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Abstract 
Reliable forecasts of building damage due to debris flows may provide situational awareness and guide land and emergency 

management decisions. Application of debris-flow runout models to generate such forecasts requires combining hazard 10 

intensity predictions with fragility functions that link hazard intensity with building damage. In this study, we evaluated the 

performance of building damage forecasts for the 9 January 2018 Montecito postfire debris-flow runout event, in which over 

500 buildings were damaged. We constructed forecasts using either peak debris-flow depth or momentum flux as the hazard 

intensity measure and applied each approach using three debris-flow runout models (RAMMS, FLO-2D, and D-Claw). 

Generated forecasts were based on averaging multiple simulations that sampled a range of debris-flow volume and mobility, 15 

reflecting typical sources and magnitude of pre-event uncertainty. We found that only forecasts made with momentum flux 

and the D-Claw model could correctly predict the observed number of damaged buildings and the spatial patterns of building 

damage. However, the best forecast only predicted 50% of the observed damaged buildings correctly and had coherent spatial 

patterns of incorrectly predicted building damage (i.e., false positives and false negatives). These results indicate that forecasts 

made at the building level reliably reflect the spatial pattern of damage, but do not support interpretation at the individual 20 

building level. We found the event size strongly influences the number of damaged buildings and the spatial pattern of debris-

flow depth and velocity. Consequently, future research on the link between precipitation and the volume of sediment mobilized 

may have the greatest effect on reducing uncertainty in building damage forecasts. Finally, because we found that both depth 

and velocity are needed to predict building damage, comparing debris-flow models against spatially distributed observations 

of building damage is a more stringent test for model fidelity than comparison against the extent of debris-flow runout. 25 

1 Introduction 
Debris flows are sediment and debris-laden flows that may initiate from shallow landslides or overland flow runoff (Cannon, 

2001; Iverson, 1997). Buildings, roads, bridges, and other infrastructure located downstream from catchments susceptible to 

debris flows are exposed to this hazard. Debris flows pose a hazard to buildings that can result in damage ranging from slight 

(e.g., failure of non-load bearing components) to complete destruction (e.g., substantial structural damage, removed from 30 
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foundation) (Jakob et al., 2012). A reliable approach to predict building damage in areas susceptible to debris-flow runout 

would be useful for multiple decision-making activities, such as evacuation planning (Barnhart et al., 2023). 

 

A fragility function relates a measure of hazard intensity (e.g., debris-flow depth, tsunami velocity, or peak ground acceleration 

from an earthquake) to the corresponding likelihood of a specific type of asset (e.g., a building) meeting or exceeding a 35 

categorical damage state. The development of fragility functions for specific asset types and specific hazards is an established 

field (e.g., Baker et al., 2021; FEMA, 2022a). Multiple types of fragility functions exist, including empirical fragility functions 

based on inventories of damaged assets, analytical fragility functions based on physics or engineering first principles, and 

expert elicitation-based methods. Examples of proposed measures of hazard intensity for empirical or analytical debris-flow 

fragility functions include the following: debris-flow depth (Fuchs et al., 2007), the ratio of debris-flow depth to building 40 

height (Totschnig et al., 2011), the momentum flux (product of debris-flow depth and velocity squared, also called the impact 

force; Jakob et al., 2012), the overturning moment (product of depth and velocity; Zhang et al., 2018), and the impact pressure 

(product of density and velocity squared; Calvo and Savi, 2009). (Note: The quantity hv2 does not have units of a momentum 

flux [kg m-1 s-2] but is called the momentum flux because within the shallow water equations hv2 represents the transport flux 

of the momentum density, hv [e.g., Tan, 1992; Vreugdenhil, 1994]).  45 

The objective of this contribution was to evaluate the performance of building damage forecasts generated by combining 

runout-model output with a fragility function. We were interested in understanding the performance of building damage 

forecasts in locations with limited information about past debris-flow runout activity (e.g., recently burned areas). This type 

of application is distinct from evaluation of building damage potential in areas with a historical record of debris flows that may 

be used to back calculate model parameters (e.g., Quan Luna et al., 2011). Should it be possible to construct a reliable building 50 

damage forecast based on probabilistic sampling of runout model input parameters, such a methodology may be more widely 

applicable than one based on calibrated parameters. 

 

Runout models simulate the dynamic evolution of debris-flow material as it moves across the landscape under the force of 

gravity. Thus, the output of runout models (i.e., debris-flow depth, velocity) can be used as the input to a fragility function to 55 

predict building damage. Prior studies have used runout models to generate fragility functions (e.g., Zhang et al., 2018) and 

evaluate building failure modes (e.g., Luo et al., 2022), but few studies have evaluated the performance of building damage 

forecasts generated by combining preexisting fragility functions with the output of uncalibrated runout models in the context 

of an observed event. Accordingly, there are many unanswered questions surrounding how to apply runout models to construct 

forecasts of building damage. These include (1) Which fragility functions, runout models, and measures of hazard intensity 60 

produce the most reliable forecasts? (2) How should uncertainty in debris-flow size and mobility be combined to generate 

probabilistic forecasts of building damage? and (3) What level of performance and spatial specificity can be expected for 

building damage forecasts?  
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To accomplish this objective, we developed a method for constructing probabilistic building damage forecasts and applied it 65 

to the 9 January 2018 Montecito, California, debris-flow event (Kean et al., 2019b; Lancaster et al., 2021; Oakley et al., 2018) 

(hereafter “Montecito event”). This event damaged over 500 primarily wood-framed buildings (Lancaster et al., 2021; 

Lukashov et al., 2019), thereby providing a spatially distributed dataset of building damage. The method we propose is general 

because it can be used with different runout models, different hazard intensities, and different fragility functions. We evaluated 

the relative performance of two hazard intensity measures (debris-flow depth and momentum flux) and three different runout 70 

models (RAMMS, FLO-2D, and D-Claw, Christen et al., 2010; George and Iverson, 2014; Iverson and George, 2014; O’Brien 

et al., 1993; O’Brien, 2020). We considered five event size categories ranging from much smaller to much larger than the 

observed event. Within each combination of model and event size category, we combined multiple simulations that reflect the 

pre-event uncertainty in event size. Our goal was not to comprehensively test all available runout models, hazard intensities, 

or fragility functions, but instead to evaluate approaches that vary in their complexity.  75 

 

We evaluated the forecasts using standard methods developed in the atmospheric sciences. For the best performing model and 

the best performing hazard intensity measure, we performed two follow-on analyses. First, we examined the sensitivity of the 

simulated hazard intensity to model inputs, which indicated where further research may be most effective at reducing pre-

event uncertainty in building damage forecasts. Finally, we estimated the minimum number of simulations required to generate 80 

statistically equivalent results. 

 

The remainder of this contribution is organized as follows: In sections 2 and 3 we describe the Montecito event, the building 

damage dataset, and a previously developed set of runout model simulations. We then propose our method to generate a 

probabilistic forecast of building damage. This method requires a fragility function, and we introduce two candidate 85 

approaches. We then describe our approach to forecast evaluation, how we evaluate the sensitivity of forecasts to model input, 

and how we determine the minimum number of simulations needed to produce similar results. Our results document three 

main findings: (1) Forecasts generated with D-Claw and using a fragility function based on debris-flow momentum flux 

outperform all other approaches. (2) The total volume of mobilized sediment and water, which we refer to as the event size, is 

the most important model input, influencing the number of buildings damaged and the spatial pattern of which buildings are 90 

damaged. (3) Finally, the forecast evaluation identities systematic errors that may indicate priority areas for fundamental model 

improvement.  

2 Event description  
Our study focused on the 9 January 2018 Montecito, California, debris-flow event (hereafter “Montecito event”) (Kean et al., 

2019b; Lancaster et al., 2021; Oakley et al., 2018). This event was initiated by intense rain (5-minute intensity of 157 mm.hr−1) 95 

that fell on the recently burned Santa Ynez Mountains. The event mobilized sediment from hillslopes and channels (Alessio 
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et al., 2021; Morell et al., 2021) into a boulder-laden slurry that ran out onto a ~4 km-wide alluvial fan located between the 

Santa Ynez Mountains and the Pacific Ocean (Figure 1). The debris-flow runout inundated a combined area of 2.6 km2 and 

resulted in 23 fatalities, at least 167 injuries, and over five hundred damaged homes (Lancaster et al., 2021; Lukashov et al., 

2019). 100 

 

Prior work estimated the total amount of sediment deposited in low sloping areas in the event (Kean et al., 2019b), eroded 

from the hillslopes (Alessio et al., 2021), and eroded from the channels (Morell et al., 2021). Barnhart et al. (2021) combined 

the sediment volumes estimated by Kean et al. (2019b) upstream from three domains with an estimate of water volume based 

on rainfall-runoff analysis to produce an estimate of the total event size (volume of water and sediment) for each domain: 105 

531,000 m3 for Montecito Creek, 522,000 m3 for San Ysidro Creek, and 332,000 m3 for Romero Creek. Barnhart et al. (2021) 

considered an arbitrary factor of two uncertainty estimate for the event volume (50%–200%). Because more recent work by 

Alessio et al., (2021) and Morell et al. (2021) found the total volume of sediment eroded from hillslopes and channels during 

the event matched the estimates of deposit volume, here we considered a smaller, although still arbitrary, uncertainty range of 

70%–130% on these volumes. 110 

3 Data  
Generation and evaluation of building damage forecasts required a dataset of the location and damage state of buildings in 

Montecito, California, and simulation output of spatially distributed values of peak flow depth, h (m) and momentum flux hv2 

(m3 s-2) . Here, v (m s-1) is the flow velocity. Generation of a candidate fragility function required observed damage state and 

observed flow depth. This section describes the data sources used in our analysis. 115 

3.1 Building dataset 

After the Montecito event, building inspectors produced a database of damaged homes that was compiled with observed debris-

flow characteristics and published by Kean et al. (2019a). Initial observations were generated by the California Department of 

Forestry and Fire Protection (CAL FIRE) building inspectors who classified impacted buildings into four ordered damage class 

categories: affected, minor damage, major damage, and destroyed following the categories described by the Federal Emergency 120 

Management Agency (FEMA) Preliminary Damage Assessment Guide (FEMA, 2021) (examples of building damage depicted 

in Figure 2). We note that this damage classification scheme is neither strictly economic nor strictly structural. Additionally, 

in the dataset disseminated by Kean et al. (2019a), these four categories were labeled 1%–9% damaged, 10%–25% damaged, 

51%–75% damaged, and destroyed, respectively. Kean et al. (2019b) supplemented these damage class observations with 

observed debris-flow depth and building attributes (area and width of building footprint, number of stories, and age of 125 

buildings). 
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To calculate the number of buildings simulated as damaged, we needed information describing the location of all buildings in 

the Montecito area that were not damaged by the 2018 event because a simulation might predict that debris-flow runout would 

affect an area that was not affected by the observed event. Therefore, we supplemented this database of observed building 130 

damage with the location of all undamaged buildings in the considered simulation domains from OpenStreetMap (OSM, 

https://www.openstreetmap.org/, database accessed November 12, 2021) (Figure 1). We removed any OSM-sourced buildings 

that overlapped with a building in the CAL FIRE dataset to prevent duplication. The OSM-sourced buildings were categorized 

as unimpacted, yielding a total of five damage categories. The final dataset contained 4002 unimpacted buildings, 127 buildings 

with 1%–9% damage, 126 buildings with 10%–25% damage, 114 with buildings 51%–75% damage, and 162 destroyed 135 

buildings (Table S1). 

 

We simplified the building damage dataset from the five original categories to two categories separating major and minor 

damage. We refer to this simplified damage category as Ds. Buildings classified as unimpacted, affected, and minor damage 

are all associated with Ds=0, whereas major damage and destroyed are associated with Ds=1. The boundary between minor 140 

and major damage corresponds with the difference between repairable, non-structural damage to substantial or structural 

damage (FEMA, 2021). We chose to simplify the damage categories at the boundary between minor and major damage because 

it is most consistent with the needs of emergency managers: to identify areas where debris-flow runout poses a threat to life 

and property (Barnhart et al., 2023). 

3.2 Simulated event size, flow depth, and momentum flux 145 

We used simulation results from a prior study (Barnhart et al., 2021) that evaluated the ability of three different runout models 

[RAMMS (Christen et al., 2010), FLO-2D (O’Brien et al., 1993; O’Brien, 2020), and D-Claw (George and Iverson, 2014; 

Iverson and George, 2014)] to match the extent of debris-flow runout. These authors ran multiple simulations with each model 

and in this section, we describe their sampling strategy, how peak flow depth and momentum flux were extracted from the 

simulations, and how each simulation was categorized based on event size. 150 

 

Barnhart et al. (2021) used a Latin hypercube sampling study to generate parameter values for each simulation. All models 

used the event size, specified as the debris-flow volumes, V (m3). Each model used a different set of governing equations and, 

thus, a different set of inputs that describe the mobility of debris-flow material. For a given model, the number of simulations 

was determined as 100 by the number of model free parameters, N! (N! = 3, 5, and 4 for RAMMS, FLO-2D, and D-Claw, 155 

respectively, as described by Barnhart et al. (2021)). Finally, Barnhart et al. (2021) split up the complex runout path from the 

Montecito event into three independent simulation domains for the purpose of computational efficiency (Figure 1). The extent 

of each domain was drawn to encompass a region that is larger than the runout associated with each of the three major creeks 

(Montecito Creek, San Ysidro Creek, and Romero Creek).  
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 160 

Simulations were conducted on a 5-m bare-earth digital elevation model and consequently, the simulated values of debris-flow 

depth and velocity represent the values without explicit representation of the interaction between the flow and the building. 

For each simulation, the maximum debris-flow depth, h, and maximum momentum flux, hv2,was recorded at each grid cell (5-

m cell sides). For each of the simulations presented in Barnhart et al. (2021), we extracted the maximum simulated debris-flow 

depth and momentum flux at the model grid cell containing the centroid of every considered building. Files compiling the 165 

maximum h and hv2 for each simulation at each building are provided in the data release associated with this contribution 

(Barnhart et al., 2023). 

 

One objective of our study was to understand how uncertainty in pre-event unknowns, such as the rainfall intensity and 

associated debris-flow volume, propagate into a forecast of building damage. Therefore, we designed our approach to generate 170 

forecasts based on predicted rainfall. We were able to accomplish this objective because prior work has established a link 

between the 15-minute rainfall intensity, I15, and the mobilized volume (Gartner et al., 2014). Barnhart et al. (2021) used the 

volume of water that would fall on each catchment in 15 minutes given a specified rainfall intensity (I15) and the volume of 

sediment used by the current U.S. Geological Survey emergency hazard assessment methodology (Gartner et al., 2014; U.S. 

Geological Survey, 2018). The underlying statistical model used in the emergency assessments to predict mobilized sediment 175 

volume has a sub-linear relation between the natural logarithm of sediment volume and I15 (Figure S1). However, this sub-

linear fit has nearly an order of magnitude prediction uncertainty (Gartner et al., 2014). Accordingly, one of the most uncertain 

aspects of predicting the hazard of postfire debris flows is the link between rainfall, as represented by I15, and the expected 

event size, as represented by the total volume of sediment and water. 

 180 

Barnhart et al. (2021) generated event volumes that ranged from less than four times smaller to more than four times larger 

than the observed event size, and we split the simulations done by Barnhart et al. (2021) into five groups based on the simulated 

event size and generated forecasts with each model for each event size. Forecasts generated with simulations that had an event 

volume similar to what was observed in the Montecito event (section 2) are referred to as having an unbiased event magnitude. 

Forecasts generated with simulations that had event volumes smaller than the observed event are referred to as having an 185 

underforecast or very underforecast event magnitude. Forecasts generated with simulations that had event volumes larger than 

the observed event are referred to as having an overforecast or very overforecast event magnitude. The volume ranges within 

each event magnitude category and number of simulations vary by domain (Table S2). The volume values used to split 

simulations into the five groups were informed by the observed event size and the prediction uncertainty associated with 

predicting event size based on the I15 (Figure S1).  190 

 

4 Methods 
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We generated probabilistic building damage forecasts using multiple models and fragility function methods. In this section we 

describe a general approach to generating probabilistic building damage forecasts based on model output and two approaches 

to constructing fragility functions: (1) the approach used here to implement the general approach in the context of the Montecito 195 

event, and (2) the methods used to evaluate forecast performance (Figure 3). Results motivated two follow-on analyses: (1) 

How sensitive are forecasts to each model input parameter?; and (2) How few simulations are needed to generate similar results 

to those presented here? The first of these questions is relevant for identifying what observations may be most important for 

reducing forecast uncertainty, and the second has practical importance for generating similar results with limited time or 

computational resources. 200 

4.1 General method for probabilistic construction of building damage forecasts 

We used a simple and general method for constructing probabilistic forecasts of building damage: combining the results of 

multiple simulations and weighting them equally. Consider a set of N simulations generated by sampling input parameter 

values such that the set of simulations reflects pre-event uncertainty. Assuming that output from simulation i at building xb can 

be transformed into the probability (P) that Ds=1, the probability that Ds=1 across all simulations is given as:  205 

P(D" = 1|X = x#) =
1
N,[P(D" = 1|

$

%&'

X = x#)]% 
(1) 

where:  

xb is the unique identifier for each building X, 

N is the number of simulations being combined, and 

[P(Ds = 1 | X=xb)]i is the probability that Ds=1 for building xb in simulation i. 

Equation (1) can be interpreted as equally weighting the likelihood of each simulation and taking an average. In our application, 210 

the N simulations each use a different value for event size and flow mobility, but other applications may evaluate other sources 

of pre-event uncertainty. 

4.2 Fragility functions 

To generate P(Ds = 1 | X=xb) for use in Equation (1), we used a fragility function that transforms a measure of hazard intensity 

into the probability of damage. We considered two fragility functions, the first is an empirical fragility function specific to 215 

wood-frame buildings that was derived based on observed peak flow depths from the Montecito event, and the second uses an 

existing methodology developed for tsunami hazard assessment based on momentum flux. 
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4.2.1 Empirical fragility function using peak depth 

Because Ds is a binary variable, we used logistic regression to predict Ds with ln(h). We fit the following equation with the 

observed values of ln(h) and Ds using the generalized linear models (glm) function provided by the core stats package in R (R 220 

Core Team, 2022): 

P(D" = 1|ln(h)) 	= 	Φ(β( + β'ln(h)) (2) 

where: 

b0 and b1 are estimated constants, and 

F(·) is the cumulative standard normal distribution function.  

Given a hazard intensity, application of equation (2) yields a predicted probability that Ds=1, and the building will have major 225 

damage or be destroyed. To classify each prediction into the discrete ordinal values of 0 and 1, a discrimination threshold, or 

a cut point probability value, is typically used. We determined the discrimination threshold for classification by evaluating 

how the standard binary classification metrics bias and threat score varied as a function of discrimination threshold. We 

selected the discrimination threshold as the probability value that maximized the threat score and had a bias close to unity 

(definitions of these metrics provided in section 4.4). We used this method rather than a receiver operating characteristic curve 230 

analysis because the underlying observation data includes many undamaged buildings that experienced no damage and was 

thus unbalanced. 

 

Because we used the observations of building damage dataset to generate the empirical fragility function and these same 

observations were used to evaluate simulation results, we comment here on whether this choice adds any circularity into our 235 

method. One might be concerned with circularity because the same building data being used to train the empirical fragility 

function described in this section are used to test the runout model forecasts. However, because the building data are being 

used in two different ways with two independent sets of debris-flow depths, our use is not circular. To generate the empirical 

fragility function, we used the building damage data alongside observations of debris-flow depth to generate a relation between 

depth and likelihood of damage. Later we evaluate the ability of a runout model to predict the spatial pattern of building 240 

damage based on simulated debris-flow depths. Because the runout models were not calibrated to match the building damage 

observations, the use of observed damage to both generate an empirical fragility function and evaluate the results is not circular.  

4.2.2 Hazus fragility function using peak momentum flux 

We also predicted building damage based on the peak momentum flux, hv2, by applying the Hazus methodology for “Building 

damage functions due to tsunami flow” (FEMA, 2022a, p.5–22). The Hazus model determines building damage class by 245 

comparing the magnitude of the debris-flow impact force, FDF (kg m s–2), and the lateral strength of the building. FDF is a 

building-specific value that is calculated based on the drag equation (i.e. equation 5.36 in Furbish, 1997): 
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F)* =
1
2	K)ρC)B+	hv

,===== (3) 

where:  

KD (dimensionless) accounts for uncertainty in loading (e.g., KD<1 to account for the effect of shielding or KD>1 for 

the impact of individual boulders entrained in the flow, FEMA, 2022a p.5-28),  250 

r (kg m-3) is the density of the flow,  

CD (dimensionless) is the drag coefficient,  

BW (m) is the width of the building perpendicular to the flow direction, and  

hv,===== is the median momentum flux.  

Following the Hazus methodology for estimating building damage based on tsunami flow, we calculated hv,===== as 2/3 of the 255 

peak momentum flux (FEMA, 2022a, p.4–18). The probability of Ds=1, given a value for hv,=====, is given by a lognormal 

distribution 

P>D" = 1?hv,=====@ = 	ΦA
1
𝛽-
ln
hv,=====
𝜁 D (4) 

where: 

bj, is the lognormal standard deviation associated with damage class Ds=1, 

𝜁, is the median value of the momentum flux (m3 s–2) associated with damage class Ds=1, and 260 

F(·) is the cumulative standard normal distribution function.  

The value for 𝜁  is given by substituting 𝜁  for hv,=====  in Equation (3), equating FDF with a critical force per unit area, FC                                  

(kg m s–2), and rearranging for hv,=====. 
'
,
	K)ρC)B.𝜁 = F/  (5) 

 

𝜁	=
2F/

K)ρC)B0
 (6) 

Here we have followed Kean (2019b) in calculating FC as the mean of the yield and ultimate pushover strengths, FY and FU, 265 

respectively. These two values are calculated individually for each building:  

F1 =	α'A1W (7) 

 

F2 =	α'A2W (8) 

where:  

a1 is the modal mass parameter,  

AY is the fraction of gravitational acceleration at yield,  270 

AU is the fraction of gravitational acceleration at pushover, and  
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W is the total building seismic design weight (FEMA, 2022a, p.5-27, equations 5.12 and 5.13).  

To calculate FY and FU, building attributes such as Hazus building type (e.g., W1 and W2 for wood frame), age, and number 

of stories must be known. For the purposes of this analysis, we assumed that all buildings are one story wood frame buildings 

built between 1941 and 1975 (buildings built with the same seismic design level). We acknowledge this is a simplification, 275 

but it matches the character of residential buildings damaged in this event (Table S3 and Table S4). We discuss the implications 

of these simplifications later in Section 6.3.1. AU and AY are typically calculated based on building characteristics found in 

Table 5.7 from the Hazus Earthquake Model Technical Manual (FEMA, 2022b). Accordingly, we used a1 =0.75, AY = 0.3, 

and AU =0.9 for buildings with area less than 465 m2, and AY = 0.2 and AU =0.5 for buildings with footprint area greater than 

465 m2. Following Kean et al. (2019b) we calculated W using the footprint area and a value of 1820 N m-2 for the structural 280 

weight per area and a value of bj=0.633 for all damage classes. For the density of the flow, r, we used a debris-flow density 

of 2020 kg m-3 reflecting a weighted average of water (1000 kg m-3) and sediment (2700 kg m-3) and a solid volume 

concentration of 0.6.  

4.3 Forecast construction 

For each model (RAMMS, FLO-2D, D-Claw) and event magnitude forecast bias classification (five categories) we constructed 285 

a building damage forecast using h and the empirical fragility function (Equation (2)) and another using hv2 and the Hazus 

methodology (Equation (4)). Each of these 30 forecasts provides a probability that the simplified damage category, Ds, 

introduced in section 3.1, at each building is equal to 1, indicating the building would experience major damage or be destroyed. 

 

Each forecast combined the results of multiple simulations using Equation (1). The simulations used to generate each forecast 290 

reflect typical pre-event uncertainty in debris-flow mobility and event size, within the range of volume for the event magnitude 

forecast bias category. Accordingly, the probability of building damage in a specific forecast reflects uncertainty associated 

with event size and mobility. Comparison between the forecasts made with different event magnitude forecast categories 

documents the sensitivity of forecast performance to getting the event size approximately correct (within a factor of two). We 

generated example forecasts for multiple event magnitude forecast bias categories for two reasons: (1) the event size is 295 

characterized by considerable uncertainty, even if predicted rainfall is well known, and (2) event rainfall is itself difficult to 

predict (Gartner et al., 2014; Oakley et al., 2023). 

4.4 Forecast evaluation 

Each forecast provides a probability value for each building, and we evaluated the forecasts based on the spatial pattern of 

predicted building damage and aggregated measures of performance. We classified buildings with a probabilistic damage 300 

forecast of 50% or greater as having predicted damage and then calculated the four elements of the binary classification 

contingency table for each forecast. Buildings with observed and predicted damage were classified as true positive (TP); 
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buildings with predicted but not observed damage were classified as false positive (FP); buildings with observed but not 

predicted damage were classified as false negative (FN); and buildings with neither observed nor predicted damage were 

classified as true negative (TN). Using TP, FP, and FN, we calculated three standard summary values: the false alarm ratio 305 

(FAR), hit rate (H), threat score (TS), and bias (B).  

 

FAR=
FP

TP+FP (9) 

 

H=
TP

TP+FN (10) 

 

TS=
TP

TP+FP+FN (11) 

 310 

B=
TP+FP
TP+FN (12) 

The number of buildings with observed damage is TP+FN, and the number of buildings with predicted damage is TP+FP. 

Thus, FAR, H, TS, and B are interpreted as follows:  

- FAR is the fraction of buildings predicted as damaged that were not damaged in the debris flows. If FAR is equal to 

zero, no false positive predictions were made.  

- H is the fraction of buildings observed as damaged that were predicted correctly. If H is equal to one, no false negative 315 

predictions were made.   

- TS is the proportion of correct predictions, disregarding the TN category. If TS is equal to one, no false positive or 

false negative predictions were made.  

- B is the ratio of number of predicted damaged buildings and observed damaged buildings. If B is equal to one, the 

same number of buildings observed as damaged are predicted as damaged. However, B=1 does not guarantee that the 320 

correct buildings are predicted as damaged; that would require both B and TS be equal to one. 

We compared all forecasts using a commonly used graphical method developed in the atmospheric sciences called the Roebber 

(2009) performance diagram (Wilks, 2019, p.384). The Roebber (2009) performance diagram plots (1–FAR) on the x-axis and 

H on the y-axis and is best used for comparing forecasts of rare events or events for which the number of TN is unconstrained. 

In the application presented here, the value of TN is arbitrarily set by the extent of the simulation domains. A convenient 325 

property of the Roebber (2009) performance diagram is that it can be contoured with isolines of constant TS and B such that 

changes in H, FAR, TS, and B can all be evaluated simultaneously. 
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4.5 Sensitivity of hazard intensity to model input  

Because the results of the forecast evaluation (presented in section 5.2) indicated that D-Claw was the best performing model 

for predicting building damage, we wanted to understand the sensitivity of the two model outputs, h and v, to each of the D-330 

Claw input parameters. This analysis was done to document which of the input parameters was most important in generating 

variability in the model outputs. Input parameters with high importance have greater impact on the simulated outputs such that 

reducing pre-event uncertainty in those parameters will have the greatest effect on reducing uncertainty in the building damage 

forecasts. 

At every building, we used the results of all considered simulations to evaluate the ability of each D-Claw input parameter to 335 

predict h and v, the two elements of hv2 by fitting a linear model of the following form: 
y
𝜎3
= c( + c'

log'((𝑉)
𝜎4

	+c,
𝑚´
𝜎5´

+c7
log'((𝑘´)
𝜎8´

+c9
ϕ#:;
𝜎<

	 
(13) 

 

where:  

y is the output of interest, h or v,  

sy is the standard deviation of y,  

c0, c1, c2, c3, and c4 are estimated regression coefficients, 340 

log10 (V) is the base-10 logarithm of the total event volume,  

sV is the standard deviation of log10 (V), 

m´ is the difference between the initial solid volume fraction and the critical solid volume fraction,  

sm´ is the standard deviation of m´,  

log10 (k´) is the base-10 logarithm of the ratio of the timescale of downslope debris motion and the relaxation of pore 345 

pressure, 

sk´ is the standard deviation of log10 (k´) 

fbed is the basal friction angle, and  

sf is the standard deviation of fbed.  

The four model input parameters—log (V), m´, log (k´), fbed—were normalized by dividing by their standard deviations before 350 

fitting the regressions to make the coefficient values comparable. Similarly, h and v were rescaled by dividing by their standard 

deviations.  

 

The relative magnitude of each regression coefficient indicates the relative importance of each input parameter. For example, 

if for a specific building, c2 is larger than c1, c3, and c4, we would conclude that m´ is the most important parameter. We 355 

produced maps of the coefficient values to support examination of the spatial pattern in the strength of the coefficients.  

Additionally, we calculated the adjusted coefficient of determination, R2, which indicates the overall ability of a regression to 

predict h or v using only the model input parameters. A value of the adjusted R2 close to zero indicates that the model input 
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parameters have little influence on the simulated values of h and v, whereas a value close to one indicates that the model input 

parameters can perfectly predict the simulated values. Locations with low R2 values indicate areas where the topographic 360 

context is more important than model inputs for predicting the value of h or v.  

4.6 Minimum number of simulations required to produce statistically similar results 

In our analysis, we used simulation results generated in a prior study. If a worker wanted to apply the method for predicting 

building damage that we have applied here, they might want to know how few simulations they need to generate similar results. 

This information may be important in contexts in which time to generate a building damage forecast is limited or if 365 

computational resources are sparse. Therefore, as a final analysis, we determined how few simulations would be needed to 

generate statistically similar results to the best performing forecast that used D-Claw and hv2. 

 

To determine the minimum number of simulations, we calculated how the probability calculated by Equation (1) for each 

building converged on the value generated using all N simulations as the number of simulations, Ns, increased. For each value 370 

of Ns considered (5, 10, 15, 20, 25, 30, 40, and 50), we made 30 independent random samples of Ns simulations taken from 

the full set of simulations and calculated the forecast probability of Ds=1 using Equation (1) for each building. For each of the 

30 samples, we then determined whether each building would be predicted the same or differently as the case in which all 

simulations were used. Finally, we calculated the threat score (Equation (11)) for each bootstrapped sample. We expect that 

as the number of simulations increase and the bootstrapped samples becomes more statistically similar to the full set of 375 

simulation, the threat score will increase. Choosing a minimum number of simulations would require choosing a critical value 

for the threat score, and here we arbitrarily choose 0.9.  

5 Results 
The results include the logistic regression fit for the fragility function that relates h to Ds; 30 forecasts of building damage, 

generated using three models, h or hv2, and five event magnitude forecast biases; performance assessment of these forecasts, 380 

the sensitivity of h and v to model input parameters, and an analysis of how few simulations are needed to generate similar 

results. 

5.1 Logistic regression fit 

The logistic regression to predict Ds with h (Equation (2) generated estimated values and an assessment of statistical 

significance for two coefficients, b0 and b1 (Table S5, Figure S2a). The two fitted coefficients were both significant at the 99% 385 

confidence level. To determine the optimal discrimination threshold, we evaluated how the bias and threat score changed as a 

function of the discrimination threshold (Figure S2b). We found the bias was equal to 1 and the threat score was equal to its 

maximum at a discrimination threshold of 0.5 (section 4.2.1). Thus, for the purposes of classifying building into Ds=0 and 
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Ds=1 we used a discrimination threshold of 0.5. This discrimination threshold corresponds to a depth threshold between Ds=0 

and Ds=1 of 0.47 m.  390 

5.2 Forecast performance 

We produced maps of forecast building damage and evaluated forecast performance based on the ability of forecasts to 

represent the observed pattern of building damage. Additionally, aggregated measures of forecast performance supplement 

evaluation based on maps and document how forecasts change if the event magnitude forecast bias is larger or smaller than 

was observed. Taken together, the results indicate that only forecasts made with D-Claw using hv2 can correctly predict the 395 

observed number and spatial pattern of building damage from the Montecito event. We begin the presentation of the results by 

describing the aggregate measure of forecast performance because they contextualize the spatial patterns with summary 

statistics like the bias, B, which compares the predicted and observed number of damaged buildings.  

5.2.1 Aggregate measures of performance 

Forecast performance varies among the models and fragility function options (Figure 4 depicts the set of simulations classified 400 

as having unbiased event magnitude), with only D-Claw having a bias near one and a threat score of 0.25, comparable to the 

highest observed for any forecast. Because Figure 4 depicts a Roebber (2009) diagram, a graphical layout with beneficial 

geometric properties, we describe them before describing the results further. Recall that FAR is the fraction of buildings 

predicted as damaged that are not correct, and H is the fraction of buildings observed as damaged that were forecast correctly. 

Thus, 1–FAR represents the fraction of buildings predicted as damaged that were forecast correctly. A forecast with no true 405 

positives would plot at (0,0), and a forecast with no false positives or false negatives would plot at the position (1,1). Forecasts 

that plot in the upper left half of Figure 4 have more false positives than false negatives, and thus have a bias of greater than 

one. The converse is true for the lower right half of the diagram. As the proportion of true positives increases relative to false 

negatives or false positives, the threat score increases, and a forecast would plot closer to the upper right corner. Forecasts that 

lie on the same constant value of threat score contour line differ only in the ratio of false positives and false negatives, with 410 

more false positives in the upper left and more false negatives in the lower right.  

 

First, we will discuss only forecasts made with an unbiased event magnitude. Later in the results we will discuss how forecast 

performance changes with different event sizes. For all models, forecasts that used h have a large, positive bias, whereas the 

bias for the forecast that use hv2 depends on the model (Figure 4). Forecasts that use h have biases between 2.38 and 3.39, 415 

indicating that forecasts that use h predict damage to more than twice as many buildings as was observed (all forecast 

performance metrics provided in Table S6). The bias of forecasts that used hv2 were low for RAMMS and FLO-2D (0.76 and 

0.42, respectively), whereas the bias for the forecast that used hv2 was 1.43 for D-Claw.  
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The highest threat scores, TS, are associated with the forecasts made with h and the forecast made with hv2 and D-Claw (Figure 420 

4). These four forecasts had threat scores that range between 0.21 and 0.26. In contrast, the two forecasts made with h and 

either RAMMS or FLO-2D had lower threat scores of 0.17 and 0.13, respectively. Across all six forecast options, most of the 

variation in B and TS comes from variation in H rather than variation in 1–FAR. This indicates that across all forecast options 

the fraction of buildings predicted as damaged that were not correct stayed constant, whereas the fraction of buildings observed 

as damaged that were correct changed.  425 

5.2.2 Spatial distribution of forecast building damage 

Maps of produced forecasts depict the spatial variation in the probability a building was damaged (Ds=1) for each model using 

fragility functions based either on h or hv2 ( 

Figure 5 or Figure 6, respectively). In this section we will discuss only the maps made with the unbiased event magnitude, or 

the central column ( 430 

Figure 5b,e,h or Figure 6b,e,h). Forecasts made with h and the forecast made with hv2 and D-Claw predict building damage 

over the entire portion of the runout path, consistent with observed damage ( 

Figure 5 and Figure 6). Combining the aggregate measures of performance presented in the previous section with the spatial 

pattern presented here indicates that the forecasts made with any model using the fragility function based on h will generate 

the correct pattern of building damage but with 2-4x the number of buildings damaged.  435 

 

The forecast generated using hv2 and D-Claw predicts a high likelihood of building damage in the southern portion of the 

alluvial fan, consistent with the observed pattern of building damage (Figure 1) and has a bias of 1.43. In contrast, forecasts 

made with RAMMS and FLO-2D using hv2 do not predict a high likelihood of building damage in the southern, distal portion 

of the alluvial fan and concentrate buildings with a high probability of building damage near the runout path apexes. Based on 440 

the combination of aggregate performance and spatial pattern, we conclude that only forecasts made with D-Claw and hv2 can 

correctly predict both the correct number and spatial pattern of buildings.  

 

We generated a map of the location of true positive, false negative, and false positive buildings for the forecasts made with 

hv2 because the aggregate performance measures indicated that all models produced forecasts with low threat scores. We used 445 

a 50% probability threshold to classify each building in the forecasts depicted in Figure 6b,e,h into true positive, false positive, 

false negative, and true negative (Figure 7 depicts all categories except for true negative). All three models have a similar 

pattern of false negatives (buildings that were damaged in the 2018 event but were not predicted as damaged) and true negatives 

(unaffected buildings). The biggest difference among the three models is in the pattern of true positives and false positives, 

both cases for which buildings were predicted as damaged. RAMMS and FLO-2D have no true positives and false negatives 450 

in the southern, distal portion of the Montecito creek runout path or much of the San Ysidro runout path, whereas D-Claw 

correctly predicts building damage in these areas.  
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5.2.3 Impact of the event size on performance 

We can evaluate the role of the event size on forecast performance by examining how the forecast maps and aggregate 

performance measures change as the event magnitude forecast bias category changes ( 455 

Figure 5, Figure 6, Figure 8). This analysis documents how incorrect a building damage forecast might be should the size of 

the rainstorm have been forecast as larger or smaller than the observed event.  

 

All models and fragility function methods show a similar pattern in performance as the event magnitude forecast bias changes 

from very overforecast to very underforecast. As event magnitude varies from very overforecast to very underforecast, the 460 

forecasts for all models and both h and hv2 trace a path from high H and low 1-FAR to low H (Figure 8). This pattern is 

consistent with expectations: a high hit rate and large number of false positives when the event magnitude was overforecast 

(bigger than observed) and a low hit rate when the event magnitude was underforecast (smaller than observed).  

 

Both the spatial pattern and number of buildings damaged is sensitive to the event magnitude forecast bias ( 465 

Figure 5 and Figure 6). For the forecasts made with h ( 

Figure 5), building damage is predicted over most of the runout path extent for all models and all event forecast bias categories, 

but the extent of predicted damage is wider for the overforecast cases. The results for the forecasts generated with h contrast 

with those generated with hv2 in that the latter are more sensitive to both model used and event magnitude forecast bias (Figure 

6). RAMMS and FLO-2D do not predict building damage in the distal portions of the fan for any event magnitude forecast 470 

bias category. D-Claw predicts a wider area of damage over the entire fan length as the event size increases. These results 

indicate that matching the correct number and pattern of damaged buildings requires predicting the event size correctly.  

5.3 Spatial pattern in predicting h and v 

Because D-Claw was the highest performing model based on both the threat score and the bias (Section 6.1), we evaluated two 

linear regressions at each building to predict h and v with the four model input parameters (Figure 9 and Figure 10; Table S2 475 

indicates how many simulations were used in each regression). The results of this analysis indicate that the event size is the 

most important model input for predicting both h and v across the alluvial fan. Recall that we standardized both this model 

input parameters and the model outputs to make the results comparable.  

 

Across the alluvial fan, the event  size, represented by the parameter log10(V), had the largest standardized regression 480 

coefficient and was statistically significant (>90%) for predicting both h and v (Figure 9a and Figure 10a). The regression 

coefficient associated with log10(V) was always positive, indicating that an increase in event size resulted in an increase in h 

or v. At most buildings, the regression coefficient for log10(V) was an order of magnitude larger than the other three parameters.  
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The amount of cross-simulation variance in h or v explained by the model parameters varied across space, with the highest 485 

adjusted R2 values in the central axes of the channelized runout paths (Figure 9e and Figure 10e). Less variance in h or v was 

explained with distance from the main runout paths, the locations where the event size showed the largest degree of importance.  

 

Of the three remaining parameters, only m´ and log10(k´) had statistical significance in predicting h or v across the inundated 

area (Figure 9b,c and Figure 10b,c). A larger value of m´, the difference between the initial and critical solid volume fraction, 490 

was associated with an increase in h adjacent to the observed runout paths and a decrease in h in the areas with observed 

inundation. A larger value of m´ was generally associated with an increase in velocity. A larger value of log10(k´) was 

associated with an increase in h in the upper portion of the San Ysidro Creek runout path and a decrease in h elsewhere. Finally, 

a larger value of log10(k´) was associated with lower velocities, except for the upper portion of the San Ysidro Creek runout 

path. 495 

5.4 Number of simulations required 

The result of our final analysis indicate that 20-25 D-Claw simulations are needed to generate statistically similar results to 

those presented with the full set of simulations considered here (Figure S3). The subsampling analysis generated a threat score 

measure for each bootstrapped sample that measured how well the forecast based on the bootstrapped sample matched the 

forecast generated with all simulations. Across all models and all event magnitude forecast bias categories, the threat score 500 

increased with increasing number of samples, exceeding 0.90 for D-Claw with 20 simulations (Figure S3c). Obtaining 

statistically similar results with either RAMMS or FLO-2D would require more simulations than with D-Claw (Figure S3a,b). 

Both of these models produce lower threat scores for the same number of subsampled simulations. This result indicates that 

RAMMS and FLO-2D are both more sensitive to their input parameters than D-Claw.   

6 Discussion 505 

We discuss the implications of the overall forecast performance, the implications for how debris-flow runout models are 

evaluated, and methodological limitations.  

6.1 Forecast performance 

The building damage forecast of Ds using hv2 produced by the D-Claw model is the highest performing approach when 

considering both the number of true positive, false positive, and false negative predictions (Figure 7), but also the spatial 510 

pattern of building damage (Figure 6h). The results are consistent with prior work indicating that debris-flow depth alone is 

not sufficient to predict building damage (Luo et al., 2023). Only D-Claw predicted building damage in the southern, distal 

portions of the Montecito Creek runout path or for much of the San Ysidro runout path. Both locations are places where 

buildings were damaged more than 50% (Figure 2) and include the residences of deceased victims. The other two models 
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produced similar false positive ratios for the same event magnitude forecast bias, but they produced smaller hit rates and 515 

associated smaller threat scores (Table S6). RAMMS and FLO-2D predicted building damage near the alluvial fan apex and 

did not match the observed pattern of building damage. This result implies that RAMMS and FLO-2D do not maintain high 

peak momentum flux values over the portion of the alluvial fan that experienced high momentum flux during the Montecito 

event.   

 520 

What differences among the three models explain this performance difference? The most notable difference among the three 

models is that the equations that describe RAMMS and FLO-2D represent flow resistance with a specified relation between 

shear stress and strain rate, whereas the D-Claw equations allow flow resistance to evolve as pore pressure evolves. Stated 

another way, debris-flow material movement in RAMMS and FLO-2D always reduces kinetic energy through frictional 

dissipation, whereas in D-Claw frictional dissipation of kinetic energy is contingent on the evolving flow dynamics and its 525 

strong regulation by coupled pore-pressure evolution. Thus, for a single-phase model like RAMMS or FLO-2D to match the 

observed inundation extent, the flow must slow prematurely.  

 

Before discussing the spatial patterns of forecast performance more extensively, we discuss the binary classification summary 

statistics for the unbiased event magnitude forecast of Ds using hv2 (Figure 6b,e,h). The values for false alarm ratio, hit rate, 530 

bias, and threat score indicate that D-Claw has a bias of 1.43, in contrast with the other two models that have biases of 0.42 

(FLO-2D) and 0.76 (RAMMS) (Table S6). The models have similar false alarm ratios around 0.65 but differ in their hit rates, 

with D-Claw having the highest hit rate of 0.48 and the other two models having hit rates of 0.25 and 0.16. These metrics 

indicate that although all three models generate a similar proportion of false positives to total forecast damaged buildings, D-

Claw predicted as damaged the highest fraction of buildings observed as damaged in the event. Additionally, D-Claw predicted 535 

a lower absolute number of buildings that were not predicted as damaged but were observed as damaged (false negatives). 

These results were unexpected because prior work by Barnhart et al. (2021) demonstrated that all three models produced 

similar inundation patterns and similar sensitivity to event size. The subsequent analysis of spatial variation provides an 

explanation for the difference in model performance.  

Because of its overall better performance, for the remainder of this subsection, we limit our discussion to the performance of 540 

only one forecast method: using D-Claw to predict Ds with hv2. Later in the discussion, we return to intermodel comparison.  

6.1.1 Spatial pattern of forecast performance 

Examination of the spatial pattern of false positives and false negatives in the best performing forecast made with hv2 and D-

Claw indicates coherent patches of forecast error that have implications for the reliability of building damage forecasts made 

with runout models (Figure 11). We investigated the detailed spatial pattern in this forecast because the threat score was 0.25 545 

while the bias was 1.43, indicating that the number of predicted buildings were correct, but that many forecasts were false 

positives or false negatives. Examination of the lower portion of the Montecito Creek runout path and the entirety of the San 
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Ysidro Creek runout path indicates coherent patches of false positives and false negatives (regions indicated on Figure 11). In 

region I, false positives are clustered around the edge of the flow, and false negatives are intermingled with true positives. In 

region II, false positives are located on the eastern flow edge, and false negatives are located on the western edge of the flow 550 

edge. In region III, flow in a distributary channel to the west of San Ysidro Creek predicts extensive building damage where 

little was observed, yielding a patch of false positives with few false negatives or true positives nearby. In region IV, many 

false negatives intermingle with true positives. Finally, in region V, false positives are located to the west of true positives, 

and false negatives are located to the east of true positives.  

 555 

The overall threat score value and the spatial correlation of false positive and false negative do not support interpreting the 

results as reliable at the individual building level even though the building damage forecast is made at the individual building 

level. Instead, they support interpreting the overall spatial pattern of predicted building damage and assuming that only half of 

the buildings predicted as damaged are correct, with the remaining half being false positives. Additionally, a similar portion 

of buildings classified as undamaged are likely to be damaged and thus false negatives. Additionally, the location of false 560 

positives and false negatives is not random, but spatially correlated. The most substantial implication of this observation is that 

only the broad spatial pattern and number of buildings damaged can be considered as reliable. Later in the discussion, we 

discuss the implications of this spatial correlation for improvement of debris-flow runout models.  

6.1.2 Influence of event size 

The large variation in event size (means and ranges listed in Table S2) indicates that the spatial pattern of predicted damage is 565 

sensitive to the event size as it changes from underforecast to overforecast and the total volume of mobile material increases 

four-fold. In addition to the total number of buildings predicted as damaged increasing (reflected in the bias values in Table 

S6), the width of the predicted damage area increases for the forecasts made with h ( 

Figure 5) and hv2 (Figure 6). This sensitivity to event size is similar to the prior evaluation of the inundated area (Barnhart et 

al., 2021) that showed a strong sensitivity to event size that was comparable between the three models.  570 

 

Taken together, the results from this study and Barnhart et al. (2021) indicate that hv2 is likely a more reliable metric than h 

for identifying the area impacted by postfire debris-flow runout but that the quality of the forecast depends on how well the 

event size may be ascertained in advance. Ultimately, how useable maps predicting hv2 or building damage and what level of 

confidence is tolerable is a question for land and emergency management decision makers. 575 

6.2 Implications for evaluation of debris-flow runout models 

In this section, we first discuss lessons regarding how and with what data to evaluate runout models before turning to 

implications for improvement.  
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6.2.1 How should debris-flow models be judged? 

Because accurately forecasting building damage requires predicting both h and v, building damage is a stricter test of model 580 

fidelity than simply matching runout extent or spatially distributed observations of depth. More specifically, a model-data 

comparison that uses two aspects of the phenomena of interest evaluates the generality of the model, a term borrowed from 

scholars in philosophy of science who study the practice of modeling (Weisberg, 2013). The generality of a model is an 

advantageous characteristic for the type of application considered here: use of runout models in locations where few 

observational data are available to calibrate model parameters.  585 

 

The reader may recognize the title of this subsection as referring to Iverson (2003) “How should mathematical models of 

geomorphic processes be judged?” Indeed, this subsection was influenced by the volume “Prediction in Geomorphology” 

(Wilcock and Iverson, 2003), most notably the contributions by Iverson (2003) and that of Furbish (2003). Iverson (2003) 

discussed a hierarchy of data for model tests, arguing that experiments, with known initial and boundary conditions, and 590 

independently constrained values for model parameters provide the most stringent tests for the evaluation of any model of a 

physical system. But what does Iverson (2003) mean by stringent? And what is the purpose of evaluating models? For insight 

into these questions, we rely on ideas about different approaches modelers may take and fidelity criteria modelers may use in 

evaluating models that were put forward by Michael Weisberg in his book “Simulation and Similarity” (Weisberg, 2013).  

 595 

Weisberg (2013) identifies multiple ways scientists (1) idealize phenomena of interest to generate models and (2) judge the 

application of models to observations of specific aspects of phenomena. Here we only describe the approach taken in this work 

and implicit in the prior work of Iverson (2003) and that of Furbish (2003). In this, and similar work, we are concerned with 

the practice of a scientist comparing models with data when the purpose of modeling has multiple aims. A scientist may want 

to know what set of equations best describes the complex phenomena of debris-flow runout, in part for the purpose of 600 

understanding the physical world and in part because having such a set of equations is of practical use for predicting a hazard. 

Finally, the scientist likely does not expect any set of equations to be completely correct because of the complexity of the 

phenomena. Because the scientist has many aims, they determine that a model that can predict more aspects of the phenomena 

(e.g., location, depth, speed) is better than one that can predict fewer. Weisberg (2013) would describe this approach as one 

that values generality as the fidelity criteria for determining that one model is better than the other. It naturally follows that to 605 

test whether a model scores better based on generality one would need observations of more than one aspect of the phenomena 

of interest. On this topic, we would be remiss if we did not acknowledge the difficulties in making direct observations of debris 

flows outside of controlled experimental settings. The most common observation is typically the maximum extent of impacted 

area, a single aspect of the phenomena of debris-flow runout, and one that is highly spatially correlated. Sometimes 

observations of debris-flow deposits constrain the total volume of the event. Mudlines may accurately record or overestimate 610 

peak flow depths. Superelevation of flow around bends and upstream-downstream pairs of mudlines on the same object can 

be used to infer flow velocity. Long-period seismic records can record the acceleration and deceleration of the center of mass. 
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Finally, as we show here, the buildings damaged in the wake of a debris flow reflect more than the peak depth. Notably, except 

for the long-period seismic records, none of these observations are time-variable. Instead, they represent a maximum or critical 

value for at an individual location.  615 

 

A synthesis of this contribution and the prior contribution of Barnhart et al. (2021) provides a concrete example of using 

generality to evaluate three models because a comparison can be made between model evaluation based solely on one target, 

debris-flow depth, and two targets, based on both depth and velocity. Although the Montecito event was not a laboratory 

experiment, with known initial and boundary conditions and constrained parameter values, the exception quantity of 620 

observational data collected as part of the response effort and by subsequent authors (Oakley et al., 2018; Kean et al., 2019b; 

Lukashov et al., 2019; Lancaster et al., 2021; Alessio et al., 2021; Morell et al., 2021) make it akin to a natural experiment 

(Tucker, 2009). In Barnhart et al. (2021), the authors demonstrated that these same three considered models performed 

similarly well at the prediction of debris-flow extent and depth. This finding contrasts with the more stringent model test 

implemented here, in which predicting building damage is a proxy for predicting momentum flux, or both h and v. In this 625 

second test, only D-Claw performed well at predicting the spatial patterns of building damage, which may indicate it performs 

well at predicting peak momentum flux.  

 

In summary, models that can match observed patterns of building damage demonstrate better generality than those that can 

just match observed runout extent because predicting building damage requires both depth and velocity. D-Claw is a more 630 

general model than RAMMS or FLO-2D because the way its equations handle flow resistance allows it to represent both depth 

and velocity better than either of the considered alternatives. Studies that interrogate the evaluative capacity of different 

characteristics of debris-flow runout (e.g., the evaluation of adverse slopes by Iverson et al., 2016) may provide direction for 

which targets and where in the landscape debris-flow runout models may be most effectively tested.  

6.2.2 Spatial correlation in forecast error 635 

Finally, the spatial patterns of false positives and false negatives in Figure 11 point to potential improvements in the D-Claw 

model physics. Field observations presented in Kean et al. (2019b) indicate that 1–2 m boulders were dropped at the top of the 

distributary channel within region III but that few boulders made it farther down the distributary channel. The influence of this 

deposition results in the difference in damage experienced by the buildings in Figure 2b and Figure 2c. The former was closer 

to the fan apex, but along the distributary channel it was impacted by 0.7 m of mud. It contrasts with the latter, which was 640 

inundated nearly to the eaves by boulders. The role of deposition, including different grain size classes, influences the nature 

of building damage and indicates that improving the capacity for D-Claw to simulate the deposition of material may improve 

the spatial pattern of momentum flux across the landscape. The concentration of false positives along the east bank of 

Montecito Creek in region I indicates that flow may not have been sufficiently confined as it moved downstream. This may 

indicate that improved representation of channelizing processes, such as levee development or channel scour, may improve 645 
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building damage forecasts (Jones et al., 2023). Finally, the systematic striping of false positive, true positive, and false 

negatives in regions II and V in Figure 11 indicate that the simulated dominant flow was not going in the correct direction. In 

the case of region I, simulated flow was trending to the southeast whereas in the event it trended to the south, and in the case 

of region V simulated flow trended to the southwest whereas in the event it trended to the south. Both regions are areas where 

flow was not confined by the topography, and these systematic errors may indicate that additional of mechanisms for self-650 

channelization are important model improvements.  

6.2.3 Source of building-level variance 

Across the landscape, the most important parameter, by an order of magnitude, for predicting h and v is the event size log10(V) 

(section 5.3). This result is expected because without debris-flow material, the area will not be inundated. The importance of 

event size has long been recognized and is the basis for the success of empirical scaling relations relating event size and 655 

impacted area (Iverson et al., 1998). Because event volume is the most important model input for h and v, efforts to reduce 

uncertainty in debris-flow runout and building damage forecasts would be best served by reducing uncertainty in event size. 

Such efforts likely include process-based and empirical approaches focused on sediment recruitment from hillslopes and 

channels.  

 660 

We can isolate the role of topography in controlling areas that may be impacted by runout by evaluating the strength of the 

regression predicting the simulated values of h and v using model input parameters as the independent variables (section 5.3, 

Figure 9, Figure 10). The portions of landscape where the regression has a low value for the adjusted R2 (Figure 9e, Figure 

10e) indicate areas where the topography is just as, if not more, important than event size and mobility for influencing whether 

the area will be impacted by runout. As should be expected, the values of h and v are more predictable by the four model inputs 665 

in areas of channelized flow, such as in the upper reaches of Montecito, San Ysidro, and Romero Creeks, as well as the 

distributary channel that branches to the west from San Ysidro Creek. 

 

Both m´ and log10(k´) are important to predict h and v, but with different spatial patterns and both to a lesser degree than the 

event size. Larger values of m´ mean that the initial specification of the debris-flow material has a higher solid volume fraction, 670 

closer to the critical solid volume fraction. All values of m´ used in Barnhart et al. (2021) were negative, meaning that initial 

motion increased pore pressure and decreased intergranular friction. Higher values of m´ produced a complex pattern in flow 

thickness and faster peak flow across the landscape. Prior work investigating the sensitivity of runout dynamics to m´ in the 

context of the 2014 State Route 530 landslide near Oso, WA, indicated that smaller, more negative values of m´ were 

consistently associated with faster runout and larger values of total momentum (Iverson and George, 2016). Our results are 675 

not conclusively in conflict with the prior results because larger values of m´ may be associated with larger longitudinal stress 

gradients. Numerical experiments with a simpler geometry may illuminate an explanation for these patterns. 
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In contrast with m´, the spatial pattern of the importance of log10(k´) is more straightforward to understand. Interpretation is 

aided by recalling that log10 (k´) is the ratio of the two timescales that govern downslope motion and pore pressure diffusion 680 

such that as pore pressures decrease, intergranular friction increases. It is expected that smaller values of log10(k´), reflecting 

a longer timescale of pore pressure diffusion and a longer duration of elevated pore pressures, are associated with faster flow 

over most of the impacted area.  

6.3 Limitations and implications for hazard assessment 

Our results indicate that D-Claw combined with the FEMA Hazus tsunami fragility function method can predict the spatial 685 

patterns of building damage better than either RAMMS or FLO-2D. We conclude the discussion by describing data limitations 

and implications for applying the presented methodology in other locations.  

6.3.1 Building and topography data 

A notable area for improvement is in the dataset of building characteristics used. In this study we used building geometry from 

Open Street Map, chosen for its ease of use. Although these building footprints afford estimation of the area, width, and 690 

location of individual buildings, they do not provide information about the construction material or building age. Application 

of the Hazus fragility functions used here to predict damage class with hv2 and more detailed information about construction 

material may improve the overall quality of the predictions. Use of this type of information may also make the approach more 

reliable in areas where the dominant type of building is not a light wood-frame residential building. Notably, unlike the 

empirical fragility function we fit relating debris-flow depth to damage (section 5.1), the Hazus fragility function method is 695 

not specific to wood-frame residential buildings so it may be applicable to other building types using the appropriate strength 

parameters.  

 

An additional area for potential improvement is in the representation of the buildings within the runout model simulations. In 

this study, we did not directly represent the buildings but instead used a 5-m bare-earth digital elevation model. Our approach 700 

assumed that the details of debris flow-building interaction over at the spatial scale of the entire runout path and at a simulation 

resolution of 5-m was not necessary to represent the pattern of observed building damage. Additional research that evaluates 

how forecast performance changes with smaller computational grid cells or digital elevation models that include the buildings 

may indicate the validity of this assumption. 

6.3.2 Depiction of hazard forecasts 705 

For the observed event size, the best combined forecasts developed here have a hit rate of around 50% and a threat score of 

25% (Table S6). Furthermore, the spatial patterns of predicted building damages included spatially correlated patches of false 

positives and false negatives (Figure 11). Consequently, the forecast performance does not support the conclusion that a similar 
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forecast for another event could be reliably interpreted at an individual building level. This motivates the question: what ways 

of depicting a building damage forecast reflect the inherent uncertainty in building-level predictions? One option might be to 710 

smooth the prediction, using a spatial scale of smoothing that reflects the length-scale of systematic forecast error depicted in 

Figure 11. Such an approach would inherently overestimate the number of buildings damaged but might be more reliable at 

capturing the areas with true negatives. An alternative depiction might focus on the number of buildings damaged along the 

major runout paths and present the forecasts along the runout paths rather than in plan view. A challenge with this type of 

depiction might be that the runout paths are inherently dependent on the model simulations and may be complex in plan view. 715 

If required information about building geometry and material type are not known, a representative building might be used. 

Additionally, many other factors beyond a detailed assessment of damage potential may be relevant for generating a debris-

flow inundation hazard. A multi-stage hazard assessment that describes areas susceptible to inundation and the smaller area 

susceptible to damage may provide an approach to depiction that errs on the side of caution. Which, if any of these depiction 

options would be most useful to land and emergency management personnel is itself another research question that could be 720 

assessed with the methods of user needs assessment and user-centered design.  

6.3.3 Computational requirements 

The finding that hv2 produced by D-Claw provides a reliable forecast of the number and spatial distribution of damaged 

buildings prompted evaluation of the minimum number of simulations needed to generate a statistically similar forecast. D-

Claw has substantially larger computational requirements than the other two models presented here (600-900 core hours, as 725 

compared with two core hours for the other two models, Barnhart et al., 2021). The bootstrapping analysis documented how 

variability in forecasts decreases with an increased number of sampled simulations and that 20 simulations is sufficient to 

reproduce the results provided in this contribution (Figure S3). Even with a smaller number of simulations, it may be 

computationally intractable to apply the methodology described here across large areas (tens to thousands of square 

kilometers). Evaluation of the sensitivity of building damage forecasts to computational grid size may result in computationally 730 

tractable approaches suitable for large areas. Furthermore, understanding the relative usability of forecasts made with faster 

models and known large bias relative to slower models with lower bias may guide development of the most usable hazard 

assessment methods. One possible approach may be to run faster, less accurate models over the entire fire-impacted area to 

generate an assessment of the areas susceptible to impact by debris-flow runout, and then only run D-Claw simulations in areas 

where the faster, less accurate models indicate that debris-flow material may interact with residences, roads, and other 735 

infrastructure of interest.  

7 Conclusions 
The objective of this study was to evaluate the capacity of runout models, in combination with fragility functions, to predict 

building damage due to postfire debris flows. We documented the relative performance of three runout models using two 
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fragility function methods. We found that forecasts based on depth have a higher bias than forecasts based on momentum flux, 740 

forecasts are sensitive to the event size, and that only D-Claw correctly predicts the observed pattern of building damage and 

number of buildings damaged. Despite having the best performance—a hit rate of about 1/2, a false alarm ratio of 2/3, and 

spatially correlated false positives and false negatives—these results do not support interpreting forecasts of damage using D-

Claw generated hv2 at the individual building level.  

 745 

The implications of this work are practical and fundamental. The practical implication is that probabilistic forecasts of damage 

for wood-framed buildings can be made with the D-Claw model combined with the Hazus model without detailed back 

calculation of parameters. Notably, the Hazus approach is not unique to wood-frame buildings such that a similar method may 

work well with other building types. The fundamental implication is that spatially variable building damage contains more 

information about debris-flow dynamics and is a better test of model generality than the extent of impacted area. Intermodel 750 

comparison indicates that D-Claw can reproduce the spatially variable patterns of h and v (and therefore hv2) needed to reliably 

predict building damage. Unlike RAMMS and FLO-2D, D-Claw can reproduce flows that move rapidly over the landscape 

without substantial dissipation of energy because high pore pressures result in low intergranular friction. 

 

Finally, examination of the spatially correlated location of forecast errors and the sensitivity hv2 to D-Claw input parameters 755 

points to targets for improvement. First, the spatially correlated errors are consistent with patterns of deposition and self-

channelization observed during the event. Second, the dominance of event size in influencing the simulated pattern of peak 

hv2 further emphasizes the importance of constraining the mechanisms that influence mobilized debris-flow volume, including 

entrainment of sediment on hillslopes and scour in channels, and understanding how the rate of sediment mobilization depends 

on rainfall intensity.  760 
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 885 

 
Figure 1. Map depicting the location of all five building damage classes considered in this study and the names of creeks in the study 
area. The yellow, green, and pink lines in each panel depict the extent of the three simulation domains, Montecito, San Ysidro, and 
Romero, respectively. The white region depicts the mapped extent of debris-flow inundation. Undamaged buildings not within one 
of the three simulation domains are not shown. The dashed lines indicate the locations of building damage examples (Figure 2). 890 
Coordinates in this and following maps are easting and northing in Universal Transverse Mercator zone 11N. Basemap and 
hydrography dataset from U.S. Geological Survey (2017, 2022). 
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Figure 2. (a,c,d) Examples of buildings that were classified as sustaining major damage or destroyed from different locations in the 895 
San Ysidro runout path (locations depicted in Figure 11). Some buildings had the entire first floor wiped out (a, CAL FIRE building 
damage ID 437), others were inundated by boulders (c, CAL FIRE ID 268), and others were impacted by mud (d, CAL FIRE ID 
100). Panel b (CAL FIRE ID 389) depicts a building that had minor damage. All photos from Kean et al. (2019a). 
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Figure 3. Conceptual diagram describing (a) a general approach to using a model to generate a forecast of building damage states 
and (b) the approach used in this study to predict the simplified damage state (Ds) with either maximum debris-flow depth (h) or 
momentum flux (hv2). Observed building data were used for two purposes: alongside observations of debris-flow depth the data 
were used to generate of a fragility function, and alongside model predictions the data were used to evaluate forecast results.  905 

 



33 
 

 
Figure 4. Roebber (2009) performance diagram comparing the performance of the four candidate forecast options for three models 
and three simulation domains. Based on the number of true positives (TP), false positives (FP), and false negatives (FN), the hit rate 910 
(H), false alarm ratio (FAR), bias (B), and threat score (TS) are defined as follows: H=TP/(FN+TP), FP/(TP+FP), 
B=(TP+FP)/(TP+FN), and TS= TP/(TP+FN+FP). Each dot represents a forecast with an unbiased event magnitude. The thin solid 
black lines depict contours of the threat score, and the thin dashed lines depict contours of the bias. Perfect performance is found in 
the upper right corner. Forecasts generated with hv2 typically have a bias closer to 1 than those generated with h.  

 915 
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Figure 5. Example forecast map using maximum debris-flow depth (h) to predict simplified damage state (Ds). Rows depict model 
used, and columns depict three considered levels of event magnitude forecast bias. Each dot represents an individual building with 
the color depicting the probability of the damage state exceeding zero. All models predict similar patterns of damage, and for the 
unbiased event magnitude, all predict more buildings are damaged than were observed as damaged in the 2018 Montecito event.  920 
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Figure 6. Example forecast map using the maximum momentum flux (hv2) to predict simplified damage state (Ds). Rows depict 
model used, and columns depict three considered levels of event magnitude forecast bias. Each dot represents an individual building 
with the color depicting the probability of the damage state exceeding zero. For the unbiased event magnitude, only D-Claw predicts 
the pattern of damage observed in the 2018 Montecito event. 925 
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Figure 7. Classification of the forecast map using the maximum momentum flux (hv2) to predict simplified damage state (Ds) into 
true positive (TP), false negative (FN), and false positive (FP) for each building. True negatives are not depicted and are consistent 
across all models. Rows depict model used. Each dot represents an individual building. Models all produce similar patterns for FN. 930 
RAMMS and FLO-2D produce similar patterns for TP and FP, and do not forecast building damage in the southern, distal portion 
of the runout zone. D-Claw successfully forecasts building damage in the distal portion of the runout zone.  
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 935 
Figure 8. Roebber (2009) performance diagram comparing the performance of forecasts as the event magnitude varies from very 
underforecast (black) to very overforecast (yellow). Rows and columns depict model and domain, respectively. Each dot represents 
a forecast. The thin solid black lines depict contours of the threat score, and the thin dashed lines depict contours of the bias. Perfect 
performance is found in the upper right corner of each panel. The correct event magnitude (labelled “Unbiased”) is typically 
associated with the highest threat scores, emphasizing the importance of forecasting the event size. 940 
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Figure 9. Regression coefficients (a-d) and adjusted R2 value (e) for a regression predicting maximum debris-flow depth (h) with 
model input parameters at each building for the simulations done with D-Claw. The four model input parameters are the event size, 945 
log(V); the difference between the initial solid volume fraction and the critical solid volume fraction, m´; the ratio of the timescale 
of downslope debris motion and the relaxation of pore pressure, log(k´); and the basal friction angle, fbed. A building is depicted only 
if the statistical significance of the coefficient (a-d) or regression (e) exceeds 90%. The event size, represented by log(V), explains the 
most variation in h across the runout path. 
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Figure 10. Regression coefficients (a-d) and adjusted R2 value (e) for a regression predicting velocity (v) with model input 

parameters  at each building for the simulations done with D-Claw. The four model input parameters are the event size, log(V); 

the difference between the initial solid volume fraction and the critical solid volume fraction, m´; the ratio of the timescale of 



40 
 

downslope debris motion and the relaxation of pore pressure, log(k´); and the basal friction angle, fbed. A building is depicted 955 

only if the statistical significance of the coefficient (a-d) or regression (e) exceeds 90%. Similar to Figure 9, the event 

sizeexplains the most variation in v across the runout paths.  

 

Figure 11. Maps of the southern part of the Montecito Creek runout path (a) and the San Ysidro runout path (b) depicting the 
location of true positive, false positive and false negative building damaged forecasts from the forecast of the simplified damage state 960 
(Ds) with the momentum flux (hv2) produced by D-Claw. Black ellipses labelled I-V indicate regions of systematic error in the 
forecasts discussed in the text. Dashed lines indicate the location of buildings depicted in Figure 2. Basemap from U.S. Geological 
Survey (2017). 
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Appendix A. Notation 
AU, fraction of gravitational acceleration at pushover, dimensionless 

AY, fraction of gravitational acceleration at yield, dimensionless 

a1, modal mass parameter, dimensionless  

B, bias, dimensionless 970 

Bw, the width of the building perpendicular to the flow direction, m 

b0, b1, estimated coefficients in the fragility function analysis, units vary 

bj, is the lognormal standard deviation associated with damage class Ds=1, dimensionless 

c0, c1, c2, c3, and c4, estimated regression coefficients from the regression analysis, units vary 

CD, drag coefficient, dimensionless 975 

Ds, simplified damage state, a categorical variable in which 0 is no damage and 1 is damaged, dimensionless 

FC, critical force per unit area, kg m s–2 

FDF , debris-flow impact force per unit area, kg m s–2 

FU, pushover force per unit area, kg m s–2 

FY, yield force per unit area, kg m s–2 980 

FAR, false alarm ratio, dimensionless 

FN, false negative, dimensionless 

FP, false positive, dimensionless 

fbed, basal friction angle, degrees 

F(·), cumulative standard normal distribution function, dimensionless 985 

h, peak debris-flow depth, m 

hv2, peak debris-flow momentum flux, m3 s–2 

H, hit rate, dimensionless 

hv,===== is the median momentum flux, m3 s–2 

KD, a factor that accounts for uncertainty in loading, dimensionless 990 

log10 (k´), base-10 logarithm of the ratio of the timescale of downslope debris motion and the relaxation of pore pressure, 

dimensionless 

log10 (V), base-10 logarithm of the total event volume, dimensionless 

m´, difference between the initial solid volume fraction and the critical solid volume fraction, dimensionless 

N, the number of simulations combined to generate a building damage forecast, dimensionless 995 

Ns, the number of simulations subsampled in the bootstrapping analysis, dimensionless 

r, the density of the flow, kg m-3 

sk´, standard deviation of log10 (k´), dimensionless 
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sf , standard deviation of fbed, degrees 

sm´, standard deviation of m´, dimensionless 1000 

sy, standard deviation of y, units vary 

sV, standard deviation of log10 (V), dimensionless 

TN, true negative, dimensionless 

TP, true positive, dimensionless 

TS, threat score, dimensionless 1005 

v, peak debris flow velocity, m s–1 

W, total building seismic design weight per unit area, kg m s–2 

xb, a unique identifier for each building, dimensionless  

y, output of interest, h or v, in the regression analysis, units vary 

𝜁, median value of the momentum flux associated with damage class Ds=1, m3 s–2 1010 

 
  


