
PPCon 1.0: Biogeochemical Argo Profile Prediction with 1D
Convolutional Networks

Response to the Editor

Dear Editor and Reviewers,
We appreciate the constructive comments and suggestions provided by the two reviewers.
Following their suggestions, we propose several major changes to our manuscript, which are
outlined below:

1) improving the traceability and presentation of the dataset used in our analysis:

● We have simplified and improved the description of the BGC-Argo, including its
source, and added the corrected BGC-Argo DOI for better reference.

● The specific dataset employed in our analysis has been published on Zenodo
(doi.org/10.5281/zenodo.10391759) to ensure traceability and repeatability of our
results.

● We have more clearly specified our focus on the Mediterranean Sea in abstract and
introduction.

● A new figure depicting the spatial distribution of profiles in the Mediterranean Sea
has been added (Figure "New figure 2").

2) Improving readability of the text in Sections 4, 5, and 6.

3) improving the discussion on the benefits of the convolutional approach over point-wise
trained neural network architectures with the addition of the new Appendix B, which
compares profile reconstruction using different neural network architectures and the revision
of some sentences in the discussion section.
Below, we present our point-by-point responses to the reviewers’ comments. The reviewers'
comments are highlighted in blue, followed by our responses in black. In each response, we
detail the proposed changes to the manuscript, including any modified text and/or figures (in
red).

Furthermore, due to the improvements in the selection and description of the dataset (point
1), we decided to re-run the training/test/validation. The results remain largely unchanged;
minimal variations are attributable to the random selection of profiles in the training (80%),
test (10%), and validation (10%) quotas. Figures have been redrawn and are presented at
the end of this letter. The conclusions of our paper remain consistent with the original
version.



Reviewer 1

The paper demonstrates the application of a convolution neural network (coupled to a MLP)
to predict nitrate, chlorophyll and backscattering (bbp700) from temperature, salinity, and
oxygen as well as time and geographic coordinates. This work is an improved version of a
previous work by the same authors published in 2023 in Applied Sciences
(https://doi.org/10.3390/app13095634 )

We appreciate the constructive comments and suggestions from the Reviewer. We present
our point-by-point responses to the Reviewer’s comments below. The Reviewer's comments
are in blue, our responses follow each comment in black. In each response, we detail the
changes we propose to make to the manuscript in order to address the following comments,
and include the proposed modified text and/or figure (in red).

A. My main comment regarding this paper, one would either go into more detailed
comparison between the previous published method and for example show some example
profiles where they provide a different answer and discuss them. So far the comparison is
mostly limited to the RMSE error. Or the method should be compared to another
reconstruction technique altogether. In all cases, one should use the same
training/test/validation dataset (I assume that this is already the case, please confirm).

We appreciate the comment and we will include a better comparison between PPCon and
previous published methods. In doing that, it is important to note that while PPCon has been
trained/tested on profile data, other previously published approaches have been
trained/tested on point-wise data and subsequently used to reconstruct profiles.
Thus, we have decided to use the subset of the test dataset (10% of BGC-Argo profiles) to
assess the PPCon architecture and the previous NN methods. A new appendix with
reconstructed profile examples and skill performance metrics will be dedicated to the
comparison and the main text will be modified accordingly.
The new appendix will be as follows:

“Appendix B: Comparison between reconstructed nitrate profiles by PPCon and MLP
architectures

The present appendix aims to show the performance of three different ML architectures to
reconstruct nitrate profiles that use Argo profiles of temperature, salinity and BGC-Argo
profiles of oxygen. The three ML architectures are: the 1D CNN of the present work
(PPCon), MLP trained on point-wise data from Emodnet (MLP, Pietropolli et al., 2023) and
MLP trained on point-wise data (CANYON-Med, Fourier et al., 2020). The comparison is
done on the sub-set of profiles used in the test phase described in section 2. Figure B1
shows some measured and reconstructed float profiles. The visual comparison reveals the
higher performance of PPCon to match the shape of the measured profiles (e.g., depth and
intensity of the nitracline) and the nitrate values of the deepest part of the profiles observed
in the different Mediterranean sub-regions

The quantitative assessment of the performance of the three ML architectures is shown in
Table B1 that reports the RMSE computed over all profiles of the sub-set used in the test



phase. RMSE of the reconstructed profile by PPCon is more than 30% lower than that
computed on the MLP reconstructions.

Fig. B1: Nitrate profiles from BGC-Argo dataset (green, measured) and reconstructed by
PPCon (cyan dashed line), MLP as in Pietropolli et al. (2023) (purple dashed line) and
CANYON-Med (dark blue dashed line). Profiles are selected from the sub-set used in the
test phase of the present work. Float positions are as follows: 6901032 in NWM, 6903249
and 6903153 in ION, 69032904 in LEV and 6901767 in TYR and 6901769 in SWM.

PPCon CANYON-Med
(Fourier et al., 2020)

MLP (Pietropolli et
al., 2023)

Nitrate RMSE
[mmol/m3]

0.52 0.78 0.98

Table B1: RMSE of the three ML architectures computed over the nitrate profiles of the
sub-set BGC-Argo dataset of the test phase.”

Additionally, as reported above, old line 350-358 will be changed as follows:

“Although both MLPs and PPCon employ similar input information (date, geolocation,
temperature, oxygen, and salinity), their treatment of this data differs significantly.While the
current MLP applications process the input and output as point-wise data discrete data



points, while, PPCon utilizes vector representations of the vertical profiles. This approach
was necessitated to effectively exploits the potential of a 1D CNN, which intrinsically
preserves the characteristic profile shape of the input and output variables Kiranyaz et al.
(2021). When comparing the predictive performance of these techniques in generating
vertical profiles from float data, distinct differences emerge. MLPs can tend to produce
profiles affected by apparently artificial discontinuity and jumps, while the profiles generated
by PPCon exhibit a smoother and more realistic appearance (Appendix B2). Additionally,
This improvement is confirmed also by the RMSE values computed on the reconstructed
nitrate profiles of the test sub-set confirms the better performance of the 1D CNN
approach with respect to a MLP approach trained on point-wise data (Appendix B2). ,
which is lower when using the PPCon model (RMSEPPCon = 0.61) compared to the state of
the art of MLP architectures (RMSEMLP = 0.87 according to Pietropolli et al. (2023a))”

Finally, old line 384 in conclusion will be changed as follow:

“The introduced model, named PPCon, utilizes a spatial-aware 1D CNN architecture that
effectively learns the characteristic shape of the vertical profile, enabling precise and smooth
reconstructions. PPCon represents a potential notable advancement in predicting
BGC-Argo profiles over previous techniques relying on MLP applications, which operate
on point-wise point-to-point input and output, making it challenging to generate continuous
curves when forecasting complete vertical profiles”

B. In general the structure of the neural network is rather “unorthodox”. It would be good to
justify the approach (in particular the secession of convolutional layers; see below).

The structure of the network was chosen to process both 1D inputs and scalar values.
Hence the choice of a CNN to process the multiple channels of 1D inputs and produce the
corresponding 1D outputs. To integrate scalar values a MLP composed only of fully
connected layers has been employed to produce, for each scalar value, an additional input
channel. A more in detail justification for the kernel sizes choice and the use of
deconvolutional layer is provided below in response to a more specific comment of the
reviewer addressing this concern.

C. MLP vs CNN: the description is a bit shallow as mathematically a CNN is a special case
of a MLP in the sense that a convolution operation is a special case of a matrix
multiplication. CNNs assume translation invariance as an additional prior information, which
is why they can outperform MLPs (when considering multiple channels a 1x1 convolution is
actually an MLP over the channel dimension).

It is correct that CNNs are a special case of MLP where additional constraints are imposed
(namely translational invariance). It is also correct that the additional prior information is the
reason CNN are used instead of working only with fully connected layers in MLP, since it is
not necessary to learn the already known property of translational invariance which is
instead encoded in the architecture. That is also the reason for our choice of 1D CNNs,
since (some of) the inputs have an inherent spatial dimension (i.e., the vertical profiles).

It is correct that the term MLP (contrasted with CNN) was used without the necessary
adherence to the formal definition, since it is also of common usage to identify MLP with



“sequence of fully connected layers”. We will clarify the distinction between CNN and MLP
and we will be careful to avoid the more informal use of MLP in the text.

It is correct that a CNN can be mathematically considered a specialized form of an MLP,
where the convolution operation represents a specific case of matrix multiplication, as
discussed in Goodfellow et al. (2016). This perspective highlights the fundamental
similarities between the two types of neural networks.

However, the distinction lies in the additional intrinsic property of translation invariance
inherent in CNNs, which also holds for 1D CNNs, as used in our study.
This property is crucial when dealing with vector inputs, such as signals, where there is a
correlation between points in the vector. And this is exactly our case study, in fact where the
vector represents the value measured in the vertical profile.
CNNs are adept at capturing local dependencies and identifying invariant features, making
them highly effective for tasks involving sequential or spatially-correlated data.

In summary, while acknowledging the similarity between MLPs and CNNs, our choice to
focus on 1D CNNs was driven by their specific strengths in handling spatially structured
data, which is central to the objectives of our research.

Other comments (mostly minor ones):

“Punctual”: Should it not be “pointwise” ? It seems that punctual has only the meaning as
on-time (https://dictionary.cambridge.org/no/ordbok/engelsk/punctual )

Thank you for highlighting the terminology issue regarding the use of 'punctual’. Based on
your valuable feedback, we agree that 'point-wise' is indeed the more appropriate term for
our context. Consequently, we will revise our manuscript and replace all instances of
'punctual' with 'point-wise' to ensure accuracy and clarity.

Line 65: “This originates from the fact that MLPs are trained on individual data points and
provide pointwise outputs, which makes the generation of regular profiles challenging as the
NN does not take into account the vertical neighbors of predicted variables.” This description
is a bit too simple. This all depends on how the MLP is trained. One could (theoretically) also
feed a profile and get a profile in return. For long profiles however this would be
computational and prohibitive.

We acknowledge the reviewer's point that the architecture of MLPs and their training process
can vary based on the approach taken. The specific MLP architectures used as a
comparison in this paper (i.e. Fourier et al., 2020 and Pietropolli et al 2023) are trained on
individual data points to provide point-wise output and only subsequently used to reconstruct
profiles While we recognize that an MLP architecture capable of processing vector inputs
and outputs could potentially be employed – as suggested by the reviewer – such a setup
would significantly increase computational demands. Most importantly, a 1D convolutional
architecture is characterized by better performance when handling vectorial input structures
characterized by spatial correlation between different points in the vector. This choice was
made based on existing literature and empirical evidence demonstrating the effectiveness of
1D convolutional architectures in analogous type of 1D data, such as processing of medical
signals (Goodfellow et al 2018).



According to the suggestion of the reviewer, we will modify the sentence (in old line 65) in as
follows:

“In fact, when these methods are used to forecast predict profiles from Argo float
measurements, they may generate jumps and irregularities in the reconstruction. This is
possibly due to the fact that these MLP uses point-wise data for input and output.
originates from the fact that MLPs are trained on individual data points and provide
pointwise outputs, which makes the generation of regular profiles challenging as the NN
does not take into account the vertical neighbors of predicted variables.”

Line 105: “we only selected profiles that were marked with quality flags (QFs) of 1, 2, or 8 for
variables such as temperature, salinity, nitrate, and chlorophyll.” Please also provide the
labels associated with these classes.

The section 2 (presentation of the dataset) has been thoroughly revised also after comments
from Rev#2. In particular, we will explain better the quality check used for the preparation of
the training/testing/validation dataset. The meaning of the quality flags will be explained. The
new text is as follows:

“The data used to train and test the architecture discussed in this paper comes from the
Array for Real-time Geostrophic Oceanography (Argo) BGC-Argo program (Bittig et al.
(2019)), specifically the Argo float collecting also biogeochemical variables.

Our investigation used BGC-Argo S-profile data for the Mediterranean Sea
downloaded from the Coriolis Argo GDAC (Argo, 2023; last visit on August 2022) and
the analysis considered only Delayed Mode (DM) and Adjusted Real-Time Mode (RT)
data for the period from 1-7-2013 to 31-12-2020 ensuring a larger number of DM data.
DM data undergoes a more rigorous quality control process and is typically released
a few months later to their sampling (Li et al., 2020).

Dataset was quality checked retrieving only complete profiles with Quality Flags 1
(good data), 2 (probably good data), 5 (value changed) and 8 (interpolated) for
temperature, salinity, nitrate and chlorophyll. Furthermore, three specific quality
check steps were applied for Bbp700 based on the study by Dall'Olmo (2022):
missing-data test (profiles with substantial amount of missing data); high-deep-value
test (profiles with unusually high bbp700 value at depth) and negative-bbp test
(profiles with negative bbp700 values). Finally, for each of three variables (nitrate,
chlorophyll and bbp700), profiles were only considered if the corresponding oxygen,
salinity and temperature profiles were also available. As a result of the QC, the
number of profiles for each variable used in the train, test and validation is reported in
Table 3, the float spatial distribution is shown in Figure 2 and the dataset is available
at the following repository (Amadio et al., 2023).”

References used which will be added to bibliography:

● Amadio, C., TERUZZI, A., Feudale, L., BOLZON, G., DI BIAGIO, V., Lazzari, P.,
Álvarez, E., Coidessa, G., Salon, S., & COSSARINI, G. (2023). Mediterranean
Quality checked BGC-Argo 2013-2022 dataset [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.10391759



Table 1: I think you should mention that 32 is the batch size in the caption. Some authors
omit the batch size in such tables as it is considered an adjustable hyperparameter.

The 32 in Tables 1 and 2 refers to the minibatch size used during the training of our model.
We understand the potential confusion this might cause. We will revise the two tables to
remove the minibatch size.

Additionally, we note that the batch size, being a critical hyperparameter of the training
process, is already detailed in Table 3. To maintain clarity and avoid redundancy, we will
keep the information regarding the batch size contained in Table 3.

Line 133: “the sampling date (specifically year and day), geolocation, and geographic
coordinates (latitude and longitude)”: What is geolocation if not geographic coordinates ?

The term 'geolocation' indeed corresponds to 'geographic coordinates.' Based on this
feedback, we will revise line 133 in our manuscript, as follow:

“the sampling date (specifically year and day), geolocation, and geographic coordinates
(latitude and longitude)”

Line 121: “MLPs employed to transform punctual data into a vectorial shape - necessary for
the training of the convolutional component.” Why did you not consider a more obvious
approach to simply repeated the sampling data and coordinates along the depth dimension.
After all, all values in the profiles are considered to be at the same time and date. With the
depth information that, the NN can specially on depth and thus come an entirely
convolutional neural network.

The main motivation behind the use of a MLP for transforming scalar inputs into vectorial
ones is that the same scalar value can have different impacts at different depths and this can
be learned by the MLP performing the 1x1 to 1x200 transformation (we justify this choice in
line 137 of the manuscript). In particular, while not widespread, a similar approach was
already applied in “Learning Hand-Eye Coordination for Robotic Grasping with Deep
Learning and Large-Scale Data Collection” by Levine et Al. (2016). In that paper the authors
used a fully connected layer with 64 units whose outputs were added pointwise to 64
response maps (i.e., they provided the equivalent of a bias term). In our case we still employ
fully connected layers but, instead of performing a pointwise addition to multiple response
maps, we directly add the output as a channel. In both cases the idea of using a MLP to
adapt the data before inserting it in the CNN architecture is present.

Reference used for the response:

● Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data
collection. The International journal of robotics research, 37(4-5), 421-436.

Section 3.2 and table 2: The architecture of the convolutional layer is rather surprising. In a
UNet or convolutional autoencoder one would expect to have first all the convolutional layers



(with a stride of 2 or with pooling layers) followed by all the deconvolution layers to get to the
original depth dimension. In this paper they are mixed. For the convolutional layers you use
kernel size of 2, 3 and 4. Can you explain why you use different sizes?

Our design choices were inspired by the study conducted by Goodfellow et al., 2018 which
aimed to create a convolutional neural network (CNN) for ECG rhythm classification. We
adopted different kernel sizes (2, 3, and 4) to manipulate the network’s receptive field. By
varying these kernel sizes, our goal was to capture features at different scales and depths
within the data, an approach particularly relevant to our context where understanding the
spatial correlation and complex features of the data is essential. The mix of convolution and
deconvolution layers, diverging from the traditional sequential approach, was chosen to
provide a more flexible representation of features. This methodology, inspired by the
adaptability and effectiveness demonstrated in Goodfellow’s study, is employed to enhance
our network's capabilities in handling complex spatial data.

Line 175: “Second, to mitigate overfitting phenomena, a regularization term known as
λ-regularization is employed, which penalizes complex curves in proportion to the square of
the model’s weights (Zou and Hastie (2005))” There is no square in equation (2). Can you
clarify if you use L1 or L2 regularization?

We thank the reviewer for highlighting the inconsistency related to the regularization term.
Indeed, the regularization method we employed is L2 regularization, which penalizes the
model in proportion to the square of its weights. We have accordingly revised Equation (2) .

Equation 2: I think you forgot the alpha coefficient in this equation. Also consider to use a
different symbol as alpha is already used for something different in equation (1).

We appreciate the reviewer's observation regarding the omission of the coefficient in
Equation (2). To rectify this, we will include the missing coefficient in Equation (2).
Additionally, to avoid any confusion with the symbol used in Equation (1), we will choose a
different symbol for the coefficient both in the equation and the main text.

193: “validation sets were chosen as 80, 10, and 10.” Add %

Thank you for pointing out the omission of the percentage symbol in our description of the
dataset division. We will update the text to to correctly reflect the distribution as:

“80%, 10%, and 10% of the total number of measurements”.

Line 203: “Adadelta (Zeiler (2012)) is the algorithm that is selected as the optimizer for
training the network due to its ability to dynamically adapt over time using only first-order
information“: Can you be more specific what “first-order information“ means here?

In the context of optimization algorithms like Adadelta, "first-order information" refers to the
use of first-order derivatives or gradients of the objective function (often the loss function in
machine learning). This is in contrast to second-order methods that use second-order
derivatives or curvature information. In order to render the sentence more clear, we will
modify it as follows:



“Adadelta (Zeiler (2012)) is the algorithm that is selected as the optimizer for training the
network due to its ability to dynamically adapt over time using only first-order information
derivatives of the objective function”.

Table 3: please replace $1e^-7$ by $10^{-7}$. In equation $e$ means the Euler number and
$e^{-7}$ would be $exp(-7)$ (also on Table 6, 7,8).

Thank you for pointing out the notation error in Tables 3, 6, 7, and 8. We understand the
reviewer's concern regarding the use of '$1e^-7$' and the potential confusion with Euler's
number, e. Based on your suggestion, we will correct this notation to '$10^{-7}$' in all the
mentioned tables.

Line 346: “On the other hand, we have demonstrated that the RMSE for the PPCon
architecture is 0.61” Which unit are you using?

Thank you for highlighting the omission of the unit in Line 346. We indeed forgot to specify
the unit for the RMSE value of the PPCon architecture. Moreover, we did not mention which
variable we were referring to. The considered variable is nitrate and thus the unit used for
RMSE is μmol/kg. We will update the text to include this unit, as follow:

“On the other hand, we have demonstrated that, for example, the RMSE for the PPCon
architecture regarding the prediction of nitrate is 0.52 μmol/kg”.

Line 27: “These instruments are essential to advance our knowledge of the biogeochemical
state of the ocean, as one of their principal advantages is the assimilation into ocean
biogeochemical models”Advantages -> use cases?

We agree with the reviewer's suggestion regarding the terminology: the term 'use cases'
indeed provides a more specific and practical perspective compared to 'advantages.' We will
modify the sentence as follow:

“These instruments are essential to advance our knowledge of the biogeochemical state of
the ocean, as one of their principal advantages use cases is the assimilation into ocean
biogeochemical models”.

References: Please add a DOI where one is available (see
https://www.geoscientific-model-development.net/submission.html)
https://doi.org/https://doi.org/10.17882/42182, 2000 -> , https://doi.org/10.17882/42182,
2000

Thanks for spotting these lacks: we will add the DOIs where necessary in the revised
manuscript.

In general, replace Adadelta (Zeiler (2012)) by Adadelta (Zeiler, 2012) and similar. (this is
\citep in latex).

We thank the reviewer for pointing out this text format issue, we will replace the format of the
reference according to this suggestion in the revised text.

https://www.geoscientific-model-development.net/submission.html


References used in the response:

● Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.
● Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic

convolutional and recurrent networks for sequence modeling. arXiv preprint
arXiv:1803.01271.

● Kiranyaz, S., Ince, T., & Gabbouj, M. (2021). 1D Convolutional Neural Networks and
Applications: A Survey. Mechanical Systems and Signal Processing, 151, 107398.

● Goodfellow, Sebastian D., et al. "Towards understanding ECG rhythm classification
using convolutional neural networks and attention mappings." Machine learning for
healthcare conference. PMLR, 2018.

● doi.org/10.5281/zenodo.10391759. Amadio, C., TERUZZI, A., Feudale, L., BOLZON,
G., DI BIAGIO, V., Lazzari, P., Álvarez, E., Coidessa, G., Salon, S., & COSSARINI,
G. (2023). Mediterranean Quality checked BGC-Argo 2013-2022 dataset [Data set].
Zenodo. https://doi.org/10.5281/zenodo.10391759



Reviewer 2

Rev#2.01 The authors describe a method that predicts nitrate, chla and bbp vertical profiles
from geolocated and dated vertical profiles of temperature, salinity, and oxygen. With the
help of CNNs, they use vertical profiles (data values and shape) rather than point-wise data
values for these predictions. The method is trained and evaluated on BGC-Argo profiling
float data acquired in the Mediterranean Sea.

We appreciate the constructive comments and suggestions from the Reviewer. We present
our point-by-point responses to the Reviewer’s comments below. The Reviewer's comments
are in blue, our responses follow each comment in black. In each response, we detail the
changes we propose to make to the manuscript in order to address the following comments,
and include the proposed modified text and/or figure (in red).

Rev#2.02 What is very interesting in this work is that -- in contrast to previous work -- they
propose to take a stronger advantage of the data context by using a convolutional neural
network together with entire profiles for prediction. This is novel and innovative. What
requires attention and significant improvement, however, is the presentation and clarity of
their work. The manuscript starts off with a well-detailed and well-written introduction, but
attention to detail and readability suffer the further one goes into the later sections.
Unfortunately to an extent, at which it in places becomes unclear to a reader what is meant
by the authors, e.g.:

l.345 "BGC-Argo float data for oxygen, nitrate, and chlorophyll concentrations exhibit RMSE
values evaluated at 5.1±0.8μmol/kg, 0.25±0.07μmol/kg, and 0.03±0.01mg/m3, respectively.
On the other hand, we have demonstrated that the RMSE for the PPCon architecture is
0.61" -- ??? What's the 0.61 related to? No unit, no oxygen/nitrate/chla given.

Thank you for highlighting the omission of the unit in Line 346. We indeed forgot to specify
the unit for the RMSE value of the PPCon architecture. Moreover, we did not mention which
variable we were referring to. The considered variable is nitrate and thus the unit used for
RMSE is μmol/kg. We have now updated the text to include this unit, as follow: “On the other
hand, we have demonstrated that, for example, the RMSE for the PPCon architecture
regarding the prediction of nitrate is 0.52 μmol/kg”.

Rev#2.03 This is unfortunate and definitely needs attention before a re-submission. Starting
from Section 3 and onwards, a thorough proof-read and maybe re-write would be
recommended.I I take it that this manuscript is part of a thesis, with later parts likely written
in a rush. This is very understandable, so I would like the authors to take my comments as
advise on how to get their excellent idea into a shape that mirrors it's worth.

We thank the reviewer for the encouraging feedback. We have read all the following
comments, and we will make all necessary adjustments in order to have the discussion more
clear and precise. We will propose changes and re-written parts following general comments
raised by Rev#2. Subsequently, the entire manuscript will be thoroughly read and checked
for consistency when our responses to the reviewers' comments are accepted.



*General comments*:

- Rev#2.04 While the method can be applied anywhere, the present study focuses on the
Mediterranean Sea. This must be mentioned somewhere prominently/early, e.g., either in the
title or abstract. A reader cannot be left searching for the regional coverage until somewhere
late in section 4, if one happens to glance over the one single sentence in l. 105. With almost
all previous text (Intro, Argo description, etc.) referring to the global system.

We present the PPCon as a general method that can be applied anywhere, and we
demonstrate its validity/effectiveness using the case study of the Mediterranean Sea. We
believe that the Mediterranean Sea is an ideal case for testing new approaches: the density
of profiles is fortunately high and the BGC-Argo profiles show sufficient (temporal and
spatial) variability to cover a wide range of marine biogeochemical regimes (e.g. from
mid-eutrophic to ultra oligotrophic conditions). The choice of the Mediterranean Sea will be
mentioned prominently and early in the Abstract and in the introduction. However, we would
prefer to leave the title as it is, as the aim of the paper is to present and make available a
general method and its Python code.

We propose the following modifications to the manuscripts:

1) in abstract at old lines 10-16:
“In this study, we present a novel one-dimensional Convolutional Neural Network (1D CNN)
model to predict profiles leveraging the typical shape of vertical profiles of a variable as a
prior constraint during training. In particular, the Predict Profiles Convolutional (PPCon)
model predicts nitrate, chlorophyll and backscattering (bbp700) starting from the date,
geolocation, and temperature, salinity, and oxygen profiles. Its effectiveness is demonstrated
using a robust BGC-Argo dataset collected in the Mediterranean Sea for training and
validation. Results, which include quantitative metrics and visual representations, prove the
capability of PPCon to produce smooth and accurate profile predictions overcoming some
limitations of previous MLP applications.”

2) in the introduction section, the old lines 78 and 79 will be replace with the following
paragraph:
“PPCon approach is tested with a robust Argo dataset collected in the Mediterranean Sea.
The Mediterranean Sea, a semi enclosed marginal sea, presents a substantial high density
of BGC-Argo profiles thanks to dedicated programs such as ARGO-Italy and French NAOS
initiative (D'Ortenzio et al., 2020). This particularly fortunate situation has already made the
Mediterranean a successful case for the development of biogeochemical modelling
approaches based on BGC-Argo. For example, BGC-Argo is being integrated into the
biogeochemical prediction model of the Mediterranean component of the Marine Copernicus
Service (Cossarini et al., 2019; Teruzzi et al., 2021; Coppini et al., 2023).”

References used which will be added to bibliography:

● D’ortenzio, F., Taillandier, V., Claustre, H., Prieur, L. M., Leymarie, E., Mignot, A., ... &
Schmechtig, C. M. (2020). Biogeochemical Argo: The test case of the NAOS
Mediterranean array. Frontiers in Marine Science, 7, 120.



● Coppini, G., Clementi, E., Cossarini, G., Salon, S., Korres, G., Ravdas, M., ... &
Zacharioudaki, A. (2023). The Mediterranean Forecasting System–Part 1: Evolution
and performance. Ocean Science, 19(5), 1483-1516.

● Teruzzi, A., Bolzon, G., Feudale, L., & Cossarini, G. (2021). Deep chlorophyll
maximum and nutricline in the Mediterranean Sea: emerging properties from a
multi-platform assimilated biogeochemical model experiment. Biogeosciences,
18(23), 6147-6166.

● Cossarini, G., Mariotti, L., Feudale, L., Mignot, A., Salon, S., Taillandier, V., ... &
d'Ortenzio, F. (2019). Towards operational 3D-Var assimilation of chlorophyll
Biogeochemical-Argo float data into a biogeochemical model of the Mediterranean
Sea. Ocean Modelling, 133, 112-128.

- Rev#2.05 In general, the manuscript would benefit from more clarity (one example: Make
sure to use the same term for the same thing). And from more specifics throughout the text
(one example: "nitrate, chla, and bbp" instead of "all inferred variables"; Does "output
variable" in l.124 refer to output of the MLP or output of PPCon?). If you can name it, then
name it and do not find an alternative description.

Many thanks for the comments. Variables will be named nitrate, chlorophyll and particulate
backscattering coefficient at 700nm. Variables will be abbreviated in NO3, CHL and bbp700
when appropriate.

Finally, the sentence at old line 124 will be modified as follows:

“The input variables for PPCon include sampling data, geolocation, temperature, salinity, and
oxygen, while the PPCon output comprise vertical profiles for nitrate, chlorophyll, and BBP.”

- Rev#2.06 Who is your target audience with this paper? I believe it's an oceanographic
community? For this, it is surprising to not see a map of any sort, which would help a reader
to follow along (and to put it into his/her oceanographic background context).
I'd therefore like to see a map to show all BGC-Argo float profile positions used for algorithm
training, testing, and (independent) validation (e.g., each with a different colour), to show the
specific float positions relating to the selected profile plots (e.g., with a different marker), and
to show the different areas for the posterior analysis (e.g., as boxes). If you're limited in
number of figures/tables, drop one of the existing ones (or combine figures into one),
because a map is much more important than any (anecdotal) illustration.

Many thanks for the comment. We agree that the PPCon method and code should target the
oceanographic community. Thus, the paper will benefit from a more friendly presentation of
the data used for training, testing, validation and external validation. We propose to include
a new figure reporting the position of the float profiles for the three variables and the limits of
the sub-regions used for the statistics computation.



“New Figure 2: position of BGC-Argo float profiles for bbp700 (red), chlorophyll (blue) and
nitrate (green) that also have oxygen data. BGC-Argo floats used for external validation
(black and labels). Geographical limits of sub-regions (dashed boxes): North Western
Mediterranean (NWM), South Western Mediterranean (SWM), Tyrrhenian (TYR), Ionian and
southern Adriatic Sea (ION) and Levantine (LEV). Position of the 4 BGC-Argo float profiles
used for the external validation (black and numeric labels).”

The description of the new figure will be included in the re-written section 2 (dataset
presentation). Changes to section 2 are reported in the next comments (e.g. Rev#2.07).
Additionally, reference to the new figure 2 will be added appropriately in sections 3 and 4
and the old Table 4 (geographical limits of sub-regions) will be removed.

- Rev#2.07 Argo (and BGC-Argo) is a living dataset, which constantly evolves both with new
data being added but also with existing data being re-evaluated/newly adjusted. Which
means that, e.g., today's 2016-sampled profile (even if in delayed mode) may look different
from when you downloaded the same profile last year or from when you will download it in 1
year's time (https://argo.ucsd.edu/data/data-faq/#reD). It is therefore important to make one's
own work traceable, e.g., by stating the date one downloaded the dataset and from which
source (e.g., the GDAC). Even better would be, e.g., use of one of the monthly snapshots of
the Argo GDAC doi, which specifically refer to the state of the Argo dataset at the given time
(https://argo.ucsd.edu/data/data-faq/#DOI).

Many thanks for the comment, we were not aware of the snapshot DOI. OGS is part of the
Mediterranean Modelling Center of the Marine Copernicus Service (Coppini et al., 2023) and
BGC-Argo are used operationally for data assimilation in the biogeochemical model. That is
to say that we are updating our BGC-Argo dataset every day with the new profiles and the
updated profiles. The analysis presented in this paper was done using a dataset updated in
August 2022 and considering only profiles till 31-12-2020 to have a larger number of DM

https://argo.ucsd.edu/data/data-faq/#DOI


data. To clarify the origin of the dataset, we will rewrite section 2 including a reference to the
BGC-Argo doi: http://doi.org/10.17882/42182 and the date of the last visit.

Taking into account the following comments and one of Rev#1, the old lines 100-112 will be
rewritten as follows:

“Our investigation used BGC-Argo S-profile data for the Mediterranean Sea
downloaded from the Coriolis Argo GDAC (Argo, 2023; last visit on August 2022) and
the analysis considered only Delayed Mode (DM) and Adjusted Real-Time Mode (RT)
data for the period from 1-7-2013 to 31-12-2020 ensuring a larger number of DM data.
DM data undergoes a more rigorous quality control process and is typically released
a few months later to their sampling (Li et al., 2020).

Dataset was quality checked retrieving only complete profiles with Quality Flags 1
(good data), 2 (probably good data), 5 (value changed) and 8 (interpolated) for
temperature, salinity, nitrate and chlorophyll. Furthermore, three specific quality
check steps were applied for Bbp700 based on the study by Dall'Olmo (2022):
missing-data test (profiles with substantial amount of missing data); high-deep-value
test (profiles with unusually high bbp700 value at depth) and negative-bbp test
(profiles with negative bbp700 values). Finally, for each of three variables (nitrate,
chlorophyll and bbp700), profiles were only considered if the corresponding oxygen,
salinity and temperature profiles were also available. As a result of the QC, the
number of profiles for each variable used in the train, test and validation is reported in
Table 3, the float spatial distribution is shown in Figure 2 and the dataset is available
at the following repository (Amadio et al., 2023).”

References used which will be added to bibliography:

● Argo (2023). Argo float data and metadata from Global Data Assembly Centre (Argo
GDAC). SEANOE. https://doi.org/10.17882/42182; last visit on August 2022

● Amadio, C., TERUZZI, A., Feudale, L., BOLZON, G., DI BIAGIO, V., Lazzari, P.,
Álvarez, E., Coidessa, G., Salon, S., & COSSARINI, G. (2023). Mediterranean
Quality checked BGC-Argo 2013-2022 dataset [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.10391759

- Rev#2.08 Figure captions should provide a text description of what is presented so that
their content can be understood without the main text (applies, e.g., to Figure 1, but all
figures in general). Think of a lazy reader, who wants to get the main points of your paper
just by looking through your figures. At least what is presented in which colour/marking and
against what must become clear (e.g., Fig. A1: continuous vs. dashed lines??; Fig. 2: Which
MLP is shown?).

According with the suggestions of all reviewers, we propose the following more detailed
version of the paragraph (in bold the new text):

“Figure 1: Illustration of the principal architectural components of the PPCon model: i) MLP
network to transform the point-wise inputs (day, year, latitude, and longitude) into
vectorial form; ii) vectorial inputs (profiles of temperature, salinity, and oxygen and



output of the MLP); iii) structure of encoder-decoder of a 1D CNN architecture; iv)
output vector representing the vertical profile of one of the target variables (nitrate,
chlorophyll, or backscattering).”

“New Figure 3 (old Figure 2): Profiles of nitrate for some selected floats (WMO numbers
and cycle in the title) and dates. Profile dates and geolocations are reported in Table 5.
Comparison between measured profile (green lines), MLP reconstruction (azure dashed
lines), and PPCon reconstruction (blue dash-dotted lines). Profiles are from the subset used
for the test.”

“New Figure 4 (old Figure 3): Profiles of chlorophyll for some selected floats (WMO
numbers and cycle in the title) and dates. Profile dates and geolocations are reported in
Table 5. Comparison between measured profile (green lines) and PPCon reconstruction
(blue dashed lines). Profiles are from the subset used for the test.”

“New Figure 5 (old Figure 4): Profiles of bbp700 for some selected floats (WMO numbers
and cycle in the title) and dates. Profile dates and geolocations are reported in Table 5.
Comparison between measured profile (green lines) and PPCon reconstruction (blue dashed
lines). Profiles are from the subset used for the test.”

“New Figure 6 (old Figure 5): Plot of the RMSE distribution with respect to the data
variability (on the x-axis) and training dataset size (on the y-axis). Different sub-areas are
represented by different colour of the symbol, and different seasons are represented by
different symbol fill pattern. RMSE values are categorized by the size of the symbols, and
bigger symbols correspond to bigger RMSE values.”

“Figure A1: Comparison of the mean of PPCon predicted profiles with the mean of sampled
values measured by the float instruments in the test set, for all the variables investigated.
Results are divided among different geographic areas, the dashed lines represent
sampled values, while continuous lines represent PPCOn predictions.”

- Rev#2.09 Check/reconsider the number of significant digits given for statistical metrics
throughout the text, and make them coherent (and not more 'accurate' than realistic). (E.g.,
on the RMSE of nitrate, ... in tables 6-8)

In order to provide a more coherent and realistic statistical analysis of the results obtained
with the PPCon model, we will modify the number of significant digits for nitrate, chlorophyll
and bbp700 in Table 6, Table 7 and Table 8. Specifically, we will adopt two significant digits
for all those variables (eg 0.655 will become 0.66).

*Section by section comments*: (focus on style/structure)

- Rev#2.10 The introduction is extensive and well-written with appropriate referencing
(though referencing around global programs are a bit Med Sea centric; which is probably fine
once the regional scope becomes clear).

We appreciate the reviewer's positive comments regarding the introduction. Taking into
account also one of the previous comments of the reviewers and as mentioned in our earlier



response (Rev#2.04), we have taken steps to clarify the regional scope of our study in the
introduction.

- Rev#2.11 For the scope of the present paper, section 2 Dataset can be drastically reduced:
Lines 87-104 can be condensed into two sentences: "We used data from the evolving
BGC-Argo network, which uses profiling floats ... ." and "BGC-Argo data were accessed from
the Argo GDAC." Then add which data mode you used (only delayed-mode adjusted data?
Or also real-time adjusted data? Hopefully no unadjusted real-time data?), what kind of files
(likely the s- rather than b-profiles?), and, especially important, add how many profiles you
had in your data selection prior and past QC/preprocessing.
The size of the training dataset remains unclear to me in the present manuscript.

We agree that section 2 can be revised and the used dataset better presented. Taking into
consideration. Taking into account one of the previous comments and one of Rev#1
comment, section 2 will be revised as follows:

“The data used to train and test the architecture discussed in this paper comes from the
Array for Real-time Geostrophic Oceanography (Argo) BGC-Argo program (Bittig et al.
(2019)), specifically the Argo float collecting also biogeochemical variables.

Our investigation used BGC-Argo S-profile data for the Mediterranean Sea
downloaded from the Coriolis Argo GDAC (Argo, 2023; last visit on August 2022) and
the analysis considered only Delayed Mode (DM) and Adjusted Real-Time Mode (RT)
data for the period from 1-7-2013 to 31-12-2020 ensuring a larger number of DM data.
DM data undergoes a more rigorous quality control process and is typically released
a few months later to their sampling (Li et al., 2020).

Dataset was quality checked retrieving only complete profiles with Quality Flags 1
(good data), 2 (probably good data), 5 (value changed) and 8 (interpolated) for
temperature, salinity, nitrate and chlorophyll. Furthermore, three specific quality
check steps were applied for Bbp700 based on the study by Dall'Olmo (2022):
missing-data test (profiles with substantial amount of missing data); high-deep-value
test (profiles with unusually high bbp700 value at depth) and negative-bbp test
(profiles with negative bbp700 values). Finally, for each of three variables (nitrate,
chlorophyll and bbp700), profiles were only considered if the corresponding oxygen,
salinity and temperature profiles were also available. As a result of the QC, the
number of profiles for each variable used in the train, test and validation is reported in
Table 3, the float spatial distribution is shown in Figure 2 and the dataset is available
at the following repository (Amadio et al., 2023).”

Regarding the QC/preprocessing data, we decided to publish the dataset used for training,
testing and validation in a dedicated Zenodo repository (Amadio et al., 2023) to allow full
reproducibility of the PPCon results. The repository of Amadio et al. (2023) contains some
additional details about the QC/preprocessing used by the Marine Copernicus
Mediterranean Modelling Centre in OGS. In particular, preprocessing is presented in the
Coppini et al. (2023) publication, and the QC/preprocessing code (named bit.sea) is
available in a dedicated Zenodo repository (Bolzon et al., 2023). To avoid including too much



information in Table 3, we would prefer to leave Table 3 as it is now, unless requested by the
reviewer.

The sizes of the training, testing, and validation sets correspond to the percentages reported
in the main text: 80% of the data is used for training, 10% for testing, and 10% for validation.
The sentence at old line 193 will be rewritten as follows:

“The sizes of the training, testing, and validation sets were chosen as 80%, 10%, and 10%
of the total number of profiles (Table 3)”

References used for the response:

● Coppini, G., Clementi, E., Cossarini, G., Salon, S., Korres, G., Ravdas, M., ... &
Zacharioudaki, A. (2023). The Mediterranean Forecasting System–Part 1: Evolution
and performance. Ocean Science, 19(5), 1483-1516.

● Amadio, C., TERUZZI, A., Feudale, L., BOLZON, G., DI BIAGIO, V., Lazzari, P.,
Álvarez, E., Coidessa, G., Salon, S., & COSSARINI, G. (2023). Mediterranean
Quality checked BGC-Argo 2013-2022 dataset [Data set]. Zenodo.
https://doi.org/10.5281/zenodo.10391759

● Bolzon G., Teruzzi A., Salon S, Di Biagio V., Feudale F., Amadio C., Coidessa G., &
Cossarini G. (2023). bit.sea (1.7). Zenodo. https://doi.org/10.5281/zenodo.8283692

- Rev#2.12 section 3 PPCon: The first paragraph is a repetition of the introduction. It needs
to be there only once and I would recommend it to be only in the introduction.

We agree with the reviewer's observation regarding the repetition of content in the first
paragraph of Section 3, which mirrors information already presented in the introduction. In
order to avoid redundancy, we will remove the first paragraph from Section 3.

- Rev#2.13 I assume the "32" in tables 1 and 2 is the minibatch size? As such, it shouldn't be
listed as part of the layer size, which I find very confusing. (Consider the prediction step of
one profile - no batch size is relevant here.)

The 32 in Tables 1 and 2 refers to the minibatch size used during the training of our model.
We understand the potential confusion this might cause. We will revise the two tables to
remove the minibatch size.

Additionally, we note that the batch size, being a critical hyperparameter of the training
process, is already detailed in Table 3. To maintain clarity and avoid redundancy, we will
keep the information regarding the batch size contained in Table 3.

- Rev#2.14 section 4.1 is again rather general (except for one paragraph), and I wonder
whether the majority of its content should rather go to the introduction.

We appreciate the reviewer’s feedback on Section 4.1.
While it is indeed somewhat general, we included a broader and more general context
regarding the neural network's training procedure to ensure clarity. Since not all readers are
familiar with concepts such as mini-batching or network optimizers, we think that it is



important to include these details in the experimental study section to ensure comprehensive
understanding and facilitate the complete reproducibility of the PPCon architecture.

In order balance the generality and the necessary details of this part of the discussion, we
will reformulate the paragraph 4.1 as follows:

“We divided the dataset into three subsets: training, testing, and validation. The training set
was used for model training and parameter optimization. The testing set was utilized to
evaluate the model’s performance on unseen data and assess its generalization ability.
Finally, the validation set was employed for hyperparameter tuning and model selection. The
dataset was randomly partitioned, ensuring that each subset contained a representative
distribution of the overall data characteristics. The sizes of the training, testing, and
validation sets were chosen as 80%, 10%, and 10% of the total number of profiles (Table
3). This approach enabled us to assess and validate the performance of our model
effectively. Moreover, before operating this partition, a few float instruments have been
selected and all of their measurements have been excluded from both the training, test, and
validation set. These samples will be used as an external validation dataset. The metrics and
the performances over this external validation dataset are a more effective indicator of the
generalization capabilities of the PPCon model with respect 205 to the metrics on the test
set.
To train the NN model efficiently, the input dataset is partitioned into minibatches, where
each minibatch contains 32 samples. The batch size is a hyperparameter which determines
the number of samples processed before updating the model weights , is a hyperparameter
that must be set before training. By processing multiple samples in a minibatch, the model
can update its parameters more frequently, which can lead to faster convergence and
improved generalization performance (Bottou (2010)).
Once all the mini-batches have been processed by the optimization algorithm, the model has
completed an epoch of training.
Adadelta (Zeiler (2012)) is the algorithm that is selected as the optimizer for training the
network due to its ability to dynamically adapt over time using only first-order information
derivatives of the objective function. This method eliminates the need for manual tuning
of the learning rate and has been found to exhibit robustness. in the face of noisy gradient
information, various data modalities, different model architecture choices, and
hyperparameter selection.
It is worth recalling that the PPCon architecture includes a 1D CNN and four MLPs, which
convert point-wise input into a vector form suitable for use by the CNN. The MLPs and the
CNN component of PPCon were trained using the same optimizer, with concurrent weight
updates across all networks. This approach enables the joint learning of optimal information
transfer from point-wise input to vector form, as well as the accurate generation of predicted
profiles based on the input tensor. To accelerate the training process, the model was trained
using a GPU (graphics processing unit), which allowed for parallelized computation of the
forward and backward passes. The model’s performance was evaluated once every 25
epochs epoch by assessing its ability to predict outcomes on the test set, which consists of
previously unseen data. To prevent overfitting and minimize computational burden, we
introduced an early stopping routine. Specifically, the training was interrupted if the error
metrics on the validation set increased for two consecutive evaluations (i.e. after 50 epochs
of training). The final model selected was the one trained before the two 225 consecutive
test loss increases.”

- Rev#2.15 Section 4.3 would largely benefit from a map, e.g., to illustrate the "uneven
spatial and temporal distribution of the profiles" (l. 254) which remains elusive otherwise.



Regarding Section 4.3, we have taken the reviewer's suggestion to include a map illustrating
the uneven spatial distribution of the profiles in the Mediterranean Sea (see our reply to one
of the previous comments).
The section will be revised to include a detailed explanation of the map (which is the new
Figure 2, reported in Rev#2.06), ensuring that the distribution of the floats across various
Mediterranean Sea areas is clearly described. Section 4.3 will be modified as follow:

“4.3 A posterior validation analysis of PPCon

To validate the PPCon architecture, we conducted a thorough analysis of its average
performance in different five geographic areas (NWM, TYR, SWM, ION and LEV in New
Figure 2) and across the various four seasons: winter (JFM), spring (AMJ), summer
(JAS) and autumn (OND).While the PPCon model is trained on the entire dataset, this
subdivision is only used to analyze the performance retrospectively to check whether
the non-uniform spatial distribution of the profiles and the natural variability of the
profiles (e.g. depth and slope of the nitracline, or depth and intensity of the DCM)
have an influence. In particular, the RMSE is calculated for the reconstructed profiles
in each area and season to verify the presence of any bias in the accuracy of PPCon
in capturing the spatial and temporal variability in the Mediterranean Sea.

The choice underlying this investigation originates from the fact that diverse geographic
areas and seasons are known to have distinct profile properties, such as the shape of the
vertical profiles (e.g. depth and slope of the nitracline, or depth and intensity of DCM) and
the values at the surface and in deep water. Our goal is to evaluate the model’s ability to
accurately capture these variations. We wish to once again note the model is trained on the
entire dataset, and this division is purely for a posteriori analysis of the performances. This a
posteriori analysis of the performances has the objective of identifying possible influence and
bias of the uneven spatial and temporal distribution of the profiles on the performance of the
PPcon model.
Five different geographic areas are considered, namely: NorthernWest Mediterranean,
SouthernWest Mediterranean, Tyrrhenian, Ionian, and Levantine. The geographical limits
related to these variables are reported in Table4.
To gain a comprehensive understanding of how the model performs across different
seasons, we analyzed four distinct time
periods: winter (January to March), spring (April to June), summer (July to September), and
autumn (October to December).”

- Rev#2.16 Section 5 is more clearly written again, which is good!

Rev#2.17 A question I had while reading the RMSE values/patterns discussion (3rd
paragraph) is how this relates to the range of values and variability of nitrate/chla/bbp, e.g.,
within a given season. Eventually, this information is touched upon, but I'd suggest to move
the RMSE discussion, its temporal evolution and patterns (third paragraph) more closely to
the last paragraph of part 5.0.

We acknowledge the reviewer's suggestion regarding the organization of Section 5.
In light of this feedback, we will revisit the order of the paragraphs and revise them
accordingly.

Rev#2.18 This last paragraph (of section 5.0) and discussion of Figure 5 contains a lot of
(valuable) information! I would encourage the authors to spend more time/space on its



discussion, so that it can be adequately digested by a reader, and I would like to see this
presented more extensively to get better context, e.g., to the RMSE/performance vs. season
vs. natural variability.

We agree with the reviewer, and propose the following expanded discussion of Figure 5. We
report the new Figure 5 and the relative improved discussion:

“In order to understand the impact of the training set numerosity and of the variability of
profiles on the quality of the PPCon predictions we investigated the relation between these
quantities and the PPCon error. Specifically, Figure 5 reports points whose size corresponds
to the prediction RMSE (divided according to the four seasons and the five geographic
areas) and their relation with the variability of the training set (on the x-axis), quantified by
the standard deviation, and the numerosity of the training set (on the y-axis). Figure 5
illustrates the RMSE values computed for the reconstructed profiles subdivided in
five geographic areas and four seasons. RMSE values, which are indicated by the size
of the symbols, are plotted against the variability of the training set (quantified by the
standard deviation on the x-axis) and the size of the training set (on the y-axis). This
figure offers also valuable insight into the geographical and seasonal distribution of the
training dataset dimension.

A general observation from these plots is that the South Western Mediterranean
exhibits the smallest number of training samples, while the largest numbers are in the
North Western Mediterranean (NWM) and Levantine areas. Natural variability changes
across sub-basins with higher values of standard deviations in the western
sub-basins (i.e., SWM, NWM and TYR). Variability and sample size show roughly
homogeneous distribution among seasons. .

The analysis of the nitrate plot reveals fairly homogeneous errors across natural variability
and training sample size . The North Western Mediterranean is the basin predicted with
the lowest accuracy, while the South Western Mediterranean and Ionian have in
general the lowest errors. In terms of seasonal variation, the RMSE values appear
slightly lower during summer compared to winter and spring.

In terms of chlorophyll and bbp700, both variables exhibit similar behavior. In particular, data
availability appears to have no significant impact on the error, whereas RMSE tends to
increase proportionally with the variability.



Regarding the chlorophyll, the performances of the western sub-basins (i.e., NWM,
SWM and TYR) are lower than the eastern sub-basins (LEV and ION), likely due to
higher profile variability. Winter and autumn are the seasons with lower RMSE, while
the highest error is predicted in Spring.

Regarding bbp700, better performances are observed in the Levantine and in the
Ionian compared to the western sub-basins, probably due to their lower variability.
Interestingly, summer and autumn performances are almost 50% better than winter
and spring ones despite natural variability and sample size do not show appreciable
differences among the seasons.

- Rev#2.19 Section 6 is logically structured, but the content needs careful inspection so that
it contains all information intended/required to be transmitted. (E.g., units/which parameter in
l. 346; l. 371: Must add "in the Med Sea" to have this sentence work; ...).

Many thanks for the suggestion, we will revise appropriately the sentences of the section 6
to provide all information required.

In particular, changes will be as follows:

at old lines 335-337: “However, while MLP architectures have demonstrated to can provide
good training and test errors for point-wise input/output(Pietropolli et al. (2023a); Fourrier
et al. (2020); Bittig et al. (2018); Sauz.de et al. (2017)), they can have been found to exhibit
higher errors when predicting BGC-Argo profiles (Pietropolli et al. (2023a), Appendix B).”

at old lines 334-336: “According to the analysis conducted by Mignot et al. (2019), the
BGC-Argo float data for oxygen, nitrate and chlorophyll concentrations exhibit RMSE values
evaluated at 5.1±0.8μmol/kg, 0.25±0.07μmol/kg, and 0.03±0.01mg/m3, respectively. On the
other hand, PPCon architecture produced BGC-Argo profile reconstruction with we
have demonstrated that the RMSE values of for the PPCon architecture is 0.52 mmol/m3
and 0.08 mg/m3, for nitrate and chlorophyll, respectively.”

at old lines 350-358: “Although both MLPs and PPCon employ similar input information
(date, geolocation, temperature, oxygen, and salinity), their treatment of this data differs
significantly.While the current MLP applications process the input and output as
point-wise data discrete data points, while, PPCon utilizes vector representations of the
vertical profiles. This approach was necessitated to effectively exploits the potential of a 1D
CNN, which intrinsically preserves the characteristic profile shape of the input and output
variables Kiranyaz et al. (2021). When comparing the predictive performance of these
techniques in generating vertical profiles from float data, distinct differences emerge. MLPs
can tend to produce profiles affected by apparently artificial discontinuity and jumps, while
the profiles generated by PPCon exhibit a smoother and more realistic appearance
(Appendix B2). Additionally, This improvement is confirmed also by the RMSE values
computed on the reconstructed nitrate profiles of the test sub-set confirms the better
performance of the 1D CNN approach with respect to a MLP approach trained on
point-wise data (Appendix B2). , which is lower when using the PPCon model
(RMSEPPCon = 0.61) compared to the state of the art of MLP architectures (RMSEMLP =
0.87 according to Pietropolli et al. (2023a))”



at old lines 369-373: “Our PPCon architecture presents a valuable approach to harness the
potential of the Argo and BGC-Argo network by enabling the synthetic generation of
essential variables (chlorophyll, nitrate, and bbp700) even when these costly sensors are not
present in the deployed floats. For instance, the application of PPCon on Argo and
oxygen profiles in the Mediterranean Sea for the period the GDACs BCG-Argo float
dataset (spanning from from 2013 to 2020) enabled the generation of 5234 (nitrate), 3879
(chlorophyll), 3307 (bbp700) synthetic nitrate profiles, 3879 chlorophyll profiles, and 3307
bbp700 profiles, which means doubling the chlorophyll and bbp700 BGC-Argo profiles and
more than tripling those of nitrate.”

- The conclusion, again, is well-written, concise, and clear.

Specifics: (focus on content)

Rev#2.18 - l. 10: "resulting in irregularities such as jumps and gaps when used for the
prediction of vertical profiles".
I would challenge this and think that neither of this is true. For well-trained MLPs or neural
networks in general, regularization causes them to give smooth outputs in general. Jumpy
behaviour is only to be seen in case of overfitting, i.e., where an operator chose to fit the
training/testing data set too closely (for apparently good performance statistics) but
neglected the regularization term, so that the trained network does not generalize sufficiently
(and therefore gives seemingly erratic/jumpy predictions). But this is not sth. to blame the
MLP architecture for, but to blame the network training/operator implementation. It seems
that this claim is mostly supported by citation of the same authors' work (Pietropolli et al.,
2023). Given the way it is presented and that it should stand for MLPs in general, it would
largely benefit (or rather require!) support by other people's/lab's work.

Many thanks for the comment. We revised the results on the benefit of the Convolutional
architecture over point-wise trained MLPs to reconstruct profiles. In particular, we propose
to:

- compare PPCon with other 2 published MLP architectures specifically for the
Mediterranean Sea: Fourier et al., 2020 and Pietropolli et al., 2023;

- use nitrate since it is the only variable common to all published architectures;

- use a common dataset (i.e., the subset of the test dataset) to perform a fair comparison
among the different architectures.

The new results will be shown in a new Appendix and commented in the discussion section.
Please refer to the point Rev#2.21 for the new Appendix B and modifications to the main
text.

- Rev#2.19 Same comment on l.64-65. An MLP/point-wise prediction does not take into
account neighboring data during prediction, true. -- But they do so during training due to their
natural proximity in data state space and the MLP regularization. I.e., input data that are
close together in data space (like from a single profile) do get output predictions that are



smoothly transitioning from one to the next output value (if adequately regularized/without
overfitting). Nonetheless, CNNs can (likely) take advantage of neighboring data also during
prediction, so it's worth to study. (This provides sufficient motivation for CNNs from their
potential for improvement; there is no need to claim negative aspects on MLPs/current
methods beyond this for motivation.)

We agree that our statement about MLPs not considering neighboring data during prediction
might imply a limitation that is not entirely accurate.
It is indeed true that during training, MLPs can learn from data that are closely situated in the
data space, leading to output predictions that transition from one value to the next.
In light of this, we will remove the sentence in question that suggests MLPs do not take into
account neighboring data during prediction.
This change is intended to eliminate any potential confusion and to present a more accurate
depiction of MLP capabilities.

we will revise the old lines 60-65 as follows:
“In fact, when these methods are used to forecast predict profiles from Argo float
measurements, they may generate jumps and irregularities in the reconstruction. This is
possibly due to the fact that these MLP uses point-wise data for input and output.
originates from the fact that MLPs are trained on individual data points and provide
pointwise outputs, which makes the generation of regular profiles challenging as the NN
does not take into account the vertical neighbors of predicted variables”

- Rev#2.20 Continued: The authors write that (l. 335f) "MLP architectures can provide good
training and test errors" (as by Pietropolli and 3 more references for MLPs) while "they have
been found to exhibit higher errors when predicting BGC-Argo profiles" (only by Pietropolli
but none of the 3 other references for MLPs) -- This should make someone a bit suspicious
and check double if this holds in general (the way it is presented here).

As anticipated in point Rev#2.18, we propose to:

- compare PPCon with other 2 published MLP architectures specifically for the
Mediterranean Sea: Fourier et al., 2020 and Pietropolli et al., 2023;

- use nitrate since it is the only variable common to all published architectures;

- use a common dataset (i.e., the subset of the test dataset) to perform a fair comparison
among the different architectures.

The new results will be shown in a new Appendix and commented in the discussion section.
Please refer to the point Rev#2.21 for the new Appendix B and modifications to the main
text.

Finally, we will revise line 335 as follows:

“However, while MLP architectures have demonstrated to can provide good training and
test errors for point-wise input/output(Pietropolli et al. (2023a); Fourrier et al. (2020);
Bittig et al. (2018); Sauz.de et al. (2017)), they can have been found to exhibit higher errors
when predicting BGC-Argo profiles (Pietropolli et al. (2023a), Appendix B).”



Rev#2.21 - l. 384 and l. 355-358 (btw. CANYON-MED with MLP architecture states a nitrate
RMSE of 0.78 mmol m-3) will need correction, too.

We appreciate the reviewer's attention to the reported RMSE values for the CANYON-MED
MLP and our comparison with the MLP model by Pietropolli et al. 2023. It is indeed correct
that the CANYON-MED MLP (Fourier et al., 2020) states an RMSE of 0.78 mmol m-3.
However, it's important to note that this RMSE metric is computed on a test set derived from
the same dataset used for training the architecture, consisting of samples collected by ship
cruise measurements. This context is distinct from the test set used in the present study,
which comprises float measurements from the Argo-float dataset.

To ensure clarity and avoid any potential confusion, we will revise the relevant sections of
our manuscript (lines 384 and 355-358) to explicitly state the context and nature of the
datasets used for computing the RMSE values for PPCon and the two MLPs architectures
(Fourier et al., 2020; Pietropolli et al., 2023). This clarification will provide an accurate
comparison of the performance metrics across different models,in line with the reviewer’s
suggestion.

In particular, new Appendix B (Comparison between reconstructed nitrate profiles by PPCon
and MLP architectures) will report examples of reconstructed profiles by the different
approaches and the RMSE metric for PPCon and previous MLP applications. The RMSE is
computed on the same dataset: the sub-set of profiles constituting the test dataset presented
in section 2. This type of comparison is done only for nitrate that is the only variable
computed by all three ML architectures.

The new Appendix B will be as follows:

“Appendix B: Comparison between reconstructed nitrate profiles by PPCon and MLP
architectures

The present appendix aims to show the performance of three different ML architectures to
reconstruct nitrate profiles that use Argo profiles of temperature, salinity and BGC-Argo
profiles of oxygen. The three ML architectures are: the 1D CNN of the present work
(PPCon), MLP trained on point-wise data from Emodnet (MLP, Pietropolli et al., 2023) and
MLP trained on point-wise data (CANYON-Med, Fourier et al., 2020). The comparison is
done on the sub-set of profiles used in the test phase described in section 2. Figure B1
shows some measured and reconstructed float profiles. The visual comparison reveals the
higher performance of PPCon to match the shape of the measured profiles (e.g., depth and
intensity of the nitracline) and the nitrate values of the deepest part of the profiles observed
in the different Mediterranean sub-regions

The quantitative assessment of the performance of the three ML architectures is shown in
Table B1 that reports the RMSE computed over all profiles of the sub-set used in the test
phase. RMSE of the reconstructed profile by PPCon is more than 30% lower than that
computed on the MLP reconstructions.



Fig. B1: Nitrate profiles from BGC-Argo dataset (green, measured) and reconstructed by
PPCon (cyan dashed line), MLP as in Pietropolli et al. (2023) (purple dashed line) and
CANYON-Med (dark blue dashed line). Profiles are selected from the sub-set used in the
test phase of the present work. Float positions are as follows: 6901032 in NWM, 6903249
and 6903153 in ION, 69032904 in LEV and 6901767 in TYR and 6901769 in SWM.

PPCon CANYON-Med
(Fourier et al., 2020)

MLP (Pietropolli et
al., 2023)

Nitrate RMSE
[mmol/m3]

0.52 0.79 0.98

Table B1: RMSE of the three ML architectures computed over the nitrate profiles of the
sub-set BGC-Argo dataset of the test phase.”

Additionally, as reported above, old line 350-358 will be changed as follows:

“Although both MLPs and PPCon employ similar input information (date, geolocation,
temperature, oxygen, and salinity), their treatment of this data differs significantly.While the



current MLP applications process the input and output as point-wise data discrete data
points, while, PPCon utilizes vector representations of the vertical profiles. This approach
was necessitated to effectively exploits the potential of a 1D CNN, which intrinsically
preserves the characteristic profile shape of the input and output variables Kiranyaz et al.
(2021). When comparing the predictive performance of these techniques in generating
vertical profiles from float data, distinct differences emerge. MLPs can tend to produce
profiles affected by apparently artificial discontinuity and jumps, while the profiles generated
by PPCon exhibit a smoother and more realistic appearance (Appendix B2). Additionally,
This improvement is confirmed also by the RMSE values computed on the reconstructed
nitrate profiles of the test sub-set confirms the better performance of the 1D CNN
approach with respect to a MLP approach trained on point-wise data (Appendix B2). ,
which is lower when using the PPCon model (RMSEPPCon = 0.61) compared to the state of
the art of MLP architectures (RMSEMLP = 0.87 according to Pietropolli et al. (2023a))”

Finally, old line 384 in conclusion will be changed as follow:

“The introduced model, named PPCon, utilizes a spatial-aware 1D CNN architecture that
effectively learns the characteristic shape of the vertical profile, enabling precise and smooth
reconstructions. PPCon represents a potential notable advancement in predicting
BGC-Argo profiles over previous techniques relying on MLP applications, which operate
on point-wise point-to-point input and output, making it challenging to generate continuous
curves when forecasting complete vertical profiles”

I suggest to take out the MLP-irregularities-and-jumps claims entirely, as they are not
sufficiently supported, and stick to the fact that CNNs can take benefit from data in their
vicinity/neighorhood in a better way and explicitly during training (thanks to the conv/deconv
layers).

Considering the reviewer' suggestion, we have decided to move the comparison between
the three different architectures (i.e., PPCon, Canyon-Med and MLP by Pietropolli et al.
2023) from the main text to a new Appendix B (reported in the response to the comment
above). Thus, the old figures 2 (new figure 3) of the main text will be re-drawn reporting only
PPcon and measured BGC-Argo profiles and the result section will focus on the capability of
PPCon to produce smooth and accurate profiles for the nitrate. A new Appendix B will report
a more detailed comparison between the different architectures. Paragraphs in the
discussion section will be revised accordingly. All these changes at the main text are detailed
in the previous point.

- l. 87: "Array for Real-time Geostrophic Oceanography" This is an interesting fit to match
"Argo", but Argo is not an abbreviation. (It is inspired by Greek mythology:
https://argo.ucsd.edu/about/)

We thank the reviewer for pointing out the incorrect interpretation of the term argo. The old
line 87 will be changed as follows, also considering one of the previous points.

“The data used to train and test the architecture discussed in this paper comes from the
Array for Real-time Geostrophic Oceanography (Argo) BGC-Argo program (Bittig et al.
(2019)), specifically the Argo float collecting also biogeochemical variables.”



- The architecture/design of PPCon and their CNN-approach is hard to understand. The
authors refer/cross-refence to different elements of their approach, without clear, concise
wording. E.g., there are several references to the four point-wise inputs, the seven-channel
tensor, or three variables (e.g., l. 150, 145, 143, 139, 131f.) without a clear sentence like:
"Per profile, we have 4 point-wise inputs, which are latitude, longitude, (decimal??) year, and
year day. In addition, we have three 1x200 input vectors for temperature, salinity, and
oxygen profiles, respectively."

We understand the importance of presenting a straightforward explanation of how the
various elements of our architecture integrate. To address this, we will insert a summarizing
sentence immediately after line 143 in our revised manuscript to provide a clear overview of
the architecture. The sentence will be as follows:

“The input to the PPCon architecture consists of four point-wise inputs — latitude, longitude,
day, and year — which are transformed into a vectorial input using an MLP architecture. In
addition, the architecture uses for the training three 1x200 input vectors representing the
profiles of temperature, salinity, and oxygen.”

- Can Figure 1 be modified so that it mirrors the informations from Table 1 and Table 2 on the
specific PPCon architecture (e.g., layer sizes on the MLP; actual series of conv/deconv on
the CNN)?

We appreciate the reviewer's suggestion, however the present version is a compromise
between clarity and level of information. We would like to keep it simple by providing an
illustration of the architectural components of the PPCon. We decided to slightly modify the
figure by including more layers in the convolutional architecture and removing the "vectorial
1D CNN input". For sake of clarity, the figure has the aim of exemplifying the alternating
pattern of convolutional and deconvolutional layers through the changing layer dimensions
without representing the exact number of layers to avoid overcomplicating the visual
representation. Similarly, the representation of the MLP in the figure was designed to
exemplify the increasing number of neurons per layer, rather than to depict the exact layer
sizes, which are substantial and would have complicated the figure's clarity.

Additionally, we will modify the caption to better describe the illustration and its components.

The new figure 1 will be follows:



The caption of new figure 1 will be as follows:

“Figure 1: Illustration of the principal architectural components of the PPCon model: i) MLP
network to transform the point-wise inputs (day, year, latitude, and longitude) into
vectorial form; ii) vectorial inputs (profiles of temperature, salinity, and oxygen and
output of the MLP); iii) structure of encoder-decoder of a 1D CNN architecture; iv)
output vector representing the vertical profile of one of the target variables (nitrate,
chlorophyll, or backscattering).”

- l.232f: Why did the authors decide to not use an input normalization, which is a common
approach, with the same advantages as mentioned for batch normalization? It would
probably make the hyperparameters in Table 3 more similar to each other, too.

Our choice was informed by a series of preliminary experiments where we compared the
performance of the PPCon architecture with both normalized and non-normalized inputs.
Interestingly, we observed that normalizing the inputs did not yield any significant
improvement in the model's performance. Based on these findings, we opted not to
implement input normalization in the current iteration of our model.

The reviewer's point about the potential for normalization to harmonize hyperparameters
across different models (nitrate, chlorophyll, and bbp700) is something we want to
investigate. This aspect was not a primary consideration in our initial decision-making
process. We acknowledge that normalization could contribute to more consistent
hyperparameter settings across these models, potentially simplifying the architecture's
configuration and enhancing its adaptability.

One possible advantage of not using normalization —when there is no decrease in
performance, as in this case— is that it requires one fewer step for the integration into a
pipeline.



- Why did the authors chose to use a separate MLP for each of the 4 point-wise inputs, to
transform it from 1x1 to 1x200 shape? A 200x replication so that, e.g., latitude becomes a
1x200 sized vector with (constant) latitude per profile would have sufficed to concatenate it
together with the 3 input profile vectors, with the 1D CNN alone then tasked to find an
optimal representation/fitting.
If I interprete Table 1 correctly (1 input, 80 neurons in 1st hidden layer, 140 in 2nd, 200 in
3rd, 200 in output layer), there are ca. 80.000 parameters for each of the 4 MLPs alone.
Again, I struggle to understand the actual size of the dataset used for training, but with in
total approx. 120.000/70.000 chla/bbp or nitrate BGC-Argo profiles worldwide, and given that
we consider a training dataset within the Med Sea, I estimate the number of profiles to be
somewhere around 3.000-5.000 or smaller. The MLPs seem to me like a very badly
constrained task, even for machine learning and a decent dropout rate. It's an awfully
complex MLP just to get sth. from 1x1 to 1x200 shape, which is then fed into yet another
neural network.

While it is true that the number of parameters of the MLP used to convert from scalar to 1D
inputs are high, we did not consider this fact a concern mainly for two reasons:

1) Overparameterization is one aspect where it appears that neural networks are able to
learn in a way that generalizes well even when the number of parameters is higher
than the number of training samples. While the reasons for this effect are still not
completely understood from a theoretical point of view, there are multiple works in the
area, e.g., Arora et Al. (2018).

2) Most importantly, the MLP component of the network only has access to the scalar
data in the forward pass, which are insufficient by themself for the reconstruction of
an entire profile or even to distinguish between different profiles. Hence any amount
of memorization of the training data in the weight of the MLPs would have limited
impact, which is confirmed by the fact that the architecture generalizes well when
employed on test data.

In more details, the main motivation behind the use of a MLP for transforming scalar inputs
into vectorial ones is that the same scalar value can have different impacts at different
depths and this can be learned by the MLP performing the 1x1 to 1x200 transformation (we
justify this choice in line 137 of the manuscript). In particular, while not widespread, a similar
approach was already applied in “Learning Hand-Eye Coordination for Robotic Grasping with
Deep Learning and Large-Scale Data Collection” by Levine et Al. (2016). In that paper the
authors used a fully connected layer with 64 units whose outputs were added pointwise to 64
response maps (i.e., they provided the equivalent of a bias term). In our case we still employ
fully connected layers but, instead of performing a pointwise addition to multiple response
maps, we directly add the output as a channel. In both cases the idea of using a MLP to
adapt the data before inserting it in the CNN architecture is present.

Reference used for the response:

● Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., & Quillen, D. (2018). Learning
hand-eye coordination for robotic grasping with deep learning and large-scale data
collection. The International journal of robotics research, 37(4-5), 421-436.



● Arora, S., Ge, R., Neyshabur, B., & Zhang, Y. (2018, July). Stronger generalization
bounds for deep nets via a compression approach. In International Conference on
Machine Learning (pp. 254-263). PMLR.

- On a similar note: Can the authors please provide information on the amount of parameters
(i.e., how flexible the entire PPCon is) vs. the number of profiles for training (i.e., data
constraints) so that a reader gets a better idea of how well constrained PPCon is in general?

The number of trainable parameters in our PPCon model consists of 39,700 for each scalar
input and 253,249 for the convolutional part, totaling 412,049 parameters. This parameter
structure ensures comprehensive learning capability while maintaining model efficiency. For
training, we used 80% of the profiles from our dataset, as detailed in Table 3 of the
manuscript. This amounts to 2,337 profiles for nitrate, 3,189 for chlorophyll, and 3,952 for
bbp700.

- Did the authors try to exclude the year from the inputs, with what effect? Given the training
data covers only 6 years, it would be very surprising to me if the "year" input had a lot of
explanatory power.

The choice to include the year was a legacy from the MLP approaches, where the year is an
input. Even if the used BGC-Argo dataset covers only 6 years, the PPCon is thought to be
applied with a longer dataset upon available. We have not tested this option, however as for
other aspects (for example the one mentioned in the previous point), the public release of
the PPCon software will allow to test sensitivity of the results to architecture adjustments.

We will add a sentence in the "Code and data availability" section

“In the present work, we present an optimized version of the architecture for the
specific dataset of the Mediterranean Sea, but the release of the PPCon code allows
arbitrary adjustments of the architecture.”

- Eq. 2: Is the hyperparameter alpha missing from the equation?

We appreciate the reviewer's observation regarding the omission of the coefficient in
Equation (2). To rectify this, we have now included the missing coefficient in Equation (2).
Additionally, to avoid any confusion with the symbol used in Equation (1), we have chosen a
different symbol for the coefficient both in the equation and the main text.

- There needs to be an evaluation against existing methods! Several ones are quoted in the
well-written introduction, but they do not appear later in the manuscript. In particular,
CANYON-MED, as being of similar scope and specifically trained on the Med Sea, too, is a
prime candidate for comparison/evaluation (at least for nitrate). The authors evaluate PPCon
against an MLP, the work of Pietropolli et al. 2023a, briefly mentioned, which is by the same
authors? (1) This must be made clear on the figures/text and (2) at least CANYON-MED
predicted nitrate profiles need to be added in the comparison, both on the individual



examples as well as for the overall validation RMSE. (If there exist chla/bbp predictions
suitable for the Med Sea, too, they should be added - but I am presently not aware of any.)

As reported in one of the previous points, we decided to include the new appendix B
dedicated to the comparison of the PPCon with previous reconstructing methods (namely
CANYON-MED, Fourier et al., 2020; and MLP, Pietropolli et al., 2023) optimized for the
Mediterranean Sea. The comparison is shown only for nitrate, as there is no output for
bbp700 and chlorophyll by both the other two methods for the Mediterranean Sea.

- l. 358: CANYON-MED states a nitrate RMSE of 0.78 mmol m-3.

Thanks for pointing out this aspect. The nitrate quality (i.e., RMSE) of MLP architectures
based on point-wise input and output data is 0.78 mmol m-3 (Fourier et al., 2020) and 0.50
mmol m-3 (Pietropolli et al., 2023).

On the other hand, when MLP architectures are used to reconstruct nitrate profiles the
RMSE can be different.

In fact, as explained above, we conducted a robust comparison among the different methods
by using the same set of reconstructed profiles (i.e., the sub-set of test profile of the
BGC-Argo dataset). Results are shown in the new Appendix B (see previous Rev#2.21
point) and the RMSEs are 0.79 mmol/m3 and 0.98 mmol/m3 for CANYON-MED and MLP,
respectively.

Together with the new Appendix B we will change the sentence at old line 358 as follows:

“This improvement is confirmed also by the RMSE values computed on the reconstructed
nitrate profiles of the test sub-set confirms the better performance of the 1D CNN
approach with respect to a MLP approach trained on point-wise data (Appendix B2). ,
which is lower when using the PPCon model (RMSEPPCon = 0.61) compared to the state of
the art of MLP architectures RMSEMLP = 0.87 according to Pietropolli et al. (2023a))”

- Please add the float cycle number (i.e., identification of which profile of a given float
deployment) to the example profiles (Table 5 and Figure panel titles) so that it becomes clear
(and easier to redo/recalculate) for a reader which profile was used.

We thank the reviewer for the suggestion, we will add the information related to the cycle
number to all the profiles displayed in (old number) Figures 2, 3 and 4.



- Figure 3: All of the Chla examples are of a deep Chla maximum (DCM) shape. At least one
example should be a winter deep mixing example, which occurs in the Med Sea, for
completeness. Otherwise one could argue that Chla should be at least as 'easy' to predict as



nitrate, because the shape is always of a DCM-kind (-> l. 287: If Chla had always a DCM
profile shape, then... ).

We thank the reviewer for highlighting the omission of a deep mixing example in our
discussion of the results. To address this and provide a more complete list of examples of
chlorophyll profiles, we will revise Figure 3 including one case of chlorophyll winter bloom
instead of one of the existing profile examples.

The new figure 4 (old figure 3) will be as follows:

New Figure 4 (old Figure 3): Profiles of chlorophyll for some selected floats (WMO
numbers and cycle in the title) and dates. Profile dates and geolocations are reported in
Table 5. Comparison between measured profile (green lines) and PPCon reconstruction
(blue dashed lines). Profiles are from the subset used for the test.

- l. 286f: "Higher quality in the prediction is achieved for nitrate, followed by chlorophyll and
bbp700" - How was this judged/obtained?

This was a qualitative consideration after the visual inspection of all the reconstructed
profiles of the test dataset. By looking at the generated profiles we noticed that the one
predicted with higher similarity (e.g., depth and steepness of nitracline, the values in the
deeper layers, depth and intensity of the DCM) were the ones produced by nitrate, as most
of the times is more similar to the original. In order to be more precise we will modify the
sentence as follows:

“the visual inspection of all test profiles (not shown) revealed that the higher quality in
the prediction is achieved for nitrate, followed by chlorophyll and bbp700”

- l. 371: [...] application on the GDAC's *BGC*-Argo *Med Sea* float dataset [...]

The sentence will be changed as follows:

“For instance, the application of PPCon on Argo and oxygen profiles in the
Mediterranean Sea for the period the GDACs BCG-Argo float dataset (spanning from from
2013 to 2020) enabled the generation of 5234 (nitrate), 3879 (chlorophyll), 3307 (bbp700)



synthetic nitrate profiles, 3879 chlorophyll profiles, and 3307 bbp700 profiles, which means
doubling the chlorophyll and bbp700 BGC-Argo profiles and more than tripling those of
nitrate.”

- l. 365: "cloud coverage" and "incomplete swaths"??

According to the reviewer suggestion we will modify the sentence in lines 364-366 as
follows:

“Surface satellite observations are limited by cloud covers coverage and incomplete swaps
swaths of satellite sensors (Donlon et al. (2012)), while profiling the ocean interior is limited
by the capacity of deploying and retrieving sensors and measurements with sufficient
coverage.”



NEW TABLES AND FIGURES

WIN TRAIN WIN TEST SPR TRAIN SPR TEST SUM TRAIN SUM TEST AUT TRAIN AUT TEST

NITRATE 0.51 0.51 0.51 0.52 0.51 0.49 0.48 0.51

CHLA 0.08 0.07 0.12 0.13 0.08 0.08 0.05 0.05

BBP700
(x10^-4)

2.6 2.4 2.3 2.6 1.5 1.4 1.5 1.5

Table 6. RMSE calculated between the float measurements and the reconstructed values obtained from the
PPCon architecture for all variables inferred. This metric is evaluated individually for the train and test sets. The
RMSE is computed for different seasons of the year (described in Section 2).

NWM
TRAIN

NWM
TEST

SWM
TRAIN

SWM
TEST

TY
TRAIN

TY TEST IO TRAIN IO TEST LEV
TRAIN

LEV
TEST

NITRATE 0.62 0.65 0.37 0.38 0.44 0.44 0.41 0.41 0.48 0.51

CHLA 0.14 0.13 0.10 0.12 0.08 0.08 0.04 0.04 0.05 0.05

BBP700
(x10^-4)

2.6 2.4 2.1 2.0 2.3 2.3 1.4 1.6 1.4 1.7

Table 7. RMSE calculated between the float measurements and the reconstructed values obtained from the
PPCon architecture for all variables inferred. This metric is evaluated individually for the train and test sets. The
RMSE is computed for different geographic areas of the year (described in Section 2).

nitrate nitrate chla chla bbp700 bbp700

6901648 0.70 6901648 0.14 6901649 1.9 x 10^-4

6901764 0.31 6901496 0.13 6901496 2.2 x 10^-4

Table 8. RMSE calculated between the float measurements and the reconstructed values obtained from the
PPCon architecture over the external validation dataset.



Figure 6. Hovmöller diagrams for the nitrate of two selected floats (WMO name in the title) belonging to the
external validation set. BGC- Argo measurements (upper panels) and PPCon prediction (lower panels) are
compared. WMO 6901767 sampled the 39°N − 41°N and 10°E − 11°E area during 2015 − 2018, whereas WMO
691764 sampled the 31°N − 34°N and 26°E − 40°E area during 2015 − 2017.

Figure 7. Hovmöller diagrams for the chlorophyll of two selected floats (WMO name in the title) belonging to the
external validation set. BGC-Argo measurements (upper panels) and PPCon prediction (lower panels) are
compared. WMO 6901648 sampled the 40°N − 42°N and 2°E − 6°E area during 2014 − 2016, whereas WMO
6901496 sampled the 42°N − 43°N and 7°E − 12°E area during 2013 − 2014.

Figure 8. Hovmöller diagrams for the bbp700 of two selected floats (WMO name in the title) belonging to the
external validation set. BGC- Argo measurements (upper panels) and PPCon prediction (lower panels) are
compared. WMO 6901649 sampled the 39°N − 41°N and 3°E − 7°E area during 2014 − 2016, whereas WMO
6900807 sampled the 41°N − 44°N and 29°E − 35°E area during 2014 − 2018 6901496 sampled the 42°N −
43°N and 7°E − 12°E area during 2013 − 2014.




