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Supplemental Information  

This supplemental information includes 3 tables and 6 figures. 

Table captions  

Table S1 Model configuration of WRF. 

Table S2 The evaluation of daily meteorological parameters, including air temperature 

at 2m (T2), specific humidity at 2m (Q2), wind speed (WS10) and direction (WD10) at 

10m from WRF model simulation and NCDC observation. 

Table S3 The total number of the polluted days exceedance in SWLY during winters in 

2014-2019. 

Figure Captions  

Fig. S1 The simulation domains of WRF (black square), CMAQ (magenta square) and 

the regions of NCP (red square), SWLY (green square), and YRD (blue square) used 

for the analysis. 

Fig. S2 Scatter plot of simulated and observational daily mean PM2.5 over three regions 

(NCP, SWLY, and YRD) from 2014 to 2019. The linear regression is marked in red line. 

The statistical parameters are also shown on the top left, including mean fractional bias 

(MFB), mean fractional error percent (MFE), and correlation coefficient (R), with the 

asterisk on the top left of R indicating statistical significance (P < 0.05). 

Fig. S3 Duration and average PM2.5 concentration of pollution events which PM2.5 

concentration is greater than 75 µg m-3 in SWLY and NCP in winter of 2014-2019. 

Fig. S4 The cumulative distribution function of observational daily PM2.5 in wintertime 

of SWLY in 2014-2019. The grey, green and orange dotted lines implies 75, 150, and 

250 µg m-3 of PM2.5 concentrations, respectively. 

Fig. S5 The regional mean total frequency (a) and duration (b) of observational PM2.5 

for three categories (I: 75-150 µg m-3 II: 150-250 µg m-3, III: greater than 250 µg m-3) 

over SWLY, NCP and YRD in winter during 2014-2019. 

Fig. S6 (a)-(c): Monthly average emissions of (t/month) from MEIC emission inventory 

in winter 2016; (d) The monthly average emissions of PM2.5, NOX, and SO2 derived 

from MEIC in SWLY and NCP in winter 2016.  

 



Table S1 Model configuration of WRF. 

 

 

 

Table S2 The evaluation of daily meteorological parameters, including air temperature 

at 2m (T2), specific humidity at 2m (Q2), wind speed (WS10) and direction (WD10) at 

10m from WRF model simulation and NCDC observation. 

 

 
Model evaluation Benchmarks (Emery and Tai, 2001) 

 T2 

(°C) 

Q2 

(g/kg) 

WD10 

(deg) 

WS10 

(m/s) 

T2 

(°C) 

Q2 

(g/kg) 

WD10 

(deg) 

WS10 

(m/s) Bias -0.28 0.01 0.03 0.85 < 0.5 

 

< 1 < 10 < 0.5 

Gross Error 1.97 0.01 45.98 / < 2 

 

< 2 

 

< 30 

 

/ 

RMSE / / / 1.62 / / / < 2 

  

 

 

Table S3 The total number of the polluted days exceedance in SWLY during winters 

in 2014-2019. 

 

a indicates the total number of polluted days due to seesaw patterns, stagnation days 

and other; b indicates the total number of days in three categories.  

WRF configuration Scheme 

Microphysics 
Morrison microphysics scheme 

(Morrison et al., 2009) 

Land surface option 
Unified Noah land surface model 

(Chen and Dudhia, 2001) 

Longwave and shortwave radiation 

Rapid Radiation Transfer Model 

Global (RRTMG) (Iacono et al., 2008; 

Morcrette et al., 2008) 

Cumulus parameterization scheme 
GrellFreitas cumulus parameterization 

scheme (Grell and Freitas, 2014) 

Planetary boundary layer scheme YSU (Hong et al., 2006) 

 75-150 µg m-3  150-250 µg m-3 
greater than 250 

µg m-3 
totala 

seesaw patterns 98 22 1 121 

stagnation 105 32 1 138 

other 118 10 0 128 

totalb 321 64 2 387 



 

 

 

 

Fig. S1 The simulation domains of WRF (black square), CMAQ (magenta square) and 

the regions of NCP (red square), SWLY (green square), and YRD (blue square) used 

for the analysis.  

 

 

 

 

 

 

 

 

 



 

Fig. S2 Scatter plot of simulated and observational daily mean PM2.5 over three regions 

(NCP, SWLY, and YRD) from 2014 to 2019. The linear regression is marked in red line. 

The statistical parameters are also shown on the top left, including mean fractional bias 

(MFB), mean fractional error percent (MFE), and correlation coefficient (R), with the 

asterisk on the top left of R indicating statistical significance (P < 0.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

Fig. S3 Duration and average PM2.5 concentration of pollution events which PM2.5 

concentration is greater than 75 µg m-3 in SWLY and NCP in winter of 2014-2019.  

 

 

 

 

 

 

 

 

 



 

Fig. S4 The cumulative distribution function of observational daily PM2.5 in wintertime 

of SWLY in 2014-2019. The grey, green and orange dotted lines implies 75, 150, and 

250 µg m-3 of PM2.5 concentrations, respectively. 

 



 

Fig. S5 The regional mean total frequency (a) and duration (b) of observational PM2.5 

for three categories (I: 75-150 µg m-3 II: 150-250 µg m-3, III: greater than 250 µg m-3) 

over SWLY, NCP and YRD in winter during 2014-2019. 

 

 



 

Fig. S6 (a)-(c): Monthly average emissions of (t/month) from MEIC emission inventory 

in winter 2016; (d) The monthly average emissions of PM2.5, NOX, and SO2 derived 

from MEIC in SWLY and NCP in winter 2016. 
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