	1008	0.48	322.56	3.15	0.71	-1.27
4531002	Rio Cogoti Entrada Embalse Cogoti	-71.04	-31.03	Nivo-pluvial	753.07	Shrublands (62.28)	Acid plutonic rocks	638	NA	300.4	3.73	NA	-1.3
4533002	Rio Pama En Valle Hermoso	-70.99	-31.27	Pluvial	155.65	Shrublands (71.29)	Mixed sedimentary rocks	1026	NA	327.88	2.99	NA	-1.29
4703002	Rio Choapa En Cun- cumen	-70.59	-31.97	Nival	1131.63	Barren (63.55)	Acid volcanic rocks	1153	0.79	371.34	2.11	0.75	-1.18
4712001	Rio Chalinga En La Palmilla	-70.72	-31.7	Nivo-pluvial	243.9	Barren (57.19)	Acid volcanic rocks	1430	NA	298.09	2.65	NA	-1.28
5101001	Rio Pedernal En Te- jada	-70.76	-32.07	Nivo-pluvial	81.13	Shrublands (70.92)	Acid volcanic rocks	1335	NA	401.02	2.47	NA	-1.25
5100001	Rio Sobrante En Pi- adero	-70.71	-32.23	Nivo-pluvial	241.08	Shrublands (56.84)	Acid volcanic rocks	1135	0.42	456.16	1.98	0.78	-1.21
5721001	Estero Yerba Loca Antes Junta San	-70.36	-33.34	Nival	109.95	Barren (69.57)	Pyroclastics	1348	NA	534.08	0.91	NA	-1.13
6027001	Francisco Rio Claro En El Valle	-70.87	-34.69	Nivo-pluvial	349.38	Shrublands (35.42)	Acid volcanic rocks	538	2.86	1485.27	0.64	0.63	-1.16
						Continued or	n next page						

Table S6: Summary of the catchments used in this study with their respective hydrological regimes and distinct properties. Mean *Q*, Mean *P*, Aridity Index, Baseflow Index, *P* seasonality represents mean annual values computed based on CR2MET data for April 1979 - March 2011, following the definitions provided in CAMELS-CL Alvarez-Garreton et al. (2018)

ID	Station Name	Long.	Lat.	Hydrological Regime	Area [km2]	Dominant La Cover (%)	and	Dominant Geology	Min. Elev. [m asl]	Mean Q [mm/d]	Mean P [mm]	Aridity Index	Baseflow Index	P Seas.
7103001	Rio Claro En Los	-70.81	-35	Nivo-pluvial	354.41	Barren (36.36	ō)	Acid volcanic rocks	662	4.86	1785.19	0.53	0.7	-1.11
7115001	Rio Palos En Junta	-71.02	-35.27	Nivo-pluvial	490	Barren (55.32	2)	Basic volcanic rocks	581	5.22	1964.94	0.45	0.8	-1.07
7116001	Estero Upeo En Upeo	-71.09	-35.17	Pluvial	367.17	Native f	for-	Acid volcanic rocks	421	1.76	1543.58	0.75	0.52	-1.17
7330001	Rio Perquilauquen En San Manuel	-71.62	-36.38	Pluvio-nival	502.4	Native f est(48.27)	for-	Acid volcanic rocks	265	5.68	2068.05	0.53	0.55	-1.04
7350003	Rio Longavi En El Castillo	-71.34	-36.26	Pluvio-nival	466.85	Shrublands (42.83)		Acid volcanic rocks	606	6.68	2085.89	0.48	0.57	-1.04
7354002	Rio Achibueno En La Recova	-71.44	-36	Pluvio-nival	894.35	Native f est(41.22)	for-	Unconsolidated sedi- ments	301	NA	2018.07	0.53	NA	-1.07
7372001	Rio Claro En Ca- marico	-71.38	-35.18	Pluvial	703.01	Native f est(37.64)	for-	Acid volcanic rocks	152	2.4	1498.95	0.77	0.6	-1.14
7374001	Rio Lircay En Puente Las Rastras	-71.29	-35.49	Pluvio-nival	382.3	Native f est(55.51)	for-	Acid volcanic rocks	232	3.27	1740.1	0.62	0.57	-1.11
8104001	Rio Sauces Antes Junta Con Ñuble	-71.27	-36.67	Nivo-pluvial	606.7	Shrublands (49.13)		Acid volcanic rocks	684	4.63	1952.76	0.55	0.68	-1.04
8117005	Rio Chillan En Camino A Confluen- cia	-72.32	-36.62	Pluvio-nival	798.54	Shrublands (28.8)		Unconsolidated sedi- ments	34	NA	1594.98	0.76	NA	-1
8123001	Rio Itata En Chol-	-72.07	-37.15	Pluvial	860.06	Native f	for-	Acid volcanic rocks	202	4.28	1834.61	0.61	0.64	-0.89
8124002	Rio Itata En Trilaleo	-72.18	-37.07	Pluvio-nival	1148.24	Native f	for-	Pyroclastics	149	3.18	1776.51	0.64	0.56	-0.9
8130002	Rio Diguillin En San Lorenzo (Atacalco)	-71.58	-36.92	Pluvio-nival	204.41	Shrublands (40.61)		Acid volcanic rocks	712	7.01	2484.67	0.39	0.57	-0.93
8132001	Rio Diguillin En Longitudinal	-72.33	-36.87	Pluvio-nival	1300.45	Native f est(30.77)	for-	Unconsolidated sedi- ments	65	3.17	1925.93	0.59	0.59	-0.95
8317001	Rio Biobio En Rucal- hue	-71.9	-37.71	Pluvio-nival	7252.47	Shrublands (38.08)		Acid volcanic rocks	222	5.19	2147.49	0.47	0.7	-0.86
8334001	Rio Biobio En Coihue	-72.59	-37.55	Pluvio-nival	11147.78	Native f est(31.76)	for-	Unconsolidated sedi- ments	33	NA	2039.05	0.52	NA	-0.87
8342001	Rio Renaico En Lon- gitudinal	-72.38	-37.85	Pluvio-nival	688.23	Native f est(63.98)	for-	Acid plutonic rocks	117	5.32	2520.08	0.42	0.6	-0.83
8351001	Rio Malleco En Col- lipulli	-72.44	-37.96	Pluvio-nival	415.08	Native f est(46.77)	for-	Basic volcanic rocks	142	5.42	2394.15	0.44	0.57	-0.82
9122002	Rio Blanco En Cura- cautin	-71.87	-38.45	Pluvio-nival	170.91	Native f est(42.89)	for-	Basic volcanic rocks	552	NA	3074.75	0.31	NA	-0.75
9123001	Rio Cautin En Rari- Ruca	-72.01	-38.43	Pluvio-nival	1306.14	Native f est(52.11)	for-	Pyroclastics	407	6.02	2747.88	0.35	0.75	-0.76
9127001	Rio Muco En Puente Muco	-72.42	-38.62	Pluvio-nival	650.26	Native f est(39.25)	for-	Unconsolidated sedi- ments	156	3.36	1977.9	0.56	0.64	-0.74
9129002	Rio Cautin En Cajon	-72.5	-38.69	Pluvio-nival	2755.57	Native f est(39.09)	for-	Pyroclastics	104	4.35	2215.61	0.47	0.7	-0.76
9134001	Rio Huichahue En Faja 24000	-72.33	-38.85	Pluvio-nival	348.01	Native f est(58.93)	for-	Unconsolidated sedi- ments	113	NA	2175.55	0.43	NA	-0.7
9135001	Rio Quepe En Quepe	-72.62	-38.85	Pluvio-nival	1665.56	Native f est(39.46)	for-	Basic volcanic rocks	39	4.52	1996.98	0.52	0.68	-0.71
9140001	Rio Cautin En Alma- gro	-72.95	-38.78	Pluvio-nival	5547.33	Native f est(33.84)	for-	Basic volcanic rocks	5	4.14	1970.08	0.54	0.67	-0.75
9402001	Rio Allipen En Melipeuco	-71.73	-38.87	Pluvio-nival	829.6	Native f est(50.54)	for-	Acid plutonic rocks	437	NA	2390.43	0.38	NA	-0.77
9404001	Rio Allipen En Los Laureles	-72.23	-38.98	Pluvio-nival	1675.11	Native f est(47.75)	for-	Pyroclastics	193	6.88	2346.96	0.42	0.77	-0.73
9405001	Rio Curaco En Col- ico	-72.08	-39.03	Pluvio-nival	414.22	Native f est(67.47)	for-	Basic volcanic rocks	311	NA	2676.95	0.36	NA	-0.68
9412001	Rio Trancura En Cu- rarrehue	-71.58	-39.36	Pluvio-nival	356.92	Native f est(63.59)	for-	Acid plutonic rocks	369	7.29	3264.22	0.28	0.66	-0.75
						Contin	nued on	next page						

Table S6: Summary of the catchments used in this study with their respective hydrological regimes and distinct properties. Mean *Q*, Mean *P*, Aridity Index, Baseflow Index, *P* seasonality represents mean annual values computed based on CR2MET data for April 1979 - March 2011, following the definitions provided in CAMELS-CL Alvarez-Garreton et al. (2018)

ID	Station Name	Long.	Lat.	Hydrological	Area	Dominant Land	Dominant	Min. Elev.	Mean Q	Mean P	Aridity	Baseflow	Р
				Regime	[km2]	Cover (%)	Geology	[m asl]	[mm/d]	[mm]	Index	Index	Seas.
9414001	Rio Trancura Antes Rio Llafenco	-71.77	-39.33	Pluvio-nival	1379.35	Native for- est(64.68)	Pyroclastics	350	7.04	2864.46	0.33	0.71	-0.75
9416001	Rio Liucura En Liu- cura	-71.82	-39.26	Pluvio-nival	349.01	Native for- est(74.25)	Acid plutonic rocks	275	7.5	2692.36	0.36	0.7	-0.7
9420001	Rio Tolten En Villar- ica	-72.23	-39.27	Pluvio-nival	2933.65	Native for- est(59.68)	Pyroclastics	193	7.45	2799.48	0.34	0.82	-0.71
9433001	Rio Puyehue En Quitratue	-72.67	-39.15	Pluvio-nival	153.46	Native for- est(44.47)	Metamorphics	66	3.82	1876.36	0.6	0.63	-0.81
9434001	Rio Donguil En Gor- bea	-72.68	-39.1	Pluvio-nival	769.73	Grassland (47.44)	Siliciclastic sedimen- tary rocks	62	3.53	1879.81	0.62	0.65	-0.79
9437002	Rio Tolten En Teodoro Schmidt	-73.08	-39.01	Pluvio-nival	7926.85	Native for- est(47.54)	Siliciclastic sedimen- tary rocks	5	NA	2376.65	0.43	NA	-0.73
10102001	Rio Liquine En Liquine	-71.85	-39.73	Pluvio-nival	367.86	Native for- est(74.24)	Acid plutonic rocks	215	NA	3193.72	0.29	NA	-0.71
10111001	Rio San Pedro En Desague Lago Rini- hue	-72475	-39.77	Pluvio-nival	4385.55	Native for- est(47.85)	Acid plutonic rocks	86	NA	2866.61	0.33	NA	-0.69
10121001	Rio Collileufu En Los Lagos	-72825	-39.86	Pluvial	626.25	Native for- est(47.34)	Metamorphics	10	NA	1606.48	0.67	NA	-0.79
10122001	Rio Calle Calle En Balsa San Javier	-72.61	-40.57	Pluvial	6618.95	Native for- est(48.99)	Acid plutonic rocks	4	NA	2593.92	0.37	NA	-0.69
10134001	Rio Cruces En Ru- caco	-72.9	-39.55	Pluvial	1802.6	Native for- est(44.05)	Siliciclastic sedimen- tary rocks	4	4.1	2121.55	0.5	0.65	-0.74
10137001	Rio Inaque En Mafil	-72.95	-39.67	Pluvial	538.96	Native for- est(43.33)	Metamorphics	4	NA	1800.31	0.57	NA	-0.76
10304001	Rio Calcurrupe En Desembocadura	-72.27	-40.25	Pluvio-nival	1725.81	Native for- est(67.1)	Acid plutonic rocks	45	NA	3074.86	0.29	NA	-0.61
10306001	Rio Nilahue En Mayay	-72.23	-40.27	Pluvio-nival	308.59	Native for- est(46.95)	Pyroclastics	116	NA	3410.55	0.26	NA	-0.58
10328001	Rio Pilmaiquen En San Pablo	-73	-40.38	Pluvio-nival	2473.21	Native for- est(38.87)	Pyroclastics	6	6.18	2785.3	0.34	0.79	-0.56
10343001	Rio Coihueco Antes Junta Pichicope	-72.7	-40.93	Pluvial	313.34	Native for- est(62.72)	Basic volcanic rocks	128	NA	2692.54	0.33	NA	-0.46
10356001	Rio Negro En Chahuilco	-73.23	-40.71	Pluvial	2279.73	Grassland (61.39)	Siliciclastic sedimen- tary rocks	8	NA	1565.27	0.64	NA	-0.65
10362001	Rio Damas En Tacamo	-73.06	-40.62	Pluvial	466.78	Grassland (73.63)	Siliciclastic sedimen- tary rocks	20	NA	1620.89	0.65	NA	-0.61
10363002	Rio Forrahue En Aromos	-73.13	-40.89	Pluvial	169.01	Grassland (66.83)	Siliciclastic sedimen- tary rocks	34	NA	1503.64	0.72	NA	-0.6
10364001	Rio Rahue En For- rahue	-73.28	-40.52	Pluvial	5602.99	Grassland (54.65)	Siliciclastic sedimen- tary rocks	2	NA	1860.73	0.53	NA	-0.59
11141001	Rio Cisnes En Es- tancia Rio Cisnes	-71.55	-44.59	Nivo-pluvial	1105.64	Grassland (48.54)	Siliciclastic sedimen- tary rocks	559	NA	586.98	1.49	NA	-0.5
11143001	Rio Cisnes Antes Junta Rio Moro	-71.81	-44.66	Nivo-pluvial	2258.36	Grassland (36.19)	Basic volcanic rocks	466	NA	959.52	0.88	NA	-0.49
11143002	Rio Moro Antes Junta Rio Cisnes	-72.72	-44.75	Nivo-pluvial	133.9	Native for- est(40.01)	Acid plutonic rocks	484	NA	1316.19	0.59	NA	-0.47
11302001	Rio Ñireguao En Villa Mañiguales	-72.12	-45.15	Nivo-pluvial	1997	Grassland (36.73)	Basic volcanic rocks	133	1.47	772.55	1.08	0.69	-0.38
11307001	Rio Emperador Guillermo Antes Junta Mañiguales	-72.23	-45.23	Nivo-pluvial	565.93	Native for- est(39.85)	Basic volcanic rocks	92	NA	1325.96	0.58	NA	-0.26
11308001	Rio Magniguales Antes Junta Rio Simpson	-72.47	-45.38	Nivo-pluvial	4363.64	Native for- est(41.63)	Acid plutonic rocks	8	NA	1363.36	0.58	NA	-0.3
12452001	Rio Perez En Desem- bocadura	-71.97	-52.55	Nivo-pluvial	308.23	Native for- est(51.15)	Unconsolidated sedi- ments	0	NA	761.44	0.79	NA	0.31
12582001	Rio San Juan En De-	-70.97	-53.65	Nivo-pluvial	864.01	Shrublands	Siliciclastic sedimen-	0	1.81	750.38	0.81	0.6	0.21
	sembocadura					(41.51) Continued	on next page						

Table S6: Summary of the catchments used in this study with their respective hydrological regimes and distinct properties. Mean *Q*, Mean *P*, Aridity Index, Baseflow Index, *P* seasonality represents mean annual values computed based on CR2MET data for April 1979 - March 2011, following the definitions provided in CAMELS-CL Alvarez-Garreton et al. (2018)

ID	Station Name	Long.	Lat.	Hydrological	Area	Dominant Land	Dominant	Min. Elev.	Mean Q	Mean P	Aridity	Baseflow	Р
				Regime	[km2]	Cover (%)	Geology	[m asl]	[mm/d]	[mm]	Index	Index	Seas.
12585001	Rio Tres Brazos	-70.98	-53.28	Nivo-pluvial	100	Native for-	Siliciclastic sedimen-	12	NA	627.74	1.07	NA	0.15
	Antes Bt. Sendos					est(53.89)	tary rocks						
12586001	Rio Las Minas En Bt.	-70.99	-53.14	Nivo-pluvial	35.55	Shrublands	Siliciclastic sedimen-	157	NA	526.23	1.35	NA	0.11
	Sendos					(46.59)	tary rocks						
12600001	Rio Rubens En Ruta	-71.94	-52.03	Nivo-pluvial	504.45	Native for-	Mixed sedimentary	143	1.93	879.86	0.72	0.61	0.26
	N 9					est(45.56)	rocks						
12802001	Rio Side En Cerro	-69.28	-52.77	Pluvial	808.55	Shrublands	Siliciclastic sedimen-	11	0.15	352.15	2.12	0.72	0.18
	Sombrero					(53.46)	tary rocks						
12805001	Rio Oscar En Bahia	-69.75	-52.85	Pluvial	559.57	Shrublands	Unconsolidated sedi-	8	0.31	399.93	1.78	0.75	0.24
	San Felipe					(51.36)	ments						
12876001	Rio Grande En Tierra	-68.88	-53.89	Nivo-pluvial	2841.02	Shrublands	Siliciclastic sedimen-	81	0.85	691.09	0.92	0.77	0.3
	Del Fuego					(38.48)	tary rocks						
12284002	Rio Baguales En	-72.48	-51.02	Nival	564.25	Grassland (37)	Siliciclastic sedimen-	49	0.45	276.81	2.77	0.63	0.42
	Cerro Guido						tary rocks						
12284003	Rio Vizcachas En	-72.48	-51.02	Nival	1729.66	Shrublands	Siliciclastic sedimen-	11	0.26	218.81	3.89	0.68	0.42
	Cerro Guido					(14.42)	tary rocks						
12284006	Rio Las Chinas En	-72.52	-51.05	Nival	901.46	Shrublands	Siliciclastic sedimen-	48	0.73	465.94	1.58	0.57	0.34
	Cerro Guido					(38.12)	tary rocks						
12284007	Rio Las Chinas	-72.52	-51.25	Nival	3936.75	Shrublands	Siliciclastic sedimen-	11	NA	311.51	2.58	NA	0.32
	Antes Desague Del					(26.06)	tary rocks						
	Toro												
12285001	Rio Chorrillos Tres	-72.47	-51.45	Pluvio-nival	101.13	Grassland	Siliciclastic sedimen-	158	0.29	613.53	1.29	0.57	0.18
	Pasos Ruta N 9					(42.72)	tary rocks						

9. Median monthly P and Q values for all catchments

Figure S35. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 12284002, 12284003, 12284006, 12284007, 3414001, 4311001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S36. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 4313001, 4314002, 4511002, 4512001, 4513001, 4514001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S37. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 4520001, 4703002, 5721001, 11141001, 111430001, 11143002. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S38. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 11302001, 11307001, 11308001, 12452001, 12582001, 12585001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S39. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 12586001, 12600001, 12876001, 3430003, 4523002, 4530001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S40. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 4531002, 4712001, 5100001, 5101001, 6027001, 7103001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S41. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 7115001, 8104001, 10121001, 10122001, 10134001, 10137001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S42. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 10343001, 10356001, 10362001, 10363002, 10364001, 12802001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S43. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 12805001, 1310002, 1410004, 1730003, 2101001, 4533002. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S44. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 7116001, 7372001, 8123001, 10102001, 10111001, 10304001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S45. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 10306001, 10328001, 12285001, 4515002, 4555002, 730001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S46. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 7350003, 7354002, 7374001, 8117005, 8124002, 8130002. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S47. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 8132001, 8317001, 8334001, 8342001, 8351001, 9122002. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S48. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 9123001, 9127001, 9129002, 9134001, 9135001, 9140001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S49. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 9402001, 9404001, 9405001, 9412001, 9414001, 9416001. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

Figure S50. Median monthly precipitation (top panels) and streamflow (bottom panels) values for catchments 9420001, 9433001, 9434001, 9437002. Error bars in precipitations and shaded areas in streamflows range from quantile 2.5 to 97.5.

References

95

Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Puelma, C., Cortes, G.,

- 70 Garreaud, R., McPhee, J., and Ayala, A.: The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies Chile dataset, Hydrology and Earth System Sciences, 22, 5817–5846, https://doi.org/10.5194/hess-22-5817-2018, 2018.
 - Baez-Villanueva, O. M., Zambrano-Bigiarini, M., Mendoza, P. A., McNamara, I., Beck, H. E., Thurner, J., Nauditt, A., Ribbe, L., and Thinh, N. X.: On the selection of precipitation products for the regionalisation of hydrological model parameters, Hydrology and Earth System Sciences, 25, 5805–5837, 2021.
- 75 Beck, H. E., Van Dijk, A. I., Levizzani, V., Schellekens, J., Miralles, D. G., Martens, B., and Roo, A. d.: MSWEP: 3-hourly 0.25 global gridded precipitation (1979–2015) by merging gauge, satellite, and reanalysis data, Hydrology and Earth System Sciences, 21, 589–615, 2017.
 - Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A., Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa, R. M., et al.: Evaluation of 18 satellite-and model-based soil moisture products using in situ measurements from 826 sensors, Hydrology and
- 80 Earth System Sciences, 25, 17–40, 2021.
 - Carrão, H., Russo, S., Sepulcre-Canto, G., and Barbosa, P.: An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data, International journal of applied earth observation and geoinformation, 48, 74–84, 2016.
 - Chan, S. K., Bindlish, R., O'Neill, P. E., Njoku, E., Jackson, T., Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, J., et al.: Assessment of the SMAP passive soil moisture product, IEEE Transactions on Geoscience and Remote Sensing, 54, 4994–5007, 2016.
- 85 Entekhabi, D., Njoku, E. G., O'Neill, P. E., Kellogg, K. H., Crow, W. T., Edelstein, W. N., Entin, J. K., Goodman, S. D., Jackson, T. J., Johnson, J., et al.: The soil moisture active passive (SMAP) mission, Proceedings of the IEEE, 98, 704–716, 2010.
 - Entekhabi, D., Yueh, S., O'Neill, P. E., Kellogg, K. H., Allen, A., Bindlish, R., Brown, M., Chan, S., Colliander, A., Crow, W. T., et al.: SMAP handbook–soil moisture active passive: Mapping soil moisture and freeze/thaw from space, 2014.
- Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., et al.:
 The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, 2020.
- Mohammed, P. N., Aksoy, M., Piepmeier, J. R., Johnson, J. T., and Bringer, A.: SMAP L-band microwave radiometer: RFI mitigation prelaunch analysis and first year on-orbit observations, IEEE Transactions on Geoscience and Remote Sensing, 54, 6035–6047, 2016.
 - Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harrigan, S., Hersbach, H., et al.: ERA5-Land: A state-of-the-art global reanalysis dataset for land applications, Earth System Science Data, 13, 4349–4383, 2021.
 - Oliva, R., Daganzo, E., Kerr, Y. H., Mecklenburg, S., Nieto, S., Richaume, P., and Gruhier, C.: SMOS radio frequency interference scenario: Status and actions taken to improve the RFI environment in the 1400–1427-MHz passive band, IEEE Transactions on Geoscience and Remote Sensing, 50, 1427–1439, 2012.
 - O'Neill, P., Chan, S., Njoku, E., Jackson, T., Bindlish, R., and Chaubell, J.: SMAP enhanced L3 radiometer global daily 9 km EASE-grid
 soil moisture, version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 2016.
- 100 soil moisture, version 3, NASA National Snow and Ice Data Center Distributed Active Archive Center, Boulder, Colorado USA, 2016. Reichle, R., De Lannoy, G., Koster, R. D., Crow, W. T., Kimball, J. S., and Liu, Q.: SMAP L4 global 3-hourly 9 km EASE-grid surface and root zone soil moisture geophysical data, version 4, NASA National Snow and Ice data center distributed active archive center, 10, 2018.
 - Tavakol, A., Rahmani, V., Quiring, S. M., and Kumar, S. V.: Evaluation analysis of NASA SMAP L3 and L4 and SPoRT-LIS soil moisture data in the United States, Remote Sensing of Environment, 229, 234–246, 2019.