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Abstract. Effective observation of the ocean is vital for studying and assessing the state and evolution of the marine ecosystem,

and for evaluating the impact of human activities. However, obtaining comprehensive oceanic measurements across temporal

and spatial scales and for different biogeochemical variables remains challenging. Autonomous oceanographic instruments,

such as Biogeochemical (BCG
::::
BGC) Argo profiling floats, have helped expand our ability to obtain subsurface and deep-

ocean measurements, but measuring biogeochemical variables such as nutrient concentration still remains more demanding and5

expensive than measuring physical variables. Therefore, developing methods to estimate marine biogeochemical variables from

high-frequency measurements is very much needed. Current Neural Network (NN) models developed for this task are based

on a Multilayer Perceptron (MLP) architecture, trained over point-wise pairs of input-output features. However, MLPs lack

awareness of the typical shape of biogeochemical variable profiles they aim to infer resulting in irregularities such as jumps and

gaps when used for the prediction of vertical profiles
::::::::
Although

:::::
MLPs

:::
can

:::::::
produce

::::::
smooth

:::::::
outputs

:
if
:::
the

:::::
inputs

:::::::
change

::::::::
smoothly,10

:::::::::::
Convolutional

::::::
Neural

:::::::::
Networks

:::::::
(CNNs)

:::
are

::::::::
inherently

::::::::
designed

::
to

::::::
handle

::::::
profile

::::
data

:::::::::
effectively. In this study, we present a

novel one-dimensional Convolutional Neural Network (1DCNN)
:
)
:::::
CNN model to predict profiles leveraging the typical shape

of vertical profiles of a variable as a prior constraint during training. In particular, the Predict Profiles Convolutional (PPCon)

model predicts nitrate, chlorophyll and backscattering (bbp700) starting from the date, geolocation, and temperature, salinity,

and oxygen profiles. Its effectiveness is demonstrated using a robust BGC-Argo dataset collected in the Mediterranean Sea for15

training and validation. Results, which include quantitative metrics and visual representations, prove the capability of PPCon

to produce smooth and accurate profile predictions improving previous MLP applications.

1 Introduction

Observation of the ocean is crucial for studying the state and evolution of the marine ecosystem and assessing the impact of

human activities (Campbell et al., 2016; Euzen et al., 2017). Access to reliable and extensive oceanic measurements remains20

restricted due to the challenges of collecting comprehensive observations on multiple temporal and spatial scales, as well as

variability in the availability of observations across different biogeochemical variables (Munk, 2000).

The introduction of autonomous oceanographic instruments such as Biogeochemical (BGC) Argo floats have notably ex-

panded our ability to obtain subsurface and deep ocean measurements (Miloslavich et al., 2019). BGC-Argo floats are au-
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tonomous profiling platforms that incorporate physical and biogeochemical sensors, enabling to collect time-series of vertical25

profiles across various sea conditions and throughout the complete annual cycle (d’Ortenzio et al., 2014; Mignot et al., 2014).

Over the past decade, there has been a steady rise in the number of biogeochemical profiles acquired using these platforms

(Johnson et al., 2013; Johnson and Claustre, 2016). These instruments are essential to advance our knowledge of the biogeo-

chemical state of the ocean, as one of their principal use cases is the assimilation into ocean biogeochemical models (Mignot

et al., 2019; D’ortenzio et al., 2020). This assimilation process is particularly promising for variables such as oxygen, nitrate,30

and chlorophyll concentrations, as they serve as core state variables in most ocean biogeochemical models (Teruzzi et al., 2021;

Cossarini et al., 2019).

However, the measurement of biogeochemical variables such as nutrient concentration and carbonate system variables (e.g.

nitrate, chlorophyll, and pH) remains more demanding and expensive compared to physical variables (e.g. temperature, salin-

ity) and oxygen. In fact, among the BCG
::::
BGC sensors, oxygen is the most commonly measured variable: there have been35

approximately 250,000 oxygen profiles collected worldwide, which is twice the number of profiles for chlorophyll, and more

than four times the number of profiles for nitrate and bbp700 (https://biogeochemical-argo.org
:
). Thus, developing methods

to estimate low-frequency marine biogeochemical variables from high-frequency measurements is essential to maximize the

potential of observing systems such as the Argo program. Major efforts have been devoted toward the improvement of the

long-term reliability and accuracy of autonomous measurements in recent years (Sauzède et al., 2017).40

Artificial neural networks (ANNs) are computational models that are inspired by the structure and function of the human

brain and have become a widely used approach for solving complex problems in a variety of fields, from computer vision and

natural language processing to finance and engineering (Krogh, 2008). ANNs have emerged as a powerful tool for modeling

complex, non-linear relationships also in the oceanographic field, where their use has seen a significant increase in recent years

(Ahmad, 2019). The use of these models has found applications in a wide range of areas, such as oceanic climate prediction45

and forecasting (Mori et al., 2017), species identification (Goodwin et al., 2014), coastal morphological and morphodynamic

modeling (Goldstein et al., 2019), ocean current prediction (Bolton and Zanna, 2019), interpolation and gap filling for remote

sensing observation (Sammartino et al., 2020), and the integration of observation data into biogeochemical models (Pietropolli

et al., 2022). These examples demonstrate the broad utility of ANNs in advancing our understanding of the ocean and its

processes.50

Existing ANN-based techniques to infer low-sampled variables starting from high-sampled ones are based on Multilayer

Perceptron (MLP) architecture, a type of feedforward NN that processes input data through interconnected layers of nodes, or

neurons, with each neuron in a layer receiving inputs from all the neurons in the previous layer (Taud and Mas, 2018). The initial

model designed for this task was proposed by Sauzède et al. (2017), where a deterministic MLP network, named CANYON,

was trained on a global ocean dataset to estimate biogeochemically relevant variables from concurrent in situ samples of55

temperature, salinity, pressure and oxygen and their latitude, longitude, depth, and date. Later, an improved version, called

canyon-b, was introduced by Bittig et al. (2018). In this approach, a Bayesian framework was utilized, and experimental

findings demonstrated that this method resulted in a more robust output. This methodology was subsequently limited to the

Mediterranean Sea, resulting in the development of canyon-med by Fourrier et al. (2020), and empirical results validated the
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effectiveness of restricting the model to a smaller region. The latest advancement in this field is presented in Pietropolli et al.60

(2023a), wherein the authors enhance the performance related to Mediterranean Sea predictions by leveraging a more extensive

training dataset and implementing a two-step quality check procedure to improve its quality.

Despite their widespread use, applications based on MLPs currently lack awareness of the typical shape of biogeochemical

variable profiles they aim to infer. When these methods are used to predict profiles from Argo float measurements, they may

generate irregularities in the reconstruction, possibly because they use point-wise data as input and output.65

To solve this problem effectively, our idea consists of working directly with an architecture that infers the complete vertical

profile. This approach takes advantage of architectures like the Convolutional Neural Network (CNN) that operate on vector

inputs instead of individual points. CNNs are recognized as one of the most impressive forms of ANNs, especially for their

effectiveness in tackling complex pattern recognition problems (O’Shea and Nash, 2015; Gu et al., 2018). While CNNs are

well-known for their success in image classification tasks, they can also be used for other tasks such as speech recognition70

(Shan et al., 2018), natural language processing (Collobert et al., 2011), and even drug discovery (Goh et al., 2017).

In this study, we evaluate the effectiveness of a one-dimensional (1D) CNN model (Kiranyaz et al., 2021) for predicting

nutrient vertical profiles from input data such as sampling time, geolocation, and profiles of temperature, salinity, and oxygen,

using Argo float measurements as the training dataset. This approach, called PPCon (Predict Profile Convolutional) is applied

to generate synthetic profiles of nitrate, chlorophyll, and backscattering (bbp700). Thanks to the intrinsic spatial-aware nature75

of its CNN architecture, PPCon can leverage the typical shape of vertical profiles of a variable as a prior constraint during

training. PPCon approach is tested with a robust Argo dataset collected in the Mediterranean Sea. The Mediterranean Sea, a

semi-enclosed marginal sea, presents a substantially high density of BGC-Argo profiles thanks to dedicated programs such as

ARGO-Italy and the French NAOS initiative (D’ortenzio et al., 2020). This particularly fortunate situation has already made

the Mediterranean a successful case for the development of biogeochemical modeling approaches based on BGC-Argo. For80

example, BGC-Argo is being integrated into the biogeochemical prediction model of the Mediterranean component of the

Copernicus Marine Service (Cossarini et al., 2019; Teruzzi et al., 2021; Coppini et al., 2023).

This paper is organized as follows: Section 2 presents the dataset utilized for training the deep learning (DL) architecture,

including its key characteristics. Section 3 provides a detailed overview of the PPCon approach, encompassing the architecture,

preprocessing techniques applied to input data, and the specialized loss function employed for network training. In Section 4,85

we outline the specific experimental settings employed to enable complete reproducibility of the PPCon architecture. Section 5

presents a summary of the key results obtained during the experimental campaign we conducted to validate our proposed

techniques, and finally, Section 7 presents the conclusions drawn from our work and directions for future research.

2 Dataset: the Argo GDACs

The data used to train and test the architecture discussed in this paper comes from the BCG-Argo
:::::::::
BGC-Argo program (Bittig90

et al., 2019), specifically the Argo float collecting also biogeochemical variables (BCG
::::
BGC

:
Argo float).
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Figure 1. Position of BGC-Argo float profiles for bbp700 (red), chlorophyll (blue) and nitrate (green) that also have oxygen data. Position of

the 4 BGC-Argo float profiles used for the external validation (black and numeric labels). Geographical limits of sub-regions (dashed boxes):

North Western Mediterranean (NWM), South Western Mediterranean (SWM), Tyrrhenian (TYR), Ionian and southern Adriatic Sea (ION)

and Levantine (LEV).

Our investigation used BGC-Argo S-profile data for the Mediterranean Sea downloaded from the Coriolis Argo GDAC

(Argo, last visit on August 2022) and the analysis considered only Delayed Mode (DM) and Adjusted Real-Time Mode (RT)

data for the period from 1− 7− 2013 to 31− 12− 2020 ensuring a larger number of DM data. The downloaded dataset was

checked retrieving only complete profiles with Quality Flags 1 (good data), 2 (probably good data), 5 (value changed) and 895

(interpolated) for temperature, salinity, nitrate and chlorophyll. Furthermore, three specific quality check steps were applied

for bbp700 based on the study by (Dall’Olmo et al., 2022): missing-data test (profiles with substantial amount of missing

data); high-deep-value test (profiles with unusually high bbp700 value at depth) and negative-bbp test (profiles with negative

bbp700 values). Finally, for each of the three variables (nitrate, chlorophyll and bbp700), profiles were only considered if the

corresponding oxygen, salinity and temperature profiles were also available. As a result of the quality check , the number of100

profiles for each variable used in the train, test and validation is reported in Table 2, the
:::
the float spatial distribution is shown

in Figure 1 and the dataset is available at the following repository (Amadio et al., 2023).

3 PPCOn: Profile Prediction Convolutional Neural Network

This section introduces the PPCon architecture, which is primarily a 1D CNN with additional MLPs employed to transform

point-wise data into a vectorial shape - necessary for the training of the convolutional component. The input for PPCon in-105

cludes sampling data, geolocation, temperature, salinity, and oxygen, while the PPCon output comprises vertical profiles for

nitrate, chlorophyll, and BBP. Despite using the same architecture, a separate model is trained for each output variable, and

different hyperparameters (number of epochs, weights of the loss function, and so on) are set for each of them. This separate

tuning is necessary due to some intrinsic differences such as the numerosity of the training set and the variable ranges. The
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Figure 2. Illustration of the principal architectural components of the PPCon model: (i) MLP network to transform the point-wise inputs

(day, year, latitude, and longitude) into vectorial form; ii) vectorial inputs (profiles of temperature, salinity, and oxygen and output of the

MLP); iii) structure of encoder-decoder of a 1D CNN architecture; iv) output vector representing the vertical profile of one of the target

variables (nitrate, chlorophyll, or backscattering).

hyperparameters are tuned manually by comparing performance on the test set composed of unseen data, based on a fitness110

metric to be introduced later. A specific loss function is designed to promote good performances, generalization capabilities,

and smooth predictions.

3.1 Input preprocessing

Table 1. The MLP component of the PPCon model illustrated in diagram form. All the 4 MLPs used in the PPCon architecture share the

same architecture.

Layer Output Size Activation Function

Input 1 -

Linear 80 SELU

Linear 140 SELU

Linear 200 SELU

Output 200 -

The data considered for feeding the DL architecture comprises a collection of measurements, where each input-output pair

consists of the information collected by a singular float profile. The inputs consist of two distinct categories of data, namely115
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point-wise and vectorial. Point-wise data encompasses temporal and geospatial parameters, such as the sampling
::::::
sample date

(specifically year and day) and geographic coordinates (latitude and longitude), while vectorial data encapsulates profiles of

temperature, salinity, and oxygen, as recorded by the float instruments. Given that the 1D CNN architecture operates only on

vectorial input data, a coherent transformation of point-wise features into vectorial ones is required.

In this regard, we leverage an MLP architecture that accepts point-wise input and transforms it into vectorial form. MLPs are120

employed to enable the NN to automatically learn how to weigh differently the importance of such point-wise input features

in correspondence of different levels of depth. A separate MLP is trained for each of the four pointwise inputs. The MLP

architectures have the same number of layers and neurons contained in these layers (Table 1), since there are no a priori

reasons to make them different.

During training, the weights of the MLP are optimized along with the weights of the 1D CNN architecture. Since the MLP125

operates as a non-linear function, this training approach enables the creation of a mapping between point-wise input and its

vectorial equivalent. This enables PPCon to effectively exploit point-wise information and achieve optimal learning outcomes.

The output vectors generated by the MLP are concatenated with the remaining vectorial input, yielding a seven-channel tensor

that serves the input of the PPCon architecture.

Thus, to sum up, the input to the PPCon architecture consists of four point-wise inputs — latitude, longitude, day, and year130

— which are transformed into a vectorial input using an MLP architecture. In addition, the architecture uses for the training

three 1× 200 input vectors representing the profiles of temperature, salinity, and oxygen.

3.2 PPCon Architecture

The convolutional component of the PPCon architecture, summarized in Table 2, is a DL model comprising multiple 1D

convolutional and deconvolutional layers.135

The input tensor has a 1-dimensional shape, with a total number of channels equal to 7, one for each of the three variables

to reconstruct, i.e. nitrate, chlorophyll and bbp700.

The architecture includes a total of nine layers, each of which applies a set of filters to the input tensor. These filters are

designed to detect specific features or patterns, with the number and size of the filter kernels specified by the parameters of

each layer. To enable effective feature extraction across different scales, various stride parameters are employed to specify140

the step size at which the filters are applied to the input tensor. To ensure that the output tensor has the same shape as the

input tensor, padding parameters are incorporated, adding zero padding to the borders of the input tensor. The output tensor is

then normalized through a batch normalization (Santurkar et al., 2018) layer after each convolutional layer. The normalization

process ensures that the output tensor has a mean of zero and a unit variance, thereby minimizing the effect of covariate

shifts and enhancing the stability of the training process. Following normalization, the output tensor is passed through a scaled145

exponential linear unit (SELU) activation function (Rasamoelina et al., 2020), which is defined as:

f(x) =

λx if x≥ 0

λα(ex) if x < 0
(1)
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Table 2. The convolutional component of the PPCon model is illustrated in diagram form. The key attributes of the NN are outlined,

encompassing parameters, output size (represented as [number of channels, input length]), as well as any additional layers. More specifically,

"BN" denotes the batch normalization layer, "SELU" represents the non-linear selu() activation layer, and "Dropout" indicates the presence

of a dropout layer along with the corresponding dropout rate. )

Layer Kernel Stride Padding Output Size Additional Details

Input - - - [7,200] -

Conv. 1D 2 1 2 [64,203] BN, SELU, Dropout (rate: dr)

Conv. 1D 2 2 1 [128,102] BN, SELU, Dropout (rate: dr)

Conv. 1D 4 1 1 [128,101] BN, SELU, Dropout (rate: dr)

Conv. 1D 4 1 2 [128,102] BN, SELU, Dropout (rate: dr)

Deconv. 1D 2 2 2 [128,200] BN, SELU, Dropout (rate: dr)

Conv. 1D 3 1 1 [128,200] BN, SELU, Dropout (rate: dr)

Deconv. 1D 2 2 1 [64,398] BN, SELU, Dropout (rate: dr)

Conv. 1D 2 2 1 [32,200] BN, SELU, Dropout (rate: dr)

Conv. 1D 3 1 1 [1,200] BN, SELU

Output - - - [1,200] -

where and λ≈ 1.0507 and α≈ 1.6732. SELU has been selected as an activation function as it induces self-normalization

properties. Dropout layers (Baldi and Sadowski, 2013) are also incorporated to prevent overfitting during training, promoting

robust generalization and enhancing the NN’s ability to learn diverse features from the input data. These layers randomly drop150

out some of the network neurons, with the specific probability of dropout (dr) specified for each layer in the architecture’s

hyperparameters.

The final convolutional layer produces a 1-channel output tensor, which represents the final prediction of the model.

3.3 Loss function

The choice and design of a loss function is a crucial step in the development of DL models, as it determines the objective to be155

optimized during training and can have a significant impact on the model’s ability to generalize to new data. Besides the ability

to skilfully reproduce output variable profiles, we want the PPCon architecture to mitigate overfitting and produce a smooth

prediction curve.

To fulfill these objectives, we define a loss function comprising three components: first, the Root Mean Square Error (RMSE)

between the target output and the PPCon architecture’s prediction, to assess prediction quality. Second, to mitigate overfitting160

phenomena, a regularization term known as λ-regularization is employed, which penalizes complex curves in proportion to

the square of the model’s weights (Zou and Hastie, 2005). By promoting smaller weight values, this technique encourages

the generation of more general predictions. The severity of this penalty is determined by a multiplicative factor λ, which is a

hyperparameter of the model. The final component of the loss function is incorporated to promote the generation of a smoother
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output curve. This term, controlled by a hyperparameter αs, serves as a regularization technique that penalizes sharp variations165

in the output. The final loss formula is as follows:

L(y, ŷ) =
n∑

i=1

(yi − ŷi)
2 +λ

N∑
i=1

|θi|2 +αs

n−1∑
i=1

(ŷi+1 − ŷi)
2 (2)

where y represents the target value, ŷ the output of PPCon model, n the length of both y and ŷ and N the total number of

weights of the DL architecture.

4 Experimental Study170

This section presents the experimental settings for the PPCon architecture, which are defined for each predicted variable

under consideration. The complete code for the reproducibility of the results presented in this paper is available at: https:

//zenodo.org/record/8369573.

4.1 Training

We divided the dataset into three subsets: training, testing, and validation. The training set was used for model training and175

parameter optimization. The testing set was utilized to evaluate the model’s performance on unseen data and assess its gen-

eralization ability. Finally, the validation set was employed for hyperparameter tuning and model selection. The dataset was

randomly partitioned, ensuring that each subset contained a representative distribution of the overall data characteristics. The

sizes of the training, testing, and validation sets were chosen as 80%, 10%, and 10% of the total number of measurements.

Moreover, before operating this partition, a few float instruments have been selected and all of their measurements have been180

excluded from both the training, test, and validation set. These samples will be used as an external validation dataset. The met-

rics and the performances over this external validation dataset are a more effective indicator of the generalization capabilities

of the PPCon model with respect to the metrics on the test set.

To train the NN model efficiently, the input dataset is partitioned into minibatches, where each minibatch contains 32 sam-

ples. The batch size is a hyperparameter that determines the number of samples processed before updating the model weights.185

By processing multiple samples in a minibatch, the model can update its parameters more frequently, which can lead to faster

convergence and improved generalization performance (Bottou, 2010).

Adadelta (Zeiler, 2012) is the algorithm that is selected as the optimizer for training the network due to its ability to dynam-

ically adapt over time using only first-order derivatives of the objective function. This method eliminates the need for manual

tuning of the learning rate and has been found to exhibit robustness.190

It is worth recalling that the PPCon architecture includes a 1D CNN and four MLPs, which convert point-wise input into a

vector form suitable for use by the CNN. The MLPs and the CNN component of PPCon were trained using the same optimizer,

with concurrent weight updates across all networks. This approach enables the joint learning of optimal information transfer

from point-wise input to vector form, as well as the accurate generation of predicted profiles based on the input tensor.
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#samples #epochs batchsize dropout rate λ αs

nitrate 2337 50 32 0.2 0.001 0.001

chlorophyll 3189 150 32 0.2 0.0001 0.0001

BBP 3942 100 32 0.2 1 · 10−7 1 · 10−7

Table 3. Summary of hyperparameters and dataset sizes.

To accelerate the training process, the model was trained using a GPU (graphics processing unit), which allowed for paral-195

lelized computation of the forward and backward passes.

The model’s performance was evaluated once every 25 epoch by assessing its ability to predict outcomes on the test set,

which consists of previously unseen data. To prevent overfitting and minimize computational burden, we introduced an early

stopping routine. Specifically, the training was interrupted if the error metrics on the validation set increased for two consecutive

evaluations (i.e. after 50 epochs of training). The final model selected was the one trained before the two 25 consecutive test200

loss increases.

4.2 Experimental Settings

Since each output variable has intrinsic differences in training set size, range of values, and profile shapes and variabilities,

a separate hyperparameter tuning step is performed for each of them. These hyperparameters were tuned using a systematic

search over a range of values, guided by the performance of the model on a held-out validation set. To avoid overfitting in205

the test set, we employed cross-validation techniques to estimate the generalization performance of the model and selected the

hyperparameters that yielded the best performance.

The hyperparameters used for training the three PPCon architectures are summarized in Table 3, together with the size of

the dataset, the total number of epochs performed, and the batch size dimension which have already been discussed in previous

sections.210

In our experiments, we applied a dropout rate of 0.2, which was consistent across all trained models. This means that during

training, each neuron in the NN has a 20% chance of being randomly excluded from the computation. Dropout regularization

is a technique used to prevent overfitting by encouraging each neuron to encode information independently, thereby inhibiting

co-dependencies among neurons.

Table 3 also reports the multiplicative factors that determine the relative contributions of different elements that compose215

the loss function defined in Section 3.3. The values of these hyperparameters vary depending on the variable being inferred,

as these variables have different orders of magnitude and result in RMSE values that vary in magnitude as well. It is crucial

to accurately balance the regularization term, governed by λ, and the smoothness term, governed by α
::
αs, to prevent them

from dominating the loss function’s RMSE component. The optimal values reported in Table 3 guarantee a good and smooth

prediction of the vertical profile.220
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North West Med. South West Med. Tyrrhenian Ionian Levantine

Latitude 40°N − 45°N 32°N − 40°N 37°N − 45°N 30°N − 45°N 30°N − 37°N

Longitude −2°E− 9.5°E −2°E− 9.5°E 9.5°E− 15°E 14°E− 22°E 22°E− 36°E
Table 4. Geographical limits of the five areas in which the Mediterranean is divided for the posterior analysis.

nitrate chlorophyll bbp700

WMO date lat lon WMO date lat lon WMO date lat lon

6901648 27/12/2014 41.94 4.02 6902954 01/08/2019 42.48 7.12 6901657 19/06/2016 40.60 10.52

6901768
::::::
6901769

:
17

::
20/03

::
04/2016 38.02

::::
38.45 18.87

:::
9.62 6901648 13/08/2015 40.60 4.25 6901776 26/04/2014 42.53 7.19

6901770 17/11/2015 36.44 19.65 6901496 27/12/2013 43.49 9.00 6901773 20/08/2015 33.01 29.03
Table 5. WMO, date, and geolocation of the float profiles reported in Figure 1− 3.

The last implementation detail to be addressed concerns the creation of vectors used to feed the PPCon architecture. As

previously discussed, vectorial inputs of different natures are fed into the CNN component of PPCon: firstly, the outputs of an

MLP architecture; secondly, vectors representing input variables (temperature, salinity, oxygen) at different depths. To ensure

that all input vectors have the same length, we adopted the following strategy: (i) the output and input variables have been

interpolated on a regular grid of size 200, and (ii) the output of MLPs have the same length and discretization of the input225

variable vectors. For nitrate, we considered a depth range of 0 to 1000 meters with an interpolation interval of 5 meters,

whereas, for chlorophyll and BBP, we considered a depth range of 0 to 200 meters with an interpolation interval of 1 meter.

Then, we set the output layer dimension of the MLP to 200 to ensure that all input vectors have the same length. As a result, the

final dimension of the input tensor is 7 (the number of inputs) x 200 (the length of the input vector) x the number of dimensions

in the training set.230

4.3 A posterior validation analysis of PPCon

To validate the PPCon architecture, we conducted a thorough analysis of its performance in different geographic areas (NWM,

TYR, SWM, ION and LEV in Figure 1) and across the four seasons: winter (JFM), spring (AMJ), summer (JAS) and autumn

(OND). The specific geographical limits related to different areas are reported also in Table 4. While the PPCon model is

trained on the entire dataset, this subdivision is only used to analyze the performance retrospectively to check whether the non-235

uniform geographical and spatial distribution of the profiles and the natural variability of the profiles (e.g. depth and slope of

the nitracline, or depth and intensity of the DCM) have an influence. In particular, the RMSE is calculated for the reconstructed

profiles in each area and season to verify the presence of any bias in the accuracy of PPCon in capturing the spatial and temporal

variability in the Mediterranean Sea.
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Figure 3. Profiles of nitrate for some selected floats (WMO numbers and cycles in the title). Profile dates and geolocations are reported in

Table 5. Comparison between measured profile (green lines) and PPCon reconstruction (blue dashed lines). Profiles are from the subset used

for the test.

Figure 4. Profiles of chlorophyll for some selected floats (WMO numbers and cycles in the title). Profile dates and geolocations are reported

in Table 5. Comparison between measured profile (green lines) and PPCon reconstruction (blue dashed lines). Profiles are from the subset

used for the test.

11



Figure 5. Profiles of bbp700 for some selected floats (WMO numbers and cycles in the title). Profile dates and geolocations are reported in

Table 5. Comparison between measured profile (green lines) and PPCon reconstruction (blue dashed lines). Profiles are from the subset used

for the test.

Figure 6. Plot of the RMSE distribution with respect to the data variability (on the x−axis) and training dataset size (on the y−axis).

Different sub-areas are represented by different colors of the symbol and different seasons are represented by different symbol fill patterns.

RMSE values are categorized by the size of the symbols, and bigger symbols correspond to bigger RMSE values

.

Winter Spring Summer Autumn

train test train test train test train test

Nitrate [mmol/m3] 0.51 0.51 0.51 0.52 0.51 0.49 0.48 0.51

Chlorophyll [mg/m3] 0.08 0.07 0.12 0.13 0.08 0.08 0.05 0.05

bbp700 [×10−4m−1] 2.6 2.4 2.3 2.6 1.5 1.4 1.5 1.5
Table 6. RMSE calculated between the float measurements and the reconstructed values obtained from the PPCon architecture. This metric

is evaluated individually for the train and test sets. The RMSE is computed for different seasons of the year (described in Section 2).
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North Western Med South Western Med Tyrrhenian Ionian Levantine

train test train test train test train test train test

Nitrate [mmol/m3] 0.62 0.65 0.37 0.38 0.44 0.44 0.41 0.41 0.48 0.51

Chlorophyll [mg/m3] 0.14 0.13 0.10 0.12 0.08 0.08 0.04 0.04 0.05 0.05

bbp700 [×10−4m−1] 2.6 2.4 2.1 2.0 2.3 2.3 1.4 1.6 1.4 1.7
Table 7. RMSE calculated between the float measurements and the reconstructed values obtained from the PPCon architecture. This metric

is evaluated individually for the train and test sets. The RMSE is computed for different geographic areas (described in Section 2).

5 Results240

This section presents the results of the PPCon model in predicting nitrate, chlorophyll, and bbp700 profiles. The effectiveness

of the model is evaluated by presenting both quantitative skill metrics (i.e., RMSE) and visual representations of the predicted

profiles based on the test set.

Specifically, we assess the PPCon performance over different seasonal variations (Table 6), and different geographic areas

(Table 7). The absence of overfitting is supported by reporting the RMSE for both the training and test sets, which exhibit245

non-dissimilar values.

In terms of performances across different geographic areas (Table 7), it can be seen that the lowest RMSE values for chloro-

phyll and bbp700 are in the eastern sub-basins, while for nitrate the lowest and highest values are in the two eastern sub-basins.

Notably, the prediction accuracy for nitrate is significantly higher in the ION,
:::::
SWM,

::::
and

:::::
TYR,

:
with RMSE values below

0.5
:::::::::::
0.5mmol/m3. Considering the temporal evolution of RMSE values (Table 6), the highest values of chlorophyll and bbp700250

are in spring and winter, which appears reasonable given the higher variability of vertical pattern during these seasons (Cos-

sarini et al., 2019; Teruzzi et al., 2021). Errors for nitrate are fairly homogeneous among the seasons, which are the highest

during winter (e.g. vertical mixing season) and the lowest values during the stratification seasons (i.e. spring and summer).

As for chlorophyll, the western basin of the Mediterranean shows higher RMSE values. This can be attributed to the naturally

elevated chlorophyll levels observed in that specific area, which consequently lead to higher RMSE values.255

For each variable investigated, we present three instances of vertical profile reconstruction using the PPCon architecture,

compared to the profile measured by the float instrument whose corresponding identification number is indicated above each

profile. To ensure geographic and seasonal diversity, we have selected profiles representing different regions, including at

least one from the West Mediterranean and one from the East Mediterranean. Figure 3-5 displays examples of, respectively,

reconstructed nitrate, chlorophyll, and bbp700 profiles. For the nitrate variable, the reconstruction performed by the MLP260

model
::::::::::::::::::::::::::::::::::::::
(Pietropolli et al., 2023a; Fourrier et al., 2020) is also reported (Pietropolli et al., 2023a)

::
in

::::::::
Appendix

::
B. The information

related to these profiles, such as the date and geolocation of sampling, are reported in Table 5.

The obtained results confirm the quality of the profiles generated by the PPCon architecture, which appears to better recon-

struct the shape and smoothness of the profiles than the previous MLP architecture. Indeed, PPCon can capture different profile

shapes associated with different geographic and seasonal conditions, as demonstrated by the predicted nitrate and chlorophyll265
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profiles. The visual inspection of all test profiles (not shown) revealed that higher quality in the prediction is achieved for the

nitrate variable, followed by chlorophyll, and last by bbp700. This outcome is expected, as the nitrate variable exhibits lower

variability in the values and profile shapes than chlorophyll and bbp700. For a more detailed analysis of the behavior of the

PPCon architecture quality of the predicted profiles, Appendix A reports a comparison between the mean of PPCon predicted

profiles and the mean of profiles measured by the float instruments (in the test set), providing a more specific insight on the270

PPCon performances in different geographic areas and seasons.

To understand the impact of the training set numerosity and of the variability of profiles on the quality of the PPCon

predictions we investigated the relation between these quantities and the PPCon error. Specifically, Figure 6 illustrates the

RMSE values computed for the reconstructed profiles subdivided into five geographic areas and four seasons. RMSE values,

which are indicated by the size of the symbols, are plotted against the variability of the training set (quantified by the standard275

deviation on the x−axis) and the size of the training set (on the y−axis). This figure offers also valuable insight into the

geographical and seasonal distribution of the training dataset dimension.

In terms of training size, the plots of the three variables shows that the SWM exhibits the smallest number of training profiles,

while the largest numbers are in the NWM and LEV areas. Natural variability changes across sub-basins with higher values

of standard deviations in the western sub-basins (i.e., SWM, NWM and TYR). Variability and sample size show a roughly280

homogeneous distribution among seasons.

The analysis of the nitrate plot reveals fairly homogeneous errors across natural variability and training sample size, exclud-

ing the SWM profiles. The NWM is the basin predicted with the lowest accuracy, while the SWM and ION have in general the

lowest errors. In terms of seasonal variation, the RMSE values appear slightly lower during summer compared to winter and

spring.285

Chlorophyll and bbp700 exhibit similar behavior (central and right plots in Figure 6). In particular, data availability appears

to have no significant impact on the error, whereas RMSE tends to increase proportionally with the variability.

Regarding the chlorophyll, the performances of the western sub-basins (i.e., NWM, SWM and TYR) are lower than the

eastern sub-basins (LEV and ION), likely due to higher profile variability. Winter and autumn are the seasons with lower

RMSE, while the highest error is predicted in Spring.290

Similarly, better performances for bbp700 are observed in LEV and ION compared to the western sub-basin.

Interestingly, summer and autumn performances are almost 50% better than winter and spring ones despite natural variability

and sample size do not show appreciable differences among the seasons.

5.1 PPCOn performance over an external validation dataset

For each inferred variable, Figures 7-9 display Hovmöller diagrams of measured and reconstructed float instruments belonging295

to the external validation set, and Table 8 reports the corresponding RMSE values. This represents a particularly stringent

validation test since none of the profiles measured by these floats have been encountered by the PPCon model during the

training or validation phases. The figures compare the in situ float measurements (upper diagram) and the predictions generated

by the PPCon architecture (lower diagram) for floats that have been specifically selected to cover different geographical regions

14



Nitrate [mmol/m3] Chlorophyll [mg/m3] bbp700 [m−1]

6901767 0.44 6901648 0.14 6901649 1.9 ·10−4

6901764 0.31 6901496 0.13 6901496 2.2 ·10−4

Table 8. RMSE calculated between the float measurements and the reconstructed values obtained from the PPCon architecture over the

external validation dataset.

Figure 7. Hovmöller diagrams for the nitrate of two selected floats (WMO name in the title) belonging to the external validation set. BGC-

Argo measurements (upper panels) and PPCon prediction (lower panels) are compared. WMO 6901767 sampled the 39°N − 41°N and

10°E− 11°E area during 2015− 2018, whereas WMO 691764 sampled the 31°N − 34°N and 26°E− 40°E area during 2015− 2017.

Figure 8. Hovmöller diagrams for the chlorophyll of two selected floats (WMO name in the title) belonging to the external validation set.

BGC-Argo measurements (upper panels) and PPCon prediction (lower panels) are compared. WMO 6901648 sampled the 40°N − 42°N

and 2°E− 6°E area during 2014− 2016, whereas WMO 6901496 sampled the 42°N − 43°N and 7°E− 12°E area during 2013− 2014.
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Figure 9. Hovmöller diagrams for the bbp700 of two selected floats (WMO name in the title) belonging to the external validation set. BGC-

Argo measurements (upper panels) and PPCon prediction (lower panels) are compared. WMO 6901649 sampled the 39°N − 41°N and

3°E− 7°E area during 2014− 2016, whereas WMO 6901496 sampled the 42°N − 43°N and 7°E− 12°E area during 2013− 2014.

of the Mediterranean Sea (e.g. one in the eastern and one in the western Mediterranean Sea). White lines in the diagram indicate300

float measurements that cannot be compared due to various reasons such as the sensor’s temporary inability to measure the

specific variable inferred or the absence of one of the inputs necessary for the PPCon architecture (e.g. at least one between

temperature, salinity, and oxygen). This could be attributed to limitations in the sensor or unacceptable quality flags associated

with the collected data. Nevertheless, the number of profiles that cannot be calculated by PPCon is rather low and does not

degrade the very good capacity of the reconstructed profiles to reproduce the temporal evolution of the vertical dynamics shown305

by the measured floats.

These plots confirm the PPCon capability to perform accurate predictions also regarding float devices which are totally

unseen by the model. The nitrate (Figure 7) reconstructions exhibit a very good performance of PPCon in predicting the

vertical dynamics associated with the temporal evolution of the nutricline depth (i.e. the depth at which the sharp increase of

the nitrate values is observed), the values in the deep layers (which are different in the sub-areas sampled by the two floats), and310

the occurrence of deep vertical mixing when surface concentration increases to values higher than 3mmol/m3. Particularly

impressive is the capability of PPCon to reconstruct the temporal dynamics of chlorophyll (Figure 8). The reconstruction

effectively captures the evolution of the chlorophyll surface peaks during winter and the formation of the deep chlorophyll

maximum during summer in both floats representing the two areas of the Mediterranean Sea. Among the three variables,

the bbp700 (Figure 9) shows the least accurate predictions. However, the model still displays the ability to infer the key315

characteristics of the variable’s temporal behavior. Nonetheless, the generated predictions for bbp700 appear slightly less

detailed compared to the original sampling, indicating a partial limitation of the model in capturing small-scale variations.
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Quantitatively, the prediction quality of the PPCon architecture (RMSE values in Table 8
:
)
:
are fairly well aligned with the

metrics calculated over the test set, as indicated in Table 7. In particular, nitrate errors of the two floats are quite homogeneous

and 30% lower than the RMSE values of the test set. The errors in chlorophyll and bbp700 predictions exhibit greater variability,320

with values almost double for the floats in the western Mediterranean with respect to the eastern ones. This is, however, in line

with results reported in Table 7, and Figure 6 where higher errors are associated with higher variability.

6 Discussion

To our knowledge, the PPCon architecture is the first attempt to predict vertical BGC-Argo profiles through a convolutional

architecture. Its primary objective is the incorporation of typical profile shapes during the training phase, in contrast with325

previous architectures which all relied on MLP architectures and point-wise strategy. There are notable distinctions between

the two approaches: MLPs were trained on cruise data, which are known to be more precise in collecting data than autonomous

sensors such as the BGC-Argo (Johnson et al., 2013; Johnson and Claustre, 2016). However, while MLP architectures have

been demonstrated to provide good training and test errors for point-wise input and output (Pietropolli et al., 2023a; Fourrier

et al., 2020; Bittig et al., 2018; Sauzède et al., 2017), they can exhibit higher errors when predicting BGC-Argo profiles,330

as demonstrated in Pietropolli et al. (2023a) and Appendix B. In contrast, the PPCon architecture, which relies directly on

BGC-Argo float measurements for the training, showed very good test and external validation performances.

However, it should be noted that an intrinsic measurement error is introduced by the higher uncertainty of the variables

measured throughout the autonomous sensors. We alleviated this limitation by using only DT and high-quality checked Argo

and BGC-Argo floats data; however, the use of the present PPCon in operational oceanography (Le Traon et al., 2021; Cos-335

sarini et al., 2019) should be considered cautiously given the lower reliability of Adjusted or near real-time (NRT) Argo data.

According to the analysis conducted by Mignot et al. (2019), the BGC-Argo float data for nitrate, and chlorophyll exhibit

RMSE values evaluated at 0.25 mmol/m3, and 0.03 mg/m3, respectively. On the other hand, PPCon architecture produced

BCG-Argo
:::::::::
BGC-Argo

:
profile reconstruction with RMSE values of 0.52 mmol/m3 and 0.08 mg/m3, for nitrate and chloro-

phyll, respectively. Therefore, a research question pertains to understanding
:::::::::
understand

:
how the measurement error of the340

float instrument impacts the performance of the PPCon architecture, and how to estimate an overall error that combines the

contribution of the instrument error and the error associated with the PPCon.

Although both MLPs and PPCon employ similar input information (date, geolocation, temperature, oxygen, and salinity),

their treatment of this data differs significantly. While the current MLP applications process the input and output as point-

wise data, PPCon utilizes vector representations of the vertical profiles. This approach effectively exploits the potential of345

a 1D CNN, which intrinsically preserves the characteristic profile shape of the input and output variables (Kiranyaz et al.,

2021). When comparing the predictive performance of these techniques in generating vertical profiles from float data, distinct

differences emerge. MLPs can produce profiles affected by artificial discontinuity, while the profiles generated by PPCon

exhibit a smoother and more realistic appearance (Appendix B). Additionally, the RMSE values computed on the reconstructed
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nitrate profiles of the test sub-set confirm the better performance of the 1D CNN approach with respect to an MLP approach350

trained on point-wise data (Appendix B).

Moreover, the posterior study that we conducted shows that there is no significant variation in the error across different

geographic areas and seasons of the year (Table 6-7), confirming that PPCon can be successfully applied to all the float profiles

collected in the Mediterranean basin.

Specifically, the PPCon architecture serves as a valuable tool for significantly enriching the BGC-Argo dataset. This becomes355

useful as ocean observing systems - while essential for the monitoring of the health of the marine ecosystem (Euzen et al., 2017)

- have considerable limitations given their sparse and scarce space-temporal coverage. Surface satellite observations are limited

by cloud coverage and incomplete swaths of satellite sensors (Donlon et al., 2012), while profiling the ocean interior is limited

by the capacity of deploying and retrieving sensors and measurements with sufficient coverage. Gap filling and interpolation

of satellite observations (Volpe et al., 2018; Sammartino et al., 2020; Alvera-Azcárate et al., 2005) are nowadays consolidated360

practices to provide gap-free and high-level products (Barth et al., 2020; Sauzède et al., 2016). Our PPCon architecture presents

a valuable approach to harness the potential of the Argo and BGC-Argo network by enabling the synthetic generation of

essential variables (chlorophyll, nitrate, and bbp700) even when these costly sensors are not present in the deployed floats.

For instance, the application of PPCon on Argo and oxygen profiles in the Mediterranean Sea for the period from 2013 to

2020 enabled the generation of 5234 (nitrate), 3879 (chlorophyll), 3307 (bbp700) synthetic profiles, which means doubling365

the chlorophyll and bbp700 BGC-Argo profiles and more than tripling those of nitrate. Enhancing the float dataset through

the inclusion of reconstructed nutrient profiles (and possibly other biogeochemical variables) has been proven successful in

observing system simulation experiments (Ford, 2021; Yu et al., 2018) and in real assimilation numerical experiments (Amadio

et al. , (2023)).
::::::::::::::::::
(Amadio et al., 2024).

:
In particular, the assimilation of reconstructed profiles effectively corrects a widespread

positive bias observed in the Operational System for Short-Term Forecasting of the Biogeochemistry of the Mediterranean370

(MedBFM), and the addition of the reconstructed profiles increases the spatial impact of the BCG-argo
:::::::::
BGC-argo network

from 20% to 45% (Amadio et al. , (2023))
:::::::::::::::::
(Amadio et al., 2024)

:
.

7 Conclusions

This paper presents a novel approach for reconstructing low-sampled variables, namely nitrate, chlorophyll, and bbp700, using

high-sampled variables such as date, geolocation, temperature, salinity and oxygen. The introduced model, named PPCon,375

utilizes a spatial-aware 1D CNN architecture that effectively learns the characteristic shape of the vertical profile, enabling

precise and smooth reconstructions. PPCon represents a potential advancement in predicting BCG-Argo
:::::::::
BGC-Argo

:
profiles

over previous MLP applications, which operate on point-wise input and output.

The training dataset consists of a collection of BGC-Argo float measurements in the Mediterranean basin. The proposed

architecture has been specifically designed to handle both point-wise and vectorial input, with careful tuning of the architecture380

and loss function for the task. An extensive hyperparameter tuning phase has been conducted to ensure the best architecture

for each variable.
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To evaluate the accuracy of the profiles generated by the PPCon architecture, both quantitative metrics and visual repre-

sentations of the results have been provided. Additionally, the method has been validated on an external dataset to verify

its generability. The results confirm the model’s ability to predict high-quality synthetic profiles, with particularly accurate385

predictions for the nitrate variable, followed by chlorophyll, and lastly, bbp700.

PPCon demonstrates its capacity to capture and learn distinct typical shapes in the profiles, which characterize the inferred

variables across different seasons and geographic areas. Detailed error analysis confirms the model’s robust performance,

accounting for seasonal and regional variations, suggesting that PPCon’s ability to learn these differences can make it success-

ful for broader-scale training beyond the Mediterranean basin. Furthermore, the model exhibits accurate performance on an390

external validation dataset, confirming its potential for generalization.

Code and data availability. The datasets, source code, and model implementation used in this study are publicly available at https://github.

com/gpietrop/PPCon for interested readers to access and replicate the results presented in this paper (Pietropolli et al., 2023b). In the present

work, we present an optimized version of the architecture for the specific dataset of the Mediterranean Sea, but the release of the PPCon code

allows arbitrary adjustments of the architecture.395

Appendix A: Extended Results

Figure A1. Comparison of the mean of PPCon predicted profiles with the mean of sampled values measured by the float instruments in the

test set. Results are divided among different geographic areas, the dashed lines represent sampled values, while continuous lines represent

PPCOn predictions.

Figure A1 presents a comparison between the mean values of the PPCon predicted profiles and the mean values of the

sampled measurements obtained from the float instruments in the test set. The mean values are computed based on the profiles

within a specific geographic area and season. These profiles serve as additional indicators to assess the reliability of predictions

within different frameworks, providing valuable insights into the precision of predictions at various depth levels. These results400

19

https://github.com/gpietrop/PPCon
https://github.com/gpietrop/PPCon
https://github.com/gpietrop/PPCon


PPCon CANYON-Med (Fourrier et al., 2020) MLP (Pietropolli et al., 2023a)

Nitrate RMSE [mmol/m3] 0.52 0.78 0.98
Table B1. RMSE of the three ML architectures computed over the nitrate profiles of the sub-set BGC-Argo dataset of the test phase.

Figure B1. Nitrate profiles from BGC-Argo dataset (green, measured) and reconstructed by PPCon (cyan dashed line), MLP as in (Pietropolli

et al., 2023a) (purple dashed line) and CANYON-Med (dark blue dashed line). Profiles are selected from the sub-set used in the test phase

of the present work. Float positions are as follows: 6901032 in NWM, 6903249 and 6903153
::::::
6901772

:
in ION, 69032904

:::::::
6902904 in LEV

and 6901767 in TYR and 6901769 in SWM.

confirm the previous observations discussed in Section 5, particularly the finding that the prediction quality is superior for the

nitrate, followed by chlorophyll, and lastly, bbp700. Additionally, an interesting characteristic of the PPCon prediction is its

higher quality in deep water compared to surface water. This can be attributed to the higher variability of profiles in the surface

water, making it more challenging for the neural network to accurately capture the diverse shapes.

Appendix B: Comparison between reconstructed nitrate profiles by PPCon and MLP architectures405

The present appendix aims to show the performance of three different ML architectures to reconstruct nitrate profiles that

use Argo profiles of temperature, salinity and BGC-Argo profiles of oxygen. The three ML architectures are: the 1D CNN

of the present work (PPCon), MLP trained on point-wise data from Emodnet (Pietropolli et al., 2023a) and MLP trained on
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point-wise data (Fourrier et al., 2020)
:
.
:::::
Input

::::
data

::::
from

:::::
Argo

:::
and

::::::::::
BGC-Argo

:::
for

::
all

::::::::::
approaches

::::
have

::::
been

:::::::::::
interpolated

::
to

:::
the

::::::
regular

:::::::
5-meter

:::::::::::
discretization

::
as

:::::::::
explained

::
in

:::::::
Section

:
4. The comparison is done on the sub-set of profiles used in the test410

phase. Figure B1 shows some measured and reconstructed float profiles. The visual comparison reveals the higher performance

of PPCon to match the shape of the measured profiles (e.g., depth and intensity of the nitracline) and to reproduce the nitrate

values of the deepest part of the profiles observed in the different Mediterranean sub-regions. The quantitative assessment of

the performance of the three ML architectures is shown in Table B1 that reports the RMSE computed over all profiles of the

sub-set used in the test phase. RMSE of the reconstructed profile by PPCon is more than 30% lower than that computed on the415

MLP reconstructions.
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