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Abstract. Tropical forests such as the Amazonian rainforests play an important role for climate, are large carbon stores and 

are a treasure of biodiversity. Amazonian forests are being exposed to large scale deforestation and degradation for many 

decades which declined between 2005 and 2012 but more recently has again increased with similar rates as in the 2007/2008. 20 

The resulting forest fragments are exposed to substantially elevated temperatures in an already warming world. These changes 

are expected to affect the forests and an important diagnostic of their health and sensitivity to climate variation is their carbon 

balance. In a recent study based on CO2 atmospheric vertical profile observations between 2010 and 2018, and an air column 

budgeting technique to estimate fluxes, we reported the Amazon region as a carbon source to the atmosphere, mainly due to 

fire emissions. Instead of an air column budgeting technique, we use here an inverse of the global atmospheric transport model, 25 

TOMCAT, to assimilate CO2 observations from Amazon vertical profiles and global flask measurements. We thus estimate 

inter- and intra-annual variability in the carbon fluxes, trends over time and controls for the period 2010-2018. This represents 

the longest Bayesian inversion of these atmospheric CO2 profile observations to date. Our analyses indicate that the Amazon 

is a small net source of carbon to the atmosphere (mean 2010-2018 = 0.13 ± 0.17 PgC y-1, where 0.17 is the 1-σ uncertainty), 

with the majority of the emissions coming from the eastern region (77% of total Amazon emission). Fire is the primary driver 30 

of the Amazonian source (0.26 ± 0.13 PgC y-1), however the forest uptake likely removes around half of the fire emissions to 

the atmosphere (-0.13 ± 0.20 PgC y-1). The largest net carbon sink was observed in the western-central Amazon region (72% 
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of the fire emissions). We find larger carbon emissions during the extreme drought years (such as 2010, 2015 and 2016), 

correlated with increases in temperature, cumulative water deficit and burned area. Despite the increase in total carbon 

emissions during drought years, we do not observe a significant trend over time in our carbon total, fire and net biome exchange 35 

estimates between 2010 and 2018. Our analysis thus cannot provide clear evidence for a weakening of the carbon uptake by 

Amazonian tropical forests. 

1 Introduction 

The uptake of carbon dioxide (CO2) by plants helps to mitigate global climate change. The land carbon sink is estimated to 

have offset 25% of all fossil-fuel emissions since 1960 (Friedlingstein et al., 2020). Tropical forests, like those in Amazon are 40 

the largest in the world and have been historically a major component of this land carbon sink. Measurements of aboveground 

biomass changes indicate an increase in Amazonian old growth forest biomass over time, summing to a total sink of 0.38 

(0.28-0.49 95% C.I.) PgC y-1 in the 2000s (Brienen et al., 2015). However, the Amazon carbon cycle is affected by both direct 

(deforestation and degradation) and indirect (climate change) anthropogenic forest disturbances, examples of the latter being 

a reduction in the uptake capacity during drought years (Phillips et al., 2009; Gatti et al., 2014; van der Laan-Luijkx et al., 45 

2015; Alden et al., 2016). A decline in the Amazon carbon accumulation has been observed over 1983 to mid-2011, as a 

consequence of an increase in tree mortality throughout this period, possibly as a result of greater climate variability and 

feedbacks of faster growth on mortality, resulting in shortened tree longevity (Brienen et al., 2015). 

Human-induced land use and cover change and fires are the main direct anthropogenic disturbances in the Amazon forest. 

Over the past 40 years the Amazon forest loss accounts for around 17% of its total area (MapBiomas, 2020). Forest fires are 50 

associated with a combination of human activities providing the ignition source, and climatic factors to create drier and hotter 

conditions (Ray et al., 2005). Tropical forests like those in Amazon are rarely susceptible to natural fires. In general, the forest 

fires observed in this region result from the leakage of fires from deforested areas to adjacent forests (Aragão et al., 2018). In 

addition, deforestation and selective logging promotes degradation of adjacent forests, increasing their vulnerability to fires, 

which could result in further degradation (Aragão et al., 2018). Silva et al. (2020) found that forest fires affect the Amazon 55 

forest carbon cycle for at least 30 years after the fires, with just 35% of this emission being compensated by cumulative CO2 

uptake of burned forests during this period.  

As climate change continues extreme climate events across the Amazon region have become increasingly common (Gloor et 

al., 2013). Recently a warming trend in Amazonian annual mean temperature over the last 40 years was reported, where the 

eastern and mainly southeastern regions showed stronger trends than the global mean trend (Gatti et al., 2021). The largest 60 

increases in Amazon temperature were observed for the dry-season months, in addition to a decrease in precipitation of 17% 

during these months, strongly enhancing the contrast between the dry and wet seasons (Gatti et al., 2021; Haghtalab et al., 

2020). The Amazon is estimated to have suffered a substantial carbon loss due to fires caused by the 2015/2016 El Niño 

drought and heat wave in eastern Amazon; long-term forest plot monitoring reveals that carbon losses remained elevated for 
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up to 3 years (Berenguer et al., 2021). These impacts could have been amplified by human disturbance, which means that 65 

human-modified forests may be more susceptible and sensitive to fires (Berenguer et al., 2021). 

Recently Gatti et al. (2021) reported new top-down estimates of the Amazon carbon balance covering the period 2010-2018. 

The Amazonian carbon balance is of interest for two reasons: first to understand how tropical forest productivity and losses fit 

in the global carbon balance, specifically the substantial global land sink, and second as an indicator of Amazonian forest 

performance changes over time. Gatti et al. (2021) found a net carbon release to the atmosphere of 0.29 ± 0.40 PgC y−1, 70 

including 0.41 ± 0.05 PgC y−1 of fire emissions. The net biome exchange (NBE, representing the balance between 

photosynthesis, respiration, decomposition and excluding fire) compensated for 31% of fire emissions from the atmosphere, 

yielding a small NBE sink for Amazonia of −0.12 ± 0.40 PgC y−1 (Gatti et al., 2021). In addition, Gatti et al. (2021) reported 

an east–west difference in total flux mainly related to fire emissions, but also highlight that the southeastern Amazon region 

acts as a net carbon source (total carbon flux minus fire emissions) to the atmosphere. The authors suggest that the historical 75 

land use change and the strong climate trends (the temperature increase and decrease in precipitation mainly during the dry 

season) observed in this southeast region may explain the positive NBE (i.e. a source of C to the atmosphere) in the southeast. 

A positive trend in NBE (i.e. an increasing source of C to the atmosphere) was observed in this region and was related to the 

annual mean temperature and soil water storage anomalies, suggesting that increasing temperatures and decreasing soil water 

availability have a significant impact on the vegetation carbon balance, at least in southeast Amazon (Gatti et al., 2021).  80 

These estimates were based on nine years of lower-troposphere vertical CO2 and CO profile observations and an air column 

mass balance technique to estimate fluxes. In essence, the fluxes are estimated as the difference between site air column CO2 

and air entering the Amazon on its path to the site divided by the air travel time from the coast to the site (Gatti et al., 2021; 

Miller et al., 2007). Estimates based on this approach have uncertainties. For example, we assume well mixed conditions 

during the sampling. As reported by the authors, also do not account for convective process that may result in losses of surface 85 

flux signal above the top of the profiles (typically 4.5 km a.s.l.) (Gatti et al., 2021). There are also uncertainties in the estimates 

of background air concentrations (as assumed that remote Atlantic marine boundary layer concentrations represent the partial 

column entering the coast; Domingues et al., 2020 and Gatti et al., 2021), and we also do not account for diurnal cycles in 

NBE that may impact the partial column mean CO2. 

In order to extract Amazonian surface flux information from the vertical profiles using an independent approach, we apply 90 

here a global three-dimensional (3-D) Eulerian offline chemical transport model, TOMCAT (Chipperfield, 2006) and its 

inverse model, INVICAT (Wilson et al., 2021) to atmospheric CO2 data. We estimate Amazonian surface fluxes between 2010 

and 2018 using the CO2 observations from global surface monitoring sites (Lan et al., 2022) and lower-troposphere vertical 

profiles in Amazon (Gatti et al., 2021). As this 3-D transport model is global and simulates convective cloud transport 

processes, some of the uncertainties are reduced compared to the air column budgeting method. To the best of our knowledge 95 

the complete 2010-2018 Amazonian vertical profile dataset has not yet been used in 3-D atmospheric transport inversions. 

INVICAT uses a variational scheme, based on 4D-Var methods used in Numerical Weather Prediction (NWP) (e.g. Dimet and 

Talagrand, 1986), to minimize the difference between predicted and observed dry air mole fractions. Using this methodology 
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we quantify fluxes and analyze their seasonal patterns, inter-annual variability and trends for Amazon. We also estimate carbon 

emissions from fires using flux estimates from inverse modeling based on atmospheric carbon monoxide (CO) measured from 100 

space, and relate the carbon fluxes to climate controls. In Section 2 we describe the inverse modelling approach and describe 

the observations used, in Sections 3 and 4 we discuss our results and compare them with other Amazonian estimates, mainly 

with estimates using an air column mass balance technique. Finally, we summarize on the extent to which our results are in 

agreement with previous Amazon carbon fluxes estimates. 

2 Methods 105 

2.1 Observations 

We assimilate in-situ surface flask observations from global surface observation sites and Amazonian lower-troposphere 

vertical profiles of CO2 into the TOMCAT inverse atmospheric transport model, for a nine-year period between 2010 and 

2018. 

2.1.1 Amazonian aircraft profiles 110 

We assimilated CO2 observations from 590 lower-troposphere vertical profiles over five sites in Brazilian Amazon (SAN, 

55.0° W, 2.9° S; TAB, 69.7° W, 6.0° S; ALF, 56.7° W, 8.9° S; RBA, 67.9° W, 9.3° S; TEF, 66.5° W 3.6° S; Figure 1). Air 

samples were collected approximately twice per month aboard light aircraft from 4.4 to 0.3 km a.s.l. using automatic samplers 

between 2010 and 2018 (see Gatti et al., 2021 for more details). All samples were collected between 12:00 and 13:00 local 

time, when the boundary layer is fully developed and most likely to be well mixed. Samples were measured for CO2 and CO 115 

mole fraction with high accuracy and precision at the Greenhouse gas Laboratory at National Institute of Space Research 

(LaGEE/INPE), Brazil (Gatti et al., 2021, 2014). For the inversions we used the mean concentration of each vertical profile in 

the planetary boundary layer (PBL) level (below 1.5km a.s.l., levels with higher influence of the surface flux in the 

concentrations), and the vertical profile free troposphere mean (above 3.5km a.s.l., levels with lower influence of the surface 

flux in the concentrations, representing better the background concentrations). The vertical profile data used here are available 120 

at PANGAEA Data Archiving, at https://doi.org/10.1594/PANGAEA.926834 (Gatti et al., 2021b). 

Recently NOAA/GML have found that the CO2 concentration is artificially reduced when air samples with high (> 1.7%) 

water vapor are pressurized in PFP flasks to 2.7 bar, as a result of condensation (Baier et al., 2020). The LaGEE system have 

some differences from NOAA system, and as reported by Gatti et al. (2022), a preliminary study using vertical profiles near 

Manaus (Amazonas state, Brazil) compared PFP samples measured for CO2 at INPE/LAGEE to onboard measurements from 125 

a trace gas flight analyser largely immune to water effects (Picarro model G2401-m) and found depletions in PFP CO2 similar 

to those from the Baier et al. (2020) study. They also report that this influence is likely greatest near the surface, as humidity 

increases towards lower altitudes, which means that true CO2 in the lower half of the profiles may be higher than measured 

(Gatti et al., 2022), meaning that our current fluxes to the atmosphere presented here could be underestimated. 
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2.1.2 Surface flask observations 130 

To estimate carbon fluxes, we also assimilated CO2 global long-term surface data provided by the National Oceanic and 

Atmospheric Administration’s / Global Monitoring Laboratory (NOAA/GML) (Lan et al., 2022) into the inverse model. A 

total of 73 monitoring site’s data (available at <ftp://aftp.cmdl.noaa.gov/data/trace_gases/>) were used, where air samples in 

flasks are collected weekly to biweekly (Figure 1, Table A1). These measurements have high accuracy (~0.2ppm) and most 

of the sites are located in the Northern Hemisphere. The tropical regions have few monitoring sites, which increases the 135 

uncertainties of regional estimates on this region, but here we reduce these uncertainties in Amazon with the inclusion of the 

lower-troposphere vertical profile data. 

2.2 Model setup 

2.2.1 Inverse model setup 

To estimate the net carbon flux between Amazon and the atmosphere we use the inverse of the atmospheric transport model 140 

TOMCAT (Chipperfield, 2006). TOMCAT is a global 3-D Eulerian offline atmospheric chemistry and air constituent transport 

model, which has been previously used to estimate greenhouse gas emissions (e.g. Wilson et al., 2016, 2021 and Gloor et al., 

2018). The INVICAT inversion framework (Wilson et al., 2014) used is based on the TOMCAT model and its adjoint. A 

detailed description of the TOMCAT model and the inverse method employed by INVICAT 4D-Var are presented in 

Chipperfield (2006) and Wilson et al. (2014), respectively. 145 

The forward and adjoint model simulations were carried out at 5.6° x 5.6° horizontal resolution, with 60 vertical levels up to 

0.1 hPa. The inversions were carried out for each year separately and each completed 50 minimisation iterations. In order to 

better constrain fluxes during the final months of each year, the inversion for each year was actually run for 16 months, from 

December of the previous year to the end of March for the following year, with the first one and the final three months being 

discarded from the results, and each inversion was initialized using 3-D fields provided from the correct date in the previous 150 

year. The model meteorology (including winds, temperature and pressure data) was taken from the European Centre for 

Medium-Range Weather Forecasts (ECMWF) ERA-Interim reanalysis (Dee et al., 2011). 

For the assimilated observation data from both surface monitoring sites and the vertical profile sites, the model output was 

linearly interpolated to the correct longitude, latitude and altitude at the nearest model time step. In addition, uncorrelated 

random errors of 1 ppm were attributed to each observation. In addition, representation uncertainty for each observation was 155 

calculated online during the model simulation as the mean difference across the six model grid cells adjacent (2 in z, 2 in x, 

and 2 in y) to that containing the observation location. The random and representation errors were then combined in quadrature 

to provide the overall observation uncertainty.  

In addition to atmospheric CO2 mole fractions, a priori monthly mean flux values for each grid cell along with a diagonal error 

covariance matrix for these values were used as input for the inversion calculation. A priori grid cell uncertainties were 160 

assumed to be uncorrelated. The result of the inversion is an a posteriori estimate of monthly mean grid cell fluxes and an error 
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covariance matrix. Using TOMCAT, we ran forward a priori and a posteriori flux estimates to simulate atmospheric CO2 air 

mole fractions. Here we will refer to the mean a priori and a posteriori fluxes and mole fractions as “prior fluxes”, “posterior 

fluxes”, “prior mole fractions” and “posterior mole fractions”, respectively. In our CO2 inversion estimate fossil fuel flux was 

fixed and land-biosphere, ocean and fire emissions were optimized. Prior emissions are given grid cell uncertainties of 308% 165 

of the prior flux value to give a total global uncertainty based on the Global Carbon Project (Friedlingstein et al., 2020) of 1.7 

PgC y-1, with a different uncertainty value attributed to land and ocean grid cells. The differentiation was based on assuming 

the Global Carbon Project (Friedlingstein et al., 2020) total uncertainty estimates of 1.1 and 0.6 PgC y-1 for land and ocean 

global flux uncertainties, respectively.  

To derive the uncertainties for the posterior emissions, we followed the approach described by Wilson et al. (2021), where 170 

estimates for each year’s posterior emission covariance error matrix using cost function gradient values were produced from 

the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS). We use this to minimize the cost function 

(Nocedal, 1980), based on the method suggested by Bousserez et al. (2015). Considering that this iterative method estimates 

the inverse of the Hessian (the second derivative) of the cost function and the off-diagonal elements of the posterior covariance 

matrix are not included, our posterior errors are likely to be lower limits (Bousserez et al., 2015). 175 

2.2.2 Prior flux estimates 

Prior flux estimates include three components and were taken from available bottom-up models and inventories. Fossil fuel 

emissions are taken from the CDIAC inventory (Boden et al., 1999) and vary each year up to 2016, after which they were 

scaled to Global Carbon Budget values obtained from Friedlingstein et al. (2020). For estimates of air–sea fluxes we used a 

combination of Takahashi et al. (2009) and Khatiwala et al. (2009), following the methodology described by Gloor et al. 180 

(2018), and they were scaled to the Global Carbon Budget values (Friedlingstein et al., 2020). For the monthly land-biosphere 

fluxes (net land gains or losses) we used an annually repeating and balanced land vegetation–atmosphere CO2 flux from the 

CASA GFED4 (Carnegie–Ames–Stanford) land biosphere model (Potter et al., 1993; Randerson et al., 2018), an average 

climatology for 2003–2013. We did not change the land-biosphere prior annually because we preferred the inter-annual 

variations to be informed by the atmospheric observations. In CASA model, primary productivity is predicted using the 185 

relationship between greenness reflectance properties, the fraction of absorption of photosynthetically active radiation (fPAR) 

and a light utilization efficiency term, where the canopy greenness is measured using a Normalized Difference Vegetation 

Index (NDVI) that is computed from the ratio of visible and near-infrared radiation reflected from the canopy as detected by 

the AVHRR satellite sensor (Potter, 1999).  

To evaluate the influence of the Amazon vertical profile data on flux estimates, we have also performed an inversion without 190 

the profile data, using only the NOAA surface data. The latter approach was shown previously to induce large biases in the 

estimated Amazonian fluxes, resulting from a lack of tropical constraints (van der Laan-Luijkx et al., 2015) and an 

overestimated tropical-NH dipole (Stephens et al., 2007). For simplicity, here we will call the posterior fluxes from the 
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inversion using the Amazon vertical profile data and the inversions without that data as “posterior total flux (with Amazon 

observations)” and “posterior total flux (without Amazon observations)”, respectively. 195 

To evaluate the influence of the biosphere prior on flux estimates, we compare our inversions using the CASA model as land-

biosphere prior flux with inversions using the CARbon DAta MOdel FraMework (CARDAMOM) as land-biosphere prior 

flux. CARDAMOM is a Bayesian calibration system that generates diagnostic estimates of the terrestrial C cycle (pools and 

fluxes) and relevant process parameters. CARDAMOM explores a parameter hyper-volume for a fast running intermediate 

complexity model, DALEC, and accepts parameter sets that generate model outputs consistent with observations and their 200 

uncertainty.  

Before using CARDAMOM (Bloom et al., 2016) as prior to the inversion we performed a model–data fusion (MDF) analysis 

of South America at 1° × 1° spatial and monthly temporal resolutions between 2001 and 2017 (inclusive). Data used as inputs 

include time series information on leaf area index (LAI) magnitude and uncertainty, that is extracted from the 1 km × 1 km 8 

d product from Copernicus Service Information (2020). Fire and forest biomass removal was imposed using earth observation 205 

information. The MODIS burned fraction product (Giglio et al., 2018) determines the areas where fire is imposed. Emissions 

are determined assuming a fraction of simulated biomass undergoes combustion or is converted to litter based on tissue-specific 

combustion-completeness factors, following Exbrayat et al. (2018). Forest biomass removal is imposed using the Global Forest 

Watch (GFW) forest cover loss product (Hansen et al., 2013). Meteorological drivers are drawn from the Climatic Research 

Unit and Japanese reanalysis (CRU-JRA) v1.1 dataset, a 6- hourly 0.5° × 0.5° reanalysis (University of East Anglia Climatic 210 

Research Unit and Harris, 2019). For more details see Smallman et al. (2021). 

2.2.3 Estimation of carbon emissions from fires 

To estimate the contribution of biomass burning emissions in Amazon, we estimated carbon fire emissions with INVICAT by 

assimilating total column carbon monoxide (CO) values from MOPITT radiometer data (V8) on the TERRA satellite (Deeter 

et al., 2019) globally. Recent studies by Zheng et al. (2019) and Naus et al. (2022) have shown that this approach to deriving 215 

fire emissions is complementary to surface remote-sensing based methods. Due to the high density of available observational 

data, we carried out this inversion at 2.8° x 2.8° horizontal resolution with 60 vertical levels up to 0.1 hPa. We used uncorrelated 

prior grid cell emission uncertainties of 450% to give a global annual uncertainty of 15%. The model was sampled at the 

longitude and latitude of each MOPITT retrieval, and the corresponding averaging kernels were applied to produce a model 

total column comparable to that of the satellite. For use in the inversion, we took an error-weighted average hourly mean of 220 

all retrievals within each grid cell, and applied to these uncorrelated observation uncertainties of 20% of the observed total 

column value added in quadrature to the supplied uncertainties. Averaging the observations within each grid cell reduces the 

need to apply observational error correlations. As prior fluxes we use fire emissions from GFED V4.1s (van der Werf et al., 

2017), anthropogenic and oceanic emissions from CMIP6 (Hoesly et al., 2018) and direct biogenic emissions from CCMI 

(Morgenstern et al., 2017), as the secondary formation from isoprene, assumed to be instantaneous so applied as a surface flux. 225 
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For secondary formation from methane, monthly mean methane concentrations were taken from a previous TOMCAT-based 

methane inversion where the reaction with OH lead directly to CO (Wilson et al., 2021).  

To estimate CO flux from fire, we remove the non-fire CO fluxes from the total CO flux we estimated, by multiplying the CO 

flux by the prior fire fraction of the total flux in that grid cell. Which means that is not possible to produce posterior fire 

emissions in cells which contain no prior fire emissions. Finally, we convert the CO fluxes to carbon fluxes by multiplying the 230 

CO fluxes with a biomass burning emission ratio of 16 ((ppm CO)/(ppm CO2)), based on the mean CO:CO2 ratio of four 

Amazon sites estimated by vertical profile measurements by Gatti et al. (2021). Note that these fire CO2 emissions were not 

used as a fixed prior in the CO2 inversion: instead we subtracted these from the terrestrial non-fossil CO2 flux estimated in the 

inversion to derive Net Biome Exchange (NBE) of the biosphere. 

To evaluate our carbon fire emission estimate, we compare our CO2 fire flux and NBE flux from our CO TOMCAT-based 235 

inversion with CO2 fire flux estimates based on CO inversion estimates from Naus et al. (2022). For the comparison we used 

their posterior Amazon biomass burning inversion estimates based on CAMS Global fire assimilation system (GFAS v1.2, 

Kaiser et al., 2012) as a prior, with the optimized CO emissions assimilating MOPPIT data for the South America domain (for 

detailed information about the inversions see Naus et al., 2022). The TM5 model used for these inversions employed a nested 

grid over the Amazon region with horizontal resolution 1° ´ 1°, and 25 vertical levels. Fluxes were optimized on a 3-day basis, 240 

and fire emissions were emitted using vertical distributions from a fire emission model. It should be noted that NBE fluxes 

calculated based on TOMCAT total carbon fluxes and TM5 fire emissions might have large errors due to the many differences 

between the methodologies and transport schemes in the two models. We estimated NBE fluxes subtracting these CO2 from 

fires from the total CO2 flux estimated in our inversion. Note that CO2 fire flux estimates based on Naus et al. (2022) inversions 

were done using CO:CO2 ratios based on GFAS emission factors for each grid cell. Considering that estimates from Naus et 245 

al. (2022) were done between April to December and for a different Amazon area, for comparison we recalculated our CO2 

and CO TOMCAT-based inversions to the same area and time period (April-December over the nine years). 

2.2.4 Cumulative water deficit (CWD) 

As an indicator of plant soil water stress we use climatic cumulated water deficit (CWD). CWD is a monthly soil water balance 

based on two simplifying assumptions: 0.1 m month-1 evapotranspiration and that any excess water runs off. Thus 250 

 

𝐶𝑊𝐷!,#(𝑡) = (
0		𝑖𝑓	𝐶𝑊𝐷!,#(𝑡 − 1) + 𝑃𝑟𝑒𝑐𝑖𝑝(𝑡) 	− 	0.1		(𝑚	𝑚𝑜𝑛𝑡ℎ$%) 	> 	0
𝐶𝑊𝐷!,#(𝑡 − 1) + 𝑃𝑟𝑒𝑐𝑖𝑝(𝑡) 	− 	0.1		(𝑚	𝑚𝑜𝑛𝑡ℎ$%)			𝑒𝑙𝑠𝑒

                                                                    (1) 

where t is time (month) and i,j are grid cell indices. Furthermore, assuming that soil is fully recharged during the wettest month, 

CWD is reset to zero at the month of maximum precipitation, calculated separately for each grid cell as a climatic mean. From 

the monthly CWD maps, 'maximum climatic water deficit' is defined as the maximum over the 11-month period following the 255 

month with maximum precipitation. We use precipitation estimates provided by TRMM (version 7) (Tropical Rainfall mission, 

Huffman et al., 2001) which has a 0.25° latitude by longitude spatial resolution. 
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2.2.5 Temperature 

For temperature analysis we used 2-m air temperatures from ERA-5 that are monthly means of daily means since 1959 (here 260 

used between 2010 and 2018) and with a resolution of 0.25° × 0.25° latitude–longitude, obtained from the ECMWF 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-monthly-means?tab=overview; Hersbach et 

al., 2020). 

2.2.6 Solar radiation 

For solar radiation we used the global monthly mean surface shortwave solar radiation downward flux under all-sky conditions, 265 

between 2010 and 2018, obtained from Clouds and the Earth’s Radiant Energy System (CERES-EBAF Ed4.1; https://ceres-

tool.larc.nasa.gov/ord-tool/jsp/EBAF41Selection.jsp) at 1° resolution (Loeb et al., 2018; Kato et al., 2018). 

2.2.7 Burned area 

Burned area data was obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 6 MCD64A1 

burned area product (Giglio et al., 2018). This collection provides monthly tiles of burned area with 500 m spatial resolution 270 

over the globe, and was resampled to 1° × 1° spatial resolution. The algorithm to estimate burned area uses several parameters 

from the Terra and Aqua satellite products, including daily active fire (MOD14A1 and Aqua MYD14A1), daily surface 

reflectance (MOD09GHK and MYD09GHK), and annual land cover (MCD12Q1) (Vermote et al., 2002; Justice et al., 2002; 

Friedl et al., 2010). 

3 Results 275 

3.1 Spatial distribution and seasonal pattern of Amazon carbon fluxes 

To evaluate how well the inversion fitted the assimilated Amazon vertical profile data we compared the prior and posterior 

mole fractions with the observations (Figure 2) both for the mean observations from Amazon vertical profiles both below 

1.5km and above 3.5km altitude. Estimated posteriori CO2 mole fractions have a similar magnitude and positive trend as seen 

in the observed, following the global increase in CO2 (not showed here). We observed a large improvement after the 280 

assimilation of observations in the model: the mean difference between estimated mole fraction and observations reduced 57% 

and 49% for the mean mole fractions below 1.5km and above 3.5km altitude, respectively (Figure 2 and Table A2). In addition 

to the improved agreement in the magnitude and seasonal pattern of the residuals, we also found higher correlations between 

the observations and the posterior mole fraction compared to the difference between observations and prior mole fractions 

(Figure 2). 285 
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In Figure 3 we display the 2010-2018 quarterly and annual mean prior total, posterior total and posterior fire carbon flux 

distributions in the Amazon region, to show the long-term flux distribution over this period. The nine-year mean prior flux 

distribution shows a source of carbon to the atmosphere during the first quarter of the year (January-March) in the west-central 

region, while a sink of carbon was calculated between July to December, mainly between July to September i.e. during the dry 

season. After assimilating the Amazon vertical profile data, the posterior fluxes had a different seasonal pattern, with a 290 

significant sink in the central Amazon during January and March and a source to the atmosphere in the western region. In 

addition, a carbon source to the atmosphere was estimated in the eastern Amazon from July to September, which is consistent 

with the nine-year mean carbon emissions from fires estimated in this region over this time based on the CO inversions using 

MOPITT data and with the drought period in Amazon region (Figure 3c and d).  

Our data reveal distinct spatial and seasonal carbon flux patterns in the nine-year monthly means and a significant change in 295 

posterior fluxes when vertical profile data were assimilated in the model (linear regression between posterior flux with Amazon 

data and prior flux: r = 0.13 and p = 0.16). Posterior total fluxes obtained without assimilating the Amazon vertical profile data 

result in a similar seasonal pattern as the prior total flux (linear regression between posterior flux without Amazon data and 

prior flux: r = 0.66 and p < 0.05), mainly between January and March, showing the Amazon as a source of carbon to the 

atmosphere (Figure A1). This is in contrast with the posterior total flux estimates when the Amazon vertical profile data are 300 

assimilated in the inversions. The posterior total flux without the Amazon vertical profile data also shows an uptake of carbon 

during May and June similar to the prior total fluxes, but with a reduction in the magnitude of these fluxes, particularly in the 

eastern Amazon (Figures 3 and 4). These results indicate the strong influence and thus importance of Amazonian regional data 

in the inversions to constrain the Amazon carbon fluxes estimates, as also found by van der Laan-Luijkx et al. (2015) and 

Botía Bocanegra (2022). 305 

Large carbon emissions from fires were observed in Amazonia from August to December, mainly from the south and east 

regions (Figures 3, 4 and 5). Fires also contribute to emissions to the atmosphere between January and March, but mainly from 

the western-central region, due to fires occurring in the Northern Hemisphere (Figures 3, 4 and 5). 

To estimate the CO2 net biome exchange (NBE) we subtracted the fire emissions from our posterior total fluxes (Figure 4 and 

5 and Figures A2 and A3). Our NBE represents the balance between photosynthesis and respiration. We use the following sign 310 

convention: positive NBE is a flux to the atmosphere. According to our results the forest, not considering fire emissions, is a 

sink during the wet season and still acts as a sink in part of the dry season, except in July and October (Figures 3 and 4). This 

dry season sink compensates part of the carbon emissions from fires, but with the sink located mainly in the western-central 

Amazon (Figure 3). During the years with strong droughts such as 2010 and 2015-16, a reduction in this dry-season uptake 

(near neutrality) was estimated (Figure 4, A2 and A3, discussed in detail in Section 4). In the western-central region we estimate 315 

a positive NBE flux to the atmosphere between April and June, which could be caused by emissions from decomposition 

processes (Figure 4 and A2), as the carbon emissions due to dead wood decay in the following years of a burning event (Silva 

et al., 2020; Anderson et al., 2015). This result resembles the seasonal cycle of NBE found by Botía et al. (2022), who used 
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ATTO-tower CO2 time series data to find NBE rapidly declining at the end of the wet season, resulting in a source of CO2 in 

June. 320 

We also investigated the possible relation of climate conditions with the intra-annual variability in total CO2 fluxes. An increase 

in the net carbon loss to the atmosphere was observed during warmer (r= 0.34, and Student’s T-test p <0.05) and drier (r= 0.61, 

p <0.05) periods, during which also solar radiation (r= 0.20, p <0.05) and burned area (r= 0.22, p <0.05) increased. Linear 

regressions between posterior monthly mean fire fluxes and temperature, CWD, solar radiation and burned area all reveal 

significant correlations (r= 0.61, p <0.05; r= 0.33, p <0.05; r= 0.52, p <0.05; and r= 0.86, p <0.05, respectively), (Figures A2 325 

to A5). Furthermore, an increase in total and fire emissions was estimated during the extreme drought years (2010 and 2015–

16) as expected. Note that the inter-annual variability in posterior CO2 total fluxes is driven by the Amazon aircraft 

observations alone, as the land-biosphere prior flux is climatological over the period.  

No significant relationships between monthly posterior NBE fluxes and climate variables were observed (Figure A6). For 

western-central and eastern Amazon regions we found a similar relation between posterior fire fluxes and climate conditions 330 

as what was observed for Amazon as a whole (Figures A2 to A6). 

3.2 Amazon carbon balance and its inter-annual variability 

When the data from the aircraft vertical profiles were assimilated in the inversions the posterior total flux estimates over the 

period from 2010 to 2018 (including fire emissions) of 0.13 ± 0.17 PgC y-1 are positive, with the majority of the emissions 

coming from the eastern region (0.10 ± 0.08 PgC y-1), Table 1. A larger emission to the atmosphere was estimated by the 335 

inversions when only NOAA surface site data were assimilated (without the data from the Amazon vertical profiles) resulting 

in a total emission of 0.48 ± 0.17 PgC y-1 (including fire emissions). Fire emissions are the main reason for the flux to the 

atmosphere over the period, 0.26 ± 0.13 PgC y-1, with the largest contribution also coming from the eastern region (Table 1). 

Part of these fire emissions are compensated by the forest uptake in both western-central and eastern Amazon regions (72% 

and 33% of the fire emissions, respectively). We highlight that the Amazon region is a carbon source to the atmosphere when 340 

we include fire emissions over this period, with an uptake by the forest (NBE flux) that compensates 50% of the fire emissions. 

Linear regressions between annual mean posterior total flux and temperature, CWD, solar radiation and burned area yield 

significant correlations: r= 0.55, p 0.12; r= 0.62, p 0.07; r= 0.54, p 0.13, and r= 0.50, p 0.17, respectively. These annual mean 

correlations are driven mainly by the drought years, 2010 and 2015-2016. In addition, we found similar relationships between 

annual mean posterior fire flux and temperature, CWD, solar radiation and burned area (r= 0.75, p <0.05; r= 0.68, p <0.05; r= 345 

0.56, p 0.12, and r= 0.84, p <0.05, respectively), (Figure 5, A7 and A8). However, we did not find any significant relationships 

between annual mean posterior NBE flux and climate variables (temperature, CWD and solar radiation; Figure A9). Note that 

our total emission estimates could be over or underestimated during 2015 and 2016, because of the low number of vertical 

profile data available for this period (Figure A10).  

CO2 flux estimates over our nine-year study period indicate that Amazonian total, NBE, and fire emissions do not exhibit 350 

significant time trends, neither for the western-central nor eastern regions (Figure 6). 
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3.3 Sensitive tests 

We also estimate Amazonian CO2 fluxes using our atmospheric inversion but replacing the biosphere prior flux estimates of 

CASA by the estimates of CARDAMOM for the South America region (Figure A11). Comparing both estimates (from 355 

CARDAMOM and CASA models) of land-biosphere fluxes used as prior in the inversions, we found that CARDAMOM 

shows a large carbon uptake (prior total flux of -2.50 ± 0.43 PgC y-1) for the Amazon region in contrast to the estimates from 

CASA model (prior total flux of 0.08 ± 0.24 PgC y-1). CARDAMOM prior flux estimates show a large carbon sink in Amazon 

between January and March in contrast with a carbon source to the atmosphere estimated by CASA model. The large uptake 

was not reproduced after the assimilation of Amazon observational data. After assimilating the Amazon vertical profile data 360 

in the inversions using CARDAMOM as the land-biosphere prior, the posterior estimate shows a strong reduction in the uptake 

for the Amazon region (posterior total flux of -0.19 ± 0.17 PgC y-1) compared to the prior (Figure A11). This result shows that 

the large land biosphere sink estimated by CARDAMOM is inconsistent with the Amazon atmospheric vertical profile data. 

Although the inversion using CARDAMOM as a prior shows the Amazon as a small overall carbon sink while the inversion 

using CASA model as a prior shows the Amazon as a small source to the atmosphere (0.13 ± 0.17 PgC y-1), the intra-annual 365 

seasonality from both inversions are similar (Figure A11). Also, both posterior estimates have a similar spatial flux distribution. 

Posterior flux estimates using CARDAMOM as land-biosphere prior flux also showed the eastern Amazon as a carbon source 

to the atmosphere from July to September, and during January and March a significant sink in the central Amazon while the 

western region as a source to the atmosphere (Figure A11).  

We compared fire and NBE estimates based on CO inversion estimates from Naus et al. (2022) with our estimates based on 370 

TOMCAT CO inversions. We found similar intra- and inter-annual variability and flux magnitudes when compared to our 

NBE and fire estimates based on TOMCAT CO inversions with estimates based on their CO inversions (Figure A12 and Table 

A3). Both CO inversions assimilated the same MOPITT observations, but have variations in inversion methodology and model 

transport. To get a true independent estimate of NBE from another model, it would need to produce posterior estimates of both 

total carbon and fire carbon. 375 

4 Discussion 

The posterior fluxes when vertical profile data were assimilated in the inversions led to a change compared to the prior in the 

fluxes seasonal cycle, and additionally showed a larger reduction in Amazon total emission in comparison with the posterior 

fluxes when just NOAA surface data were assimilated (Figures 3 and 4 and Table 1). This once again highlights the importance 

of assimilating regional data in the inversions to better constrain the tropical forest fluxes (van der Laan-Luijkx et al., 2015; 380 

Alden et al., 2016; Botía et al., 2022). This result is not dependent on the assumed prior sources and sinks, as we also found a 
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significant reduction of the large land biosphere carbon uptake suggested by CARDAMOM for the Amazon region after 

assimilating the Amazon vertical profile data in the inversion (Figure A11). 

Using the CASA as land-biosphere prior flux we estimate the Amazon region to be a total (i.e. including emissions from fire) 

net source of C of 0.13 ± 0.17 PgC y-1 over our analysis period. The largest emission comes from the eastern Amazon, while 385 

the largest uptake was observed in the western-central region. Our results indicate that the Amazon is a source of carbon to the 

atmosphere due to fire emissions, which were larger than the estimated Amazon land sink, but we highlight that during this 

period the forest uptake removes around half of the fire emissions to the atmosphere. 

Globally, the land CO2 sink was estimated to be 3.1 ± 0.6 PgC y−1 during the decade 2011–2020 (29 % of total global CO2 

emissions, Friedlingstein et al., 2022), and continued to increase during this period likely in response to increased atmospheric 390 

CO2 (Friedlingstein et al., 2022). However, the land sink shows large inter-annual variability, generally showing decreased 

land carbon uptake during El Niño events. According to Friedlingstein et al. (2022), in general the tropical region (30° S–

30° N) has a carbon balance close to neutral over the 2011–2020 period, however the tropical region is most strongly correlated 

with inter-annual variation of atmospheric CO2 (Friedlingstein et al., 2022). Note that this tropical region estimate did not 

include the information provided by the Amazon vertical CO2 profile data we used here. The Tropics is also where the largest 395 

land-use emissions occur, including the Arc of Deforestation in the Amazon basin (Friedlingstein et al., 2022). We did not 

observe an increasing trend over time in the land carbon uptake for the Amazon region, in contrast to the continued increase 

in the global land sink reported by Friedlingstein et al. (2022). 

Based on a distributed network of 321 forest survey plots from RAINFOR (Brienen et al., 2015), 30% decrease in the total net 

carbon sink into intact Amazon live biomass from 0.54 PgC y-1 (95% confidence interval 0.45–0.63) in the 1990s to 0.38 PgC 400 

y-1 (0.28–0.49) in the 2000s was estimated. Phillips and Brienen (2017), based also on the RAINFOR network plot 

measurements, estimated an Amazon-wide forest biomass carbon sink between 1980 and 2010 of 0.43 PgC y−1 (CI 0.21-0.67). 

Finally, Hubau et al. (2020) reported a decrease in the Amazon carbon net sink in the last decades, from 0.68 PgC y-1 (CI 0.54–

0.83) between 1990 and 2000 to 0.45 PgC y-1 (CI 0.31–0.57) between 2000 and 2010, predicting a net carbon sink of 0.25 PgC 

y-1 (CI –0.05–0.54) between 2010–2020. Our posterior NBE estimates (a sink of 0.13 ± 0.20 PgC y-1) are fairly consistent with 405 

the RAINFOR results with regards to magnitude but not with trend over time in the observed carbon uptake, the difference in 

the areas used for the estimates, and that our NBE represents the uptake from forest but also non-fire emissions (as 

decomposition and degradation emissions). 

Our posterior fire emissions agree with fire emission estimates for Brazilian Amazonia reported by Aragão et al. (2018), with 

a total fire emission of 0.21 ± 0.23 PgC y-1 over the period 2003–2015, based on the relation between MOPITT CO total 410 

column and burned forest and deforestation gross CO2 emissions data (Aragão et al., 2018). Recently, Silva et al. (2020) 

reported that forest fires contribute cumulative gross carbon emissions of ~126 MgCO2 ha-1 for 30 years after a fire event, with 

a mean annual efflux of 4.2 MgCO2 ha-1 y-1 and emissions from the decomposition of the dead organic matter accounting for 

ca. 58% (47.4 MgCO2 ha-1) of total cumulated net emissions. van der Werf et al. (2010) estimated that fires were responsible 

for an annual mean global carbon emission of 2.0 PgC y-1 (for the period 1997–2009) with significant inter-annual variability, 415 

https://doi.org/10.5194/egusphere-2023-19
Preprint. Discussion started: 25 January 2023
c© Author(s) 2023. CC BY 4.0 License.



14 
 

where about 15% (0.29 PgC y-1) was associated with South American emissions mainly from the Southern Hemisphere of 

South America (14%; 0.27 PgC y-1), according to estimates from the Global Fire Emission Data set (GFED V.3). Note that 

this South American emission estimate was related to a larger area than our Amazon region estimates. 

We found clear intra-annual seasonality in our posterior total, fire and NBE fluxes. In general, we found over these nine-years 

that the Amazon is a carbon sink during November to March (wet season) and also during August and September removing 420 

part of the fire emissions during the dry season (Figures 4 and 5 and Figures A2 and A3). Although we did not find a significant 

relation between our NBE seasonality and the climate variables analyzed (CWD, temperature and solar radiation), our NBE 

emission seasonality show good agreement with the Amazon mean net ecosystem exchange (NEE) seasonality based on five 

eddy covariance forest tower sites located in the Brazilian Amazon, Manaus forest (K34; 1999–2006), Santarém forest (K67; 

2001–2005, 2008-2011 and 2015-2019), forest of Caxiuana (CAX; 1999-2003), Reserva Jarú southern forest (RJA; 2000-425 

2002) and the seasonal inundated forest of Bananal (JAV; 2003-2006) (Gatti et al., 2021c). Our fire estimates showed the 

largest increase in emissions during the dry season months of August to October, in agreement with the increase in the CWD, 

temperature, solar radiation and burned area (Figure 5 and Figures A2, A3 and A5).  

We found that our total and fire emission estimates inter-annual variability correlates with climatic variations, with larger 

emissions during hotter and dryer years as in 2010 and 2015-16. This inter-annual variability is primarily driven by the 430 

atmospheric vertical profile data and MOPPIT CO columns as in our approach the land flux prior estimates are the same for 

all years. In 2010 the increase in carbon emissions was mainly caused by an increase in emissions in the western-central region, 

related to a large increase in fire emissions (2010 flux of 0.32 ± 0.14 PgC y-1 and a nine-year mean of 0.11 ± 0.10 PgC y-1; 

student t-test: p = 0.14) and also a reduction of the uptake in relation with the nine-year mean (2010 flux of -0.04 ± 0.20 PgC 

y-1 and a nine-year mean of -0.08 ± 0.18 PgC y-1; p = 0.43). We also observed an increase in fire emissions in eastern Amazon 435 

region during this year, but lower than in the western-central region (2010 flux of 0.28 ± 0.15 PgC y-1 and a nine-year mean 

of 0.15 ± 0.11 PgC y-1; p = 0.21). These results are in agreement with the increase in burned areas observed when compared 

with the nine-year mean (104 and 89% in western-central and eastern Amazon regions, respectively), and with an increase of 

7% in the CWD compared with the nine-year mean in the western-central region. Although some p values are larger than 0.05, 

these results suggest changes in the carbon cycle. High correlations between soil moisture and MOPITT-derived fire emissions 440 

were also reported by Naus et al. (2022) for the province of Amazonas, confirming the important role of the moisture state of 

the underlying forest. 

On the other hand, during 2016 the increase in carbon emissions was mainly related to a reduction in the carbon uptake in the 

Amazon region, which was a net source to the atmosphere during this year (NBE flux of +0.12 ± 0.20 PgC y-1; student t-test: 

p = 0.14), while fire emissions increased 61% in the western-central Amazon in relation to the nine-year mean (2016 flux of 445 

0.19 ± 0.13 PgC y-1 and a nine-year mean of 0.11 ± 0.10 PgC y-1; student t-test: p = 0.17). These indications of reductions in 

the carbon uptake could be related to hotter and dryer conditions in the western-central region, with an increase of 10% in the 

CWD in relation to the nine-year mean, and an increase of 0.3 and 0.4 °C in the annual mean temperature in relation with the 

nine-year mean (the largest positive anomalies in the nine years for both regions) in the western-central and eastern Amazon 
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region. Recently, Fancourt et al. (2022) reported that background climate and soil conditions had a greater influence than the 450 

climatic anomalies on Amazon forest photosynthesis spatio-temporal variations, but with the northwestern forests being the 

most sensitive to precipitation anomalies during the 2015/16 El Niño period.  

Gloor et al. (2018) reported a net flux anomaly from the Amazon of 0.5 ± 0.3 PgC during the 2015/16 El Niño event (between 

September 2015 and June 2016), based on previous inversions using TOMCAT and assimilating the Amazon vertical profile 

data. Our posterior total estimates showed a net flux anomaly for this period of 0.58 ± 0.20 PgC for the whole Amazon, with 455 

0.32 ± 0.19 PgC and 0.26 ± 0.09 PgC for the western-central and eastern Amazon, respectively. The majority of the anomalies 

observed come from a reduction in the carbon sink making NBE fluxes positive in the western-central Amazon with a total 

net emission of 0.09 ± 0.22 PgC y-1 (while the nine-year means for this period show an uptake of 0.04 ± 0.15 PgC y-1; p = 

0.25), acting as a net carbon source to the atmosphere during this period, in addition to increase in fire emissions at both 

western-central (flux of 0.23 ± 0.14 PgC y- 1 for this period while a nine-year mean of 0.11 ± 0.10 PgC y- 1; p = 0.07) and 460 

eastern regions (flux of 0.33 ± 0.14 PgC y- 1 for this period while a nine-year mean of 0.14 ± 0.10 PgC y- 1; p = 0.13). Koren 

et al. (2018) and van Schaik et al. (2018) suggested a reduction in gross primary production, resulting from combined heat- 

and soil moisture stress, to be a dominant mechanism. 

While agricultural and deforestation fires are more closely associated with human actions than with climate (Anderson et al., 

2018), forest fires are associated with a combination of human activities to provide the ignition source and climatic factors to 465 

create dry conditions (Berenguer et al., 2021). During strong drought conditions, such as the drought of 1997/98, fires could 

escape from agricultural fields and burn standing primary forests that were once considered impenetrable to fire (Brando et 

al., 2020). A warming trend is being observed in Amazon, evident since 1980, and it is enhanced since 2000, a period where 

strong droughts occurred in 2005, 2010, and 2015/16 (the increases in temperature varies with the dataset, time period and 

spatial scale of the analysis) (Marengo et al., 2021). Also, warming was observed in the eastern Amazon and especially 470 

southeastern Amazon, at a rate almost twice as high as the western Amazon (Marengo et al., 2021). Our CWD analysis for 

Amazonia shows a weak drying trend for almost all regions between 1998 and 2019 (Figure A13). The observed climate 

tendencies in Amazonia can be different in the western and eastern regions, and the projected changes suggesting a drier and 

warmer climate in the east, while in the west rainfall is expected to increase in the form of more intense rainfall events 

(Marengo et al., 2021).  475 

The increase in climate variability impacts both the Amazonian forest (Anderson et al., 2018) and savannah biomes, increasing 

tree mortality (Aragão et al., 2018) and ecosystem vulnerability to fire (Anderson et al., 2018; Silva Junior et al., 2019). The 

increased variability, in combination with deforestation, has changed the forest’s resilience to fires, in particular in the southern 

Amazon, where remaining forests have become drier and thus vulnerable to wildfires during recent droughts (Brando et al., 

2020). Our posterior fire estimates showed the largest emissions in the eastern Amazon region with an increase in emissions 480 

during strong drought years, but we do not find a significant trend over the 2010 to 2018 period. Eastern Amazon is more 

disturbed than the western-central region, with larger deforested areas also converted to agriculture and grassy areas (Figure 

A14).  
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The clear seasonality in our posterior total, fire and NBE fluxes is generally in agreement with that reported by Gatti et al. 

(2021), based on a mass balance technique for the Amazon region as a whole, and also for west and east regions (Figure A15). 485 

For eastern Amazon, the seasonality of the NBE estimate of the two approaches was more similar than the seasonality of the 

fire emissions. Gatti et al. (2021) estimated fire emissions occurring during January to March, mainly in the northeastern 

region, while we did not estimate emissions during this period. Part of this difference could be related to the different regions 

considered as eastern Amazon in both studies. The region of influence of fluxes on site CO2 records reported by Gatti et al. 

(2021), based on quarterly mean back-trajectories, has influence from the North Hemisphere Amazon during this time, an area 490 

not considered in our Eastern Amazon region definition. Also, the difference could also be related to the burned areas fraction 

in the prior flux used to derive the CO fire emissions in our inversion, in the absence of burned area fraction will result in no 

fire emissions in the area. On the other hand, fire emissions during this period are observed in both approaches in the western-

central region. The main difference observed in the estimates for this region was in the NBE during the dry season months of 

August and September, where our posterior estimates showed an uptake while the mass balance technique estimates (Gatti et 495 

al., 2021) showed a source to the atmosphere (Figure A15). A substantial dry season sink in the western Amazon was 

independently derived from ATTO-tower CO2 observations by Botía et al. (2022), supporting our findings here. 

No significant trend over time (between 2010 and 2018) was observed in our posterior emissions, in contrast with the trend in 

NBE fluxes for the east Amazon region, with an increase in emissions over this time reported by Gatti et al. (2021). Our results 

indicate that Amazonia is a source of carbon to the atmosphere because of fire emissions, corroborating the findings of Gatti 500 

et al. (2021). Our nine-year mean total posterior emissions for the Amazon region are 33% smaller than their total emission 

estimates, with the largest difference being observed in the eastern region (Figure 7). The largest differences are mainly related 

with the fire emission estimates, while our posterior NBE estimate represents 90% of their estimates. However, considering 

the range of both Amazon flux estimates we find similar emissions (Figure 7). 

5 Conclusions 505 

Our global inverse model estimates of CO2 emissions using Amazon atmospheric vertical profiles and surface observations 

has allowed us to estimate that over the nine years 2010-2018 the Amazon region acted as a small carbon source to the 

atmosphere, with a total emission of 0.13 ± 0.17 PgC y-1. The emissions were greater in eastern Amazon (0.10 ± 0.08 PgC y-

1) than in the western region, mostly due to fire emissions. The forest uptake (NBE) compensated 50% of the fire emissions 

and was larger in the western-central region than in the eastern Amazon region (72% and 33% of the fire emissions, 510 

respectively). This highlights the importance of public policies to prevent deforestation and fire occurrences to reduce Amazon 

carbon emissions to the atmosphere and help to mitigate the effects of climate change. 

Our estimated carbon fluxes were larger during the extreme drought years such as 2010, 2015 and 2016, mainly from an 

increase in fire emissions and indication of reduction in carbon uptake. However, we did not find any significant trend in 

carbon emissions over the period 2010-2018.  515 
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The inter and intra-annual seasonality of the results from our inversion are in agreement with previous studies (e.g. Gatti et al., 

2021; Botía et al. 2022; and Naus et al. 2022). Our study shows the benefit of using regional CO2 data to better constrain 

carbon emissions in tropical forests such as the Amazon, thereby improving the estimated magnitude and intra-annual 

seasonality of the emissions. In turn, this helps to improve global estimates and understand possible climate and human 

disturbance feedback in the carbon cycle. 520 
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Figure 1: Locations of INPE/LaGEE Amazon vertical profile sites (blue circles) and NOAA surface sites from which flask-based 
measurements of CO2 are assimilated (red circles). 890 
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Figure 2: Detrended monthly mean CO2 mole fractions (ppm) for prior (with CASA as land-biosphere prior flux), posterior and 
Amazon vertical profiles and its linear regressions, where a) is the mean below 1.5 km altitude (planetary boundary layer levels and 
b) the mean above 3.5 km altitude (vertical profile free troposphere), for each of the vertical profile sites. The model results were 
extracted for the grid cell where each site is located. After detrended we subtracted the global mean mole fraction from the 895 
observation and model mole fractions. Error bars represent the observation uncertainties. 
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Figure 3: Quarterly and annual mean a) prior total (with CASA as land-biosphere prior flux), b) posterior total, c) posterior fire 
carbon fluxes, where a positive value indicates a net emission of C while a negative value indicates a net uptake, d) cumulative water 
deficit (CWD) for the Amazon region between 2010 and 2018. 900 
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Figure 4: Nine-year monthly mean (2010-2018) carbon fluxes for the a) whole Amazon, b) western-central Amazon and c) eastern 
Amazon areas: prior total flux (grey bars), posterior total flux without the Amazon vertical profile observations in the inversion 
(blue bars), posterior total flux with the Amazon vertical profile observations in the inversion (black bars), posterior fire fluxes using 
MOPPIT carbon monoxide observations in the inversion (orange bars) and posterior NBE fluxes which is the result of the 905 
subtraction of the posterior fire fluxes from the posterior total fluxes the Amazon vertical profile observations in the inversion (green 
bars), representing the net biome exchange. Error bars represents the monthly mean uncertainties d) Amazon mask used in the 
study, the whole Amazon area is the sum of western-central Amazon and eastern Amazon areas. 
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Figure 5: a) Monthly mean carbon fluxes for the whole Amazon area: posterior total flux with the Amazon vertical profile 910 
observations in the inversion (black bars), posterior fire fluxes using MOPITT carbon monoxide observations in the inversion 
(orange bars) and posterior NBE fluxes which is the result of the subtraction of the posterior fire fluxes from the posterior total 
fluxes the Amazon vertical profile observations in the inversion (green bars), representing the net biome exchange. Monthly mean 
and anomalies of b) cumulative water deficit (CWD), c) temperature, d) shortwave flux down solar radiation (all sky) and e) burned 
area for the Amazon area. 915 
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Table 1: Nine-year mean prior total, posterior total without the vertical profile observations assimilated in the inversions, posterior 
total with the vertical profile observations assimilated in the inversions and fire fluxes for the whole Amazon, west-central and east 
Amazon regions. 

 920 

Amazon C land fluxes 2010-2018 (Pg C y-1) 

Region Amazon 
West-central 

Amazon 
East Amazon 

Prior total flux  0.08 ± 0.24 0.03 ± 0.21 0.04 ± 0.20 

Posterior total flux  

(without Amazon observations) 
0.48 ± 0.17 0.26 ± 0.16 0.23 ± 0.07 

Posterior total flux  

(with Amazon observations) 
0.13 ± 0.17 0.03 ± 0.17 0.10 ± 0.08 

Posterior fire flux 0.26 ± 0.13 0.11 ± 0.10 0.15 ± 0.11 

Posterior NBE flux 

(without Amazon observations) 
0.21 ± 0.20 0.12 ± 0.18 0.09 ± 0.13 

Posterior NBE flux 

(with Amazon observations) 
-0.13 ± 0.20 -0.08 ± 0.18 -0.05 ± 0.13 
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Figure 6: Annual mean carbon fluxes for the a) whole Amazon, b) western-central and c) eastern Amazon areas: posterior total flux 
with the Amazon vertical profile observations in the inversion (black bars) and posterior fire fluxes using MOPITT carbon monoxide 925 
observations in the inversion (red bars). Annual cumulative water deficit (blue line), annual mean temperature (pink line), annual 
mean shortwave flux down solar radiation (all sky; black line) and annual total burned area (brown line). 
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Figure 7: Comparison of nine-year mean of carbon fluxes from the inverse modeling (prior total flux, posterior total flux, posterior 
NBE flux (total minus fire emissions) and posterior fire flux), and fluxes estimates (total, NBE and fire) using a mass balance 930 
technique in Gatti et al. (2021). All fluxes are estimated using the Amazon areas (km2) from Gatti et al. (2021). 

 

Appendix A 

Table A1. NOAA monitoring sites with CO2 observations data used in the inverse model. 
Code Name Latitude Longitude 

ALT Alert, Nunavut, Canada 82.45° N 62.50° W 
AMY Anmyeon-do, Republic of Korea 36.53° N 126.32° E 
ASC Ascension Island, United Kingdom 7.96° S 14.40° W 
ASK Assekrem, Algeria 23.26° N 5.63° E 
AZR Terceira Island, Azores, Portugal 38.76° N 27.37° W 
BAL Baltic Sea, Poland 55.35° N 17.22° E 
BHD Baring Head Station, New Zealand 41.40° S 174.87° W 
BKT Bukit Kototabang, Indonesia 0.20° S 100.31° E 
BMW Tudor Hill, Bermuda, United Kingdom 32.26° N 64.87º W 
BRW Barrow Atmospheric Baseline Observatory, United States 71.32° N 156.61° W 
CBA Cold Bay, Alaska, United States 55.21° N 162.72° W 
CGO Cape Grim, Tasmania, Australia 40.68° S 144.69° E 
CHR Christmas Island, Republic of Kiribati 1.70° N 157.15° W 
CIB Centro de Investigacion de la Baja Atmosfera (CIBA), Spain 41.81° N 4.93° W 
CPT Cape Point, South Africa 34.35° S 18.48° E 
CRZ Crozet Island, France 46.43° S 51.84° E 
DRP Drake Passage, N/A 59.00° S 64.69° W 
DSI Dongsha Island, Taiwan 20.69° N 116.72° E 
EIC Easter Island, Chile 27.15° S 109.42° W 
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GMI Mariana Islands, Guam 13.38° N 144.65° E 
HBA Halley Station, Antarctica, United Kingdom 75.605° S 26.21° W 
HPB Hohenpeissenberg, Germany 47.80° N 11.02° E 
HSU Humboldt State University, United States  41.05° N 124.75° W 
HUN Hegyhatsal, Hungary 46.95° N 16.65° W 
ICE Storhofdi, Vestmannaeyjar, Iceland 63.39° N 20.28° W 
IZO Izana, Tenerife, Canary Islands, Spain 28.30° N 16.49° W 
KEY Key Biscayne, Florida, United States 25.66° N 80.15° W 
KUM Cape Kumukahi, Hawaii, United States 19.73° N 155.01° W 
LLB Lac La Biche, Alberta, Canada 54.95° N 112.46° W 
LLN Lulin, Taiwan 23.47° N 120.87° E 
LMP Lampedusa, Italy 35.51° N 12.63° E 
MEX High Altitude Global Climate Observation Center, Mexico 18.98° N 97.31° W 
MHD Mace Head, County Galway, Ireland 53.32° N 9.89° W 
MID Sand Island, Midway, United States 28.21° N 177.38° W 
MLO Mauna Loa, Hawaii, United States 19.53° N 155.57° W 
NAT Farol De Mae Luiza Lighthouse, Brazil 5.79° S 35.18° W 
NMB Gobabeb, Namibia 23.58° S 15.03° E 
NWR Niwot Ridge, Colorado, United States 40.05° N 105.58° W 
OXK Ochsenkopf, Germany 50.03° N 11.80° E 
PAL Pallas-Sammaltunturi, GAW Station, Finland 67.97° N 24.11° E 
POC000 Pacific Ocean (0° N) 0.00° - 
POCN05 Pacific Ocean (5° N) 5.00° N - 
POCN10 Pacific Ocean (10° N) 10.00° N - 
POCN15 Pacific Ocean (15° N) 15.00° N - 
POCN20 Pacific Ocean (20° N) 20.00° N - 
POCN25 Pacific Ocean (25° N) 25.00° N - 
POCN30 Pacific Ocean (30° N) 30.00° N - 
POCS05 Pacific Ocean (5° S) 5.00° S - 
POCS10 Pacific Ocean (10° S) 10.00° S - 
POCS15 Pacific Ocean (15° S) 15.00° S - 
POCS20 Pacific Ocean (20° S) 20.00° S - 
POCS25 Pacific Ocean (25° S) 25.00° S - 
POCS30 Pacific Ocean (30° S) 30.00° S - 
PSA Palmer Station, Antarctica, United States 64.77° S 64.05° W 
PTA Point Arena, California, United States 38.95° N 123.74° W 
RPB Ragged Point, Barbados 13.16° N 59.43° W 
SDZ Shangdianzi, China 40.65° N 117.11° E 
SEY Mahe Island, Seychelles 4.68° S 55.53° E 
SGP Southern Great Plains, Oklahoma, United States 36.60° N 97.48° W 
SHM Shemya Island, Alaska, United States 52.71° N 174.12° E 
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SMO Tutuila, American Samoa 14.24° S 170.56° W 
SPO South Pole, Antarctica, United States 89.98° S  24.80° W 
SUM Summit, Greenland 72.59° N 38.42° W 
SYO Syowa Station, Antarctica, Japan 69.01° S 39.59° E 
TAP Tae-ahn Peninsula, Republic of Korea 36.73° N 126.13° E 
THD Trinidad Head, California, United States 41.05° N 124.15° W 
TIK Hydrometeorological Observatory of Tiksi, Russia 71.59° N 128.88° E 
USH Ushuaia, Argentina 54.84° S 68.31° W 
UTA Wendover, Utah, United States 39.90° N 113.71° W 
UUM Ulaan Uul, Mongolia 44.45° N 111.09° E 
WIS Weizmann Institute of Science at the Arava Institute, Ketura, Israel 29.96° N 35.06° E 
WLG Mt. Waliguan, Peoples Republic of China 36.28° N 100.89° E 
ZEP Ny-Alesund, Svalbard, Norway and Sweden 78.90° N 11.88° E 

 935 

Table A2. Mean difference between CO2 mole fraction model estimates and observations.  
CO2 mole fraction mean difference (ppm) 

Site 
Mean below 1.5 km altitude Mean above 3.5 km altitude 

Prior - observed Posterior - observed Prior - observed Posterior - observed 

ALF 3.0 1.3 1.2 0.7 

SAN 2.3 1.3 1.3 0.6 

RBA 4.1 1.3 1.5 0.7 

TAB_TEF 3.5 1.4 1.4 0.7 

 

 
Figure A1. Quarterly and annual mean posterior total carbon fluxes without assimilated Amazon vertical 
profile data for the Amazon region between 2010 and 2018. 940 
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 945 
Figure A2. a) Monthly mean carbon fluxes for the western-central Amazon area: posterior total flux with 
the Amazon vertical profile observations in the inversion (black bars), posterior fire fluxes using MOPPIT 
carbon monoxide observations in the inversion (orange bars) and posterior NBE fluxes which is the result 
of the subtraction of the posterior fire fluxes from the posterior total fluxes the Amazon vertical profile 
observations in the inversion (green bars), representing the net biome exchange. Monthly mean and 950 
anomalies of b) cumulative water deficit (CWD), c) temperature, d) shortwave flux down solar radiation 
(all sky) and e) burned area for the western-central Amazon area. 
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Figure A3. a) Monthly mean carbon fluxes for the eastern Amazon area: posterior total flux with the 
Amazon vertical profile observations in the inversion (black bars), posterior fire fluxes using MOPPIT 955 
carbon monoxide observations in the inversion (orange bars) and posterior NBE fluxes which is the result 
of the subtraction of the posterior fire fluxes from the posterior total fluxes the Amazon vertical profile 
observations in the inversion (green bars), representing the net biome exchange. Monthly mean and 
anomalies of b) cumulative water deficit (CWD), c) temperature, d) shortwave flux down solar radiation 
(all sky) and e) burned area for the eastern Amazon area. 960 

https://doi.org/10.5194/egusphere-2023-19
Preprint. Discussion started: 25 January 2023
c© Author(s) 2023. CC BY 4.0 License.



40 
 

 

 
Figure A4. a) Linear regressions between monthly mean carbon posterior total flux and temperature, 
cumulative water deficit (CWD), solar radiation and burned area for a) whole, b) western-central and c) 
eastern Amazon regions. 965 
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Figure A5. a) Linear regressions between monthly mean carbon posterior fire flux and temperature, 
cumulative water deficit (CWD), solar radiation and burned area for a) whole, b) western-central and c) 
eastern Amazon regions. 970 
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Figure A6. a) Linear regressions between monthly mean carbon posterior NBE flux (posterior total flux 
less posterior fire flux) and temperature, cumulative water deficit (CWD) and solar radiation for a) whole, 
b) western-central and c) eastern Amazon regions. 975 
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Figure A7. a) Linear regressions between annual mean carbon posterior total flux (posterior total flux less 
posterior fire flux) and temperature, cumulative water deficit (CWD), solar radiation and burned area for 
a) whole, b) western-central and c) eastern Amazon regions. 980 
 

 
Figure A8. a) Linear regressions between annual mean carbon posterior fire flux (posterior total flux less 
posterior fire flux) and temperature, cumulative water deficit (CWD), solar radiation and burned area for 
a) whole, b) western-central and c) eastern Amazon regions. 985 
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Figure A9. a) Linear regressions between annual mean carbon posterior NBE flux (posterior total flux 
less posterior fire flux) and temperature, cumulative water deficit (CWD), and solar radiation for a) whole, 
b) western-central and c) eastern Amazon regions. 
 990 

 
Figure A10. Total number of vertical profiles by month used in the inversions for the a) whole Amazon 
area, and b) divided in western-central (dark grey bars) and eastern Amazon regions (red bars). c) Total 
number of vertical profiles for whole (black bars), western-central (dark grey bars) and eastern Amazon 
regions (light gray bars). All the vertical profile data used were from Gatti et al., 2021. 995 
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Figure A11. Quarterly and annual mean a) prior total (with CARDAMOM as land-biosphere prior flux), 
b) posterior total (with CARDAMOM as land-biosphere prior flux), carbon fluxes, where a positive value 1000 
indicates a net emission of C while a negative value indicates a net uptake, c) nine-year monthly mean 
and d) annual means carbon fluxes for the Amazon using CARDAMOM estimates as land-biosphere prior 
fluxes between 2010 and 2018. 

gC m-2 d-1

gC m-2 d-1

Prior total flux estimates

Posterior total flux estimates

a)

b)

c)

d)
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 1005 
Figure A12. a) Annual mean fluxes for the Amazon region total, fire and NBE estimates. Fire and NBE 
based on TOMCAT CO inversions (CO_TOMCAT), Naus et al. (2022) emissions using GFAS as a prior 
(CO_GFAS) and with their CO optimized inversions (CO_opt). Nine-year monthly mean NBE (b) and 
fire (c) carbon fluxes for the Amazon, Fire and NBE based on TOMCAT CO inversions (CO_TOMCAT), 
Naus et al. (2022) emissions using GFAS as prior (CO_GFAS) and with their CO optimized inversions 1010 
(CO_opt). Linear regressions between annual mean carbon fire flux (d) and posterior NBE (e) based on 
TOMCAT CO inversions (CO_TOMCAT) and Naus et al. (2022) CO optimized inversions (CO_opt) 
 
Table A3. Annual mean fluxes (between April to December over the nine-year period, 2010 to 2018) 
using different CO estimates to estimate CO2 fire and NBE fluxes.  1015 

Carbon fluxes* (PgC y-1) 
Flux NBE Fire 

CO_TOMCAT 0.02 0.24 

CO_GFAS 0.12 0.14 

CO_opt 0.04 0.22 
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Figure A13. Time trend of maximum cumulative water deficit (CWD) between 1998 and 2019 based on 
TRMM v 7 precipitation estimates (Huffman et al., 2010). 
 1020 
 

 
Figure A14. Map of land use and cover data from Mapbiomas (2020) for Pan-Amazonia up to 2018. 
Purple line represents the Amazon region boundaries and grey line the South America and its countries 
boundaries. 1025 
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Figure A15. Comparison of monthly mean C fluxes from inverse modelling using Amazon vertical profile 
observations and C fluxes based the vertical profile observations calculated by mass balance technique 
from Gatti et al. (2021), for the period between 2010 and 2018). 1030 
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