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Abstract 14 

Temporal drain flow dynamics and understanding of their underlying controlling factors are important for water resource 15 

management in tile-drained agricultural areas. The use of physics-based water flow models to understand tile drained systems is 16 

common. These models are complex, with large parameter sets and require high computational effort. The primary goal of this study 17 

was to examine whether simpler, more efficient machine learning (ML) models can provide acceptable solutions.  18 

The specific aim of our study was to assess the potential of ML tools for predicting drain flow time series in multiple catchments 19 

subject to a range of climatic and landscape conditions. The investigation is based on unique data containing time series of daily 20 

drain flow in multiple field scale drain sites in Denmark. The data include: climate (precipitation, potential evapotranspiration, 21 

temperature); geological properties (clay fraction, first sand layer thickness, first clay layer thickness); and topographical indexes 22 

(curvature, Topographical wetness indexes, Topographical position index, elevation). Both static and dynamic variables are used in 23 

the prediction of drain flows. The ML algorithm extreme gradient boosting (XGBoost) and convolutional neural network (CNN) 24 

were examined, and the results were compared with a physics-based distributed model (MIKE-SHE).  25 

The results show that XGBoost performs similarly to the physics-based MIKE-SHE models, and both outperform CNN. Both ML 26 

models required significantly less effort to build, train, and run than MIKE-SHE. In addition, the ML models support efficient 27 

feature importance analysis. This showed that climatic variables were important for CNN models and XGBoost. The results support 28 

the use of ML models for hydrologic applications with sufficient data for training. Further, the insights offered by the feature 29 

https://doi.org/10.5194/egusphere-2023-1872
Preprint. Discussion started: 31 August 2023
c© Author(s) 2023. CC BY 4.0 License.



2 

 

importance analysis may support further data collection and developments of physics-based models when existing data are 30 

insufficient to support ML approaches.   31 

1. Introduction 32 

Tile drain flow prediction is important for sustainable water resource management because tile drains are crucial for accurate 33 

quantification of subsurface water fluxes in tile drained fields, which has direct impacts on predicting adjacent surface water flow. 34 

Approximately half of the agricultural land in Denmark has subsurface drains (Moller et al., 2018). However, only a small fraction 35 

of these sites has tile drain flow monitoring. Because tile-drained fields can have very rapid communication with surface water and 36 

surface water pollution, it will become increasingly important to understand their hydrologic impacts under climate change 37 

(Golmohammadi et al., 2021; Jeantet et al., 2022).  38 

Physics-based models, both distributed and lumped/conceptual, have been used for predicting drain flows. These include: HSPF 39 

(Singh et al., 2005), MIKE SHE (De Schepper et al., 2017; Hoang et al., 2014; Mahmood et al., 2023), CATHY (Muma et al., 2014), 40 

SWAT (Hoang et al., 2014; Singh et al., 2005), RZWQM (Craft et al., 2018), DRAINMOD (Northcott et al., 2001; Youssef et al., 41 

2021), Hydro Geosphere (De Schepper et al., 2017) and MODFLOW (Mirlas, 2009). In some cases, physics-based distributed 42 

models can predict drain flows accurately, but they are time and data-intensive to build and calibrate (Basha et al., 2008; Beven, 43 

1989). In contrast, lumped models require relatively less data and are more computationally efficient. But the unclear physical 44 

meaning of the parameters reduces these to correlative models with limited transferability. The question addressed in this study was 45 

whether ML models, which are also generally considered to be correlative, are more efficient than either distributed or lumped 46 

physics-based models (Herath et al., 2021).   47 

There is a growing interest in the application of ML models in hydrology (Shen, 2018). Most of these studies are aimed at the 48 

prediction of the water table depth (Koch et al., 2019; Koch et al., 2021; Schneider et al., 2022), water quality (Erickson et al., 2021; 49 

Tesoriero et al., 2015) and stream flow (Bechtold et al., 2014; Kratzert et al., 2019; Kuzmanovski et al., 2015; Mushtaq et al., 2022; 50 

Xu et al., 2020; Zia et al., 2015). Few studies addressed the prediction of drain flows (Bjerre et al., 2022; Frederiksen et al., 2023; 51 

Kuzmanovski et al., 2015; Motarjemi et al., 2021). Kuzmanovski et al. (2015) predicted surface runoff and tile drain flow on a single 52 

agricultural field. Motarjemi et al. (2021) predicted only the cumulative annual tile drain flows over multiple catchments. Bjerre et 53 

al. (2022) focused on spatial drain flow predictions rather than timeseries. The current study considers high temporal resolution 54 

drain flow prediction over long time series for multiple sites. The results are compared with a physics-based model and insights are 55 

extracted from feature importance analysis.   56 

Two different ML methods are commonly used: decision trees (Bechtold et al., 2014; Bjerre et al., 2022; Erickson et al., 2021; Koch 57 

et al., 2019; Koch et al., 2021; Kuzmanovski et al., 2015; Mushtaq et al., 2022; Schneider et al., 2022; Zia et al., 2015) and neural 58 

networks (Dai et al., 2023; Koch & Schneider, 2022; Lees et al., 2022; Motarjemi et al., 2021; Xu et al., 2020). The performance of 59 

these approaches are compared, which in the context of drain flow only has been attempted once previously: Motarjemi et al. (2021) 60 
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conducted a comparative study on the use of multiple machine learning methods for annual tile drain. Specifically, we tested several 61 

decision tree approaches and selected XGBoost, a gradient boosting technique, which has shown optimal performance in 62 

international competitions (Chen & Guestrin, 2016). Among the many available neural network methods, we opted for 63 

Convolutional Neural Networks (CNN) (Yao et al., 2019). We chose CNNs based on their applicability to the problem of tile-64 

drained fields and based on previous research (Bai et al., 2018) that indicates that a 1D-CNN performed better in predicting 65 

timeseries than other sequence modelling neural networks such as long short-term memory (LSTM) and Gated recurrent unit (GRU).  66 

The objective of this study was to investigate the potential of ML models for tile-drain flow prediction and evaluate their 67 

transferability to ungauged basins. The sub-objectives of this study were. 68 

(1) Compare XGBoost and CNN for predicting daily drain flows for different catchments of Denmark.  69 

(2) Compare the results of both ML techniques with an existing, physics-based model (MIKE-SHE) that has been calibrated on the 70 

same catchments. 71 

(3) Identify the important observations (features) that contribute to the prediction of daily drain flow 72 

To the best of our knowledge, this study is the first application of XGBoost and CNN models for predicting daily drain flows for 73 

multiple sites. To evaluate the transferability of the ML models, we employed the "leave one cluster out technique," where we tested 74 

and verified the models for each cluster individually. This involved training the models using data from all clusters except the one 75 

being tested. We conducted tests on four clusters with a total of 20 drain sites. We also had an additional four drain sites which were 76 

always part of the training dataset as they did not belong to any of the four clusters. 77 

2. Methodology 78 

2.1. Study site and target feature 79 

In this study, a total of 24 field-scale drain sites were chosen from various locations in Denmark. Out of 24 drain sites, 20 belonged 80 

to four main clusters. All drain sites ranged from 1 to 100 ha in area (Table 1). For Gyldenholm, Lolland, and Lillebæk cluster data 81 

were available for four drain sites each. For Norsminde, cluster data were available for a total of eight sites. Another four sites 82 

included in the study were Vadum, Gedved, Fillerup and Ulvsborg (Figure 1). The focus of the study was to predict the daily drain 83 

flow (this is defined as the ‘target feature’). The drain flow timeseries data for each drain site is provided in the Table 1. The average 84 

daily drain flow across all drain sites was 0.51 mm/d with standard deviation of 1.17 mm/d and skewness of 5.75 mm/d. The positive 85 

skewness suggests that most of the data points are concentrated towards the lower end of the range, with a few extremely high drain 86 

flow values influencing the mean (Figure 2).  87 
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 88 

Figure 1 Location of drain catchments in Denmark 89 

 90 

Figure 2 Distribution of drain flow data 91 

  92 
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 93 

Table 1 Description of clusters and their drain sites 94 

Clusters Drain 

site Id 

Drain sites Area 

(ha) 

Drain time 

series start 

Drain time 

series end 

Model 1  Model 2 

 

Model 3 

 

Model 4 

 

“other” O_1 Fillerup 38.3 12-12-2012 29-05-2017 Train-test (5 
kfold cross-

validate) 

  
  

  

  
  

  

  
  

  

  
  

  

Train-test (5 
kfold cross-

validate) 

 

Train-test (5 
kfold cross-

validate) 

 

Train-test (5 
kfold cross-

validate) 

 

O_2 Ulvsborg 34.9 30-11-2015 01-05-2018 

O_3 Gedved 35.3 09-01-2020 15-05-2021 

O_4 Vadum 8.9 02-07-2013 19-01-2017 

Norsminde N_1 Norsminde1 34.0 20-04-2012 08-06-2017 Verify 

N_2 Norsminde2 32.9 21-04-2012 18-06-2017 

N_3 Norsminde3 27.5 22-04-2012 27-06-2017 

N_4 Norsminde4 4.0 27-09-2012 27-06-2017 

N_5 Norsminde5 11.9 27-09-2012 08-06-2017 

N_6 Norsminde6 7.2 18-09-2012 06-02-2018 

N_7 Norsminde7 3.6 18-09-2012 03-07-2019 

N_8 Norsminde8 6.2 26-09-2012 13-12-2018 

Lillebaek LK_1 Lillebaek1 1.0 01-01-1989 31-12-2020 Verify Train-test (5 

kfold cross-
validate) 

 

LK_2 Lillebaek2 4.5 01-01-1990 31-12-1999 

LK_3 Lillebaek3 1.0 01-01-1990 31-12-1999 

LK_4 Lillebaek4 2.6 01-01-1989 31-12-2018 

Lolland LO_1 Lolland1 2.6 01-01-1989 01-01-2020 Train-test (5 
kfold cross-

validate)  

Verify 
 

LO_2 Lolland2 5.8 01-01-1989 01-01-2020 

LO_3 Lolland3 2.6 01-01-1989 01-01-2019 

LO_4 Lolland4 2.0 01-01-1994 01-01-2020 

Gyldenholm G_1 Gyldenholm1 4.6 11-11-2015 09-05-2018 Train-test (5 

kfold cross-

validate) 
 

Verify 

 
G_2 Gyldenholm2 48.6 11-11-2015 09-05-2018 

G_3 Gyldenholm3 120.0 11-11-2015 09-05-2018 

G_4 Gyldenholm4 33.6 11-11-2015 09-05-2018 

 95 

2.2. Feature selection and downscaling 96 

A set of static and dynamic features were selected, referred to as the ‘predictor variables’. These features included drain catchment 97 

properties, climate, topographical and geological features. They are listed in Table 2. 98 

 99 

 100 

 101 

 102 

 103 
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Table 2 Features used for prediction of drain flow. 104 

Feature type Feature name Abbreviation Mean (max, min) Selected 

features 

Dynamic 

features 

 

Climate variables  

Mean precipitation of the day (mm/d) prec 2.05 (0, 33.19) X 

Mean precipitation of previous day (mm/d) prec_prev_day 2.05 (0, 33.19) X 

Mean precipitation of previous week (mm/d) Prec_prev_wk 2.05 (0, 17.50) X 

Mean precipitation of previous month (mm/d) prec_prev_mon 2.05 (0, 7.94) X 

Mean temperature of the day (◦C) temp 9.04 (-9.89, 25.22) X 

Mean evapotranspiration of the day (mm/d) eva 1.19 (0, 5.59) X 

Mean precipitation of previous 6 months (mm/d) prec_prev_6mon 2.05 (0.86, 3.97)  

Mean precipitation of previous year (mm/d) prec_prev_yr 2.05 (0.86, 3.97)  

Mean evapotranspiration of previous day (mm/d) eva_prev_day 1.19 (0, 5.59)  

Mean evapotranspiration of previous week (mm/d) eva_prev_wk 1.19 (0, 5.11)  

Mean evapotranspiration of previous month (mm/d) eva_prev_mon 1.19 (0.09, 3.67)  

Mean evapotranspiration of previous 6 months (mm/d) eva_prev_6mon 1.19 (0.37, 2.34)  

Mean evapotranspiration of previous year (mm/d) eva_prev_yr 1.19 (0.87, 1.52)  

Static 

features 

 

Topography variables 

Standard deviation of elevation (m) elev_std  3.52 (0.17, 10.55) X 

Mean of absolute TPI in 20m radius tpi_20 0.15, (0.04, 0.34) X 

Mean of absolute TPI in 200m radius tpi_200 1.19 (0.13, 2.82) X 

Mean of TWI twi 9.96 (8.99, 11.12) X 

Standard deviation of TWI twi_std 1.13 (0.66, 1.39) X 

Mean of absolute TPI in 20m radius around drain 

catchment in 300m buffer 

around_cat_tpi_20 1.13 (0.16, 2.21) X 

Mean of TWI around drain catchment in 300m buffer around_cat_twi 9.84 (9.25, 10.75) X 

Standard deviation of TWI in 20m radius around drain 

catchment in 300m buffer 

around_cat_twi_std 1.27 (1.12, 1.54) X 

Mean of absolute TPI in 10m radius tpi_10 0.09 (0.03, 0.19)  

Mean of absolute TPI in 50m radius tpi_50 0.33 (0.05, 0.82)  

Mean of absolute TPI in 100m radius tpi_100 0.61 (0.07, 1.60)  

Mean of absolute curvature  curvature 0.28 (0.11, 0.64)  

Slope (degrees) slope_degree 2.14 (0.26, 5.36)  

Standard deviation of elevation around drain catchment 

in 300m buffer 

outside_cat_elev_std 6.05 (0.43, 13.05)  

Geology variables 

Mean Clay content a, b, c horizon (%) clay_content 14.21 (3.57, 21.02) X 

Standard deviation of clay content a, b, c horizon (%) clay_content_std  0.84 (0.30, 2.25) X 

Clay thickness (m) clay_thickness 40.55 (0.22, 388.95) X 

Variance in clay thickness (m) clay_thickness_var 0.11 (0.07, 0.16)  

Clay a horizon (%) clay_content_a 12.13 (3.70, 17.47)  

Clay b horizon (%) clay_content_b 14.86 (3.67, 26.04)  

Clay c horizon (%) clay_content_c 15.60 (2.96, 22.47)  

Clay d horizon (%) clay_content_d 15.77 (4.42, 21.39)  

 Other  

Static 

features 

Drain catchment area 2.0x105 (9.7x103, 1.2x106) X 

Dynamic 

features 

 

Hydrological day of the year day_of_year  X 

Month month -  

Quarter of year quarter -  

 105 

 106 

Climate features were obtained from the Department of Hydrology, Geological Survey of Denmark and Greenland, but originated 107 

from the Danish Meteorological Institute (DMI) as 10km/20km gridded daily data (DMI, 2023; Scharling, 1999a, 1999b). 108 

Precipitation (mm), evapotranspiration (mm) and temperature (◦C) were obtained for all drain catchments. For evapotranspiration 109 

and precipitation, other features such as mean previous day, mean previous week, mean previous month, mean previous 6 months, 110 

and mean previous year were also calculated and included as predictor variables.  111 

Topographical and geological features were static features. The digital elevation model at 10m resolution was used to derive 112 

topographical features for each drain site including: standard deviation of elevation (m.s.l); absolute mean Topographical position 113 

index (TPI, in radii of 10m, 20m, 50m, 100m and 200m); absolute mean curvature; mean slope; and topographical wetness index 114 
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(TWI). We also calculated the standard deviation and absolute mean of TWI, standard deviation of elevation (m.s.l), and absolute 115 

mean TPI in a 300m buffer around each drain catchment. 116 

Geological features included the drain catchment average clay content (%) in horizon a (0-5 cm depth), horizon b (5-15 cm), horizon 117 

c (15-30 cm), and horizon d (30-60 cm) as developed by Adhikari et al. (2013). Standard deviation and clay content (%) were also 118 

estimated across horizons a, b and c. The drain catchment average of first clay layer thickness and sand layer thickness from the 119 

nationwide hydrogeological interpretation (EPA, 2020) was obtained. Variance in clay thickness across each drain catchment was 120 

estimated. 121 

Another static feature was the area of the drain catchment (m2). Additional dynamic features included the hydrological day of year, 122 

quarter of year, and month. In total 39 features were included in the initial analysis. This set was reduced to 19 by developing a 123 

covariance matrix and removing any feature that had a Pearson R value above 0.85 with any other feature. 124 

2.3. Xgboost  125 

XGBoost stands for “Extreme Gradient Boosting”. It is an enhanced version of boosting ensemble techniques, specifically designed 126 

for decision trees in the classification and regression trees (CART) family. Even though it is based on the gradient boosting 127 

framework, it is more scalable and has faster speed due to its suitability for parallel computing techniques and readily available 128 

hyperparameter optimization tools. XGBOOST operates by iteratively improving predictions in an additive manner. During each 129 

iteration, weak classifiers are employed, and their errors are used to enhance subsequent classifiers. Misclassified samples are given 130 

greater emphasis in subsequent steps, compelling the classifier to focus on improving their performance. The final classification 131 

result benefits from the collective improvement of all the previously built trees (Chen & Guestrin, 2016). We used python library 132 

‘xgboost’ to make XGBoost models (Chen & Guestrin, 2016). 133 

2.4. CNN 134 

The 2D-Convolutional neural networks were initially developed for image recognition (Lawrence et al., 1997). However, 1D-CNN 135 

has been used for time series analysis (Lewinson, 2020). CNN model structure consists primarily of three different types of layers: 136 

convolutional layers; pooling layers; and fully connected layers. Convolutional layers allow feature extraction using a filter to 137 

produce multiple feature maps from given features. Moreover, a kernel size in the convolutional layer allows to set the number of 138 

previous timesteps used for a specific time. To introduce non-linearity, an activation function is used; in our case, we used a rectified 139 

linear unit (relu) in the convolutional layers. Pooling layers reduce the size of the time series by preserving the most important 140 

features identified by the convolutional layers. These pooled layers are used to build fully connected layers to map the extracted 141 

features. Fully connected layers are associated with the loss function that estimates the error between observed and predicted values 142 

(Lawrence et al., 1997). We used the python library Tensorflow to make CNN models (Abadi et al., 2016). 143 

https://doi.org/10.5194/egusphere-2023-1872
Preprint. Discussion started: 31 August 2023
c© Author(s) 2023. CC BY 4.0 License.



8 

 

2.5. Machine learning model setup 144 

  145 

Figure 3 Workflow of both models 146 

2.5.1. Division of train-test dataset and verification data 147 

To test the potential of ML techniques, the data were split into two different subsets: the train-test dataset and the verification dataset. 148 

The train-test and verification datasets were defined using the ‘leave one cluster out technique’. In this technique, we kept all the 149 

drain sites of one cluster to use as the verification dataset while training and cross-validation used the rest of the data. This technique 150 

was applied on each of the four clusters and leading to four CNN models and four XGBoost models.  151 

2.5.2. High drain flow data replication and division into K-folds of train-test dataset 152 

Once the train-test dataset was separated, we replicated multiple times the top 1% high drain flow values of the train-test dataset 153 

(see Table 3 for XGBoost models and Table 4 for CNN models). This replication was performed to increase the weight of the 154 

extremely high drain flow values as high drain flow values were rare in the dataset (Table A1). We aimed that the replication would 155 

improve the model performance. After replication of high drain flows data, the train-test dataset was divided into 5 subsets, each 156 

containing an equal number of samples. This splitting was done randomly. Four out of five subsets were used for training and the 157 

one left subset was used for testing. The process was repeated until all the subsets were tested separately. 158 

2.5.3. Hyperparameter tuning and cross validation 159 

In the 5-fold cross-validation, each model was trained and evaluated five times, each time using a different fold as the test set and 160 

the remaining four folds as the training set. The XGBoost and CNN models have different structures and, therefore, have different 161 

hyperparameters. Each of the 4 models also had different parameters. In each case, tuning involved jointly optimizing all 5 folds of 162 

each model simultaneously using python. Different built in loss functions were tested for model optimization including the root 163 

mean squared error (RMSE), mean absolute error (MAE), and root mean squared log error (RMSLE). The formulas of the following 164 

are given bellow: 165 
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Equation 1 166 

𝑅𝑀𝑆𝐸 = √
∑ (𝑄𝑠𝑖𝑚 𝑖 − 𝑄𝑜𝑏𝑠 𝑖)

2𝑁
𝑖=1

𝑁
 167 

Equation 2 168 

𝑅𝑀𝑆𝐿𝐸 = √
1

𝑁
∑(log( 𝑄𝑠𝑖𝑚 𝑖 + 1) − log (𝑄𝑜𝑏𝑠 𝑖 + 1))2

𝑁

𝑖=1

 169 

Equation 3 170 

𝑀𝐴𝐸 =
1

𝑁
∑|𝑄𝑠𝑖𝑚 𝑖 − 𝑄𝑜𝑏𝑠 𝑖|

𝑁

𝑖=1

 171 

Where Qsim is simulated drain flow and Qobs is observed drain flow and N is the number of data points.  172 

2.5.4. Evaluation metric: 173 

Among the evaluation metrics, RMSE, Kling-Gupta cofficient (KGE), percentage bias (PBIAS) and coefficient of determination 174 

(R2) were used. The formulas are given below: 175 

Equation 4 176 

𝑅2 = 1 −
∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑠𝑖𝑚,𝑖)

2𝑁
𝑖=0

∑ (𝑄𝑜𝑏𝑠,𝑖 − 𝑄𝑜𝑏𝑠_𝑚𝑒𝑎𝑛)2𝑁
𝑖=0

 177 

Here Qobs_mean is mean of all observed drain flows. 178 

Equation 5 179 

𝐾𝐺𝐸 = 1 − √(𝑟 − 1)2 + (
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠

− 1)
2

+ (
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠

− 1)
2

 180 

Here, r is the linear correlation between observed and simulated drain flows, 𝜎𝑠𝑖𝑚 is the standard deviation of the simulated drain 181 

flows, 𝜎𝑜𝑏𝑠 is standard deviation of the observed drain flow, 𝜇𝑠𝑖𝑚 is mean of the simulated drain flows and 𝜇𝑜𝑏𝑠is mean of the 182 

observed drain flows (Gupta et al., 2009). 183 

Equation 6 184 

𝑃𝐵𝐼𝐴𝑆 = [
∑ (𝑄𝑠𝑖𝑚,𝑖 − 𝑄𝑜𝑏𝑠,𝑖) ∗ 100𝑁

𝑖=1

∑ 𝑄𝑜𝑏𝑠,𝑖
𝑁
𝑖=1

] 185 
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2.5.5. Model verification and feature importance   186 

After optimizing the model hyperparameters, the drain flow predictions were performed individually for each of the 5-fold sub-187 

models on the verification dataset (verification data shown in Table A1 for each model). Subsequently, the predicted drain flow 188 

results were combined or aggregated to obtain the consolidated or overall results. Moreover, we calculated the importance of each 189 

feature using the permutation method for all XGBoost and CNN models. The python library sklearn.inspection was used to find 190 

permutation importance. The permutation method randomly shuffles the values of a single feature and measures the resulting impact 191 

on the model’s performance (Pedregosa et al., 2011). If shuffling the feature significantly decreases performance, it is considered 192 

important. By applying this technique to all the features individually, the relative importance of each feature can be quantified. 193 

2.6. Existing National Hydrological Model of Denmark  194 

The 10m resolution drain models were specially developed for drain flow prediction by Mahmood et al. (2023). It is a physics-based 195 

fully distributed model developed in MIKE-SHE. The model was jointly calibrated using drain flow data from the same drain sites 196 

used in this study except Gedved (O_3) because data for Gedved was obtained at a later stage of the study. The details of the models 197 

including calibration and parameterization can be found in Mahmood et al. (2023). The physics-based model was calibrated on the 198 

current 4 clusters and some other catchments without any holdouts. Moreover, the calibration time was longer than the verification 199 

period (Table A1) that surely impacts the MIKE-SHE model performance positively. 200 

Table 3 Hyperparameter tunning of XGBoost 201 

Hyper parameters Description Tested values Optimized 

value 
Model1 

Optimized 

value 
Model2 

Optimized 

value 
Model3 

Optimized 

value 
Model4 

Reg_alpha L1 regularization term on weights 0.0001, 0.001, 0.01, 0.1, 1, 

10,100 

1 1 1 1 

Reg_lamda L2 regularization term on weights 0.0001,0.001, 0.01, 0.1, 1, 
10,100 

1 1 1 1 

Gamma specifies the minimum loss 

reduction required to make a split. 

0,0.1,0.2,0.3,0.4,0.5 0.4 0 0 0 

Learning rate specifies how fast a model learns 0.001, 0.008, 0.005, 0.01, 0.08, 
0.05,0.1, 0.8,0.5,1 

0.05 0.01 0.008 0.001 

Max depth maximum depth of a tree 3,6,9,12,15,18,21 15 12 13 15 

Colsample_bytree the fraction of columns to be 

randomly samples for each tree 

0.3,0.5,0.7,0.9,1.1,1.3 0.9 0.7 0.7 0.7 

n_estimators the number of runs XGBoost will try 

to learn 

100,500,1000,2000,4000,6000,

8000 

4000 2000 8000 8000 

Loss_function function used to calculate the 

difference between input and output 

RMSE, MAE, RMSLE RMSLE RMSLE RMSE RMSE 

High drain flow data 

replication 

addition of highest drain flows (1%) 

of data in training dataset one time 
or multiple times  

No addition,1time, 4 times, 6 

times 

6 times No 

addition 

6 times 6 times 

 202 

3. Results and discussion 203 

3.1. Model cross-validation  204 

The cross-validation scatterplots between predicted and observed drain flow of the eight ML models and the MIKE-SHE model are 205 

shown in Figure 4. The predicted drain flows from all five folds of cross-validation are combined for each model. For XGBoost the 206 
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cross validation R2 ranges between 0.7 and 0.93; the lower for Lolland cluster-model 2 and higher for Norsminde cluster-model 3 207 

and Gyldenholm cluster-model 4. For CNN, the cross-validation R2 ranged from 0.51 to 0.96, where Norsminde cluster-model 3 208 

showed the highest R2 value and Gyldenholm cluster-model 4 showed the lowest R2 value. The scatter plot of the MIKE-SHE model 209 

depict the predicted and observed drain flow of the calibration period (see calibration period in Table A1). The R2 value between 210 

the observed and predicted drain flow value was 0.55 (Figure 4). 211 

3.2. Model verification 212 

As expected, verification showed lower performance than the cross-validation (Figure 5). XGBoost models showed higher 213 

performance than the CNN models. Gyldenholm cluster-Model 4 performed highest with R2 values between 0.50 and 0.53 for both 214 

CNN and XGBoost while Norsminde cluster-model 3 showed highest performance in XGBoost and lowest performance in CNN. 215 

Lillebaek cluster-model 1 and Lolland cluster-model 2 performed similar with R2 value around 0.3 in XGBoost and CNN both. The 216 

MIKE-SHE model verification results also showed an R2 value of 0.34 (see verification time period in Table A1, Figure 5). In 217 

general, none of the models (ML or physics-based) showed very strong performance. However, the XGBOOST results are as good 218 

or better than those of the MIKE-SHE model.   219 

Examining the results more closely, we observed that extremely high drain flow values were not predicted accurately by any of the 220 

models (Figure 5). Figure 6 shows a hydrograph for drain site LK-1. It is not representative of all drain sites, but it does highlight 221 

the common issue of simulating peak flows by the ML and physics-based model. The hydrograph contains predicted and observed 222 

drain flows for all the models along with their residuals. The hydrographs make it clear that the general time series of drain flow is 223 

well represented, but the peak values are mostly underestimated or sometimes overestimated. This is further supported by the 224 

negative PBIAS of -47.2 and -37 for XGBoost and CNN respectively, while a positive PBIAS of 21 for MIKE-SHE (Figure 6).225 
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 226 

Table 4 Structure and hyperparameters tunning of CNN 227 

Hyperparameters Description  Tested values Optimized 

value 

Model1 

Optimized 

value 

Model2 

Optimized 

value 

Model3 

Optimized 

value 

Model4 

Optimizer  It updates the network 
parameters to optimize the 

loss function  

Adam Adam Adam Adam Adam 

Epochs no. of iteration of training of 

train dataset 

100 100 100 100 100 

Learning rate specifies how fast a model 

learns 

0.0001, 0.001,0.01,0.1 0.0001 0.0001 0.0001 0.0001 

Batch size no. of training steps 10,15,20,25,30,40,50,60,80 20 20 60 10 

Dropout percentage of input unit 

dropped during training  

0,0.1,0.3,0.5 0 0 0 0 

First conv 1d (filter, 

kernel size) 
filter generates multiple 
feature maps from the given 

features (increasing 

dimensionality) 
 

kernel size specifies the no. 
of previous time steps it takes 

at a time 

Filter=32,64,128 
Kernel size=(3,5,10) 

(32,7) (128,7) (128,5) (32,7) 

Second conv 1d 

(filter, kernel size) 

Filter=64,128,256 

Kernel size=3,2 

(64,4) (265,4) (256,3) (64,4) 

Pooling 1 Down-sample the feature 

maps  

2 2 2 - 2 

Third conv 1d (filter, 

kernel size) 

filter generates multiple 

feature maps from the given 

features (increasing 
dimensionality) 

 

kernel size decides the no. of 
previous time steps it takes at 

a time 

Filter=128, 256, 512 

Kernel size=3,2 

(128,2) (512,2) (512,3) (128,2) 

Pooling 2 downsample the feature 

maps 

2 2 2 2 2 

First dense layer specifies no. of learnable 

parameters or weights 

128,64,32,16 32 64 128 64 

Second dense layer 64,32,16,8,1 8 32 1 32 

Third dense layer 32,16,8,1 1 8 - 8 

Fourth dense layer 1 - 1 - 1 

Loss function function used to calculate the 

difference between input and 
output 

RMSE, RMSLE, MAE RMSE RMSE RMSE RMSE 

High drain flow data 

replication 

addition of highest drain 

flows (1%) of data in training 
dataset one time or multiple 

times  

No addition, 1 time, 4 

times, 6 times 

no no 1 time no 

Shuffle True, False True, False True False True False 

 228 

   229 
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 230 

Figure 4 Five-fold cross-validation results for 4 models of XGBoost and 4 models of CNN. Density and boxplot of observed 231 

drain flow vs predicted drain flow. 232 
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 233 

Figure 5 Verification results for 4 models of XGBoost and 4 models of CNN. Density and boxplot of observed drain flow vs 234 

predicted drain flow. Each scatterplot shows the mean of verification results obtained from 5-fold sub-models 235 
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 236 

Figure 6 Hydrograph example of predicted and observed drain flow with additional plot of residuals between 237 

predicted and observed drain flow. 238 

3.3. Comparison between MIKE-SHE, CNN and XGBoost performance 239 

The KGE and PBIAS plots of cross-validation results across all drain sites are shown in Figure 7. Among the 240 

three models, XGBoost depicted the highest mean KGE of 0.72 across drain sites while CNN and MIKE-SHE 241 

showed mean KGE values of 0.61 and 0.59, respectively. In terms of PBIAS, MIKE-SHE (-3.31) performed better 242 

than XGBoost and CNN (5.82 and 7.79. respectively).  243 
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 244 

Figure 7 Comparison of average catchment performances of 4 CNN and 4 XGBoost models with MIKE-SHE 245 

model for cross-validation. The dotted line shows the highest achievable KGE and PBIAS 246 

The KGE and PBIAS plots for the verification results across all drain sites are shown in Figure 8. Among the 247 

three models, MIKE-SHE showed the highest mean KGE of 0.42 across drain sites, followed by XGBoost with a 248 

mean KGE value of 0.35 across drain sites. CNN did not perform well with an average KGE value of 0.12 and a 249 

PBIAS value of -15.95 across drain sites. In terms of PBIAS, the XGBoost models performed highest with the 250 

lowest mean PBIAS value of 2.65, followed by MIKE-SHE model with PBIAS of 3.05. Among the drain sites, 251 

the Gyldenhom sites (G) performed best. 252 

The comparison between ML models and the physics-based MIKE-SHE models revealed that MIKE-SHE 253 

performed similarly to XGBoost the better performing ML model. However, it is important to acknowledge that 254 

the fairness of the comparison between MIKE-SHE and machine learning models is compromised due to the 255 

differing techniques employed. In our machine learning models, we utilized the "Leave one cluster out" technique, 256 

whereas this approach was not employed in the MIKE-SHE model. The MIKE-SHE model, on the other hand, 257 

utilized most of the drain flow daily data from all drain sites for calibration (equivalent to cross-validation in 258 

machine learning), reserving approximately 10% of the drain flow data for verification (Table A1). This 259 

discrepancy in techniques has a significant impact on XGBoost and CNN model performance, as demonstrated 260 
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by Motarjemi et al. (2021) who employed the "leave spatially close sites out" technique and observed a drastic 261 

decrease in the predictive performance of various machine learning methods for annual drain flow prediction. 262 

Furthermore, considering the amount of field data required and the time-intensive computational efforts involved 263 

in building a MIKE-SHE model, machine learning models emerge as a clear choice. Gumiere et al. (2020) 264 

compared the period to find appropriate solutions for physics-based hydrological model and ML model. They 265 

stated that the machine learning model improves performance and finds acceptable solutions in shorter lead times 266 

(3hrs) compared to the physics-based models (20hrs) due to autoregressive ability of ML models (Gumiere et al., 267 

2020). They also highlighted that physics-based models require additional efforts to accurately depict the 268 

boundary conditions and parameter heterogeneity that are comparatively less in ML models. Firstly, it is hard to 269 

gather data on parameter heterogeneity and accurate boundary conditions. Secondly, it makes the model 270 

computationally more expensive. Machine learning models also need large datasets and catchment properties, but 271 

the current proposed model does not crucially require difficult to obtain field heterogeneity parameters and 272 

boundary conditions. Therefore, the flexibility and efficiency offered by machine learning models make them an 273 

advantageous option for drain flow prediction in comparison to MIKE-SHE.  274 

 275 

Figure 8 Comparison of average catchment performances of 4 CNN and 4 XGBoost models with MIKE-SHE 276 

model for verification. The dotted line shows the highest achievable KGE and PBIAS.  277 
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3.4. Feature importance  278 

The average feature importance across 4 models of XGBoost models and CNN models is shown in Figure 9 for 279 

the verification dataset. We observed that the climate features played an important role in predicting the drain 280 

flows while static topographical and geological variables were less important. The most important climatic 281 

features in both XGBoost and CNN were mean precipitation, hydrological day of the year, mean 282 

evapotranspiration, mean temperature, and mean precipitation of the previous week. Among the topographical 283 

features, mean TWI of catchment was the eighth most important feature while the standard deviation in TWI of 284 

the 300 m buffer outside the catchment was the fifth most important feature. The geological features were 285 

considered least important among both XGBoost and CNN models. 286 

 287 

Figure 9 Average feature importance across 4 models for CNN and XGBoost 288 

The importance of the most significant climatic features in the CNN and XGBoost model is evident. Although 289 

machine learning models don’t take physics into account, the identified important features were consistent with 290 

the physics behind it. Precipitation emerged as the primary driver of drain flow, while temperature and 291 

evapotranspiration exhibited inverse correlations (Figure 10). As temperature increases, evapotranspiration 292 

intensifies, limiting the water available for drain flows. The hydrological day of the year ranked fourth in 293 

importance in the CNN model and second in the XGBoost model. This pointed to the capturing of seasonal 294 

variations in drain flows. Specifically, the hydrological day of the year reflected higher drain flows during winter 295 

months and minimal drain flows during summer months, aligning with the expected hydrological patterns (Figure 296 
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10). Overall, the CNN and XGBoost model effectively captured these relationships, shedding light on the interplay 297 

between climatic factors and hydrological processes. 298 

In XGBoost and CNN, the precipitation in previous day, week and month were also found to be important factors 299 

in predicting drain flow. This in terms of physics indicated that constantly high precipitation occurred on the 300 

previous day, week or month could be a good indicator of high groundwater levels (above drain depth) and soil 301 

saturation that drives the drain flows. Conversely, no precipitation event in the past day, week or month can make 302 

groundwater level lower (below drain level) and soil dry. This could lead to low to no drain flows. However, the 303 

influence of topographical features neither depicted a clear correlation nor they were found among the important 304 

features in ML models (Figure 10g & f).  305 

 306 

Figure 10 Plots with drain flow and important features of CNN and XGBoost. 307 

3.5. Model performance of CNN and XGBoost 308 

The comparison of CNN and XGBoost model showed that the model performance of XGBoost was better than 309 

CNN. This might be because XGBoost can work better with relatively small datasets while neural networks such 310 

as CNN require larger dataset for better predictions (Gauch et al., 2021). Similar to our findings, Motarjemi et al. 311 
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(2021) also found that annual drain flows were better predicted using random forest and cubist machine learning 312 

methods than neural networks.  313 

Despite achieving superior performance compared to CNN in cross-validation and verification datasets (Figure 7, 314 

Figure 8), both XGBoost and CNN models failed to accurately predict high drain flow events during the 315 

verification phase (depicted in Figure 6). In the case of XGBoost, the overall model performance across different 316 

clusters, encompassing all four models, exhibited an intermediate to weak performance range, with R2 values 317 

ranging from 0.32 to 0.53. However, our analysis revealed a strong relationship between the model performance 318 

and the normalized drain flow at 10% exceedance probability observed across all drain sites. Figure 11a shows 319 

the normalized drain flow at 10% exceedance probability across all drain sites. The KGE value increases with the 320 

normalized drain flow at 10% exceedance probability. This is depicted by the high Spearman correlations of 0.72 321 

and 0.74 between KGE values and normalized drain flow at 10% exceedance probability for both XGBoost cross-322 

validation and verification performances respectively (Figure 11b). Cross-validation KGE of CNN also showed a 323 

high spearman correlation of 0.68 with normalized drain flow at 10% exceedance probability, however the 324 

verification KGE of CNN showed a weak correlation. 325 

 326 

Figure 11 Model performance linked with normalized drain flow 10% exceedance probability and training 327 

dataset; Normalized drain flow at 10% exceedance probability across all drain sites (a); Normalized drain 328 

flow at 10% exceedance probability vs cross-validation KGE and verification KGE for CNN and XGBoost 329 

(b); trend of training data % compared to model performances of XGBoost and CNN (c). 330 
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The 10% exceedance probability of normalized drain flow indicated a peakier drain flow behavior, which is more 331 

difficult to simulate well. Even though we attempted to increase the weightage of peaks by doubling high drain 332 

flow values in the training dataset but it could be that there was still relatively less representation of peak flows 333 

in data so ML model could not learn it better. The accuracy of the collected field data is another influential factor 334 

that can explain the inability of models to simulate peak flow. Previous studies have indicated that even physics-335 

based models like MIKE-SHE struggled to accurately simulate drain flows from the Lolland and Lillebaek drain 336 

sites (Hansen et al., 2013; Mahmood et al., 2023). This suggests amongst others, potential issues with the data 337 

quality at these sites especially in drain flow observations. Additionally, the precipitation data utilized in our 338 

machine learning models were collected from a station-based product interpolated to a 10 km grid, which may not 339 

effectively capture the local precipitation patterns at the field scale of the drain sites ranging from 1 to 100 ha. 340 

Generally, the high drain flows could either be linked to high precipitation or high lateral flows. Figure 10 provides 341 

evidence that drain flows sometimes exceeded the precipitation, particularly during winter. Although the machine 342 

learning model incorporated climatic variables (precipitation), but the peaky response from the drain flows was 343 

not fully learned by the ML models indicating that we missed predictor variables that can represent upward lateral 344 

flows towards the tile drains. On the contrary, distributed physics-based models like MIKE-SHE can easily 345 

capture the influence of lateral flows on tile drain flows. Moreover, while certain topographical aspects like TWI 346 

and TPI were included as feature variables, the model had limited representation of geological factors such as 347 

hydraulic conductivity and other pedogeological variables that can influence the peak flows. 348 

Our analysis also revealed a discernible pattern between the percentage of training data and the resulting model 349 

performance for both CNN and XGBoost models, as depicted in Figure 11c. The trend demonstrated a positive 350 

correlation, indicating that higher percentages of training data corresponded to higher KGE values. This 351 

observation aligns with the findings of Joseph (2022) who investigated the impact of data split on model 352 

performance and concluded that a lower ratio between training and testing data leads to reduced model 353 

performance. In our study, the varying lengths of time series data across different clusters significantly influenced 354 

the model performance, contributing to the observed pattern. 355 

The current performance of ML models leaves room for uncertainty regarding their applicability across different 356 

time periods and geographical locations. Notably, there is currently no existing daily tile-drain flow prediction 357 

model available that is developed for multiple drain sites. The scarcity of such models could be attributed to the 358 

requirement for a more comprehensive dataset encompassing temporal and spatial variations in drain flow 359 
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behaviors. However, we maintain a positive outlook on the potential improvement of model performance through 360 

an increased collection of drain flow data from diverse drain sites. Our optimism is supported by the findings of 361 

Kratzert et al. (2019) who effectively predicted a regional rainfall runoff model using neural network technique. 362 

Their research demonstrated the feasibility of utilizing a single machine learning model to capture both regional 363 

and local-scale trends in the runoff model by incorporating streamflow data from 531 catchments across the United 364 

States, thereby accounting for the temporal and spatial diversity within their training dataset. 365 

Overall, the study developed two ML models to investigate whether these models could be used to predict drain 366 

flow over space and time in Denmark. However, none of the ML models showed high performance. The 367 

Gyldenholm cluster model did perform satisfactory based on its R2 value, but the other three models had weak 368 

performance. This shows that current available data is insufficient to develop a transferable model, especially in 369 

space. More training data will be required especially in terms of number of drain sites from different clusters to 370 

include drain flows from various topographical and geological features. Gauch et al. (2021) also suggested the 371 

same for stream flow prediction model. We believe this because drain flow time series data performs well when 372 

some of the drain sites from each cluster are involved in training dataset (Motarjemi et al., 2021). Krizhevsky et 373 

al. (2017) also proved that increase in training dataset improves the ML model performance. In addition to that, 374 

physics guided machine learning can also be an effective and efficient solution to proceed in ML based drain flow 375 

model predictions. Incorporation of parameters such as groundwater heads or regional lateral fluxes generated 376 

from the physics-based model could improve the ML model performance. In addition to that, physics guided 377 

machine learning can also be an effective and efficient solution to proceed in ML based drain flow model 378 

predictions. This new approach can be advantageous by incorporating the existing physical understanding of drain 379 

flow models with the strengths of data driven model. The output of the physics guided ML models can be more 380 

generalizable and transferable (Willard et al., 2020; Yang et al., 2019). 381 

Conclusion 382 

This study explored the potential of two ML models; XGBoost and CNN and later compared its performance to 383 

the existing physics-based MIKE-SHE models. The results indicated that XGBoost models consistently 384 

outperform CNN models, as demonstrated by relatively higher accuracy in both cross-validation and verification 385 

stages. Overall, the XGBoost performed decently to predict timing and lower flows but did not perform well in 386 

peak flows. 387 
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The study also showed that the XGBoost model performed as well as the physics-based MIKE-SHE models. We 388 

found that although ML models do not include the physical processes explicitly, the ML model can capture 389 

missing processes unlike physics-based models because of its ability to learn complex nonlinear patterns from the 390 

data. This is because ML models do not need physical processes equation therefore, allowing them to extract 391 

insights directly from the data. Additionally, ML models are easier to build and train than the physics-based 392 

models and can provide valuable insight into the controlling features of the drain flows. We believe that ML 393 

models have the potential to replace the traditional physics-based models once sufficient data is available to make 394 

a more transferable model. 395 
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Appendix A 

Table A1 MIKE-SHE model calibration and verification period 

Cluster Drain sites MIKE-SHE 

calibration 

period start 

MIKE-SHE 

calibration 

period end 

MIKE-SHE 

verification 

period start 

MIKE-SHE 

verification 

period end 

“other” Fillerup 01-01-2014 12-31-2016 01-01-2017 29-05-2017 

Ulvsborg 01-01-2016 01-05-2018 - - 

Vadum 01-01-2014 12-31-2016 - - 

NorsmInde Norsminde1 01-01-2014 12-31-2016 01-01-2017 08-06-2017 

  Norsminde2 01-01-2014 12-31-2016 01-01-2017 18-06-2017 

  Norsminde3 01-01-2014 12-31-2016 01-01-2017 27-06-2017 

  Norsminde4 01-01-2014 12-31-2016 01-01-2017 27-06-2017 

  Norsminde5 01-01-2014 12-31-2016 01-01-2017 08-06-2017 

  Norsminde6 01-01-2014 12-31-2016 01-01-2017 06-02-2018 

  Norsminde7 01-01-2014 12-31-2016 01-01-2017 31-12-2018 

  Norsminde8 01-01-2014 12-31-2016 01-01-2017 13-12-2018 

Lillebæk Lillebaek1 01-01-1997 12-31-1999 01-01-1994 31-12-1995 

Lillebaek2 01-01-1997 12-31-1999 01-01-1994 31-12-1995 

Lillebaek3 01-01-1997 12-31-1999 01-01-1994 31-12-1995 

Lillebaek4 01-01-1997 12-31-1999 01-01-1994 31-12-1995 

Lolland Lolland1 01-01-2014 12-31-2016 01-01-2000 01-01-2005 

Lolland2 01-01-2014 12-31-2016 01-01-2000 01-01-2005 

Lolland3 01-01-2014 12-31-2016 01-01-2000 01-01-2005 

Lolland4 01-01-2014 12-31-2016 01-01-2000 01-01-2005 

Gyldenholm Gyldenholm1 01-01-2016 12-31-2017 01-01-2018 09-05-2018 

Gyldenholm2 01-01-2016 12-31-2017 01-01-2018 09-05-2018 

Gyldenholm3 01-01-2016 12-31-2017 01-01-2018 09-05-2018 

Gyldenholm4 01-01-2016 12-31-2017 01-01-2018 09-05-2018 
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