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ABSTRACT 11 

Chromium (Cr) soil pollution is a pressing global concern that demads thorough 12 

assessment. The Pollution Induced Community Tolerance (PICT) methodology serves as 13 

a highly sensitive tool capable of directly assessing metal toxicity within microbial 14 

communities. In this study, ten soils exhibiting a wide range of properties were subjected 15 

to Cr contamination, with concentrations ranging from 31.25 to 2000 mg Cr·kg-1, in 16 

addition to the control. Bacterial growth, assessed using the [3H]-leucine incorporation 17 

technique, was used to determine whether bacterial communities developed tolerance to 18 

Cr, i.e., PICT to Cr in response to Cr additions to different soil types. Obtained results 19 

revealed that at concentrations of 1000 or 2000 mg Cr·kg-1, certain bacterial communities 20 

showed inhibited growth, likely attributable to elevated Cr toxicity, while others 21 

continued to thrive. Interestingly, with Cr concentrations below 500 mg Cr·kg-1, bacterial 22 

communities demonstrated two distinc responses depending on soil type: 7 of the 10 23 

studied soils exhibited an increased bacterial community tolerance to Cr, while the 24 

remaining 3 soils did not develop such tolerance. Furthermore, the Cr level at which 25 

bacterial communities developed tolerance to Cr varies among soils, indicating varying 26 

levels of Cr toxicity between studied soils. The Dissolved Organic Carbon (DOC) and the 27 

fraction of Cr extracted with distilled water (H2O-Cr) played an essential role in shaping 28 

the impact of Cr on microbial communities (R2 = 95.6 %). These factors (DOC and H2O-29 

Cr) contribute to increase Cr toxicity in soil, i.e., during the selection phase of PICT 30 

methodology. 31 

 32 
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1. Introduction 36 

Chromium (Cr) is a highly toxic non-essential metal for microorganisms and 37 

plants, that may naturally occur at high concentrations from parent materials, e.g. 38 

serpentine rocks (Adriano, 2001; Cervantes et al., 2001). The world average content of 39 

Cr in soils is 60 mg·kg-1, but in soils developed from mafic and volcanic rocks can reach 40 

up to 10000 mg·kg-1 (Gonnelli and Renella, 2013). Cr contents up to 2879 and 3865 41 

mg·kg-1 were reported for serpentine soils in Galicia (NW Spain) and Albania, 42 

respectively, (Covelo et al., 2007; Shallari et al., 1998). Anthropogenic activities, e.g. 43 

metallurgical industry, also lead to Cr accumulation in soils (Kabata-Pendias, 2011). Up 44 

to 195, 88 and 6228 mg·kg-1 Cr were found in urban, agricultural and industrial soils, 45 

respectively (Srinivasa Gowd et al., 2010; Wei and Yang, 2010). Speciation and 46 

adsorption on soil solid surfaces are the main processes controlling Cr toxicity in soils 47 

(Adriano, 2001; Shahid et al., 2017). Despite the various Cr oxidation states, Cr(III) and 48 

Cr(VI) are the most stable and common forms in soils. Cr(VI) is considered the most toxic 49 

form of Cr, while Cr (III) is less mobile, less toxic and presents mostly precipitated 50 

(Kabata-Pendias, 2011). The adsorption of Cr on soil solid surfaces depends on several 51 

factors, e.g. soil pH, clay content, organic matter or Fe hydroxides (Bolan and 52 

Thiagarajan, 2001; Bradl, 2004; Dias-Ferreira et al., 2015; Gonnelli and Renella, 2013; 53 

Kabata-Pendias, 2011). 54 

In the assessment of metal pollution, the toxic metal effect on soil microorganisms 55 

should be considered, because of their key role in maintaining soil ecosystem functions 56 

(Nannipieri et al., 2003). Lower microbial diversity, enzymatic activity, C mineralization 57 

and microbial biomass were found in Cr-polluted soil in comparison to unpolluted soil 58 

(Dotaniya et al., 2017; He et al., 2016; Pradhan et al., 2019). The potential nitrification 59 

and microbial abundance were inhibited with the increase of Cr level in the soil (Zhang 60 
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et al., 2022). Bacterial diversity was negatively correlated with total and available Cr, 61 

while microbial community structure was altered (Zhang et al., 2021). However, 62 

sometimes differentiating if the microbial response is due to Cr toxicity or to soil 63 

properties variation is a difficult task (Liu et al., 2019), in addition to the complex 64 

biogeochemical behaviour of Cr in soils (Ao et al., 2022). Therefore, a microbial indicator 65 

specifically related to Cr toxicity that reduces interference of other soil properties is 66 

needed to assess the Cr toxicity, such as the Pollution Induced Community Tolerance 67 

(PICT) methodology. PICT is a sensitive tool that can be used as a direct indicator of 68 

metal toxicity in the microbial community (Blanck, 2002). PICT methodology is based 69 

on the selective pressure that the metal exerts on a microbial community, which favoured 70 

the proliferation of more tolerant species over the more sensitive ones. Thus, the microbial 71 

community that was exposed to the pollutant should show higher tolerance than that of 72 

the unexposed reference microbial community (Blanck, 2002; Tlili et al., 2016). PICT 73 

methodology has been successfully applied to assess Cr pollution in soils or sediments 74 

(Gong et al., 2002; Ipsilantis and Coyne, 2007; Ogilvie and Grant, 2008; Santás-Miguel 75 

et al., 2021; Shi et al., 2002a, 2002b; Van Beelen et al., 2004). The microbial community 76 

tolerance should be quantified in a short-term assay by a sensitive endpoint, such as 77 

bacterial growth measured using [3H]-leucine incorporation (Berg et al., 2012; Boivin et 78 

al., 2006; Lekfeldt et al., 2014). Despite the high sensitivity and specificity, the PICT 79 

methodology might present some difficulties, mainly due to the influence of soil 80 

properties (Blanck, 2002; Lekfeldt et al., 2014). Shi et al. (2002b) found similar values of 81 

PICT to Cr and Pb both at low and high Cr (263 g·kg-1) and Pb (10000 mg·kg-1) levels, 82 

respectively, suggesting that different soils affected Cr and Pb bioavailability. Similarly, 83 

Shi et al. (2002a) did not found bacterial community tolerance to Cr (or Pb), regardless 84 

of exposure history to Cr (or Pb), suggesting that several factors (organic matter, pH, 85 
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redox potential) might influence metal availability. Boivin et al. (2006), Fernández-86 

Calviño et al. (2012) and Fernández-Calviño and Bååth (2016) also reported different 87 

tolerance values to heavy metals in soils with similar values of metals but different soil 88 

properties. Soil properties may affect PICT development due to effects on metals 89 

speciation, adsorption and bioavailability (Bradl, 2004; Shahid et al., 2017).  90 

We hypothesize that soil pollution with Cr induces the development of bacterial 91 

community tolerance to Cr, but the magnitude of the increases depends on soil 92 

physicochemical characteristics. Therefore, we aim to determine the induced bacterial 93 

community tolerance to Cr in response to the addition of different Cr levels to 10 soils 94 

with variable properties. We also aim to assess the importance of soil properties on the 95 

increase of bacterial community tolerance to Cr. 96 

 97 

  98 
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2. Materials and Methods 99 

2.1 Soil samples 100 

Soil samples were the same used previously in Campillo-Cora et al. (2021a, 2020) to 101 

study Cr adsorption and fractionation in soils with different properties, mainly in terms 102 

of organic matter and pH. In brief, ten remote forest locations in Galicia (NW Spain) were 103 

selected to avoid heavy metal pollution. Locations were also selected to obtain soil 104 

samples with a range of different physicochemical properties (Macías-Vázquez and Calvo 105 

de Anta, 2009). Superficial soil samples (0-20 cm) were taken using an Edelman probe 106 

and, once in the laboratory, were air-dried, homogenized, sieved (2 mm mesh) and stored 107 

until analysis. 108 

 109 

2.2 Soil properties 110 

A detailed description of the chemical analysis is given in Campillo-Cora et al. (2020) 111 

and in Supplementary Information. The properties of the 10 soils can be found in Tables 112 

S1 and S2. In brief, soil samples presented a wide range of textures (19-71 % Sand, 13-113 

67 % Silt, 14-32 % Clay). A wide range of soil pHW and pHK was found: 4.0-7.5 and 3.0-114 

6.9, respectively. Similarly, OM oscillated between 10-29 %. A range from 2 to 29 115 

cmolc·kg-1 was obtained for eCEC. A large range was obtained for DOC: 0.14 to 0.70 116 

g·kg-1. Chromium total content varied from 7 up to 394 mg·kg-1. 117 

Adsorption constants determined from Freundlich and Langmuir models (batch 118 

experiments) are presented in Table S3, obtained from Campillo-Cora et al. (2020). The 119 

different Cr fractions from extractions using distilled water, CaCl2 and DTPA are shown 120 

in Table S4, obtained from Campillo-Cora et al. (2021a). 121 

 122 

 123 
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2.3 Experimental design and bacterial community tolerance to Cr determination 124 

Sieved soil samples were rewetted until reaching 60 – 80% of water holding capacity 125 

(Meisner et al., 2013). To rewet, soil samples were spiked with seven Cr solutions (made 126 

from K2Cr2O7) and one of distilled water, to obtain the following final Cr levels in soils: 127 

2000, 1000, 500, 250, 125, 62.5, 31.25 and 0 mg Cr·kg-1 soil. Each Cr solution was added 128 

separately and in triplicate, finally obtaining 240 microcosms (10 soils x 8 [Cr] x 3 129 

replicates). These concentrations were selected as previously undertaken in Campillo-130 

Cora (2020, 2021a), as they represent a broad exponential range of Cr contamination, 131 

which promotes the development of bacterial community tolerance to Cr, despite the 132 

considerable variability in soil properties. This facilitates subsequent comparisons of 133 

bacterial community tolerance to Cr results between the different soils studied. Once soil 134 

samples were spiked with Cr, microcosms were incubated in the dark at 22 ºC for two 135 

months, to ensure the reactivation of bacterial communities (Meisner et al., 2013).  136 

After the incubation period, bacterial community tolerance to Cr was estimated 137 

through the PICT methodology (Blanck, 2002). The homogenization-centrifugation 138 

technique was performed to extract soil bacterial communities (Bååth, 1992). The 139 

bacterial community tolerance to Cr was determined as previously for Cu (Fernández-140 

Calviño et al., 2011), with modifications based on suggestions by Lekfeldt et al. (2014). 141 

For this purpose, each microcosm was distributed in three 50 mL centrifuge tubes and 142 

MES buffer was added in a ratio 1:10 soil/buffer (20 Mm pH 6; 4-143 

Morpholineethanesulfonic acid, CAS no: 4432-31-9) (Lekfeldt et al., 2014). The 144 

suspensions soil/MES were mixed using a multi-vortex at maximum intensity for 3 min. 145 

This step was followed by low-speed centrifugation to remove most of the fungal biomass 146 

(1000 x g, 10 min) (Bååth, 1994; Bååth et al., 2001; Rousk and Bååth, 2011). Soil 147 

supernatants, i.e. bacterial suspensions, were filtered through glass wool and 1.5 mL 148 
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aliquots were transferred into 2 mL micro-centrifugation tubes. A volume of 0.15 mL of 149 

different Cr concentrations (made from K2Cr2O7) was added to micro-centrifugation 150 

tubes, obtaining nine Cr concentrations (3.3 x 10-4 to 10-8 M) plus a blank (0.15 mL of 151 

distilled water). Then, the 3H-leucine incorporation method was used to estimate bacterial 152 

growth (Bååth et al., 2001). A volume of 0.2 µL [3H]Leu (37 MBq mL-1 and 5.74 TBq 153 

mmol-1. Amersham) with non-labelled Leu (19.8 µL) was added to each tube, resulting 154 

in 300 nM Leu in the bacterial suspensions. Bacterial suspensions were incubated for 8 h 155 

at 22ºC. Bacterial growth was stopped with 75 µL of 100% trichloroacetic acid. The 156 

washing procedure and subsequent radioactivity measurement were carried out according 157 

to Bååth et al. (2001). Radioactivity was measured by liquid scintillation counting using 158 

a Tri-Carb 2810 TR (PerkinElmer, USA) 159 

 160 

2.4 Data analysis 161 

2.4.1 Estimation of bacterial community tolerance to Cr (log IC50) 162 

A dose-response curve was obtained for each soil microcosm. To compare the dose-163 

response curves, i.e. inhibition curves, with each other, bacterial growth was expressed 164 

as relative bacterial growth. For each inhibition curve, generally, the four lowest added 165 

metal concentrations to bacterial suspensions not showed bacterial growth inhibition 166 

(Figure 1). Thus, relative bacterial growth was calculated by dividing all bacterial growth 167 

data by the average of results from the four lowest added metal concentrations (including 168 

blank), obtaining comparable dose-response curves. From each dose-response curve, log 169 

IC50 was determined as a tolerance index, i.e. Cr concentration resulting in 50% inhibition 170 

of bacterial community growth. Higher log IC50 values mean higher bacterial community 171 

tolerance to Cr, and lower log IC50 values mean lower bacterial community tolerance to 172 
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Cr. Log IC50 was calculated using the following logistic model (Fernández-Calviño et al., 173 

2011): 174 

Y=c/(1+eb(X-a))                                                                                                  (equation 1) 175 

where Y is the measured level of Leu incorporation, c is the bacterial growth rate without 176 

added Cr, b is a slope parameter indicating the inhibition rate, X is the logarithm of Cr 177 

added, and a is log IC50. 178 

To detect whether bacterial community tolerance increase from different studied 179 

soils occurs, ∆log IC50 was determined as the difference between log IC50 value from each 180 

Cr level in soil (2000, 1000, 500, 250, 125, 62.5 or 31.25 mg Cr·kg-1) and the control soil 181 

(0 mg Cr·kg-1). A difference of 0.3 was taken as a reference value to determine if bacterial 182 

community tolerance increased since it represents twice the Cr concentration in terms of 183 

added Cr to bacterial suspensions. If ∆log IC50 is higher than 0.3, we will consider an 184 

increase in bacterial community tolerance to Cr (Fernández-Calviño and Bååth, 2016, 185 

2013). 186 

 187 

2.4.2 Estimation of bacterial community tolerance increase to Cr (multiple linear 188 

regression analyses) 189 

A multiple regression analysis, using the backward elimination method, was performed 190 

to obtain an equation that allows estimating the increase in bacterial community tolerance 191 

to Cr (∆log IC50) from soil properties (Campillo-Cora et al., 2021b, 2022a, b). As the 192 

inhibition curves for some soils did not fit the logistic model (equation 1) for the highest 193 

Cr concentrations (1000 and 2000 mg·kg-1), ∆log IC50 from 500 mg·kg-1 was used for 194 

estimations. Once the equation was estimated, determining factors were verified: 195 

linearity, error independency, residues homoscedasticity, residuals normality, 196 
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autocorrelation, collinearity and presence of outliers. All statistics were performed using 197 

IBM SPSS Statistics 25 software (IBM, USA). 198 

  199 
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3. Results and discussion  200 

3.1 Bacterial community tolerance to Cr in Cr-polluted soils with different properties 201 

Figure 1 shows bacterial growth inhibition curves obtained for each microcosm. 202 

Generally, a sigmoid dose-response behaviour is observed in the inhibition curves, 203 

indicating that when the added Cr concentration to bacterial suspension was low, relative 204 

bacterial growth was close to 1, while decreased when the Cr concentration increased. 205 

Most of the bacterial growth data fitted the logistic model, obtaining R2 ≥ 0.87, (Table 206 

S5). However, some data from 1000 and 2000 mg Cr·kg-1 did not fit the logistic model, 207 

i.e., bacterial populations were not able to normally grow probably due to high Cr toxicity. 208 

In the case of 2000 mg·kg-1, bacterial populations only grew normally in 4 of the 10 209 

studied soils, while at 1000 mg·kg-1 they grew normally in 7 soils. These differences in 210 

bacterial growth for the same Cr levels may indicate the influence of soil properties on 211 

Cr availability, as was previously suggested by Van Beelen et al. (2004). They found 212 

tolerant communities to Cr(III) in polluted soils with high Cr levels (2894 mg·kg-1) but 213 

also reported that microbial communities from soils polluted with 3935 mg Cr·kg-1 did 214 

not show tolerance to Cr(III), suggesting the influence of soil properties on metal toxicity. 215 

Therefore, in order to determine which properties influence Cr toxicity, the data of 1000 216 

and 2000 mg Cr·kg-1 were not considered in the following analysis.  217 

The log IC50 values determined from inhibition curves using the logistic model 218 

(equation 1) are presented in Table 1. Bacterial community tolerance to Cr (log IC50) 219 

greatly varied between soils, even in the reference soils with no added Cr, log IC50 220 

oscillated from -6.40 (S8) up to -3.88 (S6) (log units). The variation of bacterial 221 

community tolerance to Cr in the reference soils may be an indicator that the development 222 

of PICT is dependent on soil type. In addition, this bacterial community tolerance to Cr 223 

fluctuation in reference soils, together with the natural Cr content in soils (7 – 394 mg·kg-224 
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1, Table S2), highlights the importance of selecting reference soils for PICT studies 225 

(Campillo-Cora et al., 2022a; Campillo-Cora et al., 2021b). Likewise, when Cr was added 226 

to soils, bacterial community tolerance to Cr varied greatly between soils with the same 227 

Cr level. A range from -6.37 (S8) to -3.56 (S6) was determined for soils polluted with the 228 

lowest Cr level in soil (31.25 mg Cr·kg-1); from -6.27 (S8) to -3.79 (S7) for 62.5 mg 229 

Cr·kg-1; from -6.26 (S8) to -3.65 (S7) for 125 mg Cr·kg-1; from -6.27 (S5) to -3.41 (S7) 230 

for 250 mg Cr·kg-1; and from -6.09 (S8) to -2.87 (S3) for 500 mg·kg-1.  231 

Overall, bacterial communities showed two different responses to Cr addition to 232 

the soil (Figure 2): (1) bacterial communities of S1, S2, S3, S6, S7, S8 and S10 developed 233 

tolerance in response to Cr additions; while (2) bacterial communities of S4, S5 and S9 234 

did not develop tolerance following Cr addition to the soil. Based on the PICT hypothesis, 235 

the bacterial community is first exposed to the metal (i.e. selection phase of PICT), and 236 

if metal exerts toxicity, then the most sensitive organisms of the community will 237 

disappear, while the tolerant ones will be favoured. Therefore, whether the microbial 238 

community developed tolerance to Cr is a toxicity indicator. Later, the microbial 239 

community tolerance is quantified through a second exposition to Cr (i.e., detection phase 240 

of PICT) (Blanck, 2002; Tlili et al., 2016). Accordingly, Gong et al. (2002) and Ipsilantis 241 

and Coyne (2007) reported an increase in bacterial community tolerance to Cr with 242 

increasing Cr levels in soil and rhizosphere. Van Beelen et al. (2004) found that bacterial 243 

community tolerance to Cr(VI) increased with increasing Cr in pore water. Ogilvie and 244 

Grant (2008) determined a tendency to increase the bacterial community tolerance to Cr 245 

when the Cr level increases in estuarine sediments. Our results showed that bacterial 246 

community tolerance to Cr increased with increasing Cr levels in soils only in 7 of the 10 247 

soils studied (Figure 2). However, our results showed that the Cr level in soil from which 248 

bacterial communities developed tolerance to Cr varied depending on the soil (∆log IC50 249 
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> 0.3). Bacterial communities from S7 and S10 showed an increased tolerance at 31.25 250 

mg Cr·kg-1, bacterial communities from S1 and S3 at 62.5 mg Cr·kg-1, bacterial 251 

communities from S2 and S8 at 250 mg Cr·kg-1, and bacterial communities from S6 at 252 

500 mg Cr·kg-1. In other words, Cr was more toxic for bacterial communities depending 253 

on soil type, following the sequence: S7, S10 > S1, S3 > S2, S8 > S6. In other soils, our 254 

results show that microbial communities did not develop tolerance to Cr, even at high Cr 255 

levels. For example, bacterial communities of S6 did not show tolerance to Cr even at 256 

2000 mg·kg-1 (Figure 2). Similarly, Shi et al. (2002b, 2002a) and Ipsilantis and Coyne 257 

(2007) did not find tolerant microbial communities to Cr even at high Cr levels, from 447 258 

up to 263000 mg Cr·kg-1. Therefore, considering that Cr-pollution sometimes has no toxic 259 

effect on microbial communities and that, in other cases, microbial communities are 260 

affected by Cr from very low levels of Cr-pollution, including soil properties in the 261 

assessment of Cr-pollution is highly recommended, as for other heavy metals (Campillo-262 

Cora et al., 2022b). 263 

 264 

3.2 Estimation of the increase in bacterial community tolerance to Cr as a function of soil 265 

properties 266 

The bacterial community tolerance to metals may be influenced by several soil properties, 267 

such as soil pH, clay content or organic matter content (Ogilvie and Grant, 2008; Shi et 268 

al., 2002b). The effect of soil properties on bacterial community tolerance can occur in 269 

soil (selection phase of PICT), or in the determination phase of PICT. The effect of the 270 

soil properties in the selection phase occurs in the soil, i.e. the first time bacterial 271 

communities are exposed to the metal. For example, Fernández-Calviño and Bååth (2016) 272 

found that bacterial community tolerance to Cu was lower in vineyard soils with high pH 273 

in comparison to more acid soils, as Cu toxicity was reduced. On the other hand, the effect 274 
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of soil properties may occur in the detection phase, i.e. confounding factors leading to 275 

altered tolerance measures (Lekfeldt et al., 2014). For example, Fernández-Calviño et al. 276 

(2011) reported that the measurement of PICT to Cu was altered because of the presence 277 

of the finer soil fraction in the bacterial suspensions when Cu concentrations were added. 278 

That is, the finer particles will bind part of the Cu added to bacterial suspensions, resulting 279 

in lower available Cu, so higher Cu concentrations will be necessary to inhibit the 280 

bacterial growth leading to apparent higher tolerance, i.e. overestimated bacterial 281 

community tolerance to Cu. 282 

The equation presented in Table 2 related the increase of bacterial community 283 

tolerance to Cr (∆log IC50) with soil properties, explaining 95.6 % of the data variance (p 284 

< 0.001). Only ∆log IC50 for 500 mg Cr·kg-1 were used. The increase of bacterial 285 

community tolerance to Cr was estimated by using soil properties (p < 0.05): DOC and 286 

extracted Cr using distilled water (H2O-Cr). Figure 3 shows estimated ∆log IC50 versus 287 

measured ∆log IC50, with a homogeneous distribution around the line 1:1 (R2 = 0.95). 288 

DOC showed a significant positive relationship with ∆log IC50 (p < 0.05; Table 289 

2), i.e. when DOC increases, the bacterial community tolerance to Cr also increases. This 290 

DOC effect might be a confounding factor in the detection phase of PICT, as was 291 

previously reported for Cu (Campillo-Cora et al., 2021b; Lekfeldt et al., 2014). When 292 

bacterial communities are extracted from soil, DOC is extracted too. Later, when Cu is 293 

added to bacterial suspensions, Cu and DOC may bind together (Beesley et al., 2010), 294 

reducing Cu bioavailability and altering bacterial community tolerance to Cr 295 

(overestimation). Bérard et al. (2016) reported a similar effect for microbial community 296 

tolerance to Pb measurements. However, in a previous study (Campillo-Cora et al., 2023), 297 

we found that when dissolved organic matter (DOM) increases on bacterial suspensions, 298 

then bacterial community tolerance to Cr decreases, i.e. when DOM increases in bacterial 299 
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suspensions, Cr becomes more toxic to bacteria. Hence, the DOC effect in Cr 300 

bioavailability in the detection phase should be discarded because of the positive 301 

relationship with ∆log IC50 (Table 2) and attributed to an effect in the selection phase in 302 

soil. In the soil, however, when DOC is present, Cr(VI) may be reduced to Cr(III), i.e. Cr 303 

toxicity decreases when DOC is present (Ao et al., 2022). If fact, the use of organic 304 

amendments to reduce Cr toxicity in soils is very common (Abou Jaoude et al., 2020; 305 

Mitchell et al., 2018; Yang et al., 2021). A hypothesis is that the presence of DOC in soil 306 

enhanced the reduction of Cr(VI) to Cr(III) (Wittbrodt and Palmer, 1997), but during this 307 

process free radicals may also be formed (Kotaś and Stasicka, 2000), increasing general 308 

toxicity for bacterial communities (Campillo-Cora et al., 2023). In response to increased 309 

toxicity in soil, then bacterial communities showed tolerance to Cr. Another hypothesis 310 

might be the ability of Cr(III) to coordinate various organic compounds, leading to the 311 

inhibition of some metalloenzyme systems (Kotaś and Stasicka, 2000), which might 312 

result in a more tolerant bacterial community. 313 

 The Cr fraction extracted with distilled water (H2O-Cr) showed a positive 314 

relationship with ∆log IC50 (p < 0.001, Table 2). Usually, the soluble form of heavy metals 315 

represents the soil solution metal content, which is the most mobile and bioavailable form 316 

(Kabata-Pendias, 2011), and in the case of Cr in soils is usually Cr(VI) (Ao et al., 2022). 317 

Thus, H2O-Cr exerts its effect in soil, during the selection phase. H2O-Cr content in soil 318 

increases as added Cr level in soils increases (Campillo-Cora et al., 2021a). Whether Cr 319 

exerts toxicity, the most sensitive bacterial species were removed, while the tolerant ones 320 

survived, resulting in a more tolerant community to Cr. Later, in the detection phase, 321 

when bacterial growth is measured and Cr is added to bacterial suspensions, tolerant 322 

bacteria allow greater Cr concentrations, leading to a higher tolerant community. Van 323 

Beelen et al. (2004) found a significant increase in microbial community tolerance to 324 
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Cr(VI) with Cr(VI) pore-water concentration. Similarly, Fernández-Calviño and Bååth 325 

(2016) reported a positive relationship between bacterial community tolerance increase 326 

(∆log IC50) to Cu versus water-soluble Cu concentrations logarithm (R2 = 0.79). Kunito 327 

et al. (1999) also determined a positive correlation between IC50 values and soluble-328 

exchangeable Cu (r = 0.76), while total Cu did not show any significant relationship (r = 329 

0.013, p > 0.05).  330 

 331 

3.3 Concluding remarks 332 

In the present study, we aimed to improve the PICT methodology for the assessment of 333 

soil pollution, using bacterial growth as the endpoint. Dissolved organic carbon (DOC) 334 

and the fraction of Cr extracted with distilled water (H2O-Cr) were the main factors 335 

controlling the Cr effect on microbial communities, determined by the increase of 336 

bacterial community tolerance to Cr. The main selection pressure of Cr on the microbial 337 

community presumably occurs in soil, i.e. the selection phase of PICT. In the case of 338 

DOC, Cr became more toxic to bacterial communities as DOC increased in soil, leading 339 

to an increase in bacterial community tolerance to Cr in response to toxicity. Secondly, 340 

H2O-Cr is related to the toxic and active form of Cr, probably Cr(VI), and the higher the 341 

H2O-Cr content in the soil, the higher the tolerance to Cr developed by bacterial 342 

communities. The outcomes of this study may be helpful for normalising Cr toxicity 343 

thresholds for soil with different properties. In addition, overestimations or 344 

underestimations of Cr toxicity based on total or bioavailable Cr content may be avoided, 345 

since soil properties should be considered during risk assessment. 346 

 347 

 348 

  349 
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Tables 565 

Table 1 566 

Bacterial community tolerance (expressed as log IC50) to different levels of Cr pollution 567 

in the 10 studied soils (average ± SE) 568 

Cr 

(mg·kg-1) 

2000 1000 500 250 125 62.5 31.25 0 

Soil Log 

IC50±error 

Log 

IC50±error 

Log 

IC50±error 

Log 

IC50±error 

Log 

IC50±error 

Log 

IC50±error 

Log 

IC50±error 

Log 

IC50±error 

S1 -5.34±0.03 -5.35±0.05 -5.28±0.03 -5.30±0.03 -5.33±0.03 -5.30±0.04 -5.83±0.06 -5.82±0.05 

S2 -4.04±0.24 -4.55±0.42 -4.61±0.21 -4.68±0.41 -4.78±0.43 -4.70±0.21 -4.81±0.19 -5.02±0.13 

S3 * * -2.87±0.51 -4.38±0.15 -4.62±0.16 -4.70±0.18 -5.46±0.03 -5.38±0.05 

S4 -5.85±0.08 -5.76±0.05 -5.80±0.07 -5.69±0.05 -5.66±0.04 -5.68±0.04 -5.90±0.08 -5.66±0.07 

S5 * -4.47±0.11 -5.80±0.19 -6.27±0.07 -5.86±0.10 -5.98±0.06 -6.02±0.10 -6.09±0.07 

S6 * -3.47±0.06 -3.38±0.08 -4.48±0.13 -4.18±0.16 -3.97±0.12 -3.56±0.23 -3.88±0.11 

S7 * -3.44±0.09 -3.35±0.07 -3.41±0.09 -3.65±0.11 -3.79±0.07 -3.85±0.05 -4.32±0.12 

S8 -3.63±0.13 -6.03±0.06 -6.09±0.09 -5.90±0.09 -6.26±0.04 -6.27±0.03 -6.37±0.07 -6.40±0.15 

S9 * * -4.32±0.27 -4.37±0.39 -4.70±0.23 -4.43±0.13 -3.82±0.05 -4.11±0.04 

S10 * * -4.75±0.13 -4.64±0.09 -4.48±0.09 -4.69±0.09 -4.76±0.04 -5.16±0.07 

*Unadjusted data 569 

 570 
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Table 2 571 

The equation for estimating bacterial community tolerance increase to Cr (∆log IC50(500-572 

0)) was obtained by multiple regression analysis using all soil samples (n=10).  573 

Equation F p-value Adjusted R2 

∆log IC50 = - (0.435 ± 0.148) + (1.445 ± 0.320) DOC  

                      (p=0.026)            (p=0.004) 

 

                    + (0.018 ± 0.001) H2O-Cr  

                       (p<0.001) 

87.309 <0.001 0.956 

DOC is dissolved organic carbon (g·kg-1); H2O-Cr is Cr extracted using H2O. Values associated with the 574 
independent variables are shown together with the standard errors (±). P-values associated with each 575 
independent variable are shown below variables (in brackets) 576 

 577 

 578 

  579 
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Figures 580 

 581 

Figure 1. Bacterial growth inhibition curves for bacterial suspensions extracted from 10 soils 582 

artificially polluted with a range of Cr concentrations: 2000, 1000, 500, 125, 62.5, 31.25 and 0 583 

mg·kg-1. Dots indicate real data measured, while the lines represent the fit of the data to the logistic 584 

model used. S1, S2, S3, S5, S6, S7, S8, S9 and S10 are referred to studied soil 1, 2, 3, 4, 5, 6, 7, 585 

8, 9 and 10, respectively. 586 
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Figure 1 (continued) 587 
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 589 

Figure 2 Bacterial community tolerance variation (expressed as ∆log IC50 concerning 590 

unpolluted soil) to a range of added Cr to soil (in logarithm scale). White dots represent 591 

data from ∆log IC50(31.25-0), ∆log IC50(62.5-0), ∆log IC50(125-0), ∆log IC50(250-0) and ∆log 592 

IC50(500-0). Black dots represent data from ∆log IC50(1000-0) and ∆log IC50(2000-0). Continuous 593 

lines represent linear regression fit. The discontinuous line represents the value (0.3) from 594 

which it is considered that the bacterial community has developed tolerance. S1, S2, S3, 595 

S5, S6, S7, S8, S9 and S10 are referred to studied soil 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10, respectively. 596 

 597 
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 598 

Figure 3. Relationship between measured and estimated ∆log IC50 using the equation 599 

from Table 2.  The stippled line indicated a 1:1 relationship. 600 
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