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ABSTRACT 10 

Chromium (Cr) pollution in soils is a global concern that should be assessed. Pollution 11 

Induced Community Tolerance (PICT) methodology is a highly sensitive tool that can 12 

directly indicate metal toxicity in the microbial community. Ten soils with a wide range 13 

of properties were spiked with 31.25, 62.5, 125, 250, 500, 1000 and 2000 mg Cr·kg-1, in 14 

addition to the control. Bacterial growth (using [3H]-leucine incorporation technique) was 15 

used to determine PICT, that is, whether bacterial communities developed tolerance in 16 

response to Cr additions to different soil types. Some bacterial communities did not grow 17 

normally at 1000 or 2000 mg Cr·kg-1, probably due to high Cr toxicity, while others did. 18 

Regarding below 500 mg Cr·kg-1, bacterial communities showed two responses 19 

depending on soil type: 7 of the 10 studied soils showed increased tolerance to Cr, while 20 

for the remaining 3 soils did not develop tolerance to Cr. Furthermore, the Cr level from 21 

which bacterial communities developed tolerance was dependent on the soil, i.e. Cr was 22 

more toxic in some of studied soils. The Cr effect on microbial communities was mainly 23 

determined by Dissolved Organic Carbon (DOC) and the fraction of Cr extracted with 24 

distilled water (H2O-Cr) (R2 = 95.6 %). Their effect on Cr in the soil might lead to an 25 

increase in toxicity (selection phase of PICT). 26 

 27 
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1. Introduction 35 

Chromium (Cr) is a highly toxic non-essential metal for microorganisms and 36 

plants, that may naturally occur at high concentrations from parent materials, e.g. 37 

serpentine rocks (Adriano, 2001; Cervantes et al., 2001). The world average content of 38 

Cr in soils is 60 mg·kg-1, but in soils developed from mafic and volcanic rocks can reach 39 

up to 10000 mg·kg-1 (Gonnelli and Renella, 2013). Cr contents up to 2879 and 3865 40 

mg·kg-1 were reported for serpentine soils in Galicia (NW Spain) and Albania, 41 

respectively, (Covelo et al., 2007; Shallari et al., 1998). Anthropogenic activities, e.g. 42 

metallurgical industry, also lead to Cr accumulation in soils (Kabata-Pendias, 2011). Up 43 

to 195, 88 and 6228 mg·kg-1 Cr were found in urban, agricultural and industrial soils, 44 

respectively (Srinivasa Gowd et al., 2010; Wei and Yang, 2010). Speciation and 45 

adsorption on soil solid surfaces are the main processes controlling Cr toxicity in soils 46 

(Adriano, 2001; Shahid et al., 2017). Despite the various Cr oxidation states, Cr(III) and 47 

Cr(VI) are the most stable and common forms in soils. Cr(VI) is considered the most toxic 48 

form of Cr, while Cr (III) is less mobile, less toxic and presents mostly precipitated 49 

(Kabata-Pendias, 2011). The adsorption of Cr on soil solid surfaces depends on several 50 

factors, e.g. soil pH, clay content, organic matter or Fe hydroxides (Bolan and 51 

Thiagarajan, 2001; Bradl, 2004; Dias-Ferreira et al., 2015; Gonnelli and Renella, 2013; 52 

Kabata-Pendias, 2011). 53 

In the assessment of metal pollution, the toxic metal effect on soil microorganisms 54 

should be considered, because of their key role in maintaining soil ecosystem functions 55 

(Nannipieri et al., 2003). Lower microbial diversity, enzymatic activity, C mineralization 56 

and microbial biomass were found in Cr-polluted soil in comparison to unpolluted soil 57 

(Dotaniya et al., 2017; He et al., 2016; Pradhan et al., 2019). The potential nitrification 58 

and microbial abundance were inhibited with the increase of Cr level in the soil (Zhang 59 
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et al., 2022). Bacterial diversity was negatively correlated with total and available Cr, 60 

while microbial community structure was altered (Zhang et al., 2021). However, 61 

sometimes differentiating if the microbial response is due to Cr toxicity or to soil 62 

properties variation is a difficult task (Liu et al., 2019), in addition to the complex 63 

biogeochemical behaviour of Cr in soils (Ao et al., 2022). Therefore, a microbial indicator 64 

specifically related to Cr toxicity that reduces interference of other soil properties is 65 

needed to assess the Cr toxicity, such as the Pollution Induced Community Tolerance 66 

(PICT) methodology. PICT is a sensitive tool that can be used as a direct indicator of 67 

metal toxicity in the microbial community (Blanck, 2002). PICT methodology is based 68 

on the selective pressure that the metal exerts on a microbial community, which favoured 69 

the proliferation of more tolerant species over the more sensitive ones. Thus, the microbial 70 

community that was exposed to the pollutant should show higher tolerance than that of 71 

the unexposed reference microbial community (Blanck, 2002; Tlili et al., 2016). PICT 72 

methodology has been successfully applied to assess Cr pollution in soils or sediments 73 

(Gong et al., 2002; Ipsilantis and Coyne, 2007; Ogilvie and Grant, 2008; Santás-Miguel 74 

et al., 2021; Shi et al., 2002a, 2002b; Van Beelen et al., 2004). The microbial community 75 

tolerance should be quantified in a short-term assay by a sensitive endpoint, such as 76 

bacterial growth measured using [3H]-leucine incorporation (Berg et al., 2012; Boivin et 77 

al., 2006; Lekfeldt et al., 2014). Despite the high sensitivity and specificity, the PICT 78 

methodology might present some difficulties, mainly due to the influence of soil 79 

properties (Blanck, 2002; Lekfeldt et al., 2014). Shi et al. (2002b) found similar values of 80 

PICT to Cr and Pb both at low and high Cr (263 g·kg-1) and Pb (10000 mg·kg-1) levels, 81 

respectively, suggesting that different soils affected Cr and Pb bioavailability. Similarly, 82 

Shi et al. (2002a) did not found bacterial community tolerance to Cr (or Pb), regardless 83 

of exposure history to Cr (or Pb), suggesting that several factors (organic matter, pH, 84 
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redox potential) might influence metal availability. Boivin et al. (2006), Fernández-85 

Calviño et al. (2012) and Fernández-Calviño and Bååth (2016) also reported different 86 

tolerance values to heavy metals in soils with similar values of metals but different soil 87 

properties. Soil properties may affect PICT development due to effects on metals 88 

speciation, adsorption and bioavailability (Bradl, 2004; Shahid et al., 2017).  89 

We hypothesize that soil pollution with Cr induces the development of bacterial 90 

community tolerance to Cr, but the magnitude of the increases depends on soil 91 

physicochemical characteristics. Therefore, we aim to determine the induced bacterial 92 

community tolerance to Cr in response to the addition of different Cr levels to 10 soils 93 

with variable properties. We also aim to assess the importance of soil properties on the 94 

increase of bacterial community tolerance to Cr. 95 

 96 

  97 
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2. Materials and Methods 98 

2.1 Soil samples 99 

Soil samples were the same used previously in Campillo-Cora et al. (2021a, 2020) to 100 

study Cr adsorption and fractionation in soils with different properties, mainly in terms 101 

of organic matter and pH. In brief, ten remote forest locations in Galicia (NW Spain) were 102 

selected to avoid heavy metal pollution. Locations were also selected to obtain soil 103 

samples with a range of different physicochemical properties (Macías-Vázquez and Calvo 104 

de Anta, 2009). Superficial soil samples (0-20 cm) were taken using an Edelman probe 105 

and, once in the laboratory, were air-dried, homogenized, sieved (2 mm mesh) and stored 106 

until analysis. 107 

 108 

2.2 Soil properties 109 

A detailed description of the chemical analysis is given in Campillo-Cora et al. (2020) 110 

and in Supplementary Information. The properties of the 10 soils can be found in Tables 111 

S1 and S2. In brief, soil samples presented a wide range of textures (19-71 % Sand, 13-112 

67 % Silt, 14-32 % Clay). A wide range of soil pHW and pHK was found: 4.0-7.5 and 3.0-113 

6.9, respectively. Similarly, OM oscillated between 10-29 %. A range from 2 to 29 114 

cmolc·kg-1 was obtained for eCEC. A large range was obtained for DOC: 0.14 to 0.70 115 

g·kg-1. Chromium total content varied from 7 up to 394 mg·kg-1. 116 

Adsorption constants determined from Freundlich and Langmuir models (batch 117 

experiments) are presented in Table S3, obtained from Campillo-Cora et al. (2020). The 118 

different Cr fractions from extractions using distilled water, CaCl2 and DTPA are shown 119 

in Table S4, obtained from Campillo-Cora et al. (2021a) 120 

 121 

 122 
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2.3 Experimental design and bacterial community tolerance to Cr determination 123 

Sieved soil samples were rewetted until reaching 60 – 80% of water holding capacity 124 

(Meisner et al., 2013). To rewet, soil samples were spiked with seven Cr solutions (made 125 

from K2Cr2O7) and one of distilled water, to obtain the following final Cr levels in soils: 126 

2000, 1000, 500, 250, 125, 62.5, 31.25 and 0 mg Cr·kg-1 soil. Each Cr solution was added 127 

separately and in triplicate, finally obtaining 240 microcosms (10 soils x 8 [Cr] x 3 128 

replicates). Once soil samples were spiked with Cr, microcosms were incubated in the 129 

dark at 22 ºC for two months, to ensure the reactivation of bacterial communities (Meisner 130 

et al., 2013).  131 

After the incubation period, bacterial community tolerance to Cr was estimated 132 

through the PICT methodology (Blanck, 2002). The homogenization-centrifugation 133 

technique was performed to extract soil bacterial communities (Bååth, 1992). The 134 

bacterial community tolerance to Cr was determined as previously for Cu (Fernández-135 

Calviño et al., 2011), with modifications based on suggestions by Lekfeldt et al. (2014). 136 

For this purpose, each microcosm was distributed in three 50 mL centrifuge tubes and 137 

MES buffer was added in a ratio 1:10 soil/buffer (20 Mm pH 6; 4-138 

Morpholineethanesulfonic acid, CAS no: 4432-31-9) (Lekfeldt et al., 2014). The 139 

suspensions soil/MES were mixed using a multi-vortex at maximum intensity for 3 min. 140 

This step was followed by low-speed centrifugation to remove most of the fungal biomass 141 

(1000 x g, 10 min) (Bååth, 1994; Bååth et al., 2001; Rousk and Bååth, 2011). Soil 142 

supernatants, i.e. bacterial suspensions, were filtered through glass wool and 1.5 mL 143 

aliquots were transferred into 2 mL micro-centrifugation tubes. A volume of 0.15 mL of 144 

different Cr concentrations (made from K2Cr2O7) was added to micro-centrifugation 145 

tubes, obtaining nine Cr concentrations (3.3 x 10-4 to 10-8 M) plus a blank (0.15 mL of 146 

distilled water). Then, the 3H-leucine incorporation method was used to estimate bacterial 147 
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growth (Bååth et al., 2001). A volume of 0.2 µL [3H]Leu (37 MBq mL-1 and 5.74 TBq 148 

mmol-1. Amersham) with non-labelled Leu (19.8 µL) was added to each tube, resulting 149 

in 300 nM Leu in the bacterial suspensions. Bacterial suspensions were incubated for 8 h 150 

at 22ºC. Bacterial growth was stopped with 75 µL of 100% trichloroacetic acid. The 151 

washing procedure and subsequent radioactivity measurement were carried out according 152 

to Bååth et al. (2001). Radioactivity was measured by liquid scintillation counting using 153 

a Tri-Carb 2810 TR (PerkinElmer, USA) 154 

 155 

2.4 Data analysis 156 

2.4.1 Estimation of bacterial community tolerance to Cr (log IC50) 157 

A dose-response curve was obtained for each soil microcosm. To compare the dose-158 

response curves, i.e. inhibition curves, with each other, bacterial growth was expressed 159 

as relative bacterial growth. For each inhibition curve, generally, the four lowest added 160 

metal concentrations to bacterial suspensions not showed bacterial growth inhibition 161 

(Figure 1). Thus, relative bacterial growth was calculated by dividing all bacterial growth 162 

data by the average of results from the four lowest added metal concentrations (including 163 

blank), obtaining comparable dose-response curves. From each dose-response curve, log 164 

IC50 was determined as a tolerance index, i.e. Cr concentration resulting in 50% inhibition 165 

of bacterial community growth. Higher log IC50 values mean higher bacterial community 166 

tolerance to Cr, and lower log IC50 values mean lower bacterial community tolerance to 167 

Cr. Log IC50 was calculated using the following logistic model (Fernández-Calviño et al., 168 

2011): 169 

Y=c/(1+eb(X-a))                                                                                                  (equation 1) 170 
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where Y is the measured level of Leu incorporation, c is the bacterial growth rate without 171 

added Cr, b is a slope parameter indicating the inhibition rate, X is the logarithm of Cr 172 

added, and a is log IC50. 173 

To detect whether bacterial community tolerance increase from different studied 174 

soils occurs, ∆log IC50 was determined as the difference between log IC50 value from each 175 

Cr level in soil (2000, 1000, 500, 250, 125, 62.5 or 31.25 mg Cr·kg-1) and the control soil 176 

(0 mg Cr·kg-1). A difference of 0.3 was taken as a reference value to determine if bacterial 177 

community tolerance increased since it represents twice the Cr concentration in terms of 178 

added Cr to bacterial suspensions. If ∆log IC50 is higher than 0.3, we will consider an 179 

increase in bacterial community tolerance to Cr (Fernández-Calviño and Bååth, 2016, 180 

2013). 181 

 182 

2.4.2 Estimation of bacterial community tolerance increase to Cr (multiple linear 183 

regression analyses) 184 

A multiple regression analysis, using the backward elimination method, was performed 185 

to obtain an equation that allows estimating the increase in bacterial community tolerance 186 

to Cr (∆log IC50) from soil properties. As the inhibition curves for some soils did not fit 187 

the logistic model (equation 1) for the highest Cr concentrations (1000 and 2000 mg·kg-188 

1), ∆log IC50 from 500 mg·kg-1 was used for estimations. Once the equation was 189 

estimated, determining factors were verified: linearity, error independency, residues 190 

homoscedasticity, residuals normality, autocorrelation, collinearity and presence of 191 

outliers. All statistics were performed using IBM SPSS Statistics 25 software (IBM, 192 

USA). 193 

  194 
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3. Results and discussion  195 

3.1 Bacterial community tolerance to Cr in Cr-polluted soils with different properties 196 

Figure 1 shows bacterial growth inhibition curves obtained for each microcosm. 197 

Generally, a sigmoid dose-response behaviour is observed in the inhibition curves, 198 

indicating that when the added Cr concentration to bacterial suspension was low, relative 199 

bacterial growth was close to 1, while decreased when the Cr concentration increased. 200 

Most of the bacterial growth data fitted the logistic model, obtaining R2 ≥ 0.87, (Table 201 

S5). However, some data from 1000 and 2000 mg Cr·kg-1 did not fit the logistic model, 202 

i.e. bacterial populations were not able to normally grow probably due to high Cr toxicity. 203 

In the case of 2000 mg·kg-1, bacterial populations only grew normally in 4 of the 10 204 

studied soils, while at 1000 mg·kg-1 they grew normally in 7 soils. These differences in 205 

bacterial growth for the same Cr levels may indicate the influence of soil properties on 206 

Cr availability, as was previously suggested by Van Beelen et al. (2004). They found 207 

tolerant communities to Cr(III) in polluted soils with high Cr levels (2894 mg·kg-1) but 208 

also reported that microbial communities from soils polluted with 3935 mg Cr·kg-1 did 209 

not show tolerance to Cr(III), suggesting the influence of soil properties on metal toxicity. 210 

Therefore, in order to determine which properties influence Cr toxicity, the data of 1000 211 

and 2000 mg Cr·kg-1 were not considered in the following analysis.  212 

The log IC50 values determined from inhibition curves using the logistic model 213 

(equation 1) are presented in Table 1. Bacterial community tolerance to Cr (log IC50) 214 

greatly varied between soils, even in the reference soils with no added Cr, log IC50 215 

oscillated from -6.40 (S8) up to -3.88 (S6) (log units). The variation of bacterial 216 

community tolerance to Cr in the reference soils may be an indicator that the development 217 

of PICT is dependent on soil type. In addition, this bacterial community tolerance to Cr 218 

fluctuation in reference soils, together with the natural Cr content in soils (7 – 394 mg·kg-219 
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1, Table S2), highlights the importance of selecting reference soils for PICT studies 220 

(Campillo-Cora et al., 2022a; Campillo-Cora et al., 2021b). Likewise, when Cr was added 221 

to soils, bacterial community tolerance to Cr varied greatly between soils with the same 222 

Cr level. A range from -6.37 (S8) to -3.56 (S6) was determined for soils polluted with the 223 

lowest Cr level in soil (31.25 mg Cr·kg-1); from -6.27 (S8) to -3.79 (S7) for 62.5 mg 224 

Cr·kg-1; from -6.26 (S8) to -3.65 (S7) for 125 mg Cr·kg-1; from -6.27 (S5) to -3.41 (S7) 225 

for 250 mg Cr·kg-1; and from -6.09 (S8) to -2.87 (S3) for 500 mg·kg-1.  226 

Overall, bacterial communities showed two different responses to Cr addition to 227 

the soil (Figure 2): (1) bacterial communities of S1, S2, S3, S6, S7, S8 and S10 developed 228 

tolerance in response to Cr additions; while (2) bacterial communities of S4, S5 and S9 229 

did not develop tolerance following Cr addition to the soil. Based on the PICT hypothesis, 230 

the bacterial community is first exposed to the metal (i.e. selection phase of PICT), and 231 

if metal exerts toxicity, then the most sensitive organisms of the community will 232 

disappear, while the tolerant ones will be favoured. Therefore, whether the microbial 233 

community developed tolerance to Cr is a toxicity indicator. Later, the microbial 234 

community tolerance is quantified through a second exposition to Cr (i.e. detection phase 235 

of PICT) (Blanck, 2002; Tlili et al., 2016). Accordingly, Gong et al. (2002) and Ipsilantis 236 

and Coyne (2007) reported an increase in bacterial community tolerance to Cr with 237 

increasing Cr levels in soil and rhizosphere. Van Beelen et al. (2004) found that bacterial 238 

community tolerance to Cr(VI) increased with increasing Cr in pore water. Ogilvie and 239 

Grant (2008) determined a tendency to increase the bacterial community tolerance to Cr 240 

when the Cr level increases in estuarine sediments. Our results showed that bacterial 241 

community tolerance to Cr increased with increasing Cr levels in soils only in 7 of the 10 242 

soils studied (Figure 2). However, our results showed that the Cr level in soil from which 243 

bacterial communities developed tolerance to Cr varied depending on the soil (∆log IC50 244 
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> 0.3). Bacterial communities from S7 and S10 showed an increased tolerance at 31.25 245 

mg Cr·kg-1, bacterial communities from S1 and S3 at 62.5 mg Cr·kg-1, bacterial 246 

communities from S2 and S8 at 250 mg Cr·kg-1, and bacterial communities from S6 at 247 

500 mg Cr·kg-1. In other words, Cr was more toxic for bacterial communities depending 248 

on soil type, following the sequence: S7, S10 > S1, S3 > S2, S8 > S6. In other soils, our 249 

results show that microbial communities did not develop tolerance to Cr, even at high Cr 250 

levels. For example, bacterial communities of S6 did not show tolerance to Cr even at 251 

2000 mg·kg-1 (Figure 2). Similarly, Shi et al. (2002b, 2002a) and Ipsilantis and Coyne 252 

(2007) did not find tolerant microbial communities to Cr even at high Cr levels, from 447 253 

up to 263000 mg Cr·kg-1. Therefore, considering that Cr-pollution sometimes has no toxic 254 

effect on microbial communities and that, in other cases, microbial communities are 255 

affected by Cr from very low levels of Cr-pollution, including soil properties in the 256 

assessment of Cr-pollution is highly recommended, as for other heavy metals (Campillo-257 

Cora et al., 2022b). 258 

 259 

3.2 Estimation of the increase in bacterial community tolerance to Cr as a function of soil 260 

properties 261 

The bacterial community tolerance to metals may be influenced by several soil properties, 262 

such as soil pH, clay content or organic matter content (Ogilvie and Grant, 2008; Shi et 263 

al., 2002b). The effect of soil properties on bacterial community tolerance can occur in 264 

soil (selection phase of PICT), or in the determination phase of PICT. The effect of the 265 

soil properties in the selection phase occurs in the soil, i.e. the first time bacterial 266 

communities are exposed to the metal. For example, Fernández-Calviño and Bååth (2016) 267 

found that bacterial community tolerance to Cu was lower in vineyard soils with high pH 268 

in comparison to more acid soils, as Cu toxicity was reduced. On the other hand, the effect 269 
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of soil properties may occur in the detection phase, i.e. confounding factors leading to 270 

altered tolerance measures (Lekfeldt et al., 2014). For example, Fernández-Calviño et al. 271 

(2011) reported that the measurement of PICT to Cu was altered because of the presence 272 

of the finer soil fraction in the bacterial suspensions when Cu concentrations were added. 273 

That is, the finer particles will bind part of the Cu added to bacterial suspensions, resulting 274 

in lower available Cu, so higher Cu concentrations will be necessary to inhibit the 275 

bacterial growth leading to apparent higher tolerance, i.e. overestimated bacterial 276 

community tolerance to Cu. 277 

The equation presented in Table 2 related the increase of bacterial community 278 

tolerance to Cr (∆log IC50) with soil properties, explaining 95.6 % of the data variance (p 279 

< 0.001). Only ∆log IC50 for 500 mg Cr·kg-1 were used. The increase of bacterial 280 

community tolerance to Cr was estimated by using soil properties (p < 0.05): DOC and 281 

extracted Cr using distilled water (H2O-Cr). Figure 3 shows estimated ∆log IC50 versus 282 

measured ∆log IC50, with a homogeneous distribution around the line 1:1 (R2 = 0.95). 283 

DOC showed a significant positive relationship with ∆log IC50 (p < 0.05; Table 284 

2), i.e. when DOC increases, the bacterial community tolerance to Cr also increases. This 285 

DOC effect might be a confounding factor in the detection phase of PICT, as was 286 

previously reported for Cu (Campillo-Cora et al., 2021b; Lekfeldt et al., 2014). When 287 

bacterial communities are extracted from soil, DOC is extracted too. Later, when Cu is 288 

added to bacterial suspensions, Cu and DOC may bind together (Beesley et al., 2010), 289 

reducing Cu bioavailability and altering bacterial community tolerance to Cr 290 

(overestimation). Bérard et al. (2016) reported a similar effect for microbial community 291 

tolerance to Pb measurements. However, in a previous study (Campillo-Cora et al., 292 

2022c), we found that when dissolved organic matter (DOM) increases on bacterial 293 

suspensions, then bacterial community tolerance to Cr decreases, i.e. when DOM 294 
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increases in bacterial suspensions, Cr becomes more toxic to bacteria. Hence, the DOC 295 

effect in Cr bioavailability in the detection phase should be discarded because of the 296 

positive relationship with ∆log IC50 (Table 2) and attributed to an effect in the selection 297 

phase in soil. In the soil, however, when DOC is present, Cr(VI) may be reduced to 298 

Cr(III), i.e. Cr toxicity decreases when DOC is present (Ao et al., 2022). If fact, the use 299 

of organic amendments to reduce Cr toxicity in soils is very common (Abou Jaoude et 300 

al., 2020; Mitchell et al., 2018; Yang et al., 2021). A hypothesis is that the presence of 301 

DOC in soil enhanced the reduction of Cr(VI) to Cr(III) (Wittbrodt and Palmer, 1997), 302 

but during this process free radicals may also be formed (Kotaś and Stasicka, 2000), 303 

increasing general toxicity for bacterial communities (Campillo-Cora et al., 2022c). In 304 

response to increased toxicity in soil, then bacterial communities showed tolerance to Cr. 305 

Another hypothesis might be the ability of Cr(III) to coordinate various organic 306 

compounds, leading to the inhibition of some metalloenzyme systems (Kotaś and 307 

Stasicka, 2000), which might result in a more tolerant bacterial community. 308 

 The Cr fraction extracted with distilled water (H2O-Cr) showed a positive 309 

relationship with ∆log IC50 (p < 0.001, Table 2). Usually, the soluble form of heavy metals 310 

represents the soil solution metal content, which is the most mobile and bioavailable form 311 

(Kabata-Pendias, 2011). In the vase of Cr, probably Cr(VI) (Ao et al., 2022). Thus, H2O-312 

Cr exerts its effect in soil, during the selection phase. H2O-Cr content in soil increases as 313 

added Cr level in soils increases (Campillo-Cora et al., 2021a). Whether Cr exerts 314 

toxicity, the most sensitive bacterial species were removed, while the tolerant ones 315 

survived, resulting in a more tolerant community to Cr. Later, in the detection phase, 316 

when bacterial growth is measured and Cr is added to bacterial suspensions, tolerant 317 

bacteria allow greater Cr concentrations, leading to a higher tolerant community. Van 318 

Beelen et al. (2004) found a significant increase in microbial community tolerance to 319 
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Cr(VI) with Cr(VI) pore-water concentration. Similarly, Fernández-Calviño and Bååth 320 

(2016) reported a positive relationship between bacterial community tolerance increase 321 

(∆log IC50) to Cu versus water-soluble Cu concentrations logarithm (R2 = 0.79). Kunito 322 

et al. (1999) also determined a positive correlation between IC50 values and soluble-323 

exchangeable Cu (r = 0.76), while total Cu did not show any significant relationship (r = 324 

0.013, p > 0.05).  325 

 326 

3.3 Concluding remarks 327 

In the present study, we aimed to improve the PICT methodology for the assessment of 328 

soil pollution, using bacterial growth as the endpoint. Dissolved organic carbon (DOC) 329 

and the fraction of Cr extracted with distilled water (H2O-Cr) were the main factors 330 

controlling the Cr effect on microbial communities, determined by the increase of 331 

bacterial community tolerance to Cr. The main selection pressure of Cr on the microbial 332 

community presumably occurs in soil, i.e. the selection phase of PICT. In the case of 333 

DOC, Cr became more toxic to bacterial communities as DOC increased in soil, leading 334 

to an increase in bacterial community tolerance to Cr in response to toxicity. Secondly, 335 

H2O-Cr is related to the toxic and active form of Cr, probably Cr(VI), and the higher the 336 

H2O-Cr content in the soil, the higher the tolerance to Cr developed by bacterial 337 

communities. The outcomes of this study may be helpful for normalising Cr toxicity 338 

thresholds for soil with different properties. In addition, overestimations or 339 

underestimations of Cr toxicity based on total or bioavailable Cr content may be avoided, 340 

since soil properties should be considered during risk assessment. 341 

 342 

 343 

  344 
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Tables 557 

Table 1 558 

Bacterial community tolerance (expressed as log IC50) to different levels of Cr pollution 559 

in the 10 studied soils (average ± SE) 560 

Cr 
(mg·kg-1) 

2000 1000 500 250 125 62.5 31.25 0 

Soil Log 
IC50±error 

Log 
IC50±error 

Log 
IC50±error 

Log 
IC50±error 

Log 
IC50±error 

Log 
IC50±error 

Log 
IC50±error 

Log 
IC50±error 

S1 -5.34±0.03 -5.35±0.05 -5.28±0.03 -5.30±0.03 -5.33±0.03 -5.30±0.04 -5.83±0.06 -5.82±0.05 

S2 -4.04±0.24 -4.55±0.42 -4.61±0.21 -4.68±0.41 -4.78±0.43 -4.70±0.21 -4.81±0.19 -5.02±0.13 

S3 * * -2.87±0.51 -4.38±0.15 -4.62±0.16 -4.70±0.18 -5.46±0.03 -5.38±0.05 

S4 -5.85±0.08 -5.76±0.05 -5.80±0.07 -5.69±0.05 -5.66±0.04 -5.68±0.04 -5.90±0.08 -5.66±0.07 

S5 * -4.47±0.11 -5.80±0.19 -6.27±0.07 -5.86±0.10 -5.98±0.06 -6.02±0.10 -6.09±0.07 

S6 * -3.47±0.06 -3.38±0.08 -4.48±0.13 -4.18±0.16 -3.97±0.12 -3.56±0.23 -3.88±0.11 

S7 * -3.44±0.09 -3.35±0.07 -3.41±0.09 -3.65±0.11 -3.79±0.07 -3.85±0.05 -4.32±0.12 

S8 -3.63±0.13 -6.03±0.06 -6.09±0.09 -5.90±0.09 -6.26±0.04 -6.27±0.03 -6.37±0.07 -6.40±0.15 

S9 * * -4.32±0.27 -4.37±0.39 -4.70±0.23 -4.43±0.13 -3.82±0.05 -4.11±0.04 

S10 * * -4.75±0.13 -4.64±0.09 -4.48±0.09 -4.69±0.09 -4.76±0.04 -5.16±0.07 

*Unadjusted data 561 

 562 
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Table 2 563 

The equation for estimating bacterial community tolerance increase to Cr (∆log IC50(500-564 

0)) was obtained by multiple regression analysis using all soil samples (n=10).  565 

Equation F p-value Adjusted R2 

∆log IC50 = - (0.435 ± 0.148) + (1.445 ± 0.320) DOC  

                      (p=0.026)            (p=0.004) 

 

                    + (0.018 ± 0.001) H2O-Cr  

                       (p<0.001) 

87.309 <0.001 0.956 

DOC is dissolved organic carbon (g·kg-1); H2O-Cr is Cr extracted using H2O. Values associated with the 566 
independent variables are shown together with the standard errors (±). P-values associated with each 567 
independent variable are shown below variables (in brackets) 568 

 569 

 570 
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Figures 572 

 573 

Figure 1. Bacterial growth inhibition curves for bacterial suspensions extracted from 10 soils 574 

artificially polluted with a range of Cr concentrations: 2000, 1000, 500, 125, 62.5, 31.25 and 0 575 

mg·kg-1. Dots indicate real data measured, while the lines represent the fit of the data to the logistic 576 

model used. 577 
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Figure 1 (continued) 580 
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 582 

Figure 2 Bacterial community tolerance variation (expressed as ∆log IC50 concerning 583 

unpolluted soil) to a range of added Cr to soil (in logarithm scale). White dots represent 584 

data from ∆log IC50(31.25-0), ∆log IC50(62.5-0), ∆log IC50(125-0), ∆log IC50(250-0) and ∆log 585 

IC50(500-0). Black dots represent data from ∆log IC50(1000-0) and ∆log IC50(2000-0). Continuous 586 

lines represent linear regression fit. The discontinuous line represents the value (0.3) from 587 

which it is considered that the bacterial community has developed tolerance. 588 

 589 

https://doi.org/10.5194/egusphere-2023-185
Preprint. Discussion started: 21 February 2023
c© Author(s) 2023. CC BY 4.0 License.



30 
 

 590 

Figure 3. Relationship between measured and estimated ∆log IC50 using the equation 591 

from Table 2.  The stippled line indicated a 1:1 relationship. 592 
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