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Abstract 11 

Spatiotemporal modelling is an innovative way of predicting soil moisture and has promising applications in 12 

supporting sustainable forest operations. One such application is the prediction of rutting, since rutting can cause severe 13 

damage to forest soils and ecological functions. 14 

In this work, we used ERA5-Land soil moisture retrievals and several topographic indices to model variations of in-15 

situ soil water content, by means of a random forest model. We then correlated the predicted soil moisture with rut 16 

depth from different trials. 17 

Our spatiotemporal modelling approach successfully predicted soil moisture with a Kendall’s rank correlation 18 

coefficient of 0.62 (R² of 64%). The final model included the spatial depth-to-water index, topographic wetness index, 19 

stream power index, as well as temporal components such as month and season, and ERA5-Land soil moisture 20 

retrievals. These retrievals showed to be the most important predictor in the model, indicating a large temporal 21 

variation. The prediction of rut depth was also successful, resulting in a Kendall’s correlation coefficient of 0.61. 22 

Our results demonstrate that by using data from several sources, including ERA5-Land retrievals, topographic indices 23 

and in-situ soil moisture measurements, we can accurately predict soil moisture and use this information to predict rut 24 

depth. This has practical applications in reducing the impact of heavy machinery on forest soils and avoiding wet areas 25 

during forest operations. 26 

Keywords: spatiotemporal modelling, forest management, forest engineering, rutting, downscaling, reanalysis 27 

1 Introduction 28 

For decades, forestry research has sought solutions to accurately predict the trafficability of forest soils (Murphy et al., 2007; 29 

White et al., 2012; Mattila and Tokola, 2019). In order to further sustainable forest management, efficient protection of forest 30 

soils is mandatory (Vega-Nieva et al., 2009; Uusitalo et al., 2019; Picchio et al., 2020). Heavy harvesting and forwarding 31 

machines have been frequently associated with severe soil damage, particularly when operating on soils with low bearing 32 

capacity (Horn et al., 2007; Allman et al., 2017). Soil compaction is a common consequence of harvesting operations 33 

(Eliasson, 2005; Ampoorter et al., 2010; DeArmond et al., 2021) and has shown to be detrimental to a number of ecological 34 
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functions, including soil biota (Beylich et al., 2010), hydrological patterns, and nutrient supply, with potential drawbacks on 35 

plant growth and site productivity (Curzon et al., 2022). In addition to soil compaction, machine traffic can also result in deep 36 

ruts (Horn et al., 2007; Poltorak et al., 2018; Ala-Ilomäki et al., 2021), which affect site hydrology and increase anaerobic 37 

conditions at the rut's base, where air-filled porosity is reduced, leading to minimized soil aeration (Hansson et al., 2019). 38 

The risk of causing high degrees of soil compaction and rutting is mainly attributed to soil properties such as initial soil bulk 39 

density and texture, as well as the current soil water content (Cambi et al., 2015; Crawford et al., 2021). Moist soils show a 40 

higher susceptibility to damage since the internal friction is decreased through water embracing soil particles (Hillel, 1998), 41 

reducing the soil bearing capacity and the ability for elastic responses to machine-induced impacts (McNabb et al., 2001). 42 

To support forestry management and machine operators, accurate cartographic information on soils with low bearing capacity 43 

is essential (Campbell et al., 2013; Jones and Arp, 2017; Sirén et al., 2019). However, existing models that rely on detailed 44 

soil maps to retrieve soil mechanical parameters (e.g. Grüll, 2011; Heubaum, 2015) require a high level of input data, and 45 

high-resolution soil maps are only available for selected areas, hindering their large-scale application (Vega-Nieva et al., 46 

2009; Kristensen et al., 2019). Therefore, researchers have turned to topographic modelling as a more promising approach 47 

(White et al., 2012; Lidberg et al., 2020), as it requires only digital elevation models (DEM), which are increasingly available 48 

for most parts of Europe (Guo et al., 2017; Hoffmann et al., 2022). One topographic index that has been extensively studied 49 

is the "depth-to-water" (DTW) concept, originally developed and tested at the University of New Brunswick by Meng, 50 

Ogilvie, and Arp, as described by Murphy et al. (2007; 2009). The DTW concept calculates flow lines across areas of interest 51 

by determining a flow accumulation and selecting lines that originate at a set threshold of accumulated upstream contributing 52 

areas. Using a cost function that considers the cell-to-cell slopes, the vertical distances from each cell within a raster to the 53 

nearest simulated flow line are ascertained. DTW is well documented (e.g. Vega-Nieva et al., 2009; Murphy et al., 2011; 54 

White et al., 2012). 55 

Previous research has shown that the DTW index performs relatively well in predicting wet areas in forested formerly 56 

glaciated landscapes compared to other indices (Ågren et al., 2014; Larson et al., 2022). Recent studies have explored further 57 

developments in moisture prediction by utilizing machine learning algorithms applied to a variety of freely available data and 58 

diverse retrieved information, including different topographic indices calculated on DEMs. Ågren et al. (2021) used 28 59 

topographic predictor variables in an eXtreme Gradient Boosting model (Chen et al., 2021) to predict soil moisture across the 60 

entire Swedish forest landscape at high resolution (2x2 m). Although topographic modelling approaches are widely used, they 61 

often fail to adjust to seasonal changes in soil water regimes. Static maps may not adequately represent temporal occurrences 62 

of flow lines, wet fields, or water-saturated soils. To address this issue, the DTW concept offers a potential solution, enabling 63 

the calculation of different scenarios ranging from ‘very dry’ or ‘frozen’ to ‘wet’ soil conditions. However, selecting the most 64 

accurate DTW scenario requires high expertise (Leach et al., 2017; Lidberg et al., 2020), and mistakes can lead to reduced 65 

accuracy and result in potential soil damages that could be avoided. 66 

Therefore, we believe that the next crucial step in soil moisture modelling is to incorporate a temporal component that enables 67 

the prediction of rasters for any given time and area. One approach to achieve this was designed by Schönauer et al. (2022), 68 

who developed a spatiotemporal prediction model. Dynamic satellite-based retrievals of soil moisture with coarse spatial 69 

resolution (Soil Moisture Active Passive Mission) were combined with high-resolution but static topographic maps. This 70 

resulted in improved performance in predicting moisture values across time-series conducted on sites in Finland, Germany, 71 

and Poland. The incorporation of a dynamic component into the prediction model enabled reflection of the current overall 72 
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moisture conditions on the study sites. This allowed to calculate daily prediction grids that could support forestry practice and 73 

enable the guidance of machine operators on sites to avoid traffic on wet areas susceptible to damages. However, a validation 74 

of predicting rut depth by models of this kind has not been facilitated yet. 75 

The effectiveness of soil moisture modelling, whether based on static or dynamic independent variables, is ultimately 76 

constrained by the quality of the dependent variable, which in this case is in-situ soil moisture. Manual measurements of soil 77 

moisture have been conducted in numerous studies using different devices, such as hand-held time-domain reflectometry 78 

sensors (Kemppinen et al., 2018; Uusitalo et al., 2019) or impedance measuring techniques (e.g. Schönauer et al., 2021b). 79 

Despite the potential inaccuracies associated with these techniques (Walker et al., 2004; Francesca et al., 2010), they offer 80 

significant advantages in terms of flexibility, scalability, low investment costs, and minimal maintenance. Another option is 81 

the use of continuously measuring sensor networks (e.g. Oliveira et al., 2021), which can provide relatively reliable 82 

measurements but with limited spatial coverage due to the high costs of installation and maintenance. 83 

In this study, we built upon the approach developed by Schönauer et al. (2022) by incorporating additional data sources, 84 

including additional topographic indices, soil maps, and soil moisture retrievals from ERA5-Land for two soil depths. The 85 

study also used two types of data sources for soil moisture measurements: manual measurements using a handheld moisture 86 

meter, and data from two continuously measuring sensor networks. We argue that manual measurements are simpler and can 87 

be applied to larger areas, while sensor networks are more expensive and limited to chosen positions. 88 

The study had two main objectives: 1. to train soil moisture models using the two individual data sets (manual measurements 89 

and sensor networks) and evaluate their prediction performance, and 2. to select the best combination of predictor variables 90 

(e.g. topographic indices, ERA5-Land values) using a repeated cross-validation approach and compare the best models with 91 

rut depth data obtained during four trials using a forwarder. 92 

2 Material and Methods 93 

To model soil water content (SWC), random forest models were trained using two separate datasets: manual in-situ 94 

measurements using an impedance measuring technique (IMT) and continuously measuring soil sensor networks (SSN). To 95 

both datasets we added predictor variables derived from topographic indices (e.g. depth-to-water, topographic wetness index), 96 

soil maps, SWC estimates from the ERA5-Land campaign (SWCERA), and numerical values for date (month and season). We 97 

performed cross-validation and reduced features stepwise to choose the best-performing model. Subsequently, the two final 98 

models (for IMT and SSN) were used to predict SWC for the positions and dates of different field trials with a forwarder. 99 

During this field trials, rut depth data was captured, and compared to the predictions from the final SWC-models (Figure 1). 100 
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 101 

Figure 1: Soil water content (SWC, [%]) was predicted using models trained on two datasets: in-situ measurements (IMT) and soil 
sensor networks (SSN). Input variables included topographic indices, soil type data, SWC estimates from ERA5-Land (SWCERA), 
and date values. Through cross-validation, we selected the final models, used to predict SWCPRED for various positions and dates 
during trials with a forwarder. Model estimates were compared with in-situ SWCCORE and rut depth (RD, [cm]). 

2.1 Study sites 102 

The data acquisition of volumetric SWC [%] and the trials with a forwarder were conducted in two forest stands located near 103 

the city of Arnsberg in North Rhine-Westphalia (Figure 2). The forest stands were situated at an altitude of approximately 104 

250 m on common soil types such as Cambisol and Stagnosol on Claystone and Sandstone from Devon and Carbon (Table 105 

1). 106 

Table 1. Characteristics of the study sites, where soil water content was captured and field trials with a forwarder were performed. 

Site Coordinates in WGS84 Dominant soil types Humus form Slope Canopy 

 x y   [%]  

A 8.039 51.406 Cambisol - Stagnosol Mesomull 15-30 Fagus sylvatica, 
Quercus spp., 
Pinus sylvestris 

B 8.024 51.473 Stagnosol Mull 1-7 Fagus sylvatica 
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 107 

Figure 2: The map indicates the locations of two experimental areas on a hill-shaded digital elevation model with 10 m contour 
lines; Site A (A, coordinates x, y in WGS84: 8.039, 51.406) and Site B (B, coordinates: 8.024, 51.473), which were used for 
collecting time-series data on soil water content (SWC). SWC was measured using a handheld soil moisture meter (impedance 
measuring technique, IMT) along transects (red lines), each containing 21 measuring positions (2 m spacing). In addition, a soil 
sensor network (SSN) was used to continuously capture SWC at 18 positions (white rhombus). The map also indicates the locations 
of 40 transects (in crop-outs) used for measuring rut depth (RD) during relatively wet conditions (TrialWET, blue lines) and dryer 
conditions (TrialDRY, orange lines). 

2.2 Soil moisture models 108 

2.2.1 In-situ soil moisture 109 

Two sets of in-situ data of soil moisture were used: 1. Manual measurements of SWC were performed using a HH2 Moisture 110 

Meter (Delta-T Devices Ltd, England), which applies Impedance Measuring Technique (i.e. ‘IMT’) (Eijkelkamp Agrisearch 111 

Equipment, 2013). 2. Data from a continuously measuring Soil Sensor Network (i.e. ‘SSN’). 112 

The IMT data used for this study were previously used for the validation by Schönauer et al. (2022) and consisted of 12 113 

measuring transects. The transects were placed in various positions in broadleaved forests, known to be temporarily wet or 114 

sensitive for machine traffic, with each transect having a length of 40 m. SWC was measured with a spacing of 2 m along the 115 

transects. To measure SWC, measuring rods of 60 mm length were vertically inserted into the soil after removing the humus 116 

layer. The measurements were taken almost monthly between September 2019 and October 2020 (Figure 3B). The IMT data 117 

consisted of 2,184 observations. Overall, this dataset offers a relatively high level of spatial granularity, with 252 measuring 118 

positions. However, the temporal resolution of the data is relatively low, with only monthly measuring campaigns conducted. 119 

The SSN was launched in Dezember 2019 and its data was obtained from continuously measuring SMT100 sensors 120 

(TRUEBNER GmbH, Germany), placed on two sites, each having 9 positions with a spacing of 50x50 m. At each position, 121 

two sensors were placed at a depth of 10 cm in the mineral soil, with a temporal resolution of 15 minutes. The data from these 122 

sensors were averaged for each position and each of the 1,116 days captured (data until 2022-12-31 was included), resulting 123 

in a total of 16,351 observations after omitting all missing values. While this data set provides a high level of temporal 124 

granularity, it suffers from a low level of spatial granularity due to the limited number of positions sampled. 125 

To enable the incorporation of seasonal effects in the modelling approaches, we transformed the date of each measurement 126 
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into numeric vectors, resulting in the variables Month and Season. The coding used for Season was as follows: 1 for March, 127 

April, and May; 2 for June, July, and August; 3 for September, October, and November; and 4 for December, January, and 128 

February. 129 

To enable the creation of spatiotemporal data, the positions of all measuring locations were captured using post-processed 130 

signals from a GNSS device (Trimble R2 RTK Rover, Trimble, Colorado, USA). This data was then fused with a range of 131 

topographic indices. To achieve this, values of several topographic indices were extracted at each measuring position of IMT 132 

and SSN. 133 

2.2.2 Topographic indices 134 

For calculating topographic indices, we used a freely available digital elevation model (DEM), as provided by the 135 

Bezirksregierung Köln (2020). The resolution of this model was 1x1 m, with a vertical accuracy of ± 0.2 m. Using the free 136 

programming language R (version 4.0.2, R Core Team, 2023) and RStudio (version 2022.07.2, Posit PBC, Massachusetts, 137 

USA), along with the package "rgrass" (Bivand, 2021) to utilize GRASS GIS (Awaida and Westervelt, 2020) commands in 138 

the R interface, the command 'r.hydrodem' was used to ‘remove all sinks’ (Flags: -a) from the DEM. Thereafter, we calculated 139 

depth-to-water (DTW) maps. To generate these maps, we followed the script by Schönauer and Maack (2021) and used flow 140 

initiation areas (FIA) of the following sizes 0.25 ha (DTW025), 1.00 ha (DTW1), and 4.00 ha (DTW4), which account for 141 

different overall soil moisture conditions. A smaller FIA results in a DTW map for wetter conditions, as the network of 142 

simulated flow lines expands, while a larger FIA represents drier conditions. For further details, refer to Murphy et al. (2009; 143 

2011). 144 

The Topographic Wetness Index (TWI) represents the tendency for water to accumulate at any point in the catchment (Quinn 145 

et al., 1991), while the stream power index (SPI) represents the power of water flow at any point in the catchment and the 146 

gravitational forces that move water downslope (Moore et al., 1991). To compute TWI, we used the 'r.watershed' command 147 

in GRASS GIS, as conceived by Sørensen and Seibert (2007). TWI was calculated as ln(α/tan(β)), where α is the cumulative 148 

upslope area draining through a point per unit contour length, and tan(β) is the local slope angle. SPI was calculated as α * 149 

tan(β) (Moore et al., 1991). Flow Accumulation, representing the absolute amount of overland flow passing through each cell 150 

was also included as a variable. TWI, SPI, and Flow Accumulation were calculated on an aggregated DEM with a spatial 151 

resolution of 15x15 m. This resolution has been shown to exhibit a stronger correlation with SWC, and can be assumed to be 152 

more robust (Ågren et al., 2014), as observed in prior work where resolutions ranging from 1 to 20 m were tested (data not 153 

shown). In addition, we calculated the variable Slope [°] using the R-package 'raster' (Hijmans, 2020). 154 

2.2.3 Soil maps 155 

Soil maps of North Rhine-Westphalia were originally generated at a scale of 1:5,000 from forest site surveys. We included 156 

soil type information (Soil05) for the analysis. While these maps are not available across the entire region of North Rhine-157 

Westphalia, they were provided for the study sites by the Geological Survey of North Rhine-Westphalia. By contrast, soil 158 

maps with a scale of 1:50,000 are available for the entirety of North Rhine-Westphalia (Soil50).  159 

2.2.4 Temporal soil water content from ERA5-Land 160 

ERA5-Land is a global reanalysis dataset providing hourly estimates of meteorological variables at a spatial resolution of 9x9 161 
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km, including soil moisture [m3 m-3] at the top soil layer (0-7 cm, ‘layer 1’ (L1)) and at a depth of 7-28 cm (‘layer 2’ (L2)). 162 

ERA5-Land data is retrieved by assimilating satellite and atmospheric forcing (Muñoz-Sabater et al., 2021). It provides a 163 

reliable representation of soil moisture values and variations across the majority of global regions, making it applicable for 164 

various geophysical applications (Lal et al., 2022). 165 

We utilized the API provided by CDS (Copernicus Climate Change Service, 2019) and the R-package 'ecmwfr' (Koen Hufkens 166 

et al., 2019) to download daily grids (at 14:00 UTC) of layer 1 and 2. The downloaded data covered both the whole time span 167 

of our data and the two measuring sites. Both sites were situated in one 9x9 km raster cell of the ERA5-Land. The land cover 168 

for this cell was derived from Bezirksregierung Köln (2023), showing that open land (e.g. grassland, crops) dominated with 169 

52% of the total cover, whereas forests occurred on approximately 31% of the cell size, followed by 12% coverage from 170 

infrastructure, 3% loose material, and 2% water bodies. 171 

After downloading the data, we stacked the daily grids and extracted the corresponding values at each measuring position, 172 

giving SWCERAL1 and SWCERAL2. 173 

All data, the topographic information, soil types, numerical values of date and the dynamic variables from ERA5-Land were 174 

merged with in-situ data, either IMT or SSN. 175 

2.2.5 Modelling 176 

The modelling approach described here was applied separately for both data sets, IMT and SSN (the main outputs when both 177 

datasets were combined can be seen in Appendix A). 178 

Initially, we fitted a linear model with SWC as the dependent variable and SWCERAL1, SWCERAL2, Month, Season, DTW025, 179 

DTW1, DTW2, DTW4, Slope, TWI, SPI, Accumulation, Soil05, and Soil50 as the independent variables. We then used this 180 

linear model to check the data for autocorrelations and subsequently eliminated variables with a variance inflation factor > 10 181 

through an iterative process, reducing one variable at a time. Also, the feature selection according to the Boruta algorithm 182 

(package 'Boruta', Kursa and Rudnicki, 2010) was applied. 183 

We then trained random forest models (Breiman, 2001), repeatedly reported as efficient in predicting complex data 184 

(Kemppinen et al., 2018; Carranza et al., 2021; Cavalli et al., 2023), using the 'ranger' package (Wright and Ziegler, 2017) 185 

with a 10-fold cross-validation with 5 repetitions. For each of the 50 models in the validation of one configuration, we noted 186 

the mean of Kendall’s coefficient of correlation τ (since different sample sizes occurred) of the random forests and the 187 

representative standard deviation. In addition, the least important variable according to impurity and its frequency within the 188 

50 validation sets were traced. The variable noted most frequently as least important was then removed, and a new cross-189 

validation was performed on SWC ~ (n-1) variables, with n being the number of predictors in the model trained previously. 190 

This process was repeated until only one predictor variable remained. 191 

To avoid temporal autocorrelations at the measuring positions, positions IDs were used to select the folds of the cross 192 

validations. 193 

2.2.6 Selection of the final model 194 

To select the final random forest model for each data partition, we examined the maximum τ values obtained and multiplied 195 

them by 0.99 (according to Hauglin et al. (2021)). This was done to penalize the use of an unnecessarily high number of 196 

predictor variables. We selected the model with the least number of predictor variables within this 1%-range as the final 197 
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model. The final models (built on IMT and SSN data) were then used to predict rasters of SWCPRED, which were visually 198 

evaluated. Subsequently, the outputs of the final models were compared to rut depths and SWC at the machine operating 199 

trails. 200 

2.3 Data from field trials with a forwarder 201 

2.3.1 Rut depth (RD) 202 

During the field trials conducted in two forest stands at two seasons, a fully loaded forwarder (John Deere 1210G, 8-Wheel 203 

model, total mass of 28 Mg (18 Mg machine weight + 10 Mg loading)) was used. The first trial was conducted on section 1 204 

of an existing machine operating trail on 2021-03-11, during generally wet conditions (TrialWET). The second trial was 205 

conducted on subsequent section 2 of the same machine trail on 2022-10-11, during dryer conditions (TrialDRY) (Figure 2, 206 

Site A), or in close proximity of section 1 (Site B), as there the machine trail was not long enough for both sections. 207 

The four trials were positioned near the sensors of the SSN (Figure 2) and, in the case of Site A, near the IMT measuring 208 

transects. On Site B, the IMT transects were at a distance of 530 m to 1300 m. Moreover, there is a temporal lag between the 209 

IMT measuring campaigns and the field trials (Figure 3). This discrepancy stems from the IMT data being collected as part 210 

of a separate research project. 211 

The 8-wheel machine trafficked section 1 and 2 of both operating trails, and made four passes. Before the first machine pass, 212 

the initial surface was captured along 10 perpendicular transects on each of the four sections. These 4 m wide transects were 213 

placed and marked permanently with inserted wooden pegs. The same pegs were used to position the beam, which served as 214 

the reference height to measure profiles along each transect. Into this beam, metric scales were inserted with a spacing of 10 215 

cm in between, to note the distance between the surface and the beam to the nearest cm. These measured distances (D0, [cm]) 216 

describe the surface along the transect on already existing machine operating trails, prior to the trial conducted in this study. 217 

The same procedure was repeated after the fourth consecutive machine passes, giving D4 [cm]. 218 

Next, the differences between D0 and D4 were calculated at each of the 41 measurements (10 cm spacing over 4 m) along a 219 

transect. The maximum value of these differences, measured at the left or right machine track, was used to determine rut depth 220 

(RD, [cm]). We used average values of both tracks to prevent pseudo replicates, since intraclass correlation coefficient was 221 

high (0.83), when left and right tracks were integrated separately. Moreover, mean and maximum values of rut depth were 222 

highly correlated (adj. R² = 0.96). 223 

2.3.2 Soil water content at the rut depth transects (SWCCORE) 224 

Volumetric soil moisture content was captured outside the 1st, 4th, 7th and 10th transect of each section, with a distance of 1 m 225 

to the left and right track, at a depth of 10-15 cm. This water content was determined using 100 cm³ cores taken with an 226 

undisturbed core sampler, with three replicates at each measurement. SWCCORE was calculated according to equation (1): 227 

 
SWC����[%] =

M2 − M1

M1
∗ 100 (1), 

with M2 being the fresh mass of the soil taken with undisturbed cores and M1 being the mass after drying the samples in oven 228 

with 105 °C, until mass constancy was reached. 229 

Measurements of RD and SWCCORE were georeferenced using the GNSS devise and complemented with all the predictor 230 

variables, as described above. 231 
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2.4 Comparisons between model predictions and RD or SWCCORE 232 

For the ‘testing on rut depth data’ (Figure 1), values of SWCPRED were compared to RD or soil water content, captured through 233 

undisturbed cores along the transects, SWCCORE. Therefore, the predictor variables from the rut depth dataset were used to 234 

predict SWCPRED by means of the final random forest models created in the soil moisture modelling. Since the goodness-of-235 

fit between in-situ values of RD or SWCCORE and SWCPRED was to some degree sensitive to the seed set during modelling, 236 

we repeated the predictions ten times and used average values to receive robust estimates of SWCPRED. To test the correlations 237 

between paired samples of SWCCORE or RD and SWCPRED, Kendall's rank correlation was used. We illustrated the 238 

corresponding p-values as follows: `***` for p<0.001, `**` for 0.001-0.01, `*` for 0.01-0.05, (`*`) for 0.05-0.10 and 'ns' for p-239 

values being higher than 0.10. Values are given as mean±standard deviation. 240 

3 Results 241 

3.1 Soil water content 242 

The mean value of SWC, measured using a handheld moisture meter (IMT), varied between 13.0±10.0% in August 2020 and 243 

43.2±5.95% in February 2020 (Figure 3). Daily mean values obtained from soil sensor networks (SSN) were similar to those 244 

obtained from IMT, ranging from 13.8±2.90% in September 2020 to 39.1±6.66% in March 2020, in the period that 245 

corresponds to the one covered by IMT. The driest conditions were observed in September 2022, with a daily mean SWC of 246 

12.7±2.55%. Overall, the results suggest that IMT and SSN provide comparable estimates of SWC, with the latter providing 247 

higher temporal resolution at a low spatial granularity. 248 

 249 

 250 

Figure 3: Time series of soil water content (SWC) measured using a soil sensor network SSN (A) with 18 measuring positions on 
two sites and manual measurements, using impedance measuring technique IMT (B) conducted on 252 positions (black lines/points 
show daily mean values, grey shading/bars show standard deviation for each day). SWC retrievals from ERA5-Land are shown as 
a blue line/point (0-7 cm vertical resolution, as available from Copernicus Climate Change Service (2019)) and a green line/point 
(7-28 cm vertical resolution). The goodness-of-fit between daily means of measured SWC and ERA5-Land retrievals is reported 
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using Kendall's rank correlation coefficient (τ). Vertical lines indicate the dates of the trials when a forwarder conducted four passes 
at existing machine operating trials.  

3.2 Soil moisture models 251 

The positions IDs were used to select the 10 folds for cross-validation. However, the dataset SSN had only 18 measuring 252 

positions (where SWC was measured on 1116 days), resulting in relatively high deviations of Kendall’s τ of the random 253 

forests. The most important feature for this dataset was given by DTW025, although the resulting quality was low, with τ of 254 

0.363±0.198. By adding the temporal component Month, the τ improved to 0.637±0.065, which had the lowest standard 255 

deviation for the repeated folds. The final model for this dataset included the temporal variables Month and SWCERAL2, as 256 

well as the topographic predictor variables TWI and DTW025 (Figure 4). The resulting τ was 0.710±0.095, revealed through 257 

the cross-validation. 258 

For the IMT partition, which had a low temporal but high spatial resolution, the most important feature was the temporal 259 

information SWCERAL2, leading to a τ of 0.569±0.036. The final model had an τ of 0.620±0.016, including the predictor 260 

variables SWCERAL2, Month, Season, and DTW025, TWI, SPI and DTW4. 261 

 262 

Figure 4: Soil water content (SWC) was modelled by random forests (RF), and evaluated by a repeated 10-fold cross validation 
(CV). Mean values and standard deviation of resulting values of the Kendall rank correlation coefficient τ during the CV are shown. 
A stepwise elimination of the least important variable was performed, and the frequency of this variable over all models is provided 
(“Feature reduction”). The vertical lines indicate the maximum value of τ (black) and the 99% of the maximum (grey), to select 
final models (squares). Variables used are described in section 2. 

3.2.1 Comparisons of SWCCORE with SWCPRED 263 

The final random forest models of both, the IMT and SSN dataset, were used to calculate SWCPRED on the predictor variables 264 

of the rut depth data, including SWCCORE measured at the outside of a subsample of the measuring tracks by undisturbed 265 

cores. The comparison between SWCCORE and SWCPRED values predicted by the final random forest models of both datasets 266 

(SSN and IMT), revealed a significant association (Figure 5). 267 
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 268 

Figure 5: Soil water content was measured during two trials with a forwarder along a machine operating trail (n=14), using 100 cm³ 
undisturbed cores (SWCCORE), and compared to values predicted (SWCPRED) by a model trained data from a continuously measuring 
soil sensor network (SSN, A), or manual measurements with a handheld moisture meter (IMT, B). Correlations were evaluated 
using Kendall's τ and significance levels are indicated by *** for p<0.001, ** for 0.001-0.01, * for 0.01-0.05, (*) for 0.05-0.10, 

and 'ns' for p>0.10. 

3.3 Interrelations between rut depth and topographic indices or SWC 269 

Rut depth (RD, [cm]) was measured during four trials with a forwarder, covering 10 transects for each trial. This provided us 270 

with the potential for 40 measurements, but unfortunately, 4 of them were not ascertainable as the forwarder destroyed the 271 

wooden pegs that positioned the reference beam. In TrialWET, conducted in March 2021, SWCERAL1 and SWCERAL2 showed 272 

a soil moisture level of 39%. At Site A, the measured RD was 10.3±1.9 cm, while at Site B, the RD was 12.7±5.5 cm, with 273 

the highest value of RD recorded after 4 passes, with a depth of 21.5 cm. In TrialDRY, conducted in October 2022, the soil 274 

water content from ERA5-Land was 32%. At Site A, the measured RD was 3.5±1.7 cm, and at Site B, the RD was 4.3±1.2 275 

cm. 276 

3.3.1 Comparisons of RD with DTW and TWI 277 

Considering the significance of the topographic indices DTW and TWI in the development of the SWC models (Figure 4), 278 

we aimed to compare RD with both indices. Notably, RD exhibited a clear correlation with DTW025, the most conservative 279 

DTW scenario (Figure 6). TWI also demonstrated a correlation with RD. 280 

 281 

Figure 6. Rut depth (RD) was determined after four passes of a forwarder, driving on two Sites (A and B), during two conditions 
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(TrialWET and TrialDRY). RD was compared to the topographic indices depth-to-water (DTW), calculated with different flow 
initiation areas (0.25 – 4.00 ha), and the topographic wetness index. Correlations were evaluated using Kendall's τ and significance 
levels are indicated by *** for p<0.001, ** for 0.001-0.01, * for 0.01-0.05, (*) for 0.05-0.10, and 'ns' for p>0.10. 

While showing significant correlations, the nature of these static maps does not allow for the representation of current moisture 282 

conditions. This limitation was overcome when using the predicted (or observed) values of SWC. 283 

3.3.2 Comparisons of RD with SWCCORE and SWCPRED 284 

RD was positively correlated with SWCCORE when both trials with different moisture conditions were included in testing 285 

(Figure 7A). However, when each trial was tested separately, no correlation between RD and SWCCORE was observed. 286 

Compared to the correlation between RD and SWCCORE, modelling outputs SWCPRED proved to be a better predictor of rut 287 

depth, particularly for TrialWET. The final models that were selected for both datasets produced a Kendall's τ of 0.61 (for IMT, 288 

Figure 7B, and SSN, Figure 7C), when comparing RD of the four trials with the corresponding SWCPRED. Although the R² 289 

values for these models were in similar range (0.620 fot IMT and 0.549 for SSN), we chose to use Kendall's τ since different 290 

sample sizes were involved in the analysis. This was particularly relevant for comparing RD with SWCPRED for each Trial 291 

separately. While no correlation could be found for TrialDRY, correlations were found for TrialWET, with Kendall’s τ of 0.344 292 

(p=0.037) and 0.281 (p=0.090), for the final models trained on IMT and SSN, respectively (Figure 7B,C). Yet, these 293 

correlations seem to fragile, as a difference of a few percent of predicted SWCPRED (IMT) is associated with the range of RD 294 

between 6.5 and 21.5 cm. Moreover, when analysing the sites separately, a vage trend between SWCPRED and RD could be 295 

observed, but without showing significant correlations (Appendix B). 296 

Since the final model trained on IMT data performed slightly better in TrialWET compared to the model trained on SSN data 297 

(Figure 7), we chose the IMT model for the generation of prediction rasters for the days of interest (Figure 7B1,B2). 298 

  299 
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 300 

 301 

Figure 7: Rut depth (RD) was determined after four passes of a forwarder, driving on two Sites, during two conditions (WET and 
DRY). RD was compared to SWC values, determined for undisturbed soil cores (A) and SWC values predicted by a random forest 
model trained on manually obtained IMT measurements (B, see Figure 1) and predicted by a model trained data from a continuously 
measuring soil sensor network (SSN, C). Correlations were evaluated using Kendall's τ. The correlation of all values is given in 
black, blue and yellow show the Trials during wet and dry conditions.Significance levels are indicated by *** for p<0.001, ** for 

0.001-0.01, * for 0.01-0.05, (*) for 0.05-0.10, and 'ns' for p>0.10. The model based on IMT data (B) was used to calculate prediction 

rasters for the days of the field trials (B1, B2). 

4 Discussion 302 

4.1 Importance of predictive systems 303 

Wet soils are prone to soil disturbances like the formation of deep ruts (McNabb et al., 2001; Poltorak et al., 2018), since 304 

water implies a reduction of particle-to-particl bondings within the soil (Hillel, 1998), decreasing the restistance to external 305 

forces. Consequently, accurate predictions of soil water content (SWC) and soil trafficability is essential for sustainable forest 306 

management and cost-effective, environmentally friendly harvesting operations (Murphy et al., 2007; Vega-Nieva et al., 2009; 307 

White et al., 2012; Mohtashami et al., 2017; Mattila and Tokola, 2019; Picchio et al., 2020; Uusitalo et al., 2020). Topographic 308 

modelling requires minimal input and the temporal variables used in the final model presented here, are freely available 309 

(Copernicus Climate Change Service, 2019). A spatiotemporal model predicting SWC could improve the guidance of machine 310 

operators in forest sites during harvesting operations, for example by the effective positioning of brush mats (Labelle and 311 

Jaeger, 2018; Labelle et al., 2019). Practical use of static, topographic maps has already been observed in Canada and 312 

Scandinavian countries (Ring et al., 2022). By incorporating a temporal aspect, the accuracy of these tools could be further 313 

improved. This has the potential to enhance sustainable forest management by protecting soil and mitigating harmful sediment 314 
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transport (White et al., 2012; Ågren et al., 2015; Kuglerová et al., 2017; Lidberg et al., 2020).  315 

4.2 Comparison to previous work on predictions of SWC 316 

Since soil moisture predictions are crucial for a variety of forestry aspects, several publications have focused on this topic 317 

before. For example, Lidberg et al. (2020) predicted soil moisture classes using spatial models built on topographic indices, 318 

correctly classifying 73% of wet areas in a Swedish case study. Ågren et al. (2014) reported accurate predictions for 87-92% 319 

of observations by comparing soil moisture classes to DTW maps. Larson et al. (2022) used data from the Krycklan catchment 320 

and found an accuracy of 84% when comparing moisture classes to the recently developed ‘SLU soil moisture map’ (Ågren 321 

et al., 2021). However, these validations were based on static topographic maps. One attempt to make such static maps 322 

dynamic was realized within the DTW concept, which can be customized to calculate various scenarios to adjust to general 323 

moisture conditions (e.g., flow initiation areas of 0.25, 1, and 4 ha for wet, moist, and dry conditions, respectively), but 324 

selecting the most appropriate scenario during practical use can be a challenging task that requires significant expertise (White 325 

et al., 2012; Leach et al., 2017; Lidberg et al., 2020). To overcome this challenge, we aimed for improvement of soil moisture 326 

prediction and refined the spatiotemporal approach conceived by Schönauer et al. (2022). During cross-validation of IMT 327 

data from sites in Finland, Poland, and parts of the data used in this work, they reported an R² of 0.80. The models for the 328 

present study showed an R² of 0.759±0.136 (SSN) or 0.636±0.040 (IMT), corresponding to Kendall’s τ of 0.710±0.095 or 329 

0.620±0.016, respectively. Although this may not seem like an improvement, it should be noted that the data from German 330 

sites had less explanatory power of topography for predicting SWC. For example, DTW4 alone explained SWC to a very 331 

limited extent (R² = 0.037***). 332 

4.3 Prediction of rutting 333 

Besides the comparisons of SWC with DTW maps, various studies have also investigated the capability of topographic indices 334 

in predicting rutting – with conflicting outcomes. For example, Vega-Nieva et al. (2009) found that 65% of ruts deeper than 335 

25 cm were located in areas with a DTW value of less than 1 m, and 93% of these ruts occurred in areas with DTW values 336 

less than 10 m. Similarly, Heppelmann et al. (2022) observed a high frequency of severe rut depth in areas with DTW values 337 

less than 1 m in Norway. However, Mohtashami et al. (2017) did not find evidence of such patterns in a field trial where the 338 

inclusion of DTW values did not improve the accuracy of a linear model to describe the extents and degrees of rut depth on 339 

machine operating trails. In agreement, Schönauer et al. (2021a) found no evidence that DTW or TWI could predict rut depth 340 

in a field trial conducted in a temperate broadleaved stand. In this study, we found a significant correlation between RD and 341 

DTW025 with a Kendall's correlation coefficient (τ) of -0.52***. Yet, this correlation has to be seen with caution: It is mainly 342 

driven by differing ranges of RD between the two Trials, as can be seen in Figure 6A. We observed that the temporal 343 

adjustments of the model based on current moisture conditions improved predictions of rutting by up-to-date SWC predictions, 344 

leading to a τ of 0.61*** (Figure 7B,C). While a strong association between RD and predicted values of SWC was observed, 345 

the influence of differences between the trials is evident. However, the ranges of RD for each trial were consistent with the 346 

SWC predictions. In TrialWET, a significant correlation between RD and SWCPRED was observed (Figure 7B). We hypothesize 347 

that the wetter conditions during this trial, which lead to soil destabilization (Hillel, 1998; McNabb et al., 2001), enhanced 348 

the predictive power of topographic indices representing soil water distributions. For instance, DTW025 overlapped with 349 

surface water in depressions, as observed in the field campaigns for TrialWET. 350 
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In contrast, during TrialDRY, no correlation was found between RD and SWCPRED. SWC along the measuring sections was 351 

likely below the threshold for soils to become susceptible to deformation. For example, Poltorak et al. (2018) stated that ruts 352 

only occurred on soils with an SWC above 50%, whereas SWCCORE at TrialDRY was below 30% (Figure 5). 353 

4.4 Description of the model 354 

The best-performing model in predicting RD incorporated temporal information from SWCERAL2, Month and Season, as well 355 

as spatial information from DTW025, TWI, SPI and DTW4, and was based on data from the manual measurements (IMT). 356 

The IMT data was collected in close proximity to the rut depth measurements at Site A (Figure 2), or with a distance of up to 357 

1.3 km at Site B. However, the spatial distance between the IMT training data and the rut depth data did not seem to be crucial 358 

for the accuracy of predicting rut depth (Appendix B), since Kendall’s τ between RD and SWCPRED was similar for both sites. 359 

Surprisingly, the correlation between in-situ SWCCORE, sampled directly at the machine operating trails, showed a lower 360 

explanatory power in predicting RD than SWCPRED. Although an overall association between RD and SWCCORE was 361 

confirmed, no correlation could be found when trials were analysed individually. 362 

4.4.1 Temporal variaton was higher than spatial variation 363 

This indicates that the temporal variability in soil moisture between the trials was more important in this study than the spatial 364 

variability within the relatively small areas where each trial was conducted. The spatial distrubition of the rut depth 365 

measurements might have been limiting in the present work. The semivariogram indicates the spatial covariation of rut depth 366 

and SWC (Figure 8). While the covariation of RD in Sita A is indicated to be high within a range of 10 m (RD-transects were 367 

at this distance), on Site B during wet conditions, the sill of the semivariogram reaches almost 40 m, which covered a high 368 

number of transects. Similarly, excluding soil information in the initial stages of feature reduction suggests homogeneous soil 369 

properties on the relatively small study area. 370 

Therefore, we have to admit, that the study design was not ideal for assessing the ability to predict rutting with a spatiotemporal 371 

model of SWC, and the results have to be considered with caution. 372 

 373 

Figure 8. Semivariogram illustrating spatial autocorrelation of (A) rut depth (cm) and (B) soil water content (SWC) across the study 
area. Rut depth was measured during two moisture conditions, at four machine operating trail sections, allocated on two sites. The 
measuring transects had a spacing of 10 m. SWC was measured with handeld measuring techniques (IMT), or a soil sensor network 
(SSN) (Figure 2). 

The spatiotemporal model (IMT), also supports the conclusion that spatial variations were wether underrepresented by the 374 
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study design (or very low compared to temporal variation by nature) as the temporal feature SWCERAL2 was selected as most 375 

important variable and the difference between the model with one predictor variable vs. the final model was small (Figure 4). 376 

Still, this slight increase in the models’ quality allowed for the integration of spatial patterns and resulted in the significant 377 

but vague prediction of RD in TrialWET (τ = 0.344*, Figure 7). Another indication of the integration of spatial patterns can be 378 

interpreted by the segregation of the temporal range of the IMT data (2019-2020) and the actual Trials (March 2021 and 379 

October 2022, Figure 3), indicating a generalization of spatial and temporal patterns. 380 

4.4.2 Most important variables 381 

In the final model (IMT), SWCERAL2 has been identified as the most important variable, followed by Month and Season. It is 382 

noteworthy that in the data with broader spatial coverage (i.e. IMT), in contrast to the SSN data, dynamic variables took 383 

precedence over predictor variables. Surprisingly, when modelling SSN data, characterized by high temporal resolution and 384 

low spatial resolution, DTW025 remained the most influential variable. One might have anticipated the opposite, expecting a 385 

topographic index to play a central role in modelling IMT data, and dynamic SWCERA variables dominating the modelling of 386 

SSN data. 387 

We presume that the low spatial variations of SWC in comparison to temporal variations, inadequately represented by the 388 

provided topographic information, may have contributed to this unexpected outcome. Furthermore, the wider spatial coverage 389 

in the IMT data likely resulted in more robust averages of SWC, leading to a stronger correlation with the coarse spatial data 390 

of ERA5-Land (9x9 km). On the contrary, the SSN data, originating from areas with a size of 100x100 m and known for their 391 

temporal wetness, could explain the heightened importance of DTW025. Some sensors might have measured constant water 392 

saturation, thereby inflating the explanatory power of topographic information. These assumptions are speculative, and further 393 

research in this direction is warranted. 394 

In the feature reductions of IMT and SSN data (Figure 4), SWCERAL2 (7-28 cm soil depth) dominated over SWCERAL1 (0-7 395 

cm). This aligns with in-situ measurements of SWC by the SSN, conducted at a soil depth of approximately 10 cm (Figure 396 

3A). Even for the IMT data, where SWC was measured in the top 6 cm of soil, SWCERAL2 yielded a better goodness-of-fit 397 

compared to SWCERAL1 (Figure 3B). We hypothesize that the prevalence of open lands as the dominant land cover form in 398 

the ERA5-Land raster cell (section 2.2.4) contributed to the superior fit of SWCERAL2. Grasslands typically exhibit higher 399 

temporal heterogeneity of soil moisture compared to forests (James et al., 2003). This temporal heterogeneity tends to decrease 400 

with deeper soil layers (Tromp-van Meerveld and McDonnell, 2006). Therefore, the stronger correlation between SWCERAL2 401 

and SWC, as well as its higher importance within the random forests, seems reasonable. The disparity between SWCERA and 402 

in-situ SWC can be attributed to the high transpiration rates in forests, as opposed to grass (Kelliher et al., 1993). 403 

4.5 Further developments 404 

The terrain data was derived from a digital elevation model, which is increasingly available for the entire Europe (Hoffmann 405 

et al., 2022), while the dynamic variables are based on date and retrievals from ERA5-Land, which are freely available up to 406 

a few days ago. These inputs would allow for automated mapping of current soil water content, which could be made 407 

accessible to forestry stakeholders. Recent developments also show a pathway to integrate medium and long range weather 408 

forestcasts into trafficability predictions, as conceived by the Finnish Meteorological Institute (2023). Both, recent as well as 409 

forecasting predictions can lead to improved soil protection, higher efficiency of timber harvesting (Suvinen and Saarilahti, 410 
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2006), and a new stage of sustainable forest management (Campbell et al., 2013; Jones and Arp, 2019; Uusitalo et al., 2019; 411 

D'Acqui et al., 2020). However, it should be noted that the in-situ data of SWC originated from manual measurements, and it 412 

was relatively labor-intensive to gather this amount of data. There is potential to reach appropriate accuracy even with a 413 

reduced dataset - further investigation would be necessary to determine the essential input data criteria. The alternative to 414 

manual measurements is given by sensor networks, which led to comparable results, but such sensor networks are expensive 415 

to establish and maintain. Nonetheless, initiatives of installing sensors are emerging and additional manual measurements 416 

could be conducted. In the future, forestry stakeholders who require accurate raster predictions could potentially facilitate 417 

manual measurements or install sensors and provide the captured data to scientific organizations, which could deliver 418 

spatiotemporal soil moisture predictions in return. The captured data could be made available for creating spatiotemporal 419 

models of SWC, allowing for additional training data and daily raster predictions for new areas of interest, with various 420 

scientific insights and practical applications. 421 

Conclusion 422 

In this study, we developed a spatiotemporal model that used multiple topographic indices, temporal variables, soil moisture 423 

retrievals from ERA5-Land, and data from manual measurements to predict soil water content (SWC). Predicted values of 424 

SWC were compared to rut depth data collected during four forwarder trials. Overall, the model performed well in predicting 425 

rut depth, with a Kendall's τ of 0.61 for all trials. Yet, this result has to be considered with caution, since spatial covarition 426 

was detected in parts. We hope, that this experience helps for future research, in which more attention to spatial covariaton 427 

on soils should be paid. Still, we believe that a dynamic prediction of SWC will help forest managers and machine operators 428 

avoid wet areas, leading to more sustainable forest operations. Using freely available temporal information is a significant 429 

improvement, as it enables more accurate and up-to-date predictions, which allow to make more informed decisions and avoid 430 

potential hazards. Future work should focus on developing automated pathways for generating daily raster predictions of 431 

SWC, and on generating reliable and comprehensive in-situ data. There is a need for more data on rutting and SWC, measured 432 

with a sufficient spatial coverage, whether by manual measurements, the establishment of additional sensor networks, or by 433 

automatic ways of capturing rut depth data through machines driving off-road, to cover more areas and different sites and 434 

regions. 435 
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5 Appendix 459 

Appendix A 460 
To model the dataset consisting of both IMT and SSN data, the procedure described in section 2 was followed. The IMT 461 

dataset was merged with a subsample of the SSN dataset, where the sample size of the SSN part was twice that of the IMT 462 

dataset. This was done to prevent over-weighting of the SSN dataset. The resulting combination of IMT and SSN data was 463 

called the "Mix" dataset. 464 

The final model using the Mix dataset included the input variables SWCERAL2, Month, TWI, SWCERAL1, DTW025, Season, 465 

DTW1 and DTW4, and achieved a τ of 0.655±0.081 (which corresponded to R² values of 0.639±0.108). Supplementary Figure 466 

1 shows that the correlation between the model outputs (SWCPRED) and rut depth (RD) was significant. 467 

Since the models trained on the Mix dataset did not perform better than those trained on the IMT or SSN datasets, we did not 468 

investigate the fused data partition any further, as one research question addressed the use of different data origins. For future 469 

work, however, the fused data would provide additional information, as compared to the individual datasets. 470 

 471 

Supplementary Figure 1: Rut depth (RD) was determined after four passes of a forwarder, driving on two Sites (A and B), during 
two seasons (TrialWET and TrialDRY). RD was compared to SWC values predicted by a random forest model trained on data from 
manual measurements or captured through a continuously measuring soil sensor network (‘Mix’). Correlations were evaluated using 
Kendall's τ and significance levels are indicated by *** for p<0.001, ** for 0.001-0.01, * for 0.01-0.05, (*) for 0.05-0.10, and 

'ns' for p>0.10. 

  472 
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Appendix B 473 

 

Supplementary Figure 2. Rut depth (RD) was determined after four passes of a forwarder, driving on two Sites (A and B, Figure 
2), during two seasons (TrialWET and TrialDRY, conducted under different moisture conditions). RD was compared to SWC values, 
determined for undisturbed soil cores (A) and SWC values predicted by a random forest model trained on manually obtained IMT 
measurements (B, see Figure 1) and predicted by a model trained data from a continuously measuring soil sensor network (SSN, 
C). Correlations were evaluated using Kendall's τ. The correlation of all values is given in black, blue and yellow show the Trials 
during wet and dry conditions.Significance levels are indicated by *** for p<0.001, ** for 0.001-0.01, * for 0.01-0.05, (*) for 

0.05-0.10, and 'ns' for p>0.10. 

  474 
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