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Abstract. Marine heatwaves (MHWs) have significant so-
cial and ecological impacts, necessitating the prediction of
these extreme events to prevent and mitigate their negative
consequences and provide valuable information to decision-
makers about MHW-related risks. In this study, machine5

learning (ML) techniques are applied to predict sea surface
temperature (SST) time series and marine heatwaves in 16
regions of the Mediterranean Sea. ML algorithms, includ-
ing the random forest (RForest), long short-term memory
(LSTM), and convolutional neural network (CNN), are used10

to create competitive predictive tools for SST. The ML mod-
els are designed to forecast SST and MHWs up to 7 d ahead.
For each region, we performed 15 different experiments for
ML techniques, progressively sliding the training and the
testing period window of 4 years from 1981 to 2017. Along-15

side SST, other relevant atmospheric variables are utilized as
potential predictors of MHWs. Datasets from the European
Space Agency Climate Change Initiative (ESA CCI SST)
v2.1 and the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA5 reanalysis from 1981 to 2021 are20

used to train and test the ML techniques. For each area, the
results show that all the ML methods performed with mini-
mum root mean square errors (RMSEs) of about 0.1 °C at a
1 d lead time and maximum values of about 0.8 °C at a 7 d
lead time. In all regions, both the RForest and LSTM con-25

sistently outperformed the CNN model across all lead times.
LSTM has the highest predictive skill in 11 regions at all
lead times. Importantly, the ML techniques show results sim-
ilar to the dynamical Copernicus Mediterranean Forecasting
System (MedFS) for both SST and MHW forecasts, espe-30

cially in the early forecast days. For MHW forecasting, ML

methods compare favorably with MedFS up to 3 d lead time
in 14 regions, while MedFS shows superior skill at 5 d lead
time in 9 out of 16 regions. All methods predict the occur-
rence of MHWs with a confidence level greater than 50 % 35

in each region. Additionally, the study highlights the impor-
tance of incoming solar radiation as a significant predictor of
SST variability along with SST itself.

1 Introduction

Accurate predictions of sea surface temperature (SST) and 40

its extremes are important for many aspects of modern so-
ciety. Anticipated changes include a rise in the occurrence
and severity of prolonged sea surface temperature extremes
lasting a minimum of 5 d, commonly known as marine heat-
waves (MHWs; Hobday et al., 2016). These shifts have the 45

potential to exert greater pressure on marine organisms and
ecosystems, testing the boundaries of their adaptability and
resilience (Frölicher and Laufkötter, 2018; Garrabou et al.,
2022). MHWs can affect marine biodiversity (Garrabou
et al., 2022; Cramer et al., 2018; Marbà et al., 2015; Riv- 50

etti et al., 2014; Juza et al., 2022) and the fishing and aqua-
culture industries (Cavole et al., 2016; Chandrapavan et al.,
2019). Thus, SST prediction, and in turn MHW prediction,
can support a range of adaptive and management activities
for the Mediterranean marine ecosystems. 55

Forecasting the anomalous oceanic and atmospheric pat-
terns that drive the SST variability in the build-up to these
extreme events is still a challenge (Jacox et al., 2022; Hol-
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brook et al., 2020). In the last decades, dynamical ocean
forecasting systems have increased spatial resolution and im-
proved data assimilation techniques, simulating the dynam-
ics of the global ocean down to a few kilometers, with the aim
of kilometric resolution in their future generations (Leroux5

et al., 2022). Dynamical ocean predictions have reached a re-
markable degree of reliability, although the required compu-
tational resources are enormous (Alvarez Fanjul et al., 2022).
In recent years, increasing interest has been given to ma-
chine learning (ML) techniques, even though, in contrast to10

the dynamical model, ML techniques do not know when they
are violating the laws of physics (Buizza et al., 2022). As a
“learning from data” approach, machine learning has the ad-
vantages of computational efficiency, accuracy, transferabil-
ity, flexibility, and ease-of-use in ocean forecasting studies15

(Boukabara et al., 2019; Li et al., 2020; Wei and Guan, 2022;
Taylor and Feng, 2022). Moreover, they are also less prone
to model bias errors (Jacox et al., 2020), and, beyond com-
putational efficiency, ML techniques excel in approximating
nonlinear functions (Hornik, 1991).20

Therefore, machine learning provides new opportunities
for SST prediction (Boukabara et al., 2019). In contexts such
as fishing, sporting events, coral bleaching, and aquaculture,
the SST prediction can be treated as a time-series regression
problem, where SST prediction is either restricted to a few25

locations or applied to SST values averaged over a region
(Haghbin et al., 2021). Machine learning techniques include
both shallow methods, such as linear regression and random
forest (RForest) models, and deep learning models, such as
artificial neural network (ANN), recurrent neural network30

(RNN), and convolutional neural network (CNN) models. As
widely reviewed by Haghbin et al. (2021), linear regression
and statistical methods have historically been extensively ap-
plied to SST estimation (Anding and Kauth, 1970; Corchado,
1995; McMillin, 1975). Pioneering works on SST prediction35

using deep learning methods are, instead, more recent. In the
last few years, as reported in a recent review paper (Haghbin
et al., 2021), deep-learning-based models such as the RNN,
in particular the long short-term memory (LSTM; e.g., Xiao
et al., 2019; Liu et al., 2018; Xie et al., 2019, and CNN40

(e.g., Han et al., 2019) have attracted progressively more at-
tention in the research community, providing accurate esti-
mates among the models considered. It is important to note
that within the methods explored in this paper, LSTM stands
out as the sole technique explicitly crafted for handling time-45

series data. In contrast, CNN algorithms are commonly tai-
lored for image processing tasks and are not inherently de-
signed for time-series forecasting.

To the best of our knowledge, just a few studies employed
the RForest model to predict sea surface temperature (Wolff50

et al., 2020), but it has recently been successfully employed
by Giamalaki et al. (2022) to directly predict marine ex-
tremes. Other attempts to predict extremes using ML tech-
niques have been proposed by Chattopadhyay et al. (2020)
and Jacques-Dumas et al. (2022) for land-based heatwaves55

over North America and France, respectively. Nevertheless,
the advantage of having the SST prediction, instead of the
MHW events, is that end users or management operators
could establish thresholds based on their needs (Jacox et al.,
2022). 60

In short, given the impacts of MHWs on ocean ecosys-
tems and the resulting economic losses of marine industries,
there is an increasing need for MHW forecasts to help ocean
users to be prepared for these events. Short-duration extreme
marine heatwaves (MHWs), lasting only a week, can exert 65

sudden stresses on temperature-sensitive aquatic life stages,
potentially leading to immediate adverse effects such as mass
mortality, disease, large-scale coral bleaching, and reduced
seagrass meadows (Holbrook et al., 2020). For proactive ma-
rine management, operators in the coastal and marine sectors 70

(e.g., fisheries and aquaculture and coastal water manage-
ment) can use MHW event predictions for better planning
of their activities. Here, we provide a proof-of-concept study
on the advantage of data-driven ML methods to forecast
the evolution of the SST state and its extremes in Mediter- 75

ranean Sea regions up to 7 d ahead. The ML methods are
compared against the Copernicus Mediterranean Forecasting
System (MedFS; i.e., a dynamical ocean model, Clementi
et al., 2021). MedFS is a numerical ocean prediction sys-
tem, implemented and developed by the Euro-Mediterranean 80

Center on Climate Change (CMCC), that produces analy-
ses and short-term forecasts for the entire Mediterranean Sea
and adjacent areas in the Atlantic Ocean (Clementi et al.,
2021). The Mediterranean Sea is a well-studied hot spot for
MHW events (Garrabou et al., 2009; Giorgi, 2006; Cramer 85

et al., 2018; Pastor et al., 2020; Pastor and Khodayar, 2022;
Garrabou et al., 2022; Ciappa, 2022). As detailed in the study
by Bonino et al. (2023b), the Adriatic Sea, the Gulf of Lion,
and the Alboran Sea encountered the highest occurrence of
MHWs, the shortest-duration MHWs, and the most severe 90

MHWs. The Mediterranean Sea serves as our study area due
to its relevance for marine management activities; indeed
more than 95 % of the global production of sea bream and
sea bass comes from aquaculture, of which 97 % is produced
by Mediterranean countries (Carvalho and Guillen, 2021). To 95

the best of our knowledge, this is one of the first attempts to
predict SST and, in turn, MHWs in the Mediterranean Sea 1
week ahead using machine learning techniques.

This paper is organized as follows: in Sect. 2, we describe
the methodological framework to build the machine learning 100

techniques to predict SST and, in turn, MHWs. Section 3 re-
ports the results and the comparison with a dynamical model.
Our conclusions and outlook of the work are summarized in
Sect. 4.

2 Methodological framework 105

In this comprehensive study, the focus is on predicting SST
time series and MHWs in 16 regions of the Mediterranean
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Sea (Fig. 1) using ML techniques. In the following section
we present the workflow of this study, which is summarized
in Fig. 2.

2.1 Data collection and preprocessing

The machine learning techniques are trained, tested,5

and validated using the European Space Agency (ESA)
Climate Change Initiative SST dataset v2.1, referred
to as the ESA CCI SST dataset in the following text
(Merchant et al., 2019). This dataset, accessible through
the CEDA catalogue (https://catalogue.ceda.ac.uk/uuid/10

62c0f97b1eac4e0197a674870afe1ee6, last access: 20
MArch 2024), offers global daily satellite-derived sea
surface temperature (SST) data. This dataset consists
of daily maps of average SST at 20 cm nominal depth
with 0.05× 0.05° of horizontal resolution, covering15

the period from September 1981 to December 2016.
Additionally, to expand the temporal coverage, we incor-
porate daily sea surface temperature data from 2017 to
2021, available via the Copernicus Climate Data Store
(CDS) (https://cds.climate.copernicus.eu/cdsapp#!/dataset/20

satellite-sea-surfacetemperature?tab=overview, last access:
20 March 2024). The extended data from 2017 to 2021 are
generated at level 4 (L4) by the Copernicus Climate Change
Service (C3S), building upon the foundation of the ESA CCI
SST dataset. These datasets are derived using software and25

algorithms developed within the framework of the ESA CCI
SST project. For a comprehensive insight into the updates
in processing for the ESA CCI SST dataset v2.1, detailed
information is provided in the work by Merchant et al.
(2019). The relevant atmospheric variables (AtmVs) are30

taken from the European Centre for Medium-Range Weather
Forecasts (ECMWF) ERA5 dataset (Hersbach et al., 2020).
Specifically, we select sea level pressure (SLP), geopotential
height at 500 hPa (GEO), wind speed (WS), sensible heat
flux (SENS), latent heat flux (LAT) and incoming solar35

radiation (INC) as the sum of the short- and longwave
radiation downwards (i.e., into the ocean). SST and AtmVs
are averaged over the Mediterranean regions (Fig. 1) to
obtain time series of SST and AtmVs from 1981 to 2021.
Moreover, we also consider the months of the year (MM)40

as an input variable, in order to describe the seasonality.
Before building SST prediction tools based on machine
learning, we analyze the mutual information between SST,
SST itself, and AtmVs at different time lags (i.e., days) to
have insights into the most relevant variables that contribute45

to the SST prediction. Mutual information between two
random variables assesses their interrelationship. It signifies
the amount of information that can be gained from one
variable by observing another. A higher mutual information
value corresponds to a greater reduction in uncertainty.50

Conversely, when mutual information is zero, the two
variables are considered independent and unrelated. The
mutual information of variable X and variable Y is defined

as

MI(x,y)=

∫
x

∫
y

pXY (x,y) log
pX,Y (x,y)

pX(x)pY (y)
, (1) 55

TS1where pXY (x,y) is the joint probability density of X and
Y , and pX(x) and pY (y) are the marginal probability density
of X and Y , respectively.

2.2 Machine learning techniques

Here, we briefly introduce the three ML techniques used 60

in this study: a long short-term memory network (LSTM),
a one dimensional convolutional neural network (CNN),
and a random forest model (RForest). While we offer a
concise overview of their architectures here, for compre-
hensive details, readers can refer to Breiman (2001) for 65

RForest and Haghbin et al. (2021) for LSTM and CNN.
All these ML models are multifaceted and multivariate,
projecting SST for seven subsequent time steps by utiliz-
ing various input variables. The input sequences encom-
pass SST data and the specified atmospheric variables (At- 70

mVs) detailed in the preceding section, spanning the pre-
vious 7 d. To ensure comparability across diverse atmo-
spheric and oceanic variables, we normalize these data us-
ing a min–max scaler. These ML frameworks receive con-
catenated extensive vectors structured in the format [time 75

steps, lags, variables]. Here, “lags” denote the previous 7 d,
while “variables” encompass SST and the predictors. We
develop LSTM and CNN architectures using Keras high-
level API of the TensorFlow platform built in Python (https:
//www.tensorflow.org/api_docs/python/tf/keras, last access: 80

20 March 2024) and random forest models using the
RandomForestRegressor function of the sklean package
of Python (https://scikit-learn.org/stable/modules/generated/
sklearn.ensemble.RandomForestRegressor.html, last access:
20 March 2024). 85

– Long short-term memory. LSTM networks are types of
recurrent neural networks capable of learning order de-
pendence in sequence prediction problems, and they
have been widely applied in temperature forecasting
problems (Haghbin et al., 2021; Tran et al., 2021; Guo 90

et al., 2022). We define the LSTM with 60 neurons with
a hyperbolic tangent activation function in the first and
unique hidden layer and 7 neurons in the dense layer
(i.e., output layer) for predicting SST. Mean square er-
ror is used as the loss function. The network was trained 95

for 200 epochs using the Adam optimizer with a learn-
ing rate of 0.0001 and batch size of 150.

– Convolutional neural network. CNNs have gained sig-
nificant popularity in domains like image processing
and computer vision. In recent times, there has been 100

a noticeable surge in interest within the research com-
munity to use CNNs for solving time-series forecasting

https://catalogue.ceda.ac.uk/uuid/62c0f97b1eac4e0197a674870afe1ee6
https://catalogue.ceda.ac.uk/uuid/62c0f97b1eac4e0197a674870afe1ee6
https://catalogue.ceda.ac.uk/uuid/62c0f97b1eac4e0197a674870afe1ee6
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-surfacetemperature?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-surfacetemperature?tab=overview
https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-sea-surfacetemperature?tab=overview
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
https://www.tensorflow.org/api_docs/python/tf/keras
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html


4 G. Bonino et al.: MHW forecasting

Figure 1. Mediterranean Sea regional subdivision and corresponding indices.

Figure 2. Flow diagram used in this study.

problems. We define the one-dimensional CNN with 64
channels with a kernel size of 2 and with a rectified lin-
ear activation function in the first and unique hidden
layer. It is followed by a maxpool layer which divides
the data size by 2. Finally a flatten operation and seven5

neurons in the output layer followed. Mean square error
is used as the loss function. The network was trained
for 200 epochs using the Adam optimizer with a learn-
ing rate of 0.0001 and batch size of 150.

– Random forest model. RForest is an ensemble learning10

method for classification and regression tasks that oper-
ates by constructing a multitude of randomly perturbed
decision trees starting from the same train set. For re-
gression tasks, the mean or average prediction of the in-
dividual trees is returned. We design the RForest model15

with 100 decision trees and 42 predictors randomly se-

lected to perform each split to construct decision trees.
The function to measure the quality of a split during
training is the mean squared error.

Notably, in our methodology, we opted not to incorporate 20

dropout layers within the network architecture. Despite the
absence of dropout regularization, our training results did
not exhibit overfitting tendencies, suggesting a congruence
between the model’s capacity and the dataset characteristics.

2.3 Experiments 25

A period of 36 years of the daily data of SST and atmospheric
variables is used to train and validate the techniques, while
the remaining 4 years is used to test it. Based on the years
used to train and test the methods, we distinguish two kinds
of experiments: 30
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– Reference experiments (REXPs). ML techniques are
trained using 1981–2016 as the training period and
2017–2021 as the testing period. We are interested in
predicting the future SST, so the methods have to learn
the correct time evolution of the SST, and, moreover,5

we also want to compare the skill with the MedFS dy-
namical model. MedFS predictions, part of the Coperni-
cus Marine Service since 2017, offer SST forecasts for
lead times up to 9 d averaged across specified regions.
Since the accuracy of the ML forecast decreases almost10

linearly with time, we decided to limit the comparison
with MedFS-forecasted SST averages for lead times of
1, 3, and 5 d.

– Uncertainty experiments (UEXPs). The sampling uncer-
tainty of each ML technique is estimated by progres-15

sively sliding the training and the testing period window
of 4 years from 1981 to 2017. This means that, for each
region, we perform 14 uncertainty experiments. For ex-
ample, the first experiment uses 1985–2021 as the train-
ing period and 1981–1984 as the testing period, while20

the second one merges 1981–1984 and 1989–2021 data
together to create the training dataset, and it uses 1984–
1988 data as the testing dataset and so on.

In addition, we investigate the role of each driver in affecting
prediction skills. Thus, for each ML technique and for each25

experiment (REXPs and UEXPs), the prediction accuracy on
the test set was evaluated after randomly permuting (shuf-
fling) the value of each driver, one at time (i.e., one “experi-
ment” for each shuffled driver). This random permutation is
aimed at removing any information about SST conveyed by30

the drivers (that is, annihilating the mutual information be-
tween SST and the driver), thus voiding their contribution in
predicting SST (Breiman, 2001). In the case of informative
drivers, the shuffling is expected to severely affect prediction
accuracy, while it should have a negligible impact when con-35

sidering uninformative drivers. In the following we refer to
these sensitivity experiments as “SEXPs”.

The computational time required for the ML experiments
is about 2 min to train the method and 30 s to test it, while
MedFS requires 10 min to simulate 1 d (i.e., 70 min for 7 d40

of forecast). We run all the experiments on the CMCC super-
computer ZEUS, which comprises 348 Lenovo SD530 bipro-
cessor nodes (totaling 12 528 cores) interconnected via an In-
finiband EDR network and boasts a total theoretical comput-
ing power of 1202 TFlops.45

2.4 Evaluation metrics

For evaluating the ML-based prediction skills, we use a met-
ric that is commonly applied in the SST forecast domain. In
particular, we calculate the root mean square error (RMSE;
Eq. 2) of the predicted SST in the test datasets against the50

ESA CCI SST dataset (i.e., observed SST). The RMSE mea-
sures the mean squared distance between the daily predicted

(Fi) and the daily actual (Ti) SST in the N samples of the
test dataset. The RMSE is negatively oriented with a perfect
value of 0. 55

RMSE=

√
1
N

6n
i=1(Ti −Fi)

2 (2)

Moreover, we also assess the ML techniques’ accuracy in
predicting MHW occurrence by detecting MHWs in the test
time series and in the predicted time series. Notably, the test
time series represents the regional mean SST, resulting in a 60

single time series per region. MHWs are defined in each re-
gional time series as in Hobday et al. (2016): SST higher, for
5 d or longer, than the 90th percentile threshold of season-
ally varying climatology calculated over more than a 30-year
period without removing the long-term trend. If an event oc- 65

curs less than 2 d before the end of another, it is considered
part of the ongoing MHW. An 11 d sliding window centered
on each day is used for the climatology calculation. The cli-
matology and the threshold are calculated over the reference
training period (i.e., 1982–2016) and applied to the testing 70

period (i.e., 2017–2021). Even though MHWs are defined
considering at least 5 d of consecutive anomalies, the differ-
ences between the predicted and observed datasets are calcu-
lated day by day. The detection performance is assessed by
computing, in the test set, the false positive rate (FPR; Type 75

I error: incorrect detection of MHW) and false negative rate
(FNR; Type II error: non-detection when MHW occurs) and
the F1 score. FPR and FNR are defined as

FPR=
FP

FP+TN
and FNR=

FN
FN+TP

, (3)

where FP is the number of false positives, TN is the number 80

of true negatives, FN is the number of false negatives, and
TP is the number of true positives (see Table 2). Note that
the true positive rate (TPR) and the true negative rate (TNR)
are TPR= 1−FNR and TNR= 1−FPR, respectively. The
F1 score is a single overall measure of prediction accuracy 85

(Eq. 4) and takes into account the imbalance of the dataset:
around 1/7 of the test samples are MHW events. It is calcu-
lated from the precision and recall scores.

F1 =2×
precision× recall
precision+ recall

where

precision=
TP

(TP+FP)
and

recall=
TP

(TP+FN)
(4)

We also assess the mean forecasted intensity (ImeanML) 90

within the REXPs for each ML technique and compare it
to the observed intensity mean from the ESA CCI dataset
(ImeanESA), computing the intensity error (IE), formulated
as IE= ImeanESA− ImeanML. Furthermore, we compare the
performance of the SST and MHW prediction of the REXPs 95

against MedFS SST forecast data.
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Table 1. Mutual Information between SST and AtmVs not lagged in time (LAG0) and with 7 d lag (LAG7). The lag time is expressed in
days. Bold values identify the highest mutual information values for LAG0 and LAG7.

WIND GEO SLP LAT SENS INC MM

Region ID LAG0 LAG7 LAG0 LAG7 LAG0 LAG7 LAG0 LAG7 LAG0 LAG7 LAG0 LAG7 LAG0 LAG7

1 0.03 0.03 0.47 0.38 0.14 0.14 0.03 0.02 0.1 0.08 0.64 0.55 0.25 0.21
2 0.01 0.04 0.46 0.39 0.14 0.12 0.06 0.03 0.12 0.10 0.71 0.63 0.25 0.21
3 0.08 0.04 0.46 0.36 0.13 0.1 0.03 0.03 0.11 0.08 0.75 0.62 0.28 0.23
4 0.05 0.06 0.48 0.41 0.11 0.11 0.03 0.05 0.07 0.07 0.68 0.60 0.25 0.21
5 0.08 0.06 0.52 0.42 0.12 0.11 0.05 0.06 0.08 0.07 0.79 0.68 0.26 0.21
6 0.06 0.05 0.46 0.38 0.12 0.10 0.05 0.05 0.08 0.10 0.62 0.75 0.26 0.31
7 0.07 0.05 0.48 0.41 0.12 0.10 0.06 0.06 0.06 0.06 0.81 0.73 0.21 0.17
8 0.07 0.06 0.49 0.43 0.13 0.10 0.06 0.08 0.12 0.12 0.87 0.79 0.22 0.18
9 0.06 0.06 0.53 0.45 0.14 0.12 0.03 0.05 0.09 0.07 0.78 0.67 0.26 0.22
10 0.05 0.04 0.53 0.43 0.13 0.12 0.04 0.04 0.10 0.10 0.73 0.62 0.31 0.26
11 0.06 0.04 0.47 0.41 0.14 0.12 0.05 0.08 0.11 0.10 0.79 0.66 0.36 0.31
12 0.05 0.05 0.49 0.41 0.16 0.11 0.06 0.05 0.10 0.08 0.82 0.73 0.22 0.18
13 0.04 0.05 0.56 0.48 0.17 0.13 0.05 0.05 0.12 0.09 0.77 0.64 0.29 0.25
14 0.05 0.06 0.57 0.46 0.23 0.18 0.06 0.08 0.10 0.07 0.83 0.72 0.24 0.21
15 0.05 0.05 0.51 0.42 0.20 0.18 0.06 0.09 0.10 0.09 0.84 0.74 0.22 0.19
16 0.06 0.04 0.59 0.48 0.26 0.22 0.08 0.09 0.18 0.17 0.85 0.74 0.23 0.20

Table 2. Accuracy in predicting MHWs.

MHW not MHW
predicted predicted

MHW not observed TN FP
MH predicted FN TP

3 Results

In the following, we evaluate the predictive skill of the ML
techniques for SST predictions and, in turn, MHW predic-
tions, up to a lead time of 7 d. For the presented results,
the statistical index used to evaluate the performances is the5

RMSE for SST and the F1 scores for MHWs (see Sect. 2.4.,
“Evaluation metrics”). Moreover, we also assess the sensitiv-
ity of the ML techniques with respect to the input variables
in the testing dataset.

3.1 Mutual information analysis10

Table 1 shows the mutual information between SST and the
selected variables not lagged in time (LAG0) and with a 7 d
lag (LAG7). In all the regions and for all the variables (ex-
cept some rare cases for LAT), the mutual information de-
creases when increasing the time lag. In all the regions and15

for both the time lags, the INC and then the GEO are the vari-
ables that seem to show the strongest association with SST,
with values that range from 0.55 to 0.87 and from 0.38 to
0.59, respectively. INC thermally influences the temperature
along the water column, while GEO impacts ocean variabil-20

ity as a proxy for the large-scale atmospheric circulation. In-
creased GEO values correspond to higher air pressure above

the ocean, resulting in warmer SST conditions. Progressively,
we find MM, SLP, and SENS with mean values of about 0.20,
0.15, and 0.10, respectively. WIND and LAT show low val- 25

ues, usually less than 0.1. However, it is worth noting that
these values are substantially lower than those obtained con-
sidering the dependence between SST and itself at different
lag (see Fig. S1 in the Supplement, reporting the mutual in-
formation heatmaps for all the time lags in each region). De- 30

spite the aforementioned values, reduced air–sea heat fluxes,
in particular the latent heat, and reduced wind speed have
been associated with MHWs in the mid-latitudes (Vogt et al.,
2022). Therefore, we decide to retain all the selected AtmVs
as potential predictors of SST variability over the Mediter- 35

ranean Sea.

3.2 SST prediction

To have an overall insight into the methods’ performances
over the Mediterranean Sea, we first examine the ML meth-
ods’ performance of the daily SST prediction in all the re- 40

gions for the REXPs (Fig. 3). Overall, these methods show
similar ranges of RMSE; they display minimum values of
about 0.1 °C at lead time of 1 d (L1) and maximum values
of about 0.8 °C at lead time of 7 d (L7). The RMSEs grow
with the increasing forecast lead time, and the evolution of 45

the RMSE in each region is consistent across ML techniques.
For instance, in all the techniques, region 15 shows the low-
est, or almost the lowest (e.g in CNN) RMSE, while region
11 shows the highest errors. To visualize the errors spatially,
Fig. 4 shows the mean RMSE for LSTM for each region 50

(CNN and RForest results are shown in Fig. S2). The ar-
eas with larger errors are as follows: (i) the Alboran Sea,
strongly characterized by a complex dynamics influenced by
the incoming cold Atlantic water through the Gibraltar Strait



G. Bonino et al.: MHW forecasting 7

Table 3. ML network performance for the SST daily predictions in
terms of root mean square error (RMSE) for long short-term mem-
ory (LSTM), random forest (RForest), and convolutional neural net-
work (CNN) on the first day of forecast (forecast lead 1, L1) and the
seventh days of forecast (forecast lead 7, L7). Bold values identify
the best performance (i.e., lowest RMSE) for L1 and L7.

LSTM RForest CNN

Region ID L1 L7 L1 L7 L1 L7

1 0.17 0.59 0.21 0.62 0.23 0.62
2 0.15 0.45 0.15 0.45 0.19 0.48
3 0.16 0.70 0.18 0.73 0.23 0.76
4 0.14 0.45 0.16 0.50 0.29 0.47
5 0.13 0.58 0.16 0.58 0.21 0.63
6 0.19 0.65 0.20 0.71 0.25 0.69
7 0.14 0.43 0.16 0.47 0.19 0.47
8 0.14 0.39 0.13 0.40 0.22 0.40
9 0.14 0.57 0.17 0.59 0.31 0.64
10 0.16 0.63 0.19 0.71 0.27 0.72
11 0.19 0.74 0.22 0.78 0.28 0.80
12 0.12 0.38 0.13 0.39 0.29 0.39
13 0.13 0.50 0.15 0.50 0.18 0.52
14 0.12 0.44 0.14 0.46 0.20 0.47
15 0.11 0.35 0.13 0.35 0.20 0.36
16 0.16 0.41 0.14 0.38 0.21 0.38

modulating the water transport; (ii) the northwest part of the
basin, which is an area of dense water formation and intense
dynamics due to the Gulf of Lion gyre (Madec et al., 1991;
Pinardi et al., 2006) and a boundary intense current called
the Liguro–Provençal–Catalan Current (Pinardi et al., 2006);5

(iii) the Adriatic Sea, especially in its northern shelf, charac-
terized by a complex topography, intense air–sea exchanges,
and large riverine inputs that contribute to enrich the dynam-
ics of the area.

Looking into the methods’ performance comparison in10

more detail (Table 3), LSTM, followed by RForest, outper-
forms CNN at L1 and at L7. In particular at L1, LSTM has
the highest predictive skill in 13 out of 16 regions and RFor-
est in 2 out of 16 regions. In the remaining region, they score
equally. For L7, LSTM has the highest predictive skill in 1115

out of 16 regions and RForest in 1 out of 16 regions. In the
remaining 4 regions, they score equally.

We select regions 11, 15, and 4 which display the highest,
the lowest, and the intermediate RMSEs, respectively. We re-
fer to region 4 as the “Western Mediterranean” (WM), to re-20

gion 11 as the “Central Mediterranean” (CM), and to region
15 as the “Eastern Mediterranean” (EM). Figure 4a shows the
RMSEs of the predicted SST by REXPs (solid line) and by
UEXPs (bars) against the observed SST time series. More-
over, the RMSEs of the SST predicted by MedFS (i.e., dy-25

namical model) for the reference period (i.e., 2017–2021) are
also reported. It is worth noting that the RMSE of the dy-
namical model does not show significant increases with the

forecast lead time, unlike ML techniques. Results for all the
other regions are shown in Fig. S3. Referring to Figs. 5a and 30

S3, we can appreciate that most of the ML techniques errors
compare favorably with respect to the MedFS errors during
the first days of forecast. In particular, the CM RMSEs range
between a minimum error of about 0.19 °C at L1 and maxi-
mum error of about 0.74 °C at L7. All the ML methods show 35

lower RMSE than MedFS for the first 3 d of forecast, and
they are comparable at lead time of 5 d. EM and WM show
lower variability of the error with respect to the CM, rang-
ing in the intervals 0.11–0.35 °C and 0.14–0.45 °C, respec-
tively. Over those two regions, it could be observed that all 40

ML methods’ skills are in line with the one of MedFS; they
have similar RMSEs, CNN being the one showing higher er-
ror. In WM and CM – and in almost all the other regions
(see Fig. S3) – the uncertainties tend towards higher RMSEs
with respect to the REXP errors (i.e., errors represented by 45

the solid line in Fig. 5a). It is likely connected to the fact that
CNN algorithms are typically designed for image processing
rather than time-series forecasting.

An additional analysis is presented to show how the differ-
ent ML methods perform in predicting SST and MHW occur- 50

rence at different forecast lead time. Figure 6 shows 1 year
(2020) daily SST time series of the predicted and observed
SST at L5 (Figs. S4 and S5 for L1 and L3, respectively) as
well as the SST climatology, averaged in the three regions
of interest. The figure shows a very close match between 55

the forecasts and the observations, the SST variability be-
ing clearly well represented and forecasted by all the models
(i.e., ML techniques and MedFS model). This is confirmed
by the fact that the difference in annual means and standard
deviations is minimal, generally within decimal values. 60

3.3 MHW prediction

Going a step further in the prediction skill assessment, we
also evaluate the ability of the different ML techniques in
predicting MHWs’ occurrence (Table 4 and Fig. 5b). To this
end, we define MHWs using the method of Hobday et al. 65

(2016) in the observed time series, in the predicted time se-
ries by REXPs and by MedFS (see Sect. 2.4., “Evaluation
metrics”, for more details). For the selected regions, Table 4
reports the false positive rate (FPR), the false negative rate
(FNR), and the F1 scores at L1, L3, and L5. Results for 70

all the other regions are reported in Fig. S5 and Table S1.
Overall, for all the forecast lead times and for all the ML
techniques (except in rare cases; see Table S1), the FNR is
higher than the FPR, meaning that the ML methods tend to
underestimate SST peaks/extremes. The MedFS model, in- 75

stead, shows mixed behavior: 7 out of 16 regions show higher
FPR than FNR at all the lead times. In CM, MedFS shows a
high FPR of about 27 % at L5 (Table 4) as it is also evi-
dent in Fig. 6. During January 2020 and 2021 the MedFS-
predicted time series (blue line in Fig. 6) is usually greater 80

than the 90th percentile threshold used to define MHWs
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Figure 3. ML networks’ performance for the SST daily predictions in terms of root mean square error (RMSE) in 16 regions of the Mediter-
ranean Sea (different colors) for (a) long short-term memory networks, (b) random forest, and (c) convolutional neural networks.

Figure 4. LSTM mean RMSE for REXP for each region.

(gray line in Fig. 6), leading to high FP (highlighted as circles
in Fig. 6). The ML techniques show, instead, high FNR of
about 50 % (highlighted as crosses in Fig. 6). Nevertheless,
in WM, MedFS is in line with LSTM and RForest, showing
30 % of FNR. Looking from another perspective, and with5

the reminder that TPR= 1−FNR, these rates demonstrate
that, except for some rare cases, all the methods in all the
regions predict the occurrence of a MHW with a confidence
greater than 50 %.

To have a more accurate evaluation of the performance of10

the methods, instead of showing just the errors (i.e., FPR and
FNR), we also evaluate the F1 score (Fig. 5b and Tables 4
and S1). Note that the F1 score ranges between 0 and 1 and
it is positively oriented. As expected, the F1 scores decrease
when increasing the forecast lead time, but, at all the lead15

times, they show values greater than 0.5, meaning satisfac-
tory MHW predictions for all the ML techniques in all the
regions (except some rare cases, especially for CNN). Over-
all, comparing the performances of the ML techniques, the
RForest and the LSTM outperform CNN in all the regions,20

at least on the first days of forecast. The F1 score results show
that LSTM outperforms in the CM and WM at all lead times,
reaching a F1 score of about 0.9 at L1 (Fig. 5b). EM shows
different behavior: LSTM has the best predictive skill, out-

performed by RForest in the following lead times. Neverthe- 25

less, as for the SST RMSE, all the ML techniques provide
nearly same results; indeed, the ML differences in terms of
F1 score are usually around 0.15. Comparing the results with
the MedFS model (blue circles in Fig. 6) we can appreciate
that in the selected regions the ML techniques outperform 30

MedFS up to L5 for CM and up to L3 for WM and EM (Ta-
ble 4). It is worth noting that in all the other regions (except
region 8), ML methods outperform MedFS up to L3, while at
L5 in 9 out of 16 regions MedFS has the best skill (Table S1).

We also evaluate the differences in MHW intensity mean 35

predicted by the ML models and MedFS against observa-
tion (i.e., intensity error, IE; see Sect. 2.4., “Evaluation met-
rics”) during the studied period (Fig. 5c). For WM, CM,
and EM it is interesting to note that MedFS shows positive
IEs, meaning that the MedFS-predicted intensity is overes- 40

timated, while the ML models show opposite behavior, IEs
are negative. This characteristic is evident also for the other
regions (Fig. S6), except regions 1, 12, 13 where MedFS IEs
are negative. It is also worth highlighting that, in all the re-
gions, the RForest IEs, even if they are not the smallest ones, 45

degrade slower than the LSTM IEs.
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Figure 5. (a) ML network performance for the SST daily predictions in terms of root mean square error (RMSE) against MedFS performance
and (b) variation of F1 score for MHWs occurrence prediction with the forecast lead time and (c) variation of forecasted MHW intensity
mean error (IE) with the forecast lead time for the (left column) Western Mediterranean, (middle column) Central Mediterranean, and (right
column) Eastern Mediterranean. The sampling uncertainty of each prediction in (a) is illustrated by the bar. RMSE errors represented by the
solid lines represent the reference experiments.

3.4 Sensitivity analysis

In this section, we discuss the results of the SEXPs (see
Sect. 2.3., “Experiments”, for details) for the three selected
regions, noting that similar conclusions can be drawn for
all the regions (not shown). The analysis thereby focuses5

on evaluating the methods’ performance in terms of SST
RMSE (Fig. 7). This means that the higher the increase in
the RMSE after a driver is shuffled, the higher its predictive
power. The labels of Fig. 7 indicate, for each experiment,
the driver that has been shuffled in REXPs. For an easier in-10

terpretation of the results we are showing only the SST, the
INC, and the LAT drivers, as they are the most relevant. For
all the techniques, the RMSE increases notably with respect
to the REXP when the SST is randomly modified; it grows

up to 6, 7, and 5.5 °C for WM, CM, and EM, respectively. 15

Nevertheless, it is worth noting that the extent to which the
RMSE increases after shuffling SST shows a tendency to de-
crease as the forecast lead time increases. This result sug-
gests that the SST itself has the strongest predictive power
in forecasting SST, slightly losing predictive skill increasing 20

the lead times. The incoming solar radiation, to a lower ex-
tent, shows the opposite behavior: after shuffling, the RMSE
tends to increase more than the other drivers with the forecast
lead times. The RMSE at L7 reached values of about 1, 1.7,
and 1 °C for WM, CM, and EM, respectively. Surprisingly, in 25

contrast with the mutual information analysis, we can notice
that for WM and EM the latent heat plays a role. In particu-
lar, for WM the RMSE at L7 reached values of about 0.5 for
all the ML techniques, double the RMSE of REXPs. Overall,
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Figure 6. Time series of observed SST (ESA CCI SST) and predicted SST by the ML techniques (LSTM, CNN, RForest) and by MedFS at
5 d forecast lead time during 2020 for the (a) Western Mediterranean, (b) Central Mediterranean, and (c) Eastern Mediterranean. The 90th
percentile threshold to define MHWs is represented in gray and the daily climatology in green. Crosses correspond to missed alarms (false
negative) and points to false alarms (false positive) in the forecast output in predicting MHWs. Colors refer to the different ML techniques.
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Table 4. ML networks’ performance for the MHWs daily predictions in terms of false positive rate (FPR), false negative rate (FNR),
and F1 score for long short-term memory (LSTM), random forest (RForest), convolutional neural network (CNN), and the Mediterranean
Forecasting System (MedFs) on the first day of forecast (forecast lead 1, L1), on the third day of forecast (forecast lead 3, L3), and on the
fifth day of forecast (forecast lead 5, L5). Bold values identify the best F1 scores at L1, L3, and L5. Stars (∗∗) identify the highest rates of
FPR and FNR.

FPR FNR F1 score

Region ID Methods L1 L3 L5 L1 L3 L5 L1 L3 L5

4-WM

LSTM 0.04 0.04 0.07 0.13 0.33 0.39 0.86 0.78 0.71
RForest 0.03 0.06 0.09 0.19 0.25 0.34 0.83 0.75 0.65
CNN 0.07 0.04 0.05 0.17 0.42∗∗ 0.51∗∗ 0.78 0.67 0.57
MedFS 0.07∗∗ 0.07∗∗ 0.06∗∗ 0.29∗∗ 0.31 0.31 0.70 0.70 0.72

11-CM

LSTM 0.02 0.02 0.02 0.1 0.17 0.38 0.90 0.87 0.73
RForest 0.03 0.02 0.030 0.12 0.30 0.49 0.89 0.78 0.63
CNN 0.06 0.03 0.01 0.12∗∗ 0.31∗∗ 0.59∗∗ 0.84 0.78 0.56
MedFS 0.27∗∗ 0.27∗∗ 0.27∗∗ 0.17 0.19 0.2 0.6 0.58 0.58

15-EM

LSTM 0.03 0.05 0.1 0.06 0.21∗∗ 0.29∗∗ 0.94 0.84 0.74
RForest 0.03 0.04 0.07 0.1 0.19 0.28 0.92 0.86 0.77
CNN 0.15∗∗ 0.12∗∗ 0.15∗∗ 0.02 0.09 0.25 0.86 0.85 0.73
MedFS 0.13 0.11 0.12∗∗ 0.12 0.15 0.16 0.82 0.82 0.81

the aforementioned analysis suggests that the incoming solar
radiation, as shown also by the mutual information analysis,
has some predictive power in driving SST variability. It is
important to highlight that incoming solar radiation shows a
tendency to gain predictive power as forecast leads increase,5

whereas SST, to a much lesser extent, tends to lose it. This
suggests that atmospheric variables could be useful in fore-
casting SST at longer timescales. However, it is worth stress-
ing that the ML methods look for statistical relations (e.g.,
linear or non-linear relations) between variables that do not10

necessarily have a physical meaning (e.g., a cause–effect re-
lation).

4 Discussion

In this study, a group of ML algorithms – random for-
est (RForest), long short-term memory (LSTM), and con-15

volutional neural networks (CNNs) – are used to evaluate
their ability in building a competitive prediction tool of SST
and MHW occurrence 7 d ahead in the Mediterranean Sea.
The methods use the European Space Agency (ESA) Cli-
mate Change Initiative (CCI) sea surface temperature, sea20

level pressure (SLP), geopotential height at 500 hPa (GEO),
wind speed (WS), sensible heat flux (SENS), latent heat flux
(LAT), and incoming solar radiation (INC) from ECMWF
ERA5 as input data. We compare the ML predictions against
MedFS, part of the Copernicus Marine Service since 2017,25

which offers SST forecasts for lead times up to 9 d averaged
across specified regions. It is important to underline that the
data used in our work are designed primarily for climate stud-
ies and for providing a gap-free dataset through interpolation,

which raises concerns about potential biases introduced into 30

our forecasting model. The interpolation process, while en-
suring a comprehensive dataset, might inadvertently smooth
variations and obscure critical phenomena like coastal up-
welling. Alternative approaches utilizing near-real-time op-
erational data could offer more dynamically responsive and 35

less biased datasets for improved forecasting accuracy. More-
over, our methodology involves averaging SST data to obtain
a single representative SST for each zone, and the same ap-
proach is used for atmospheric predictors. We acknowledge
that averaging data in this manner might smooth out localized 40

variations, thereby potentially overlooking non-linearity in
the effects of variables such as wind speed. When data are av-
eraged within an area, the issue tends to become more linear,
allowing simpler methods like linear regression to yield good
results (not shown). However, when working with higher- 45

resolution data, ML methods outperform classical methods,
demonstrating their potential and unearthing intricate nonlin-
ear relationships.

A crucial aspect of this study is the comparison of the ML
techniques’ performance with that of the dynamical Coper- 50

nicus Mediterranean Forecasting System (MedFS) for both
SST and MHW forecasts. Impressively, ML methods demon-
strated a favorable edge over MedFS, especially LSTM in the
early forecast days. For MHW forecasting, ML methods out-
performed MedFS in most regions up to 3 d of forecast lead 55

time, while MedFS exhibited superior skill at 5 d of fore-
cast lead time in 9 out of 16 regions. It is worth emphasiz-
ing that dynamical models, used to produce the 7 d forecast,
are forced by atmospheric forecasts, enabling the ocean to
be influenced by the overlying atmospheric conditions. Con- 60

versely, ML methods lack information about the atmospheric
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Figure 7. SST root mean square error (RMSE) of the sensitivity experiments (SEXPs) for each forecast lead time for the (a, d, g) Western
Mediterranean, (b, e, h) Central Mediterranean, and (c, f, i) Eastern Mediterranean. The labels indicate, for each experiment, the driver that
has been shuffled. The right y axis (orange ticks) refers to the SST driver experiment (solid orange line with “x” marker), and the left y axis
indicates the other drivers’ error.
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conditions during the forecasted period and heavily depend
on the autocorrelation structure of SST, which rapidly de-
creases as the time lag increases. These could be the causes
of the faster increase in RMSE with the forecast lead times
compared to MedFS. Results demonstrate comparable per-5

formance, at least in the earliest days of the forecast, to
physics-based model simulations (i.e., Copernicus Mediter-
ranean Forecasting System) but with the advantage of low
computational cost. The low computational cost of these off-
the-shelf ML tools has many advantages. First, the suite of10

methods presented here can be trained on a laptop and ap-
plied to any geographic location. Secondly, once trained, the
ML techniques do not require high user skills to be correctly
run and analyzed. Furthermore, they can be easily updated,
once additional data become available. In addition, the ad-15

vantage to having the SST prediction is that the end users
could establish thresholds based on their needs. Marine users
and stakeholders operating with different purposes and in dif-
ferent regions may need specific thresholds to define the ex-
treme conditions which may limit their activities. However,20

the gap to dynamical models at 7 d of forecast lead time and
the high rates of false negatives motivate future work to im-
prove the performance of the underlying networks. For ex-
ample, one may consider adding complexity or improving
the model architectures. Passing from time-series forecasts25

to spatially complete maps of predicted sea surface temper-
atures (i.e., from 1D prediction to 2D prediction) is also ap-
pealing. These methods, contingent on higher computational
time and resources, could be trained in each grid point of the
target dataset, in order to obtain maps of SST prediction for30

each lead time at very high resolution.
Our findings also indicate that, in addition to SST itself

(as also observed by Giamalaki et al., 2022), incoming so-
lar radiation appears to play a role in predicting SST. These
variables are inherently physically related, but it is impor-35

tant to note that ML techniques, unlike dynamical models, do
not simulate the ocean’s dynamics. Therefore, establishing a
physical-process-based relationship between incoming solar
radiation and MHW occurrences is premature. To compre-
hend this underlying connection, driver-based studies, such40

as those conducted by Holbrook et al. (2019), Schlegel et al.
(2021), and Rodrigues et al. (2019), are necessary. Further-
more, the neural network algorithms applied lack inherent
knowledge of physical laws, potentially leading to viola-
tions of fundamental physical constraints. This limitation45

likely restricts the proficiency of NNs in maintaining ac-
curacy throughout the prediction interval (Boukabara et al.,
2019; Dueben and Bauer, 2018). It prompts a need for cau-
tious interpretation and validation of results, especially in
scenarios where physical constraints significantly influence50

outcomes. While this study primarily focuses on predictive
skill, future iterations could explore methodologies to infuse
ML frameworks with physical laws governing ocean dynam-
ics. For instance, Zanetta et al. (2023) propose achieving
physical consistency in deep-learning-based postprocessing55

models for temperature and humidity by incorporating mete-
orological expertise through analytic equations. Incorporat-
ing these constraints could potentially enhance the reliabil-
ity of NN predictions, mitigating the risk of straying from
physical realities. One may consider, due to the strengths of 60

NNs in shorter-term predictions (3/5 d interval) and the po-
tential limitations discussed, to use the ML model alongside
models like MedFS for longer prediction intervals. Utiliz-
ing MedFS for longer-term forecasts could leverage its es-
tablished reliability over extended periods, while ML could 65

excel in shorter-term predictions.
Our study predominantly focuses on the influence of at-

mospheric forcings on SST predictions, motivated by their
significant role in the onset of MHWs (Schlegel et al., 2021;
Darmaraki et al., 2023). While this approach captures piv- 70

otal aspects, it fails to account for a variety of oceanic pro-
cesses that could contribute significantly to SST variations
and MHWs events. The drivers of MHWs are currently not
fully understood (Holbrook et al., 2019), and the relevant
physical drivers and processes involved in MHW emergence 75

span various timescales, ranging from days (e.g., anoma-
lous heat fluxes) to weeks (e.g., blocking systems and at-
mospheric teleconnections), months (e.g., re-emergence of
warm anomalies from the subsurface), and years (e.g., cli-
mate modes and oceanic teleconnections). By omitting these 80

factors, our study might provide an incomplete understand-
ing of the intricate interplay between oceanic and atmo-
spheric dynamics, limiting the comprehensiveness of our
SST forecasting model. Introducing additional ocean vari-
ables alongside atmospheric data could enrich the predictive 85

capacity of ML techniques, improving predictions by inte-
grating a more comprehensive set of influencing factors.

Data-driven methods used to forecast SST and, in particu-
lar, MHW occurrence on a weekly basis, are still in their re-
search infancy. In general, weekly MHW predictions are cur- 90

rently missing from the literature, although weekly forecasts
of ocean conditions are widely available (Giamalaki et al.,
2022). The presented work helps to demonstrate and con-
firm the power of these easy-to-use tools which could be effi-
ciently applied to predict the future state of the ocean 1 week 95

ahead. We recognize the merit of longer-term forecasting
for understanding and mitigating lasting impacts, but short-
term forecasts supply useful information in various sectors,
specifically in industries reliant on immediate responses to
temperature fluctuations (DeMott et al., 2021). Short-term 100

SST and MHW forecasts are particularly relevant in sectors
such as aquaculture, a very important activity in the Mediter-
ranean sea, where the acute impacts of short-duration ex-
treme events can significantly impact operations (DeMott et
al., 2021; Frölicher and Laufkötter, 2018). For instance, an 105

extreme MHW lasting a week might impose sudden stresses
on temperature-sensitive aquatic species (e.g., the early life
stages of fish; Buttay et al., 2023), potentially causing im-
mediate adverse effects, such as mass mortality (Lee et al.,
2018; Buttay et al., 2023; Guinaldo et al., 2023), compared 110
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to a more prolonged, moderate MHW. Timely predictions of
these short-term fluctuations enable proactive management
strategies, aiding in disease prevention, optimizing feeding
schedules, preventing potential coral bleaching events, and
ensuring the wellbeing of farmed species and hence safe-5

guarding economic interests and sustaining food security
(Oidtmann et al., 2011; DeMott et al., 2021).

5 Conclusions and future work

Our study is designed as a proof of concept to showcase
the potential applications of machine learning methods in10

short-term (up to 7 d) SST and MHWs forecasting. ML meth-
ods, especially LSTM, showed an early edge over dynamical
models, marking a preliminary step toward advanced systems
capturing non-linear connections. Future efforts should re-
fine ML models by addressing data averaging limits and ex-15

ploring higher-resolution data. Integrating physical laws into
ML frameworks could enhance reliability, while exploring
additional oceanic variables would aid in understanding dy-
namics, especially MHW drivers. These forecasting tools of-
fer proactive strategies for aquaculture and ecosystem man-20

agement, providing rapid warnings for stakeholders to miti-
gate ecosystem impacts.
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