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Abstract 

Oxidation of volatile organic compounds (VOCs) can lead to the formation of secondary 

organic aerosol, a significant component of atmospheric fine particles, which can affect air 15 

quality, human health, and climate change. However, current understanding of the formation 

mechanism of SOA is still incomplete, which is not only due to the complexity of the chemistry, 

but also relates to analytical challenges in SOA precursor detection and quantification. Recent 

instrumental advances, especially the developments of high-resolution time-of-flight chemical 

ionization mass spectrometry (CIMS), greatly enhanced the capability to detect low- and 20 

extremely low-volatility organic molecules (L/ELVOCs). Although detection and 

characterization of low volatility vapors largely improved our understanding of SOA formation, 

analyzing and interpreting complex mass spectrometric data remains a challenging task. This 

necessitates the use of dimension-reduction techniques to simplify mass spectrometric data 

with the purpose of extracting chemical and kinetic information of the investigated system. 25 

Here we present an approach by using fuzzy c-means clustering (FCM) to analyze CIMS data 

from chamber experiments aiming to investigate the gas-phase chemistry of nitrate radical 

initiated oxidation of isoprene.  

The performance of FCM was evaluated and validated. By applying FCM various 

oxidation products were classified into different groups according to their chemical and kinetic 30 

properties, and the common patterns of their time series were identified, which gave insights 

into the chemistry of the system investigated. The chemical properties are characterized by 
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elemental ratios and average carbon oxidation state, and the kinetic behaviors are 

parameterized with generation number and effective rate coefficient (describing the average 

reactivity of a species) by using the gamma kinetic parameterization model. In addition, the 35 

fuzziness of FCM algorithm provides a possibility to separate isomers or different chemical 

processes species are involved in, which could be useful for mechanism development. Overall 

FCM is a well applicable technique to simplify complex mass spectrometric data, and the 

chemical and kinetic properties derived from clustering can be utilized to understand the 

reaction system of interest.   40 
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1. Introduction 

Volatile organic compounds (VOCs) in the atmosphere are oxidized by reactions with 

hydroxyl radicals (OH), ozone (O3), nitrate radicals (NO3), or Cl atoms, and converted to 

condensable vapors such as low- and extremely low-volatility organic compounds (LVOCs/ 

ELVOCs) that subsequently can condense onto existing particles or even form new particles 45 

and thereby form secondary organic aerosol (SOA) (Donahue et al., 2012; Hallquist et al., 2009; 

Ziemann and Atkinson, 2012). Secondary organic aerosol comprises a major fraction of the 

atmospheric submicron particulate matter and can have an adverse impact on air quality, human 

health, and climate (Hallquist et al., 2009; Jimenez et al., 2009; Pöschl, 2005; Spracklen et al., 

2011; Zhang et al., 2007). Despite extensive studies on characterization of the products and 50 

mechanisms involved in VOC oxidation and SOA formation, how VOCs contribute to SOA 

formation is not yet fully understood. This is not only hampered by the complexity of the 

chemistry itself, but also by the remaining analytical challenges in detection of organic 

precursors with low volatility (Bianchi et al., 2019; Shrivastava et al., 2017).  

Recent instrumental developments, especially the propagation of high-resolution time-55 

of-flight chemical ionization mass spectrometry (CIMS), made the direct detection of low-

volatility vapors possible (Ehn et al., 2012; Ehn et al., 2014; Jokinen et al., 2015). Benefitting 

from this it has been discovered that the highly oxygenated organic molecules (HOM), which 

are formed through a rapid gas-phase process called autooxidation and generally have very low 

volatilities, significantly contribute to SOA and even new particle formation (Crounse et al., 60 

2013; Ehn et al., 2012; Ehn et al., 2014; Kirkby et al., 2016; Praske et al., 2018). 

While advanced mass spectrometers greatly enhance our capability to investigate the 

chemical composition and evolution of HOM, the highly complex mass spectrometric data 

consisting of hundreds to thousands of variables (i.e., detected ions) over thousands of points 

in time makes the data processing and interpretation challenging. In addition, the molecular 65 

structure information of detected ions can only be extrapolated from their chemical 

composition, notwithstanding the modern apparatus of high resolution (e.g., over 10,000 m/Δm) 

(Breitenlechner et al., 2017; Krechmer et al., 2018), which significantly hinders the 

understanding of the involved chemical processes. Furthermore, it is difficult to refine and 

extract kinetic and mechanistic information directly from the mass spectrometric data.  70 

To reduce this complexity dimension-reduction techniques are necessary, which compress 

the information in a dataset into a few to a dozen factors or clusters based on the underlying 

physical or chemical properties of the different variables, and thus simplify the chemistry of 
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investigated systems (Äijälä et al., 2017; Buchholz et al., 2019; Koss et al., 2020; Yan et al., 

2016; Zhang et al., 2019).  75 

Factorization is one of the major data dimension-reduction techniques, within which 

positive matrix factorization (PMF) (Paatero, 1997; Paatero and Tapper, 1994) is the best-

known approach in atmospheric science, especially for ambient measurements of particulate 

matter by aerosol mass spectrometer (Canonaco et al., 2013; Lanz et al., 2007; Lanz et al., 2008; 

Zhang et al., 2005; Zhang et al., 2011), as well as for VOC measurements in both field and 80 

laboratory studies (Brown et al., 2007; Lanz et al., 2009; Li et al., 2021; Rosati et al., 2019; 

Vlasenko et al., 2009; Yuan et al., 2012). Principal component analysis (PCA) (Wold et al., 

1987) is also a frequently used multivariate factor analysis technique for deconvolution and 

interpretation of gas-phase and particle-phase composition data (Sofowote et al., 2008; Wyche 

et al., 2015; Zhang et al., 2005). Additionally, non-negative matrix factorization (NMF), which 85 

is very similar to the PMF approach, has been widely used in interdisciplinary fields (Devarajan, 

2008; Fu et al., 2019; Lee and Seung, 1999) as well as in atmospheric science (Chen et al., 

2013; Karl et al., 2018; Malley et al., 2014; Song et al., 2021). Despite the similarities of 

mathematical formulation and constraints to PMF, the NMF algorithm does not require an error 

matrix as input, largely reducing the uncertainties that might be introduced by inappropriate 90 

error estimation methods (Buchholz et al., 2019). In addition to factorization methods, recently 

increasing number of studies adopted clustering techniques to mass spectra data (Äijälä et al., 

2017; Koss et al., 2020; Li et al., 2020; Priestley et al., 2021). For example, Äijälä et al. (2017) 

combined a clustering algorithm, k-means ++, with PMF to classify and characterize the 

organic component of air pollution plumes detected by AMS. Li et al. (2020) developed a 95 

clustering algorithm named noise-sorted scanning clustering, based on the traditional density-

based special clustering of applications combined with a noise algorithm, and thereafter applied 

this method to distinguish different types of thermal properties of different biogenic SOA. Koss 

et al. (2020) compared the performance of hierarchical clustering analysis (HCA) with PMF 

and gamma kinetics parameterization for analyzing complex mass spectrometric data. Their 100 

results demonstrate the ability of HCA to identify major types of ions and patterns of time 

behavior and draw out bulk chemical properties of the system that can be useful for modeling. 

In addition, in a recent work Priestley et al. (2021) applied HCA techniques to infer CHON 

functionality of products formed from benzene oxidation.  

In this work, we choose the fuzzy c-means clustering algorithm (FCM) as the major 105 

technique to analyze CIMS data collected from a chamber experiment, aiming to investigate 

the gas-phase chemistry of the isoprene-NO3 oxidation system. Fuzzy c-means clustering is the 
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most widely used fuzzy clustering algorithm and is adopted in this study considering the 

following two aspects. Firstly, FCM allows variables to be affiliated with more than one 

clusters, as PMF does, whereas hard clustering methods like the most popular k-means 110 

clustering forces each variable into one cluster exclusively. In atmospheric chemistry, one 

compound can originate from several different sources, or a species detected may consist of 

isomers produced from different chemical processes. Therefore, assigning a variable into 

multiple clusters with a quantified membership degree is more rational in this case than 

assigning variables to mutually exclusive clusters. Secondly, FCM only needs a data matrix as 115 

input, whereas for some factor analysis methods additional information is required, such as the 

error matrix needed in PMF, which is usually estimated by user-defined error estimation 

schemes and could result in perceptibly different outcomes accordingly (Buchholz et al., 2019; 

Paatero et al., 2014; Paatero and Tapper, 1994; Ulbrich et al., 2009).  

By using FCM, variables with similar time behaviors will be grouped into the same cluster, 120 

and the centroid of this cluster (cluster center) can be used as a surrogate of these variables. 

Therefore, the numerous species detected in a chemical system can be simplified and 

characterized by a much smaller number of clusters, each of which represents a typical 

chemical process with unique kinetic behavior. The significant reduction of the complexity of 

the chemical system and the chemical and kinetic information derived from this method can 125 

help to better understand the chemical system of interest (Koss et al., 2020). In addition, we 

applied FCM to a synthetic dataset derived from a box model with explicit mechanism to 

evaluate the performance of FCM clustering. By exemplifying the functionality of such a 

clustering method in analyzing CIMS data, we propose that FCM is a useful method that offers 

a new way to analyze mass spectrometric data and derives useful information on chemical and 130 

kinetic properties of products that can help decipher the underlying reaction mechanism. 

2. Methods 

2.1 Data collection and processing 

The experimental data used in this work were collected in the atmospheric simulation chamber 

SAPHIR at the Forschungszentrum Jülich, Germany, during the ISOPNO3 campaign in 2018. 135 

The SAPHIR chamber is a double-walled Teflon (PEP) cylinder with an approximate volume 

of 270 m3 (5m in diameter, 20m in length). It is fixed by an aluminum frame with movable 

shutters that can be opened or closed to simulate daytime or nighttime chemistry. Trace gases 
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in the chamber can be well mixed within 2 minutes with the help of two continuously operated 

fans. During an experiment the chamber is filled with synthetic air and kept slightly over 140 

pressured (~ 35 Pa) to prevent permeation of outside air into the chamber. Due to small leakages 

and instrument sampling consumption, there is a replenishing flow into the chamber which 

leads to a dilution rate of 4% – 7% h-1. More details about the chamber setup and its 

performance can be found elsewhere (Rohrer et al., 2005). 

The experiment selected here was conducted to characterize the gas-phase chemistry of 145 

NO3-initiated oxidation of isoprene. Nitrate radicals were produced in situ by the reaction of 

NO2 with O3, followed by the addition of ~10 ppbv of isoprene to initiate the reaction. The 

injection was repeated four times (only NO2 and O3 were added during the last injection) to 

build up products and facilitate later-generation oxidation. The mixing ratios of O3 and NO2 in 

the chamber were approximately 100 and 25 ppbv, respectively, after the first injection, but 150 

this was not uniform every time, as shown in Fig. S1. Detailed description of the experimental 

procedure can be found elsewhere (Wu et al., 2021). 

During the campaign a comprehensive set of instruments was deployed for the 

measurements of radicals and products in both gas- and particle-phase, as described by Wu et 

al. (2021). In this work, however, we focus on the measurements acquired by a high-resolution 155 

time-of-flight chemical ionization mass spectrometer (Aerodyne Research Inc.) using Br- as 

reagent ion, which detected the HO2 radical and the gas-phase products generated by the 

reaction of isoprene and NO3. The mass spectrometer was operated in “V” mode with a mass 

resolution of 3000 – 4000 (m/Δm). A customized inlet was designed to connect the CIMS 

directly to the chamber to reduce losses of the HO2 radical and HOM in the sampling line 160 

(Albrecht et al., 2019). More information about settings and performance of the instrument can 

be found in our previous study (Wu et al., 2021). 

The raw mass spectrometric data were processed using the Tofware toolkit (v. 2.5.11, 

Tofwerk AG/ Aerodyne Research Inc.) in Igor Pro (v.7.0.8, WaveMetrics) following the 

routines described by Stark et al. (2015). Overall, more than 500 peaks were detected above 165 

the background in the mass spectra obtained by the Br--CIMS. The background signal of each 

peak was determined from measurements prior to precursor injection and was subtracted from 

the signal measured in the chamber. These peaks consist of ions related to real isoprene 

oxidation products, as well as other signals related to ion source, internal standard, and 

interferences from chamber and tubing.  170 

The product ions are those produced by isoprene oxidation, and they should have 

pronounced changes when the chemistry is initiated or modified. Therefore, a simple way to 
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screen out the product ions from other chemically irrelevant signals is to examine the time 

evolution of each ion. By comparing the signals before and after each injection we can easily 

distinguish the product ions from others. However, this cannot exclude variabilities unrelated 175 

to oxidation chemistry during the experiment itself. Therefore, high-resolution analysis was 

conducted in the mass range of m/z 60 – 600 to identify the chemical composition of detected 

ions. For high-resolution peak assignment, we fitted the observed peak using predefined 

instrument functions (including peak shape, peak width as a function of m/z, and baseline). If 

necessary, contributions of more than one component were considered for the fit to reduce the 180 

residuals of the fitting. Once the peak numbers and peak positions were fixed, the chemical 

formula (consisting of C, H, O, and N atoms) of each peak was assigned manually by selecting 

from a formula list generated by the software. During the peak fitting isotopes were constrained, 

and only formulas within an accuracy tolerance of 10 ppm and with reasonable chemical 

meanings were considered. In addition, only molecule formulas with a time behavior 185 

commensurable with expectations for the specific chemical system were assigned (Pullinen et 

al., 2020). For example, it is illogical if large amounts of organonitrates are observed under 

low NOx conditions. Since we intend to investigate the underlying chemical relationships of 

different products through their time behavior, not the absolute concentration, normalized 

signals were finally used for further analysis. Calibration procedures are described in more 190 

detail elsewhere (Wu et al., 2021). 

In addition to abovementioned chamber data, we use a synthetic dataset from a box model 

with the default gas-phase reaction schemes of isoprene-NO3 taken from the Master Chemical 

Mechanism (MCM) version 3.3.1 (Jenkin et al., 2015). For the modelling, temperature, relative 

humidity, and dilution rate were constrained by using measured data. The initial concentrations 195 

of O3, NO2 and isoprene were added into the model according to the experimental schedule. 

Overall, the modelled concentrations of O3, NO2, NO3 and isoprene match the measurements 

well (Fig. S2). Here we only use the synthetic data to learn about principal behavior of time 

series in complex chemical systems using an established complex mechanism. Detailed 

description of isoprene-NO3 chemistry and evaluation of the model performance are outside 200 

the scope of this work. A recent updated mechanism for isoprene + NO3 can be found in 

Carlsson et al. (2022). 
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2.2 Fuzzy c-means clustering (FCM) 

Clustering is one of the major dimension-reduction techniques besides factorization, which 

groups a set of objects into a certain number of clusters according to their (dis)similarities 205 

(generally measured by a distance metric) such that objects within each cluster are much closer 

to each other than to those pertaining to other clusters (Hastie et al., 2009). The notion of a 

fuzzy set was firstly proposed by Zadeh (1965), which gave an idea how to deal with data with 

indistinct boundaries of clusters. Based on this concept Bezdek et al. (1984) developed the 

fuzzy c-means clustering algorithm. In contrast to the hard clustering counterparts such as k-210 

means and k-medoids clustering, FCM allows each object to belong to multiple clusters with 

the membership degree measured by a value varying from 0 to 1 (Bezdek et al., 1984). 

Consequently, fuzzy clustering can better deal with non-discrete data, and thus is adopted here 

to analyze our CIMS data for the example of isoprene-NO3 oxidation.  

Fuzzy c-means clustering is one of the best-known fuzzy clustering algorithms by virtue 215 

of its simplicity, quick convergence, and wide applicability (Ghosh and Dubey, 2013; Ren et 

al., 2016; Yang, 1993;). It is a distance-based cluster assignment method, and its working 

principle is very similar to that of the k-means algorithm. FCM is conducted through an iterative 

process which attempts to group all objects within a dataset into a predefined number of clusters 

(c) with a degree of membership, and meanwhile minimize the sum of squared distance 220 

between the member objects and the cluster centroid of each cluster, as defined in Eq. 1: 

𝐽𝑚(𝑈, 𝑉) =  ∑ ∑ 𝑢𝑖𝑗
𝑚𝑑𝑖𝑗

2                                                                                                             𝑛
𝑗=1

𝑐
𝑖=1 (1) 

𝑣𝑖 = 
∑ 𝑢𝑖𝑗

𝑚∙𝑥𝑗
𝑛
𝑗=1

∑ 𝑢𝑖𝑗
𝑚𝑛

𝑗=1

                                                                                                                                          (2) 

𝑢𝑖𝑗 = {∑ (
𝑑𝑖𝑗

𝑑𝑘𝑗
)

2

(𝑚−1)𝑐
𝑘=1 }

−1

                                                                                                                    (3) 

where 𝑥𝑗 represents the 𝑗𝑡ℎ object in the dataset, 𝑢𝑖𝑗 is the membership degree of 𝑥𝑗 to the 𝑖𝑡ℎ 225 

cluster, which is enforced to satisfy 𝑢𝑖𝑗 ∈  [0, 1] and ∑ 𝑢𝑖𝑗 = 1
𝑐
𝑖=1 , 𝑑𝑖𝑗 = ‖𝑥𝑗 − 𝑣𝑖‖ denotes 

the distance between object 𝑥𝑗 and the 𝑖𝑡ℎ cluster center 𝑣𝑖, and m is the fuzzifier (𝑚 ∈ [1,∞)) 

that controls the fuzziness level of clustering.  

The clustering procedure of FCM is executed through an iterative strategy to minimize 

the objective function 𝐽𝑚(𝑈, 𝑉). By initializing the fuzzy partition matrix U randomly, one can 230 

compute the cluster centers (V) according to Eq. 2 with the constraint of the sum of the 
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membership degrees of an object to all clusters being unity. In the consecutive iteration, new 

membership degrees are calculated following Eq. 3. The calculation proceeds by repeating 

above process, and every iteration generates two new sets of V and U. The iteration ends when 

the algorithm converges (no significant change with further iteration, namely  ‖𝑈(𝑡+1) −235 

𝑈(𝑡)‖ =  𝑚𝑎𝑥𝑖,𝑗 {|𝑢𝑖𝑗
(𝑡+1)

− 𝑢𝑖𝑗
𝑡 |} < 𝜀 ), or the predefined maximum number of iterations is 

reached. 

2.3 Clustering parameters  

As noted in Sect. 2.2, several parameters need to be specified ahead of executing FCM 

including the number of clusters, the distance metric to measure (dis)similarity of objects, the 240 

value of the fuzzifier, the initial fuzzy partition matrix, the maximum number of iterations, and 

the stopping criterion. All these parameters can affect the partition outcome, but among them 

the most important ones are the selection of cluster number, the distance metric, and the 

fuzziness index. A brief introduction to these parameters and methods how to determine their 

optimal values will be discussed in detail in the following sections. 245 

2.3.1 Number of clusters (c) 

Finding the optimal number of clusters (c) is one of the challenges in cluster analysis. The 

optimal number of clusters is related to the structure of the investigated dataset and has a critical 

impact on clustering outcomes. To our knowledge none of the existing methods has been 

proven to be able to determine the perfect cluster number in all possible cases and applications.  250 

The frequently used method to address this problem is to set the search range of c, run 

clustering to generate solutions according to the predefined number of clusters, and then choose 

one or more clustering validity indices (CVIs) to evaluate the clustering outcomes. By 

comparing the values of CVI(s) of alternative clustering solutions obtained with different 

number of clusters, the appropriate c is determined accordingly.  255 

In this case, a validity index is used as a fitness function to evaluate the quality of the 

obtained clustering solutions in terms of intra-cluster compactness and inter-cluster separation. 

In addition, CVIs play an extremely important role in automatically determining the 

appropriate number of clusters. Plenty of CVIs have been proposed in the past. Generally, these 

CVIs can be divided into three categories. The first category only uses the property of 260 

membership degree in the calculation, such as the partition coefficient (Bezdek and Pal, 1998) 

and partition entropy (Simovici and Jaroszewicz, 2002), which are also the earliest validity 
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indices for fuzzy clustering. The main disadvantage of such CVIs is that they lack direct 

connection to the geometry structure of the data. Therefore, with improvements, the CVIs in 

the second category consider both membership degree and the geometry structure of the data 265 

in the calculation. Fukuyama-Sugeno index (Fukuyama, 1989), Xie-Beni index (Xie and Beni, 

1991), Kwon index (Kwon, 1998) and Bouguessa-Wang-Sun index (Bouguessa et al., 2006) 

are some well-known examples of the second category. Given their advantages over those in 

the first category, we only chose CVIs belonging to the second category in this study. Different 

from those in the first two categories, CVIs in the third category make use of the concept of 270 

hypervolume and density. The fuzzy hypervolume and the average partition density (Gath and 

Geva, 1989) are the most popular two indices within this category.  

Although there’re various of CVIs, no CVI can always outperform others due to their own 

limitations and complexity of different datasets (Kryszczuk and Hurley, 2010; Wang et al., 

2021). Generally, each CVI only attaches importance to a specific aspect or limited aspects of 275 

a clustering solution, while other aspects can be inadequately represented or even overlooked 

(Kryszczuk and Hurley, 2010). Consequently, we adopt multiple CVIs in this study, and among 

all the alternatives following six CVIs were chosen, namely the sum of within-cluster 

variance(𝑉𝑆𝑊𝐶𝑉, Elbow method), Fukuyama-Sugeno index (𝑉𝐹𝑆), Xie-Beni index (𝑉𝑋𝐵), Kwon 

index (𝑉𝐾𝑤𝑜𝑛), Bouguessa-Wang-Sun index (𝑉𝐵𝑊𝑆) and fuzzy Silhouette (𝐹𝑆, Campello and 280 

Hruschka, 2006). This selection of CVIs is dictated by the fact that they are most frequently 

referred to in literature and are reported to perform well (Bouguessa and Wang, 2004; Campello 

and Hruschka, 2006; Rawashdeh and Ralescu, 2012; Zhou et al., 2014). More information 

about these CVIs can be found in the Supplement S1.  

With respect to the search range of the number of clusters, a rule of thumb for the 285 

maximum number of clusters suggests that it should not exceed √𝑛 (n here is the number of 

elements in a dataset) (Ren et al., 2016; Yu and Cheng, 2002). Therefore, the search range of 

c is set to be constant in [2, √𝑛 + 1]. For each c in this range, the FCM algorithm will be 

performed 50 times with the default settings (m = 2, metric = Euclidean distance, ε = 1×10-5) 

and the selected CVIs will be calculated for each repetition. By evaluating the variations in 290 

CVIs with different c, what we believe to the optimal number of clusters is determined.  

2.3.2 Distance metric 

The selection of an appropriate distance or (dis)similarity metric for clustering is also 

challenging since it not only relates to the inherent structure of the data investigated, but also 

depends on the analysis purpose. Various distance metrics have been proposed for measuring 295 
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the (dis)similarity between each pair of objects, of which the Euclidean distance is most 

frequently used for clustering. As defined by Eq. 4, the Euclidean distance corresponds to the 

true geometrical distance between two objects, and many studies selected this metric by default 

in FCM (Haqiqi and Kurniawan, 2015; Nishom, 2019; Singh et al., 2013). However, Euclidean 

distance is not always the right choice. The Euclidean distance assumes that each attribute is 300 

equally important during clustering, namely the data being spherically distributed, so it is very 

sensitive to outliers (Arora et al., 2019; Dik et al., 2014). If the distribution of investigated data 

is non-spherical in shape, using Euclidean distance may degrade the performance of clustering 

(Arora et al., 2019; Gueorguieva et al., 2017; Vélez-Falconí et al., 2020). 

In addition to Euclidean distance some other metrics such as the Manhattan distance, the 305 

Eisen cosine distance, and the Pearson correlation distance are used to measure (dis)similarity 

(Äijälä et al., 2017; Koss et al., 2020). The Manhattan distance is also named city block distance 

or taxicab distance. It computes the sum of the absolute differences between all sets of 

coordinates of pairwise objects following Eq. 5, and is less sensitive to noise (Dik et al., 2014). 

When the attributes are discrete or binary, the Manhattan distance is more effective than other 310 

metrics. One disadvantage of the Manhattan distance is that it depends on the rotation of the 

coordinate system (Vélez-Falconí et al., 2020). The Eisen cosine and the Pearson correlation 

distance are correlation-based metrics. The Pearson correlation distance measures the linear 

dependence of two objects, and the cosine distance uses the cosine angle of two objects to 

measure their (dis)similarity. Both are calculated by subtracting the correlation coefficient from 315 

1, as defined by Eq. 6 and Eq. 7, and therefore they are invariant to the magnitudes of number 

of variables. Two objects are considered similar if they are highly correlated in terms of 

correlation-based distances, even though they may be far away from each other in Euclidean 

space. This is particularly beneficial when dealing with mass spectrometric data. Thus, the 

cosine distance is commonly used to measure the (dis)similarity of aerosol source profiles 320 

(Äijälä et al., 2017; Bozzetti et al., 2017; Heikkinen et al., 2021; Ulbrich et al., 2009). It should 

be noted that even though correlation-based metrics are called as “distance”, strictly speaking 

they are (dis)similarity metrics rather than distance metrics because they do not satisfy the 

triangle inequality anymore (Kaufman and Rousseeuw, 2009). 

𝑑(𝑥, 𝑦) =  √∑ (𝑥𝑖 − 𝑦𝑖)2
𝑛
𝑖=1                                                                                                                   (4) 325 

𝑑(𝑥, 𝑦) =  ∑ |𝑥𝑖 − 𝑦𝑖|                                                                                                                        
𝑛
𝑖=1 (5) 
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𝑑(𝑥, 𝑦) =  1 − 
|∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1 |

√∑ 𝑥𝑖
2𝑛

𝑖=1 ∑ 𝑦𝑖
2𝑛

𝑖=1

                                                                                                              (6) 

𝑑(𝑥, 𝑦) = 1 − 
∑ (𝑥𝑖−𝑥)
𝑛
𝑖=1 (𝑦𝑖−𝑦)

√(∑ (𝑥𝑖−𝑥)
2𝑛

𝑖=1 )√(∑ (𝑦𝑖−𝑦)
2𝑛

𝑖=1 )
                                                                                        (7) 

where 𝑥 and 𝑦 are n-dimensional objects, 𝑥𝑖 and 𝑦𝑖 denote the 𝑖𝑡ℎ dimension of 𝑥 and 𝑦, and 𝑥̅ 

and 𝑦̅ are the means of 𝑥 and 𝑦 in all dimensions, respectively.  330 

Since it is difficult to know the inherent structure of high-dimensional data we make use 

of CVIs to find the suitable distance metric of FCM for our dataset. By running FCM with all 

four different distance metrics mentioned above and calculated the six CVIs accordingly while 

retaining all other parameters, we get four parallel results for each CVI, and the optimal 

distance metric is determined by comparing the outcomes. 335 

As mentioned above, the Euclidean distance can be severely affected by the scale of 

objects, which means that the (dis)similarity between objects measured by Euclidean distance 

might get skewed if input variables are in different scales or units. Therefore, it is highly 

recommended to normalize the data before clustering. We also want to scale the data to directly 

compare the time behavior of different variables regardless of their differences in absolute 340 

intensity or detection sensitivity. In this study, we normalize the time-series data using the 

Euclidean norm to eliminate the effects of different branching ratios and sensitivity of species, 

and to make their time patterns easily comparable.  

2.3.3 Value of fuzzifier 

The fuzzifier (m, 𝑚 ∈ [1,∞)) defines the fuzziness degree of the clustering. A proper value of 345 

m can suppress the noise and smooth the membership function (Huang et al., 2012). When m 

= 1, FCM is equivalent to the k-means algorithm. The closer m is to 1, the crisper the resulting 

solution becomes. On the contrary, as m becomes larger, the clustering outcomes become 

fuzzier. When m approaches infinity, different cluster centers and the centroid of all objects 

will coincide, and thereby all objects have the identical membership degree to each cluster, 350 

namely 𝑢𝑖𝑗 = 1 𝑐⁄ . Theoretically, the larger m the fuzzier the clustering outcomes would be 

(Hammah and Curran, 1998). Therefore, m should be selected to fulfill the request of maximum 

recognition of a partition with a fuzziness as small as possible. 

According to previous studies, the optimal value of m varies in the range of 1 to 5 

(Hathaway and Bezdek, 2001; Huang et al., 2012; Ozkan and Turksen, 2007; Pal and Bezdek, 355 

1995; Wu, 2012), and is often set to be 2 as default value as recommended by Pal and Bezdek 
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(1995). However, it is reported that in many cases the true value of m deviates from this 

recommended value, which is believed to be biased by the data structure of interest (Huang et 

al., 2012; Hwang and Rhee, 2007; Schwämmle and Jensen, 2010; Yu et al., 2004; Zhou et al., 

2014). A few methods have been proposed to determine the optimal value or range of the 360 

fuzzifier (Gao et al., 2000; Huang et al., 2012; Ozkan and Turksen, 2007; Schwämmle and 

Jensen, 2010). However, they are either empirical or only applicable for limited cases, and it is 

still an open problem to determine the appropriate fuzzifier value in FCM. 

In this study we adopted the method proposed by Gao et al. (2000) to determine the 

optimal fuzzifier value 𝑚∗ , which is based on the fuzzy decision-making theory. By 365 

constructing the fuzzy objective function (G) and the fuzzy constraint (C), the determination 

of 𝑚∗ is transformed into a constrained non-linear optimization problem, and the intersection 

of G and C is supposed to be the optimal solution according to the decision-making theory (Eq. 

10). Since a better partition comes with a smaller sum of within-cluster variation and a larger 

between-cluster separation, the fuzzy objective G is defined as minimizing the objective 370 

function 𝐽𝑚(𝑈, 𝑉) as given by Eq. 8, while the fuzzy constraint C is defined as minimizing the 

fuzzy partition entropy 𝐻𝑚(𝑈, 𝑐) as given by Eq. 9. The intersection of G and C is taken as 𝑚∗, 

as shown in Fig. 3a, which satisfies minimizing 𝐽𝑚(𝑈, 𝑉) and 𝐻𝑚(𝑈, 𝑐) simultaneously with 

maximum membership degree (Gao et al., 2000). 

𝜇𝐺(𝑚) = 𝑒𝑥𝑝 {−𝛼 ×
𝐽𝑚(𝑈,𝑉)

max
∀𝑚

(𝐽𝑚(𝑈,𝑉))
}                                                                                                     (8) 375 

where 𝛼 is a constant larger than 1, and generally set to be 1.5 in practice.  

𝜇𝐶(𝑚) = {1 + 𝛽 × (
𝐻𝑚(𝑈,𝑐)

max
∀𝑚

(𝐻𝑚(𝑈,𝑐))
)}

−1

                                                                                               (9) 

where 𝛽 a constant that is usually set to be 10 in practice. 

𝑚∗ = arg
∀𝑚
{𝑚𝑎𝑥{𝑚𝑖𝑛{𝜇𝐺(𝑚), 𝜇𝐶(𝑚)}}}                                                                                          (10) 

Based on the fuzzy decision-making method, we search for 𝑚∗ in the range of [1.1, 9] 380 

with an increment of 0.1. The number of clusters varies between 2 and 10, and the initial fuzzy 

partition matrix (𝑈0) is randomly created. Other parameters are fixed. For each setting, the 

algorithm will run 100 times. By evaluating the variations of 𝑚∗ with c and the initial values 

of membership degree the optimal value of m is determined. 

https://doi.org/10.5194/egusphere-2023-1896
Preprint. Discussion started: 30 August 2023
c© Author(s) 2023. CC BY 4.0 License.



14 

 

2.3.4 Other parameters 385 

We find that when using a small number of iterations FCM does not always return the same 

result for each run, and sometimes not even a valid solution. In the first case, it seems that the 

algorithm converges on one local minimum with several local minima existing, while in the 

second case the limit of iterations is reached before the algorithm converges. To avoid these 

two situations, the maximum number of iterations was set to be 10000 in this study. In our case, 390 

however, hundreds of iterations can already ensure a valid solution and reproducible results for 

our data.  

The clustering results of FCM is not as clear as that of k-means clustering, in which each 

object is forced to one cluster exclusively. Consequently, it is important to distinguish an 

invalid cluster and thereby to identify an invalid solution. According to the definition of the 395 

fuzzy clustering algorithm (∑ 𝑢𝑖𝑗 = 1
𝑐
𝑖=1 ), each object can only belong to one cluster with a 

membership degree larger than 0.5. Therefore, we define a cluster with at least one object 

having the membership degree larger than 0.5 as a valid cluster, and a solution without any 

invalid clusters as a valid solution. In this work, only valid solutions were considered for further 

analysis. 400 

The initial fuzzy partition matrix was randomly created by the algorithm and 50 repetitions 

were used to evaluate the influence of 𝑈0 on clustering outcomes. As for the stop criterion, the 

algorithm can offer reproducible results when this value is set to 1×10-3 or smaller. For the 

calculation of results selected for analysis in this study, the stop criterion was set to 1×10-5. 

2.4 Gamma kinetics parameterization (GKP) 405 

The mass spectrometric data from chamber oxidation experiments not only contain chemical 

composition information of the products but also a great deal of kinetic clues. The kinetic 

information, mainly the reaction rate and the generation number (the oxidation steps needed to 

produce target compound) underlying in the time series of each species are helpful for 

mechanism development. However, it is challenging to extract kinetic information from time-410 

series data, and there is only a limited number of studies which involve determination of kinetic 

parameters based on gas-phase measurements (Koss et al., 2020; Zaytsev et al., 2019). In this 

study, we try to determine the kinetic parameters based on time-series data using the gamma 

kinetics parameterization (GKP), which describes the multistep reaction system as a linear 

system with first-order reactions and was originally used in biological and chemical fields 415 

(Zhou and Zhuang, 2007). The model returns the so-called effective rate constant (overall rate 
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of reactions in the pathway) and the generation number that are implied by the time behaviors 

of individual species (Koss et al., 2020; Zhou and Zhuang, 2007). The GKP model was 

introduced for atmospheric chemistry studies by Koss et al. (2020) and has been successfully 

applied to parameterize the kinetics of gas-phase products formed from toluene and 1,2,4-420 

trimethylbenzene oxidation in chamber studies (Koss et al., 2020; Zaytsev et al., 2019). 

According to the GKP method the NO3-initiated isoprene oxidation system can be 

described by Eq. 11: 

𝐶5𝐻8
𝑘0∙[𝑁𝑂3]
→      𝑃1

𝑘1∙[𝑁𝑂3]
→      𝑃2  

𝑘2∙[𝑁𝑂3]
→      ⋯ 𝑃𝑚  

𝑘𝑚∙[𝑁𝑂3]
→       𝑃𝑚+1  

𝑘𝑚+1∙[𝑁𝑂3]
→         ⋯                                  (11) 

where 𝑘𝑚 is the rate constant of product 𝑃𝑚 reacting with the NO3 radical and the subscript 𝑚 425 

denoting the number of oxidation steps (by NO3) needed to form product 𝑃𝑚.  

Typically, the rate constants for different reaction steps are disparate, and the differential 

equations that describe Eq. 11 are mathematically unsolvable. By assuming a single rate 

coefficient for all steps in a sequence the differential equations in Eq. 11 become 

mathematically solvable. Additionally, the bimolecular reactions between 𝑃𝑚 and NO3 must be 430 

reduced to pseudo-first-order reactions by replacing the reaction time 𝑡 with the integrated NO3 

exposure ∫ [𝑁𝑂3]𝑑𝑡
𝑡

0
. The time series of 𝑃𝑚 can then be described by Eq. 12 (Koss et al., 2020): 

[𝑋𝑚](𝑡) = 𝑎(𝑘[𝑁𝑂3]∆𝑡)
𝑚𝑒−𝑘[𝑁𝑂3]∆𝑡                                                                                               (12) 

where a is a scaling factor that relates to the product yield as well as to the instrument sensitivity 

(Koss et al., 2020), k is a second-order rate constant (cm3 molecule-1 s-1), and m is the generation 435 

number.  

3. Results and discussion 

3.1 Evaluation of clustering parameters 

As already noted above, one of the biggest challenges of using FCM is that several parameters 

need to be predefined, and that inadequate selection of parameters can result in unreasonable 440 

clustering outcomes. The number of clusters, the distance metric and the fuzziness value are 

the most important ones among all the parameters that affect the partition. Therefore, in this 

section we will have a close look at these three parameters and evaluate their effects on the 

quality of clustering based on the methods introduced in Sect. 2.3, and finally determine the 

optimal values of these parameters for the analysis of our data. 445 
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3.1.1 Number of clusters (c) 

To explore the effect of cluster number on partition results, we ran the FCM algorithm 50 times 

for each c in the search range and calculated the corresponding CVIs. Despite small variations 

in some CVIs among different repetitions, the tendency of CVIs with changing cluster number 

and the optimal number of clusters indicated by each CVI are always the same for each 450 

repetition. Therefore, we only choose the results from one of the 50 repetitions for further 

evaluation. 

Figure 1 depicts different CVIs as a function of number of clusters based on FCM results 

from one of the repetitions. For the sum of within-cluster variance (𝑉𝑆𝑊𝐶𝑉 ) the point of 

inflection in the curve (so-called “elbow” point) indicates the best value of c, which is in our 455 

case 5 (Fig. 1a). The Fakuyama-Sugeno index (𝑉𝐹𝑆) uses the discrepancy between compactness 

and separation of clusters to measure the quality of a clustering solution (as defined by Eq. S2). 

A smaller value of 𝑉𝐹𝑆 indicates a better partition (Fukuyama, 1989). In our case, the 7-cluster 

solution is the best option suggested by 𝑉𝐹𝑆 (Fig. 1b), while the 5-cluster solution seems to be 

a local optimum. Xie-Beni index (𝑉𝑋𝐵) is defined as the ratio of compactness and separation 460 

by Eq. S3, where the within-cluster compactness is measured by the sum of the within-cluster 

variance, while the between-cluster separation is measured by the minimum squared distance 

between cluster centers. Generally, the smaller 𝑉𝑋𝐵 the better a clustering solution can be since 

under such conditions objects within one cluster are much closer to each other but farther away 

to those in other clusters (Xie and Beni, 1991). According to Fig. 1c, the local optimal cluster 465 

number is also 5. The Kwon index (𝑉𝑘𝑤𝑜𝑛 ) is a modification of 𝑉𝑋𝐵  which introduces a 

punishing function additionally to measure the cluster compactness together with the sum of 

within-cluster variance. As defined by Eq. S4, the punishing function measures the average 

squared distance between cluster centers and the overall mean of the dataset. By introducing 

this factor, 𝑉𝑘𝑤𝑜𝑛  eliminates the monotonous decreasing tendency when c approaches the 470 

number of objects in the dataset (Kwon et al., 2021). Like 𝑉𝑋𝐵, a smaller 𝑉𝑘𝑤𝑜𝑛 indicates a 

better partition, and the results in Fig. 2d show that the local optimal value of c is as well 5. 

https://doi.org/10.5194/egusphere-2023-1896
Preprint. Discussion started: 30 August 2023
c© Author(s) 2023. CC BY 4.0 License.



17 

 

 

Figure 1. Values of selected clustering validity indices 𝑽𝑺𝑾𝑪𝑽 (a), 𝑽𝑭𝑺 (b), 𝑽𝑿𝑩 (c), 𝑽𝑲𝒘𝒐𝒏 (d), 

𝑽𝑩𝑾𝑺 (e), and 𝑭𝑺 (f) as a function of the number of clusters from 2 to 10. Larger red hollow 475 

circles indicate the solution selected for further analysis. 

In addition, we calculated the Bouguessa-Wang-Sun index (𝑉𝐵𝑊𝑆 ) and the Fuzzy 

Silhouette values (𝐹𝑆) for each FCM run. These two indices use slightly different definitions 

of compactness and separation to measure the quality of clustering. The 𝑉𝐵𝑊𝑆 uses the fuzzy 

covariance matrix as a measure of compactness, and thus 𝑉𝐵𝑊𝑆 takes cluster shape, density, 480 

and orientation into account and has been proven to work well for largely overlapping clusters 

(Bouguessa et al., 2006; Bouguessa and Wang, 2004). In general, the larger 𝑉𝐵𝑊𝑆 the better a 

fuzzy partition will be, and hence the optimal number of clusters for our data is 3 and 4 based 

on 𝑉𝐵𝑊𝑆 (Fig. 1e). Meanwhile, as depicted in Fig. 1e, 𝑉𝐵𝑊𝑆 shows that there is a local optimum 

with c = 7. As for 𝐹𝑆, it is an extension of the concept of Crisp Silhouette (𝐶) that was originally 485 

developed to assess non-fuzzy clustering (Rousseeuw, 1987). 𝐹𝑆 is more appealing than 𝐶𝑆 

for fuzzy clustering since it makes explicit use of the fuzzy partition matrix. In 𝐹𝑆, objects in 

the near vicinity of cluster centers are given more importance than those located in the 

boundary region (overlap). Consequently, it performs better than 𝐶𝑆 for highly overlapping 

data (Campello and Hruschka, 2006). In principle, a larger overall 𝐹𝑆 suggests a better partition. 490 
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Therefore, the best number of clusters determined by 𝐹𝑆 is 2 (Fig. 1f). Nevertheless, when c = 

2, the sum of the within-cluster variance for this solution is still quite high (Fig. 1a), which is 

not expected for a good partition. However, it looks reasonable to set the number of clusters to 

5, which corresponds to the local maximum in terms of 𝐹𝑆. It is worth noting that the silhouette 

score can not only be used to assess the overall quality of partition but also to evaluate the 495 

quality of individual clusters and objects. The silhouette score ranges from -1 to +1, and a value 

close to +1 indicates that the object is correctly assigned. On the contrary, a silhouette value of 

-1 implies that the object is misclustered and should be assigned to a neighboring cluster. A 

silhouette value approaching 0 suggests that the object is in the overlapping region of clusters, 

and thus the algorithm is unable to assign it to one cluster (Campello and Hruschka, 2006; 500 

Rawashdeh and Ralescu, 2012; Subbalakshmi et al., 2015).  

In summary, different CVIs sometimes suggest a different optimal cluster number. 

However, by making use of information from multiple CVIs, the appropriate number of clusters 

in this study is determined to be 5. It should be noted that the main topic of this study is to offer 

a proof of concept for the application of FCM in deconvolution of mass spectrometric data. 505 

Therefore, the depth of the discussion about the determination of the correct cluster number 

must suffice for our purpose, and the value of c=5 is selected here as one example for the 

chemical characterization and kinetic parameterization in the following sections. It should also 

be noted that the multiple CVIs method presented in this section provides a way to 

automatically determine the optimal number of clusters for FCM. 510 

3.1.2 Distance metric 

Figure 2 shows four selected CVIs as a function of c with different distance metrics. As a quick 

reminder, smaller 𝑉𝐹𝑆  and 𝑉𝐾𝑤𝑜𝑛  indicate better partitioning, whereas for 𝑉𝐵𝑊𝑆  and 𝐹𝑆  the 

opposite applies. In terms of 𝑉𝐹𝑆, the effects of using different distance metrics on the clustering 

outcomes are negligible (Fig. 2a). However, different results arise when using 𝑉𝐵𝑊𝑆 (Fig. 2c). 515 

The 𝑉𝐵𝑊𝑆 values suggest that the cosine distance seems more appropriate for FCM regarding 

the data used in this study. Currently the reason for this is not clear. As for 𝑉𝐾𝑤𝑜𝑛 and 𝐹𝑆, there 

are no significant differences in the quality of partitioning when the number of clusters is small 

(e.g., c = 2, 3, 4) despite different distance metrics, as shown in Fig. 2b and Fig. 2d, but 

discrepancies become more pronounced with increasing c. In general, the Euclidean distance 520 

is more appealing for our data, especially for c with a value of 5, which is the appropriate 

cluster number determined in Sect. 2.3.1. Consequently, we conclude that among all the 
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distance metrics tested the Euclidean distance seems the most appropriate choice for fuzzy 

clustering regarding the data used in this study. 

 525 

Figure 2. Values of selected clustering validity indices 𝑽𝑭𝑺 (a), 𝑽𝑲𝒘𝒐𝒏, (b), 𝑽𝑩𝑾𝑺 (c), and 𝑭𝑺 

(d) as a function of the number of clusters. Points in different color indicate results obtained 

with different distance or similarity metrics. 

3.1.3 Fuzzifier value 

Based on the fuzzy decision-making method introduced in Sect. 2.3.3, we searched 𝑚∗ in the 530 

range of [1.1, 9] with an increment of 0.1. The intersection of the fuzzy objective function, G, 

and the fuzzy constraint, C, as shown in Fig. 3a, indicates the optimal value of the fuzzifier for 

each run. To investigate whether 𝑚∗  is dependent on c or on the initial values of the 

membership degree, the number of clusters was set to vary from 2 to 10. For each c in this 

range, FCM was performed 100 times with a randomly created initial fuzzy partition matrix 535 

(𝑈0).  

As shown in Fig. 3b, we do observe a relationship between 𝑚∗ and c/𝑈0. For smaller 

cluster numbers (c = 2 or 3) the determined optimal values of m are slightly larger than those 

obtained for larger c (𝑐 ≥ 4). In addition, the results obtained with a smaller number of clusters 
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are more robust. Different repetitions always return identical 𝑚∗, which suggests that the initial 540 

fuzzy partition matrix does not affect 𝑚∗  when the number of clusters is smaller than 4. 

However, when c increases to 4 or larger values, there is a variation in 𝑚∗ among different 

repetitions, indicating that 𝑈0 starts to affect the determined value of 𝑚∗, even though the 

variation of the value of 𝑚∗ is small (between 1.42 and 1.52). It is not clear why different 

numbers of clusters have such distinct effects on 𝑚∗, and answers for this question are outside 545 

the scope of this work.  

 

Figure 3. Determining the optimal value of the fuzzifier (𝒎∗ ) in FCM. In panel (a), the 

intersection (red point) of the fuzzy objective function (𝑮) and constraint (𝑪) is determined as 

𝒎∗. Panel (b) depicts the relationship between 𝒎∗, the number of clusters (𝒄), and the initial 550 

fuzzy partition matrix (𝑼𝟎). Panel (c) shows the frequency distribution of 𝒎∗ for 100 repetitions 

with 𝒄 = 𝟓 (determined as the optimal number of clusters in this study). 

Figure 3c displays the distribution of 𝑚∗ obtained from 100 repetitions with 𝑐 = 5. The 

histograms of the optimal value of m with other numbers of clusters are provided in the 

supplement (Fig. S3). For 𝑐 = 5, the results suggest that the optimal value for m is 1.53 in most 555 

cases. Therefore, a value of m = 1.53 is used for the FCM in this study.  
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Overall, the number of clusters and the initial membership degree matrix do affect the 

optimal value of the fuzzifier that was determined based on the fuzzy decision-making method 

in this study, but the influence is not very strong. 

3.2 FCM clustering results  560 

3.2.1 FCM of chamber data 

Using the appropriate clustering parameters determined in Sect. 2.3, we performed FCM on 

chamber data with the number of clusters varying from 2 to 10. For each case the algorithm 

was run 50 times. According to the results of these 50 repetitions, two- and three-cluster 

solutions seem very robust. The repetition always gives identical outcomes despite different 565 

initial partition matrices. This is also true for the five-cluster case. However, the influence of 

the initial position of the cluster centers on the partition increases when the number of clusters 

is further increased, but in all cases at least half of the repetitions return the same results; thus, 

we select the most frequent outcomes as the final clustering results for each case. Here we will 

not describe all solutions in detail, but instead try to formulate a synthesis of the results and 570 

present the common features shared by solutions with different numbers of clusters. 

Figure 4 shows the FCM results with 2-5 clusters of the chamber data obtained during the 

isoprene-NO3 experiment. Additional solutions with 6-10 clusters are shown in the Supplement 

(Fig. S4). Two distinct clusters emerge from the data for the two-cluster solution. According 

to their relative formation rates, cluster 1 is regarded as first-generation cluster since species 575 

belonging to this cluster show a pronounced signal increase after addition of the reactants, 

while cluster 2 behaves more like second or later-generation products with its overall formation 

rate being much smaller compared to cluster 1. In addition to the time patterns, the mass profiles 

of cluster 1 and cluster 2 are clearly different (Fig. 4b).  

When the cluster number is increased to 3, both, the time pattern and the mass profile of 580 

cluster 1, almost remain unchanged compared to those in the two-cluster case. It seems that 

mainly the former cluster 2 is separated into two new clusters (cluster 2 and 3) with different 

formation rates for each. Accordingly, cluster 2 is regarded as a representative of the second-

generation processes, and cluster 3 represents third- or later-generation products since it 

exhibits a smaller formation rate compared to cluster 2. However, the narrowing of the cluster 585 

members (with a membership degree over 0.5) of cluster 1 suggests that at least some of the 

former contributors of this cluster have been moved, most likely to the new cluster 2. The mass 

profiles of cluster 2 and cluster 3 display quite distinct features, as shown in Fig. 4b, but the 
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mass profiles of the two cluster 2 of the two- and the three-cluster solution match to a large 

extent, even though their time patterns are somewhat different.  590 

The effect of increasing the number of clusters from 3 to 4 can be best seen in the mass 

profiles (Fig. 4b). Part of the species from the former cluster 1 is separated out as a new cluster 

2, dominated by molecule(s) from a very narrow mass range, where mass profile 1 also has its 

maximum. This migrates the former cluster 2 into cluster 3, and cluster 3 into cluster 4, shown 

also by the according mass profiles 3 and 4. The time series of the new cluster 2 resembles that 595 

of cluster1, but with slowed down formation rates. In general, for all clusters the member traces 

seem to converge towards the time traces of the cluster centers, indicating that the system 

approaches the correct number of clusters.  

When increasing the number of clusters from 4 to 5, the new cluster that emerges has very 

small production in the early reaction stage, and its time trace shows that members in this 600 

cluster are destroyed very fast when there is abundant NO3 in the system (Step Ⅳ in Fig. S1). 

This specific character in time seems to evolve already in cluster 4 of the four-cluster solution. 

As shown in Fig. 4b, the mass profiles of the first four clusters of the five-cluster solution are 

very similar to those of the four-cluster case, but the mass profile of cluster 5 shows distinct 

differences from that of the others. It should be noted that the 5 clusters represent now also the 605 

loss rates at a time scale larger than 13h reasonably well, and that the members of most of the 

five clusters are well represented by the cluster centers. 

When the number of clusters is further increased, more detailed and complicated 

clustering outcomes emerge, which is impelled by different formation and/or destruction 

pathways of individual species (Fig. S4). However, the differences between the new and 610 

existing clusters become smaller. Since the major objective of this study is to demonstrate the 

applicability of FCM for analyzing mass spectrometric data, we will not discuss the detailed 

interpretation of these solutions here.  

To better understand the chemical composition of clusters, the bulk chemical properties 

such as hydrogen-to-carbon ratio (H:C), oxygen-to-carbon ratio (O:C), and average carbon 615 

oxidation state (𝑂𝑆𝐶̅̅ ̅̅ ̅) of different clusters were calculated and compared. Figure 5 shows the 

distribution of clusters in the 𝑂𝑆𝐶̅̅ ̅̅ ̅ vs. 𝑛𝐶  space for solutions with 2 to 5 clusters. Additional 

results for solutions with 6 to 10 clusters can be found in the supplement (Fig. S5). The 

contribution of an individual species to a cluster is weighted by its nominal mass and signal 

intensity in the cluster profile. Regardless of the number of clusters, different solutions cover 620 

similar chemical composition ranges in terms of average 𝑂𝑆𝐶̅̅ ̅̅ ̅ and 𝑛𝐶 . However, there are 
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discrepancies in detail. For example, the 𝑂𝑆𝐶̅̅ ̅̅ ̅ of cluster 5 in the five-cluster solution slightly 

deviates from the trend the other four clusters are following. A similar behavior can be observed 

for cluster 1 in the six-cluster solution. This indicates that increasing the number of clusters 

could help to find new groups of species with distinct chemical compositions. However, further 625 

increasing the number of clusters to 7 or more clusters does not point out new clusters with 

significantly different chemical composition, implying that 𝑐 = 5 𝑜𝑟 6  is the appropriate 

number of clusters in terms of separation by chemical composition. It is also shown in Fig. 5 

that different clusters are well separated in the 𝑂𝑆𝐶̅̅ ̅̅ ̅  vs. 𝑛𝐶  space despite some overlaps, 

indicating that different clusters have a distinct chemical composition. Even clusters with 630 

similar generation number, like cluster 1 and cluster 2 of the four-cluster solution, are grouped 

into different clusters due to their different chemical properties. In general, the early-generation 

clusters with lower oxidation degree fall in the corner of the plot with smaller 𝑂𝑆𝐶̅̅ ̅̅ ̅ but larger 

𝑛𝐶 , while the later-generation clusters with higher oxidation degree move towards the corner 

with larger 𝑂𝑆𝐶̅̅ ̅̅ ̅  but smaller 𝑛𝐶 , suggesting that the later-generation products are formed 635 

through further oxidation of early-generation species and undergo more fragmentation during 

oxidation.   
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Figure 5. Average carbon oxidation state (𝑶𝑺𝑪̅̅ ̅̅ ̅̅ ) of the obtained FCM clusters from chamber 

data as a function of number of carbon atoms (𝒏𝑪). Panel (a) to panel (d) show results for 645 

solutions with 2 to 5 clusters, respectively. The color scheme follows that of the cluster centers 

in Fig. 4. Individual species are shown as grey circles. Marker size is proportional to the square 

root of the average intensity of the clusters.  

3.2.2 FCM of model data 

As mentioned previously, we also applied FCM onto data obtained from a box model with the 650 

default gas-phase reaction schemes for isoprene-NO3 taken from the MCM v3.3.1 (Jenkin et 

al., 2015). For consistency, only closed-shell products from isoprene oxidation in MCM are 

considered for the clustering. Since the reaction scheme of isoprene with NO3 in the MCM 

mechanism is semi-explicit, the clustering results of modelled data provides a way to evaluate 

the applicability of fuzzy clustering for time series analysis. In turn, by comparing the cluster 655 

centers derived from model data with those derived from mass spectrometric data, one can 

check if the model can well reproduce the measurements, and thus investigate the 

representativeness of reach mechanism coupled in the model. 

Figure 6 shows the results of FCM applied to model data, again with the number of 

clusters varying from 2 to 5. From the results it becomes clear that different species are sorted 660 

https://doi.org/10.5194/egusphere-2023-1896
Preprint. Discussion started: 30 August 2023
c© Author(s) 2023. CC BY 4.0 License.



26 

 

according to their patterns of time behaviors, and that different clusters represent multi-

generation products. Taking the 2-cluster solution as an example, the signals of most species 

in cluster 1 increase evidently as soon as the reaction is initiated, while those in cluster 2 grow 

considerably slower, indicating that cluster 1 is a surrogate of early-generation products, 

whereas cluster 2 corresponds to later-generation products. This is very similar to what we 665 

observe from the real measurements, even though the time behavior derived from those two 

cases are not the same. It seems that the fast-forming pathways are more important in the 

measured data than in the model data. Similarly, more later-generation clusters are screened 

out from the model data with increasing number of clusters, whilst the changes in early-

generation clusters are not significant. Looking at clusters 3-5 in the five-cluster solution, it is 670 

evident that certain chemical loss processes are missing in the MCM mechanism, which are 

observed in the chamber data, however. It should be noted that autoxidation and related 

processes for the isoprene + NO3 system are underrepresented the MCM, which is also true for 

the formation of accretions products. 

 675 

Figure 6. Results of FCM for model data with the number of clusters varying from 2 to 5. Each 

row represents one solution, with the time series of cluster centers shown in thick, colored solid 

lines, and species with the membership degree larger than 0.5 to the cluster illustrated as thin, 

gray solid lines. 
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As for the chemical properties, different clusters are discrete in the 𝑂𝑆𝐶̅̅ ̅̅ ̅ vs. 𝑛𝐶  space (Fig. 680 

S6), and thus we can conclude from the results of FCM that it will also classify product species 

in a reasonable way when applied to experimental data. Moreover, clusters in different 

solutions cover a similar chemical composition range of 𝑂𝑆𝐶̅̅ ̅̅ ̅ and 𝑛𝐶  despite increasing number 

of clusters (except for the two-cluster solution), well consistent with what we observed for the 

chamber data. However, the 𝑂𝑆𝐶̅̅ ̅̅ ̅ of cluster decreases less prominently with increasing 𝑛𝐶  for 685 

the model data, probably due to the absence of accretion products in the MCM (mostly assigned 

to early-generation clusters with more carbon atoms in bulk). The MCM tends to produce more 

small species (with low 𝑛𝐶), which is not observed in the mass spectra data. This can be due to 

the detection limits of the Br--CIMS for smaller compounds. Regarding the two-cluster solution, 

the chemical range of clusters is much narrower, and they are overlapping in the chemical space 690 

to some extent, suggesting that the number of clusters is not enough. 

In general, according to the outcomes from the application of FCM to both measured and 

model data, we conclude that FCM can give interpretable and chemically meaningful results 

when applied to mass spectrometric data for time series analysis.  

3.3 Insights from clustering results 695 

3.3.1 Chemical properties of different clusters 

In this section we will analyze the five-cluster solution to exemplify the functionality of FCM 

for extracting the chemical and kinetic information underlying in the mass spectrometric data. 

The five-cluster solution is chosen because 𝑐 = 5 is the mathematically optimal cluster number 

determined for our dataset in sect. 2.3. This does not mean that we claim it is superior to other 700 

solutions, e.g., the six-cluster solution. Besides, we confirmed in the previous sections that the 

FCM results exhibit general features regardless of the predefined number of clusters, so that 

findings based on the analysis of the five-cluster solution can hopefully also be generalized for 

other cases.  

It can be clearly seen in Fig. 7a that different clusters are significantly different in 705 

composition. For example, cluster 1 representing the early-generation products is dominated 

by a single species (with the chemical formula C5H9NO5), and its intensity is much higher than 

those of the other four clusters. Another characteristic of cluster 1 is that more than 80% of 

detected 2N-dimers (except one species with the formula C10H16N2O11) are assigned to this 

cluster (Fig. S7). These compounds are obviously first-generation products formed through 710 

RO2 + RO2 reactions (Wu et al., 2021), and therefore it is reasonable to sort them into cluster 1, 
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which is representative for the early-generation products. Cluster 2 also behaves like early-

generation products, but differs from cluster 1 in terms of reactivity, i.e., formation and 

destruction rates. The differences of cluster 1 and cluster 2 in chemical composition are even 

more perceptible. As shown in Fig. 7a, another 1N-monomer (C5H9NO6) is present in cluster 2 715 

with relatively high intensity besides C5H9NO5. In addition, most of the detected small 

molecules (𝐶≤3) are assigned to this cluster (Fig. S7). Note that the formation rate of cluster 2 

resembles that of cluster 1 in the five-cluster solution of the model data. In addition, the 

fractions of some 3N-dimers (e.g., C10H17N3O12-14) in cluster 2 are relatively high (Fig. S7). 

3N-dimers are expected to be second or even later-generation products that are produced from 720 

the cross reaction of a first-generation nitrooxy peroxy radical and a secondary dinitrooxy 

peroxy radical, or from further oxidation of the corresponding 2N-dimers (Wu et al., 2021). 

This indicates that cluster 2 is very likely a mixture of the first- and second-generation products, 

which have not been resolved by FCM with the five-cluster solution. Increasing the number of 

clusters might help to separate the typical behavior of a minority of components. When the 725 

cluster number is increased to 6, it is indeed mainly the former cluster 2 in the five-cluster 

solution is further split into new clusters 2 and 3, in which the first-generation behavior of the 

new cluster 2 is more pronounced. From this point of view, the six-cluster solution seems better 

than the five one.  

 730 

Figure 7. Chemical properties of clusters from the five-cluster solution. The subplots show 

mass profile of each cluster (a), van Krevelen plot (b), and average carbon oxidation state of 

clusters (c), respectively. Different clusters are distinguished by color, and the color scheme 
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follows that in Fig. 4. The species number in panel (a) corresponds to species listed in Fig. S7 

in order. Grey circles in panel (b) and panel (c) denote species identified by CIMS. The marker 735 

size is proportional to the square root of the average intensity of clusters/ species. 

Regarding later-generation clusters, namely cluster 3, cluster 4 and cluster 5, in general 

the second- or later-generation products such as C4 species, 2N- and 3N-monomers are 

predominant in their composition. Nevertheless, the mass profiles of cluster 3, cluster 4, and 

cluster 5 are quite distinct. For example, cluster 3 is dominated mainly by a C4 species 740 

(C4H7NO5), while the major fingerprint of cluster 4 is constituted by two 2N-monomers 

(C5H8N2O8 and C5H8N2O9), a C4 species (C4H7NO6), and a C2 species (C2H3NO5). In addition, 

3N-monomers are almost completely in cluster 4 (Fig. S7). Cluster 5 has a much lower intensity 

compared to other clusters, and a distinctive characteristic of this cluster is a high attribution 

of two 3N-dimers (C10H17N3O15 and C10H17N3O16) (Fig. S7).  745 

Figure 7b and 7c show the chemical properties of clusters described by the bulk elemental 

molar ratios (in the Van Krevelen space), and the average carbon oxidation state. The Van 

Krevelen plot visualizes the chemical composition of organics by hydrogen-to-carbon (H:C) 

vs. oxygen-to-carbon (O:C) ratio and is widely used to trace the origin and evolution of organic 

compounds (Chhabra et al., 2011). The clusters cover a narrow range of chemical space of the 750 

original dataset (grey spheres in Fig. 7b), but are located where most of the compounds fall in. 

They lie almost along a line for H:C = 1.75 in the Van Krevelen plot, indicating that they have 

gained on average one H atom compared to isoprene. A trajectory with slope zero is expected 

in van Krevelen plots when only alcohol or hydroperoxide functionalities are introduced in the 

molecule (Chhabra et al., 2011). This is a characteristic of autoxidation steps (-O2H) or H-shifts 755 

in alkoxy radicals (-OH, and thereafter –O2H). Therefore, the distribution of the clusters in the 

Van Krevelen space implies that autoxidation steps or intramolecular H-shifts were involved 

in the reactions of isoprene with NO3 studied in this work.  

In terms of average oxidation state and carbon atom numbers, the early-generation 

products which undergo less oxidation steps usually have much lower oxidation degree but 760 

more carbon atoms per molecule. With the reaction proceeding, the early-stage products will 

be further oxidized and fragmented, leading to the formation of later-generation products with 

a higher oxidation state but less carbon atoms per molecule. Consequently, the trajectory of 

chemical processes generally starts with the precursor in the right lower corner and moves 

towards to the left upper area (products) in the 𝑂𝑆̅̅̅̅ 𝐶  vs. 𝑛𝐶  space through oxidation and 765 

fragmentation. In this study, the early-generation clusters have a lower oxidation state but more 
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carbon atoms while the later-generation clusters are the other way around, well following the 

oxidation trajectory in chemical space. 

Based on abovementioned results, we conclude that FCM is a feasible dimension-

reduction technique for dealing with complex mass spectrometric data from an oxidation 770 

system of interest. The derived clusters show a chemical realistic time behavior and cover the 

major range of chemical properties of the original dataset. This suggests that FCM could be 

useful in simplification and analyzing mass spectra data and the chemical information 

underlying in the clusters and can be helpful to understand the system of interest.  

3.3.2 Kinetic properties of different clusters 775 

Our cluster analysis shows that the time series of the cluster centers indicate that they are 

formed by different (or a series of) reactions steps. By fitting the measurements to the GKP 

function (Eq. 12) we can extract underlying kinetic information (effective rate constant k and 

generation number m) from time series data in terms of exposure to the oxidant. Generally, a 

larger value of k implies a faster formation of a product class for a given oxidant exposure and 780 

vice versa. It should be noted that the k obtained here is not a stepwise rate constant, and it has 

no direct relationship to the stepwise rate constants of the reaction sequence. However, this 

value offers a way to quantitatively measure the overall rate constant of all reactions along the 

pathway (Koss et al., 2020). Since the FCM cluster centers represent chemically realistic time 

patterns and thus retain the major chemical properties of the original dataset, they can be used 785 

as surrogates for various products formed in the isoprene-NO3 system, and the GKP function 

can be fitted to the time series of cluster centers. This largely reduces the complexity of analysis 

and provides a way to get kinetic information directly from measurements.  

Figure 8 shows the result of the fit of GKP to the FCM clusters derived from the chamber 

measurements for the five-cluster solution. All except cluster 5 fit with a coefficient of 790 

determination (𝑟2) of 0.96 or higher, indicating that the GKP model can well reproduce the 

kinetic behavior of the products formed from the isoprene-NO3 oxidation system in this study. 

Cluster 5 is not well reproduced (with a 𝑟2 of 0.41), probably due to its extremely low and 

noisy signal as a surrogate of later-generation products. The fitted values of m for early-

generation clusters are expected to be 1 in theory. As depicted in Fig. 8a, the generation number 795 

of cluster 1 is close to 1, and that of cluster 2 is between 1 and 2, coinciding with the expectation. 

As for the three later-generation clusters, their m values are approximately 2 (cluster 3 and 4) 

or 3 (cluster 5), indicating that they undergo two or more NO3 oxidation steps.  
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There are several possible reasons for non-integer values of m, including uncertainties 

from signal noise, especially for low signal-to-noise data, and possible influences from physical 800 

processes like vapor-wall interaction, which can lower the signal of species and thus lead to a 

higher fitted m. (Koss et al., 2020). In addition, the value of m can be distorted to some extent 

if compounds are produced from isoprene reactions with oxidants other than NO3, e.g., OH and 

O3 in this case. While NO3 makes up the major fraction of consumption of isoprene and its 

product, reactions with O3 and OH still contribute for 10-15% of isoprene loss (Vereecken et 805 

al., 2021, Carlson et al., 2022). Consequently, it is very likely that some species detected by 

CIMS were oxidized by multiple oxidants. Such an effect will lower m as unaccounted sources 

increase the concentrations of species besides the NO3 exposure, and the linear, first-order 

kinetic assumption of the GKP model is no longer applicable. For example, the isoprene 

hydroperoxy aldehyde (C5H8O3), one of the major products from photooxidation, is also 810 

observed from NO3-initiated oxidation (Vereecken et al., 2021; Wennberg et al., 2018; Wu et 

al., 2021). Furthermore, the deviation of m from integer values can occur if isomers that were 

formed by a different number of oxidation steps exist.  

 

Figure 8. Parameterized effective rate constant (k) and generation number (m) for FCM 815 

clusters (five-cluster case) derived from CIMS measurements of isoprene-NO3 system. Panels 

(a) to (e) show GKP fitting results for different clusters, with cluster 1 in red, cluster 2 in dark 

blue, cluster 3 in green, cluster 4 in dark, and cluster 5 in orange, respectively. Colored dots in 
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each panel are time series of clusters, and black lines are GKP fits. Panel (f) shows the 

distribution of kinetic parameters. Marker size is proportional to the square root of the average 820 

intensity of clusters. 

Since the generation number corresponds to the reaction steps with NO3 to form the 

product, the later-generation species, which undergo more oxidation steps, should have larger 

m values and higher nitrogen-to-carbon ratios (N:C) when considering only NO3 as oxidant. 

Figure 9 shows the relationship between generation number and chemical properties of clusters. 825 

In general, clusters with higher generation numbers have larger N:C ratios as expected, 

confirming that NO3 is the predominate oxidant for isoprene oxidation in our system. 

Nonetheless, we find that species with larger N:C ratios are not necessarily later-generation 

products. As shown in Fig. 9a, cluster 4 has a larger N:C ratio than cluster 3 and cluster 5, but 

turns out with a smaller m, which indicates that some of the nitrogen atoms of compounds in 830 

cluster 4 were gained through non-oxidative steps. On the other hand, cluster 5 has a larger m 

value than cluster 3 and cluster 4, but its N:C ratio is relatively small. This is likely due to the 

species in cluster 5 being formed by reactions involving oxidants other than NO3. Another 

possibility could be that the NO3 oxidation reaction does not lead to an increase in nitrogen 

content in the product molecules, e.g., through H-abstraction instead of addition to C=C double 835 

bonds (Wu et al., 2021). 

 

Figure 9. Relationship between generation number (m) and chemical properties of clusters: 

Nitrogen-to-carbon (N:C) ratio (a) and average carbon oxidation state (𝑶𝑺𝑪̅̅ ̅̅ ̅̅ ) (b) as a function 

of m. The marker size is proportional to the square root of the average intensity of the clusters. 840 

There is a strong linear correlation between the generation number and the average 

oxidation state of the clusters apart from cluster 5, as illustrated in Fig. 9b. The early-generation 

clusters have smaller m values than later-generation clusters, which corroborates that the 

generation number returned by the GKP model is reasonable. The linear regression result 

shows that the value of 𝑂𝑆𝐶̅̅ ̅̅ ̅  increases by ~ 0.74 for each generation. For m = 0, the 845 

corresponding 𝑂𝑆𝐶̅̅ ̅̅ ̅ is −1.45, approximate to the average carbon oxidation state of isoprene 
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(𝑂𝑆𝐶̅̅ ̅̅ ̅ = −1.6). For each addition of NO3 functionality, the 𝑂𝑆𝐶̅̅ ̅̅ ̅ of the corresponding product 

increases by 0.2, and the following O2 addition (if possible) results in the 𝑂𝑆𝐶̅̅ ̅̅ ̅ increasing by 

additional 0.8. Therefore, it involves at least one autooxidation step for each NO3 addition 

considering an increase of about 0.8 in 𝑂𝑆𝐶̅̅ ̅̅ ̅ per generation.  850 

Cluster 5 has a m value approaching 3, suggesting that species belonging to this clusters 

roughly underwent three oxidation steps. However, its average oxidation rate is unexpectedly 

low, deviating from the linear line of m and 𝑂𝑆𝐶̅̅ ̅̅ ̅. One plausible explanation is that such species 

are probably formed through unimolecular fragmentation. For example, if the H-abstraction 

(of RO2) occurs at a carbon with an −OOH functionality attached, the reaction chain will be 855 

terminated by OH loss and carbonyl formation (Bianchi et al., 2019), which leads to resulting 

products with a lower average oxidation state.  

In general, the effective rate constants of the clusters are limited by the reaction rate 

constant of isoprene, and the early-generation clusters have larger k values than the later-

generation ones. As shown in Fig. 8f, the returned k values of the two early-generation clusters 860 

1 and 2 are very close to the reaction rate constant of isoprene with NO3 (6.5×10-13 cm3 

molecule-1 s-1 at 298K, IUPAC), while those of the later-generation clusters 4 and 5 are smaller. 

Cluster 3, which represents second-generation products with m ≈ 2, has a similar effective rate 

constant as cluster 1 and cluster 2, indicating that the species belonging to this cluster form or 

react relatively fast. As shown in Fig. 7c, cluster 3 has a high oxidation degree, but less carbon 865 

atoms on average, suggesting that the species in cluster 3 are probably highly oxidized 

fragments. This is confirmed by its mass profile (Fig. 7a).  

To conclude, the kinetic parameters derived from GKP fitting to the clusters are 

reasonable and well correlated to the chemical properties of corresponding clusters. 

Specifically, isoprene products formed in the early stage are larger molecules but less oxidized, 870 

with relatively high reactivity, while those formed in the later stage tend to be smaller but 

highly oxidized with relatively low reactivity. Fragmented species are exceptions that have a 

relatively high oxidation degree and reactivity simultaneously. 

3.3.3 Characteristics of members in each cluster 

Due to the fuzziness of FCM in belongingness of cluster members, only high-affiliation species 875 

(with a membership degree over 0.5) are considered as members of a cluster in the following 

discussion for simplicity. Figure 10 shows the chemical properties of the high-affiliation 

species described by their elemental molar ratios and average carbon oxidation state. In general, 

most of the high-affiliation species of the two early-generation clusters 1 and 2 fall in the 
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relatively low O:C area of the van Krevelen plot, while those from the three later-generation 880 

clusters 3, 4, and 5 are located in the higher O:C range. This confirms that species belonging 

to later-generation clusters are generally more oxidized than those from early-generation 

clusters, as expected. With respect to the average oxidation state, species of cluster 1 in general 

have lower 𝑂𝑆̅̅̅̅ 𝐶 than others, and they are mainly monomers (𝑛𝑐 = 5) and dimers (𝑛𝑐 = 10). The 

𝑂𝑆̅̅̅̅ 𝐶 of species from cluster 2 is slightly higher than that from those of cluster 1, and there are 885 

more fragments in this cluster, including both monomers with 𝑛𝑐 < 5, and dimer species with 

5 < 𝑛𝑐  < 10. The high-affiliation species of later-generation clusters generally have higher 

oxidation degree than that from early-generation clusters, but most of them are molecules with 

less than 6 carbon atoms.  

 890 

Figure 10. Chemical properties of high-affiliation species from each cluster (with a 

membership degree larger than 0.5) described by van Krevelen (a) and average carbon 

oxidation state (𝑶𝑺𝑪̅̅ ̅̅ ̅̅ ) vs. carbon number (𝒏𝑪 ) (b) plot. The marker size of species is 

proportional to the square root of the average signal intensity. 

The gamma kinetic parameterization was also applied to individual species. Examples of 895 

fits for various species are shown in Fig. S8. Figure 11 depicts the fitted k and m values of all 

high-affiliation species from each cluster. For species from cluster 1, cluster 2, and cluster 3, 

most of the returned k values fall in the same order of magnitude of the rate constant of isoprene 

with NO3 (k = 6.5×10-13 cm-3 molecule-1 s-1 at 298K). For those from the two later-generation 

clusters 4 and 5, the returned k values are about one, respectively, two order(s) of magnitude 900 

smaller. Most returned m of species from cluster 1 are around 1, indicating that they are formed 

after one oxidation step (with NO3), which is consistent with the expectation for early-

generation-products. However, the returned m of some species from cluster 1 are between 1 

and 2, e.g., the compound(s) with the formula of C5H9NO5 (the largest red marker in Fig. 11). 

This suggests that such species may consist of isomers originating from more than one pathway, 905 

with different number of oxidation steps.  
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For species belonging to cluster 2 the generation numbers are mostly in a range from 1 to 

2, but there are also some smaller molecules (mainly C3 and C4 species) with larger generation 

numbers, indicating that such fragmented compounds are formed after multiple oxidation steps. 

With regard to species from later-generation clusters, the returned m values span a broader 910 

range, but there are no compounds with a generation number larger than 4. In general, most 

high-affiliation species (from both early- and later-generation) fall in the fast-reacting (large k) 

area, although a few can be observed with smaller k and m. These two types are both kinetically 

realistic. However, there are individual species with large m (around 3) but relatively small k, 

e.g., C10H17N3O15 and C10H17N3O16 from cluster 5. This suggests that they are slow-forming 915 

products that appear after several oxidation steps, which should be difficult to be formed and 

thus should be low in signal or even undetectable. In fact, the signals of C10H17N3O15 and 

C10H17N3O16 are extremely low and noisy at the beginning of reaction, as shown in Fig. S8(u) 

and Fig. S8(v). Detectable increases in signal for these masses are only observed when the NO3 

exposure is relatively high. 920 

 

Figure 11. Fitted effective rate constant and generation number of the high-affiliation species 

of each FCM cluster. The cluster centers and members are denoted by color-coded circles and 

pentagrams, respectively. The marker size of individual species is proportional to the square 

root of the average signal intensity of species. 925 

3.4 Implications to Isoprene-NO3 chemistry 

As noted previously, one big advantage of FCM is that variables can be affiliated to multiple 

clusters, which relates to many real-world problems in a more realistic and reasonable way. It 
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is elaborated in Sect. 3.3 that different FCM clusters show distinct differences in chemical and 

kinetic properties, potentially representing different chemical processes. Therefore, the 930 

clustering distribution of a species can give an insight into its formation mechanism.  

Figure 12 shows the cluster apportionment of selected major products formed from 

isoprene oxidation by NO3. Since each FCM cluster represents a type of chemical process or 

products, with distinct chemical and kinetic properties, a different distribution indicates 

different formation pathways of the respective species. According to the general reaction 935 

scheme of isoprene with NO3 (Scheme S1), 1N- and 2N-monomers are expected to be the first- 

and second-generation products, respectively. The accretion products are supposed to be 

formed from RO2 + RO2 reaction (Berndt et al., 2018), and thus 2N-dimers are probably 

originating from self- or cross-reactions of two C5-nitroxy peroxy radicals, while 3N-dimers 

are most likely produced by cross-reactions of C5-nitroxy peroxy radicals with C5-dinitroxy 940 

peroxy radicals (Ng et al., 2008; Wu et al., 2021). Accordingly, 2N- and 3N-dimer should be 

first- and second-generation products, respectively. The FCM results affirm these suppositions 

to some extent. For example, 1N-monomer species like C5H9NO4 and C5H9NO5 are 

predominant in early-generation clusters (cluster 1 and cluster 2), while 2N-monomers are 

mostly found in the later-generation clusters (cluster 3 and cluster 4). However, there are some 945 

exceptions, such as C5H7NO6 and C5H7NO7. These two species have entirely different cluster 

distributions compared to C5H7NO4 and C5H7NO5 regardless of their similar formula 

composition, and the majority is apportioned to the second-generation cluster (cluster 3). This 

indicates that C5H7NO6 and C5H7NO7 should be second-generation products, while C5H7NO4 

and C5H7NO5 are subsumed in early-generation products. A similar phenomenon is observed 950 

between C5H9NO7 and C5H9NO4,5. Another example is that of the 3N-dimers. By expectation, 

3N-dimers are supposed to be second-generation products (Table S1), but the FCM outcomes 

show that different 3N-dimers are formed from different pathways with different generations. 

For example, C10H17N3O12, C10H17N3O13, and C10H17N3O14 are supposed to be early-generation 

products based on the FCM results, while C10H17N3O15 and C10H17N3O16 are formed at a slower 955 

rate compared to typical secondary compounds, suggesting them to be third- or even later-

generation products. This implies that the formation mechanisms of 3N-dimers are more 

complicated than expected. Further investigation is needed to understand distinct behaviors of 

different 3N-dimers observed in this study. For 2N-monomers, the clustering results confirm 

that they are very likely second-generation products, but some species are probably originating 960 

from different formation pathways, even though they have the same generation number.  

https://doi.org/10.5194/egusphere-2023-1896
Preprint. Discussion started: 30 August 2023
c© Author(s) 2023. CC BY 4.0 License.



37 

 

As shown in Fig. 12, most fraction of C5H8N2O8,10 fall into cluster 4, while C5H8N2O7 and 

C5H10N2O8,9 are preferably occupied by cluster 3. Cluster 3 and cluster 4 are different in 

chemical and kinetic properties, as noted in Sect. 3.3, most likely representing two chemical 

processes. A similar phenomenon is observed for C10H16N2O11, which has a distinctive 965 

distribution compared to other 2N-dimers. This signifies the uniqueness of its formation 

mechanism. 

Although a species can be apportioned to multiple clusters in FCM, most products in this 

study predominantly belong to one cluster, e.g., C5H9NO4 and C5H9NO6, suggesting that they 

are dominated by a single pathway. In contrast, some species are primarily made up of two 970 

clusters, such as C5H7NO5, C5H9NO5, C5H9NO7 and C10H17N3O12, which indicates that they 

are probably comprised of two structural isomers, or that they originate from two different 

reaction pathways.  

 

Figure 12. Cluster apportionment of selected major products from the isoprene-NO3 oxidation 975 

system. The colored boxes correspond to different types of products.  

All these findings from FCM are useful and can be used as constraints for mechanism 

development, especially for less-known species. For example, C4H7NO5, a C4 species that 

contributes a significant fraction of the total isoprene organonitrates according to our 

measurements in the SAPHIR chamber, is also ubiquitous in the real atmosphere (Tsiligiannis 980 

et al., 2022). However, it is not well-investigated, especially its formation mechanism in the 

nighttime (Tsiligiannis et al., 2022; Wu et al., 2021)). Only a few studies mentioned the 

formation processes of C4H7NO5 in the daytime chemistry (Jenkin et al., 2015; Praske et al., 

2015; Schwantes et al., 2015; Wennberg et al., 2018). According to the FCM outcomes, 
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C4H7NO5 is exclusively assigned to cluster 3 (a second-generation cluster), suggesting that 985 

C4H7NO5 is a second-generation product and is mainly originating from one pathway. 

Combining this information together with its molecular composition, we proposed that 

C4H7NO5 is potentially formed via further oxidation of the hydroxy carbonyl (C5H8O2) by NO3, 

as shown in Scheme S2 in the Supplement (Wu et al., 2021). In a recent publication, 

Tsiligiannis et al. (2022) have discussed the formation and fate of C4H7NO5 in more detail 990 

based on both measurements and modelling results. They suggest that decomposition of 

C5H8NO7 radicals, nitrated epoxides, or peroxides are also plausible formation pathways for 

nighttime C4H7NO5. Nonetheless, the fuzzy clustering results in this study suggest that 

C4H7NO5 should be formed only via one major reaction channel (or maybe an unknown 

pathway) according to our chamber measurements.  995 

4. Conclusions 

While recent advances in mass spectrometry, especially the development of CIMS, empowers 

us to detect low-volatility vapors in the gas phase directly, which largely enhances our 

understanding of the mechanism of SOA formation, the complex, highly resolved mass spectra 

introduce new difficulties for data processing and interpreting. Although different statistical 1000 

analysis techniques, such as PMF, PCA, and HAC, were proposed and are widely used to 

analyze mass spectrometric data, the application of fuzzy clustering algorithms for CIMS data 

simplification and information extraction has not yet come into common view.  

In this study, we promote adopting the FCM method for the analysis of CIMS data 

obtained from complex oxidation systems. Different from hard clustering algorithms, FCM 1005 

allows variables to belong to multiple clusters, which is more suitable for overlapping data, 

and more reasonable for measurements in atmospheric science.  

Several parameters need to be defined before running FCM, some of which may have an 

important effect on clustering outcomes including the number of clusters, fuzzifier value, and 

the distance metric used for measuring dissimilarity. By using multiple clustering validity 1010 

indices, the effects of these parameters on partition were evaluated, and their optimal values 

were determined for our dataset. Furthermore, based on a practical case, we exemplified the 

functionalities of FCM in understanding the chemical and kinetic properties of the investigated 

system.  

Overall, the FCM approach we presented in this work is an applicable and very useful tool 1015 

to analyze mass spectrometric data, which can simplify the characterization of an oxidation 
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system by grouping numerous products into a much smaller number of clusters according to 

their different chemical and kinetic properties. The chemical and kinetic information retained 

from the clustering outcomes helps to understand the chemical processes involved in the 

investigated system and can be useful for mechanism development.  1020 
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