S1 Fuzzy clustering validity indices

Six fuzzy validity indices were used to determine the appropriate number of clusters, include
Sum of within-cluster variance (Vsicr), Fakuyama-Sugeno index (Ves, Fukuyama, 1989), Xie-
Beni index (Vyg, Xie and Beni, 1991), Kwon index (Viwon, Kwon, 1998), Bouguessa-Wang-Sun
index (Vg s, Bouguessa et al., 2006), and Fuzzy Silhouette (FS, Campello and Hruschka, 2006).
Their definitions and notes for applications are described in this section.

(1) Sum of within-cluster variation (Vgycy). The basic idea of clustering is to sort clusters so
that the sum of within-cluster variation is minimized, and this is used as the objective function
Jm (U, V) in fuzzy c-means clustering, as given by Eq. S1. The sum of within-cluster squared
distance measures the compactness of clustering, and the “knee” in the curve of Vs @S a
function of numbers of clusters is generally considered as an indicator of the optimal number of
clusters (Campello and Hruschka, 2006).

Vswer = Z6a Xy ultlx — v (S1)

where x; and v; denote the jt" object in the dataset and the it" cluster center, respectively, m is
the fuzzifier, and w;; is the membership degree of x; to the i cluster.

(2) Fukuyama-Sugeno index (Vgs). The Fakuyama-Sugeno index combines the membership
degree and the geometrical property of the dataset to evaluate a partition (Bouguessa and Wang,
2004). It evaluates the quality of a clustering solution by measuring the discrepancy between
compactness and separation of clusters. The mathematical expression of V¢ is shown in Eq. S2,
where the sum of within-cluster variances, as the first item in the equation, represents
compactness, while the sum of squared distances between each cluster center and the mean of all
cluster centers, as the second item in the equation, measures the separation pf partition.

Obviously, smaller V¢ indicates better performance of clustering.
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Identically, x; and v; denote the j* object in the dataset and the i cluster center, respectively,

m is the fuzzifier, and w;; is the membership degree of x; to the it" cluster.



(3) Xie-Beni index (Vyxg). Xie-Beni index is a popular fuzzy clustering validity measure
proposed by Xie and Beni (1991). It is defined as the ratio of compactness and separation as
shown in Eq. S3, where the sum of within-cluster squared distance which is equivalent to the
objective function J,,,(U,V), divided by the total number of objects in the numerator, is the
compactness of the partition, and the minimum squared distance of cluster centers in the
denominator is represents the separation. The smaller the numerator, the more compact is a
cluster, whereas the larger the denominator, the more a cluster is separated. As a consequence,
the smaller Vy g, the better the partition.
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where x;, v; and v, denote the j* object in the dataset, the i** and k™ cluster center,
respectively, m is the fuzzifier, and w;; is the membership degree of x; to the it cluster.

(4) Kwon index (Viwon)- When c approaches n, the value of Vyg decreases monotonically to 0
and will lose robustness in determining the optimal number of clusters. To overcome this
drawback, Kwon (1998) revised Vyz and proposed Kwon index, as defined in Eq. S4. The
second item in the numerator is a punishing function, which represents the average squared
distance of cluster centers to the overall mean of the data set and can eliminate its monotonous
decreasing tendency when the number of clusters is close to n. Similar to Vg, the smaller Vi ,,on,
the better the clustering quality.
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where x = % }‘zlx]-.

Identically, x;, v; and v, in the formula denote the j** object in the dataset, the i*" and k"
cluster center, respectively, m is the fuzzifier, and u;; is the membership degree of x; to the ith
cluster.

(5) Bouguessa-Wang-Sun index (Vgws). To better deal with overlapped clusters that differ in
geometric shape, Bouguessa et al. (2006) proposed a new validity index, as formulated in Eq. S5,
and hereafter called Bouguessa-Wang-Sun index in this study. Similar to Vyg and Vkyon, Vaws 1S

also based on the concept of using the ratio of compactness and separation, but the definitions for



compactness and separation are modified. By making use of the fuzzy covariance matrix as a
measure of compactness, Vg, s takes the variations of cluster shape, density and orientation into
account and was proved to performe well for heavily overlapping clusters (Bouguessa and Wang,
2004; Bouguessa et al., 2006). According to its definition, a larger value of Vs indicates a

better fuzzy partition.

__ Sep(c)

In the equation, Sep(c) represents fuzzy separation, as defined in Eq. S6, and S is the between-

cluster fuzzy matrix given by Eq. S7. The larger Sep(c), the better separation between clusters.
Sep(c) = trace(Sg) (S6)
Sp = Xi=1 27]'1=1 u{?(vi -9) (v, —0)" (S7)

Comp(c) in Eqg. S5 represents the overall compactness of fuzzy clustering, as given by Eq. S8.

The smaller Comp(c), the more compact within each cluster.
Comp(c) = ¥, trace(X,) (S8)
where Y; is the fuzzy covariance matrix as defined by:
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(6) Fuzzy Silhouette (FS). The silhouette score (s;, as defined in Eq. S10) was first proposed by
Rousseeuw (1987), which can be used to measure how close an object is to the cluster center it
belongs compared to other clusters. The average silhouette score of all objects, CS, as given by
Eqg. S11, are frequently used to assess the quality of clustering solutions. The silhouette score
was originally adopted to evaluate hard or non-fuzzy clustering solutions and did not consider
the fuzzy partition matrix in the calculation. Consequently, CS might be inadequate to
discriminate fuzzy clusters since it ignores the information contained in the fuzzy partition
matrix which reveal the overlap degrees of clusters. To extend the silhouette score to fuzzy
partition and make explicit use of the fuzzy partition matrix, Campello and Hruschka (2006)
proposed Fuzzy Silhouette (FS), as given by Eq. S12. Instead of weighing each individual

silhouette equally, F'S stresses the importance of objects lying in the vicinity of cluster centers



while reducing the importance of objects located in the boundary region (whose membership
degrees to different clusters are similar or identical).

The silhouette score falls in the range from -1 to +1, with a value approaching +1 indicating
that the object is correctly assigned, whereas with a value close to -1 indicating that the object is
misclustered (better to sort it to a neighboring cluster than to current cluster). Ans; close to 0
implies that the object lies in the boundary region (between clusters) and thus it’s unclear to
which cluster it belongs. The average cluster silhouette score can tell if the cluster is
appropriately configurated or not. The larger the average cluster silhouette score, the clearer the
cluster. The overall average silhouette score of all objects in the dataset can be used as a measure
of clustering quality. Further, it can be used to find the appropriate number of clusters. With
different cluster numbers, the maximum overall silhouette score, which means minimizing the
intra-cluster distance (a,;) while maximizing the inter-cluster distance (b,;), indicates the
optimal number of clusters.

__ bpj—apj (SlO)

55 = max{ay by}

where a,; is the average distance of object j (belonging to cluster p) to all other objects in the
same cluster. Let d,; be the average distance of object j to all objects belonging to another
cluster g (g # p), then by,; is the minimum d,;, which represents the average distance of object j

to its closet neighboring cluster.
1
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where s; in the average silhouette score of object j calculated according to Eq. S10, u,; and ug;
are the first and second largest coefficient in column j of the fuzzy partition matrix, respectively,
and « is a weight coefficient and set to be 1 as default in this study (Campello and Hruschka,
2006).



Table S1. Possible permutation scheme for 2N- (grey), 3N- (blue) and 4N-dimers (orange)
formed through ROz + R'O; reactions. Second-generation species are outlined in blue.

CsHsNOx
Os Os Oy Os Oy O1o Oun
CsHsNOx
Os C10H16N20s
Os C1o0H16N20g  C1oH16N2010
Oy C10H16N2010  C10H16N2011  C10H16N2012
Os Ci1oH16N2011  C10H16N2012  Ci1oH16N2013  C10H16N2014
Oy CioH16N2012  C10H16N2013  Ci10H16N2014  C10H16N2015  C10H16N2016
O1o Ci10H16N2013  C10H16N2014  Ci1oH16N2015  C10H16N2016  C10H16N2017  C10H16N2018
Ou Ci10H16N2014  C10H16N2015  Ci1oH16N2016  C10H16N2017  C10H16N201s  CioH16N2019  C10H16N2020
CsHsNOy
Os Os Oy Osg Oy O1o Ou
CsH9N2Oy
Oy C10H17N3O12  C10H17N3O13  CioH17N3O14  Ci0H17N3O1s  Ci0H17N3O16  CioH17N3O17  CioH17N3O1s
O1o C10H17N3O13  C10H17N3O14  Ci1oH17N3O15  Ci0H17N3O16  Ci0H17N3O17  CioH17N3O1s  Ci0H17N3O19
Ou C10H17N3O14  C10H17N3O15  CioH17N3O16  Ci0H17N3O17  CioH17N3O15  CioH17N3O19  C10H17N3O20
O12 C10H17N3O15  C10H17N3O16  CioH17N3O17  Ci0H17N3O1s  Ci0H17N3O19  CioH17N3O2  Ci0H17N3O21
O13 C10H17N3O16  C10H17N3O17  CioH17N3O15  CioH17N3O19  Ci0H17N3Oz0  CioH17N3O21  CioH17N3O22
O14 Ci10H17N3O17  C10H17N3O1s  CioH17N3O19  CioH17N3O20 CioH17N3O21  CioH17N3O22  CioH17N3O23
Oss C1oH17N3O1s  C10H17N3O19  CioH17N3Oz0  CioH17N3O21  CioH17N3Oz2  CioH17N3O23  Ci0H17N3024
Oss Ci0H17N3O19  C10H17N3O20 CioH17N3O21  CioH17N3O22  CioH17N3Oz3  CioH17N3O2s  C1oH17N3O2s
CsHoN2Oy
Oy O1o Ou O12 Ou3 Ou4 Oss
CsHoNO)
Oy C10H18N4O16
O1o C10H18N4O17  C10H18N4O1s
Ou C10H18N4O15  C10H18N4O19  CioH18N4O20
O12 C10H18N4O19  C10H18N4O20  CioH18N4O21  C10H18N4O22
O13 Ci0H18N4O2  Ci0H18N4O21  Ci10H18N4Oz2  C1oH18NsO2s  C10H18N4O24
O14 Ci0H18N4O21  C10H18N4O22  CioH18N4Oz3  C10H18NsO24  Ci10H18N4Ozs  C10H18N4O26
Oss Ci10H18N4O22  C10H18N4O2s  CioH18N4Oz4  C10H1gNsO2s  CioH1sN4Oz6  CioH18NsO27  Ci0H18N4O2s
Oss6 Ci0H18N4O23  C10H18N4O24  Ci1oH18N4Ozs  Ci0H1gNsO26  Ci1oH1sN4Oz7  CioH18NsOzs  C10H18N4O2g
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Figure S1. Concentrations of trace gases (NOx, NOy, and isoprene) and conditions of the
chamber experiment selected for FCM analysis in this study. Adapted from Wu et al. (2021).
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Figure S2. Measured and simulated concentrations of O3, NO2, NO3, and isoprene in the
chamber experiment of isoprene oxidation by NOs. Simulation results are from a box model with
using the gas-phase chemistry mechanism of isoprene + NO3 from MCM v3.3.1.
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Figure S3. Distribution of the optimal value of fuzzifier (m*) obtained from 100 repetitions
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Figure S4. Fuzzy c-means clustering results of chamber data with 7-10 clusters. Time series (a) and profiles (b) of clusters for each
solution. The cluster centers are shown as colored thick lines, and species with the membership degree larger than 0.5 to the cluster are

illustrated as thin lines in gray.
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Figure S5. Average oxidation state (0S;) of FCM clusters of chamber data as a function of
number of carbon atoms (n.). Panel (a) to panel (e) show results for solutions with 6 to 10
clusters, respectively. The color scheme follows that in Fig. 4. Individual species are shown as
grey circles. Marker size is proportional to the square root of the average intensity of clusters.
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Figure S6. Average oxidation state (0S.) of FCM clusters of model data as a function of number
of carbon atoms (n.). Panel (a) to panel (d) show results for solutions with 2 to 5 clusters,
respectively. The color scheme follows that in Fig. 4. Individual species are shown as grey
circles. Marker size is proportional to the square root of the average intensity of clusters.
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Figure S7. Cluster apportionment of species for the five-cluster solution. Sum of fractions of a compound in each cluster adds up to 1.

Different clusters are distinguished by color, and the color scheme follows that in Fig. 4. Species are listed in the same order to those

in Fig. 7.
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Figure S8. Representative species measured by Br-CIMS from isoprene + NO3 experiment (red)
and the GKP fitting results (black).
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Scheme S1. General reaction scheme of isoprene oxidation by NOs. The first- and second-generation products are shown in black and
blue, respectively. Closed-shell species are outlined in black boxes. Dimers are not shown in this scheme for simplicity.
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