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Abstract. Positive matrix factorization (PMF) has been widely used to apportion the sources of fine particulate matter (PM2.5) 

by utilizing PM chemical speciation data measured at receptor site(s). Traditional PMF, which typically relies on long-term 

observational datasets of daily or lower time resolution to meet the required sample size, has its reliability undermined by 15 

changes in source profiles, thus it is inherently ill-suited for apportioning sporadic sources or ephemeral pollution events. In 

this study, we explored short-term source apportionment of PM2.5 using a set of bihourly chemical speciation data over a period 

of thirty-seven days in the winter of 2019-2020. PMF run with campaign-wide data as input (PMFref) was initially conducted 

to obtain reference profiles for the primary source factors. Subsequently, short-term PMF analysis was performed using the 

Source Finder Professional (SoFi Pro). The analysis sets a window length of 18 d and constrained the primary source profiles 20 

using the a-value approach embedded in SoFi software. Rolling PMF was then conducted with a fixed window length of 18 d 

and a step of 1 d using the remaining dataset. By applying the a-value constraints to the primary sources, the rolling PMF 

effectively reproduced the individual primary sources, as evidenced by the slope values close to unity (i.e., 0.9-1.0). However, 

the estimation for the firework emission factor in the rolling PMF was lower compared with the PMFref (slope: 0.8). These 

results suggest the unique advantage of short-term PMF analysis in accurately apportioning sporadic sources. Although the 25 

total secondary sources were well-modelled (slope: 1.0), larger biases were observed for individual secondary sources. The 

variation in source profiles indicated higher variabilities for the secondary sources, with average relative differences ranging 

from 42% to 173%, while the primary source profiles exhibited much smaller variabilities (relative differences of 8-26%). 

This study suggests that short-term PMF analysis with the a-value constraints in SoFi can be utilized to apportion primary 

sources accurately, while future efforts are needed to improve the prediction of individual secondary sources. Additionally, 30 

future rapid source apportionment analysis can benefit from utilizing a library of source profiles derived from existing 
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measurement data, thereby significantly reducing the time lag associated with receptor modelling source apportionment 

techniques.  

1 Introduction 

Atmospheric particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) is known to negatively impact human 35 

health and exert noticeable but highly uncertain effect on climate change (IPCC, 2014). Epidemiological studies have 

consistently demonstrated that exposure to PM2.5 can result in various cardiovascular and chronic respiratory diseases (Yin et 

al., 2020). The implementation of stringent control measures since 2013 has led to declining concentrations of PM2.5 in many 

megacities in China, with annual-average decreased from 72.3 μg m-3 in 2013 to 47.4 μg m-3 in 2017, as calculated from 

monitoring data in 74 cities across China (Wang et al., 2020; Chow et al., 2022a). However, the annual-mean PM level in 40 

many cities remain above the new WHO guideline (5 μg m-3) by a large margin. As importantly, short-term pollution episodes 

continue to occur frequently in recent years (e.g., Shao et al., 2018; Wang et al., 2022). Recognizing the need to reduce the 

severity and frequency of episodic pollution incidents, it becomes evident that achieving episode-scale source apportionment 

is essential. 

Receptor models such as positive matrix factorization (PMF) and chemical mass balance (CMB) have been widely deployed 45 

to apportion the sources of PM2.5 based on observation-based composition data (Paatero and Tapper, 1994; Watson et al., 

1984). The CMB model can apportion the source contributions of a single sample in principle, but the uncertainties can be 

large due to the high variability in the source profiles (Lee and Russell, 2007) as the local-specific profiles are often  unavailable 

in many places. While the PMF model has the advantage of avoiding the need to input source profiles, it requires a large 

sample size to do the source apportionment. PMF assumes constant source profiles throughout the entire sampling period (Reff 50 

et al., 2007). Due to the limited time resolution from offline filter-based sampling schedule, e.g., sampling duration of 24 h 

and sampling frequency of once every three or six days, PMF is often conducted using the Environmental Protection Agency-

EPA PMF software (Norris et al., 2014) with data spanning one or multi years to meet the sample size requirement (e.g., Chow 

et al., 2022b; Scotto et al., 2021). As a result, there is a notable time lag in obtaining the source apportionment results and 

implementing relevant policy controls. There is an urgent need for rapid source apportionment methods that can provide timely 55 

policy implications.  

Source profile changes are often expected over an extended period of observation for certain sources. For instance, biomass 

burning exhibits variations in dominant biomass materials during different seasons; the implementation of catalytic converter 

replacement program alters the source profiles of vehicular emissions (Lee et al., 2017). Sporadic sources, such as firework 

emission during holidays or wildfires during dry seasons, can significantly contribute to PM pollution episodes that persist for 60 

hours to days, often overshadowing the effects of reductions in anthropogenic emissions (Song et al., 2021; Kong et al., 2015). 

The PMF analysis using long-term data sets could not properly reflect source profile changes experienced during the long-

time span. In other words, long-term PMF is inherently unsuitable for apportioning sporadic sources or ephemeral pollution 
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events. This limitation explains the common observation that PMF with robust mode tends to underestimate the high 

concentration data while overestimating the low concentration data (Henry and Christensen, 2010). Consequently, contribution 65 

estimates of these sources would be biased when apportioned alongside other regular sources using long-term observational 

data.  

By implementing online measurement techniques, researchers are able to conduct source apportionments studies based on 

hourly PM chemical speciation data covering several weeks to months. Such studies can circumvent the issue of source profile 

changes arising from the long-term sampling (Wang et al., 2018).  Recently, Canonaco et al. (2021) introduces a new method 70 

called “rolling PMF” to conduct the source apportionment with time-dependent source profiles using the SoFi software. In this 

method, PMF is performed over a small, moving time frame (e.g., a window length of 2 weeks with step of 1 day), allowing 

that the factor profiles to evolve with time. To decrease the rotational ambiguity, short-term rolling PMF is conducted with the 

source profile constraints using the a-value approach embedded in the SoFi program (Canonaco et al., 2013). This method has 

been demonstrated using the one- and multi-year non-refractory sub-micrometer aerosol chemical speciation monitor (ACSM) 75 

dataset (Canonaco et al., 2021; Chen et al., 2021, 2022) for the source apportionment of organic aerosols (OA). The source 

profiles of primary factors obtained from the traditional PMF runs conducted in each season are selected as the reference 

profiles. With the source profile constraints, the rolling PMF can effectively capture the individual primary organic aerosol 

(POA) source and total oxygenated organic aerosol (OOA) sources when compared with the traditional PMF. However, 

noticeable differences in individual OOA sources were observed. The rolling PMF (or moving window PMF) method has been 80 

also applied to the hourly PM2.5 chemical speciation data measured in Tianjin during a two-month field campaign, including 

ions, organic carbon (OC), elemental carbon (EC) and elements (Song et al., 2021), where PMF runs were performed without 

the source profile constraints using EPA PMF software. The apportioned results, without the source-specific organic tracers, 

showed clear mixing of several source factors in Song et al. (2021). The application of the rolling PMF method with time-

dependent source profile constraints holds potential for rapid source apportionment when source profiles are available from 85 

existing chemical speciation measurement data. 

A comprehensive online measurement campaign was conducted at a suburban site in Shanghai during a period of 37 days in 

the winter of 2019-2020 (specifically from 29 Dec. 2019 to 9 Feb. 2020), encompassing both the pre-lockdown and lockdown 

phases of the Covid-19 pandemic. This data collection effort involved hourly measurements of major ions, OC, EC, elements, 

as well as bihourly measurements of source-specific organic tracers in PM2.5.  Notably, this time frame captured the dynamic 90 

changes in pollution sources and included a sporadic source event—firework emissions during the Chinese New Year (CNY) 

and Lantern festival. Thus, it presented a unique opportunity to evaluate a shot-term PMF strategy. A thorough traditional 

source apportionment analysis conducted using the EPA PMF software is documented in our previous study (Wang et al., 

2022b). In this study, we specifically investigated the applicability of a short-term source apportionment strategy using the 

bihourly PM2.5 chemical speciation data with the SoFi software and compared with those obtained through the traditional PMF. 95 

The findings of this study offer valuable insights into the future development of rapid source apportionment methods for PM2.5, 
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particularly for short-term periods and episodic events. These insights have the potential to enhance air quality management 

practices.  

2 Methods 

2.1 Sampling and chemical analysis 100 

The field campaign was conducted during 29 Dec. 2019 to 9 Feb. 2020 at Dianshan Lake (DSL) supersite (31.09°N, 120.98°E) 

in Shanghai, China. The sampling site was located in a suburban area, about 50 km away from downtown Shanghai and with 

relatively low influences of local anthropogenic sources. PM speciation measurements included hourly major ions (sulfate, 

nitrate, and ammonium) by a Monitoring AeRrosols and Gases in ambient Air system (MARGA), OC and EC by a Sunset 

Semi-Continuous Carbon Analyzer, elements (i.e., K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se, Ba, and Pb) by an energy dispersive X-105 

ray fluorescence spectrometer (XRF) and bihourly organic tracers (hopanes, steranes, levoglucosan, mannosan, phthalic acid, 

2,3-dihydroxy-4-oxopentanoic acid (DHOPA), β-caryophyllinic acid (β-caryT) and α-pinene secondary organic aerosol (SOA) 

tracers (α-pinT)) by a Thermal desorption Aerosol Gas chromatography–mass spectrometry (TAG). TAG data during 16-21 

Jan. 2020 were not available due to instrument maintenance. For detailed information about the sampling site and chemical 

analysis procedures, refer to our previous paper (Wang et al., 2022b). 110 

2.2 Source apportionment 

In this work, positive matrix factorization (PMF) with the multilinear engine version 2 (ME-2)  (Paatero, 1999) in the interface 

of SoFi Pro (version 8) (Canonaco et al., 2013) was adopted to apportion the sources contributing to PM2.5 mass. The PMF 

model in matrix notation is defined as Eq. (1-2) 

𝑥 𝑔 𝑓 𝑒                        (1) 115 

𝑄 ∑ ∑                             (2) 

where xij is the measured concentration, n is the number of samples, m is the number of species, p is the number of factors, gik 

is the source contribution of the kth factor to the ith sample, fkj is the factor profile of jth species in the kth factor, eij is the residual 

of jth species in ith sample and uij is the user-defined uncertainty. Q is the objective function representing the uncertainty 

weighted difference between observed and modeled species concentrations. PMF finds the final solution by minimizing the Q 120 

value.  

Factor analysis methods like PMF are known to encounter rotational ambiguity, whereby different combinations of source 

contribution G and source profile F matrix can yield the same Q value. This issue often results in mixed factors or 

environmentally unrealistic factors. Previous studies have demonstrated the effectiveness of constraining expected source 

profiles using the a-value approach embedded in SoFi software (Canonaco et al., 2013). The a-value approach allows for the 125 
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imposition of constraints on the source profiles/contributions from the given reference profiles/contributions, with a certain 

degree of variation from the anchoring profiles (Eq 3-4).  

𝑓 𝑓 𝑎 𝑓                                    (3) 

𝑔 𝑔 𝑎 𝑔                                  (4) 

Here, the index j, which varies between 0 and the number of species-m, represents the species of the kth factor. The index i, 130 

which varies between 0 and the number of samples-n, is the sample of the kth factor. 𝑓  and 𝑔  are the anchoring profiles and 

anchoring contributions, respectively, while 𝑓  and 𝑔  are the output source profiles and source contributions, respectively. 

The scalar a ranges from 0 to 1, which determines the extent to which the output 𝑓  / 𝑔   is allowed to vary from the input 

reference 𝑓  / 𝑔 . For example, a a value of 0.3 corresponds to 30% variation, while a a value of 1 is equivalent to a 

completely unconstrained (or free) PMF situation. 135 

Figure 1 illustrates the flowchart outlining the source apportionment methodology employed in this study. Initially, a PMF run 

was conducted by EPA PMF software using campaign-wide bihourly data as input (referred to as PMFref) to derive the 

reference profiles for primary sources. Subsequently, the first sampling period data of 18 d was utilized to perform the short-

term PMF run and evaluate the effectiveness of the a-value approach using SoFi. The source profiles obtained in PMFref was 

used as the reference profiles in the a-value approach to help PMF find the environmentally reasonable solution. Following 140 

this, the rolling PMF was conducted using the remaining dataset with the optimum a values to validate the short-term PMF 

results. The results of the rolling PMF analysis were discussed and compared with the results obtained from PMFref. The 22 

input species for both the PMFref and the short-term rolling PMF runs include sulfate, nitrate, ammonium, OC, EC, K, Ca, Mn, 

Fe, Cu, Zn, As, Ba, Pb, and 8 organic species (hopanes, steranes, levoglucosan, mannosan, phthalic acid, α-pinT, β-caryT, and 

DHOPA). The specific input data utilized in individual PMF runs are shown in Table S1.  145 

 

Figure 1. Flow diagram of the short-term PMF strategy used in this study. 

2. Short-term PMF (18d) with a-value constrain Remaining data for the rolling PMF runs

1. PMFref run with campaign-wide data as input to obtain the reference profiles

…
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1d 1d 1d 1d 1d …              1d 1d 1d3. Rolling PMF run #01

Rolling PMF run #02 … 
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3 Results and discussion 

3.1 Overview of the PM pollution at DSL site 

Figure 2a shows the temporal variation of PM2.5 and select tracers during the campaign period, with the average concentrations 150 

provided in Table S2. The sampling period was divided into two distinct sub-periods: (1) before CNY (29/12/2019-23/1/2020) 

and (2) CNY and post-CNY (24/1-9/2/2020). The CNY (25 Jan.) and Lantern festival (8 Feb.) fell within the second period 

when the lockdown restriction had been implemented. A clear reduction of the concentrations for most tracer species was 

observed during the CNY and post-CNY period, except for K and Ba (Text S1 and Figure 2a). It is known that combustion of 

fireworks emits particles enriched with elements such as Sr, K, Ba, Cu, Bi and etc. (Manousakas et al., 2022). Scatter plots of 155 

measured K with the source tracers-levoglucosan from biomass burning and Pb from coal combustion unequivocally indicated 

the presence of firework emission source during the CNY holiday and Lantern festival (Figure 2b). The combustion of 

fireworks during these events led to significantly elevated K concentrations. Conversely, during the remaining time period, K 

primarily originated from biomass burning and coal combustion, as evidenced by the strong correlation with the corresponding 

tracer species. 160 

Source apportionment results over entire sampling period (i.e., PMFref) supplies an overview about the emission sources at this 

site. A thorough source apportionment result for this site can be found in our previous paper (Wang et al., 2022b), where 14 

factors were resolved using a list of more comprehensive input species over the entire sampling period. Among these factors, 

the PAH-rich factor, cooking emission, and one SOA factor are negligible PM2.5 contributors (<1%). The contribution of the 

residual oil combustion factor to PM2.5 is also minor (<3%). Additionally, the detection frequency of V, a tracer for the residual 165 

oil combustion factor, was lower than 50% for the short-term input time window. Thus, these four factors were not incorporated 

in this study, and we focus on the 10 major factors resolved in our PMFref run. Given the limited data points available for the 

short-term PMF runs, this approach allows us to obtain a more robust solution, aligning with the study's objective of testing 

the short-term PMF strategy. The robustness of the PMFref result was tested by the bootstrap and displacement error estimation 

method embedded in EPA PMF 5.0 software (Norris et al., 2014). All bootstrap factors mapped to the base factors in >95% of 170 

the runs. No factor swaps and no decrease of Q were observed in DISP. The PMF-modelled reconstructed PM2.5 mass is close 

to the measured one, with slope of 1.01 and Rp of 0.99. The model performance for individual species was also good, with 

slopes ranging from 0.59 to 1.08 and Rp in the range of 0.82-1.00. 

Briefly, the PMFref run resolved 10 factors comprises four secondary sources (i.e., secondary nitrate formation process, 

secondary sulfate formation process, and two SOA factors-SOA_I and SOA_II) and six primary factors (i.e., vehicle exhaust, 175 

industrial emissions, coal combustion, dust, biomass burning, and firework emissions). The SOA_I factor contained high 

loadings of α-pinene and toluene SOA tracers, representing mixture of biogenic and anthropogenic SOA. The SOA_II factor 

was primarily contributed by phthalic acid, suggesting an anthropogenic origin. Among the primary factors, the firework 

emission factor was only present during the CNY and post-CNY sampling period (Figure 2b). Consequently, we imposed 

constraints to set the factor contributions of firework emissions to zero during the period before CNY. The resolved factor 180 
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profiles and PM2.5 contributions from PMFref are shown in Figure S2 and Figure S3. Briefly, the PMFref results showed that 

secondary nitrate and secondary sulfate factors constituted the most important sources contributing to the PM2.5 levels at this 

site, accounting for 58% and 11% of the PM2.5 mass during the period before CNY, and 40% and 23% during the CNY and 

post-CNY period, respectively. SOA_I and SOA_II contributed to 3% and 7-8% of the PM2.5 mass, respectively. Among the 

primary sources, industrial emissions, biomass burning, and dust showed comparable contributions to the PM2.5 mass (ranging 185 

from 2% to 8%), while vehicle exhaust was a minor source, contributing less than 1% to PM2.5 at this suburban site. Firework 

emissions, however, constituted a non-negligible source during the CNY and post-CNY period, contributing to 12% of the 

total PM2.5 mass.  

 

Figure 2. (a) Time series of concentrations of total PM2.5 and selected tracer species from 29 Dec. 2019 to 9 Feb. 2020 at the DSL site 190 
in Shanghai. The campaign period was divided into two phases: before Chinese New Year (CNY) and CNY and post-CNY period. 
The data influenced by firework emissions are highlighted in light orange. (b) Scatter plots illustrating the relationship between K 
concentrations and two other tracer species, Pb and levoglucosan, during the firework-influenced period and the remaining period. 

3.2 Short-term PMF run combined with a-value approach 

The short-term source apportionment analysis was conducted using data from the first sampling period, spanning 18 days from 195 

29 Dec. 2019 to 15 Jan. 2020. The selection of the window length may vary depending on the specific data sets under study. 

The determination of the window length for our observational data set is shown in Text S2, where 4 d, 7 d, 10 d, 14 d and 18 

d were initially evaluated. A window length of 18 d was chosen as it produced the most stable base run result with minimum 

factor profile mixing. Previous studies that employed higher time resolution measurements (e.g., hourly or 30-min intervals) 
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suggested a window length of 14 d (Chen et al., 2022; Canonaco et al., 2021; Song et al., 2021). However, our bihourly time-200 

resolution data indicated a slightly longer window length, which provided a more robust solution.   

The short-term PMF run resolved nine factors, with the firework emission factor not resolved during the sampling period 

before CNY. The a-value approach was tested in the short-term PMF run, utilizing the source profiles of primary factors 

obtained from PMFref as reference profiles. A range of a value, from 0 to 1 with a step size of 0.1, was tested. Compared with 

primary sources, the secondary sources often do not represent specific emissions. Instead, they typically result from a complex 205 

interplay of multiple aging processes that occur over the observational period and are susceptible to environmental conditions 

such as relative humidity and photoactivity, etc. Thus, the four secondary factors were not constrained in the short-term PMF 

run using the a-value approach, consistent with the common strategy in previous studies (Chen et al., 2022; Canonaco et al., 

2021). A total of 100 PMF calls were performed and the variability of the Q/Qexp was examined. The ratio Q/Qexp , where Qexp 

≈ n × m- p ×(n + m), indicates the overall fitting of all input species and is reciprocally associated with the fitting (Norris et 210 

al., 2014). Among the 100 runs, the variation of the Q/Qexp are consistently minimum, with a coefficient of variation of <1%. 

The one with the lowest Q/Qexp was chosen for further analysis. For comparison, unconstrained PMF run was also conducted 

in a similar manner. In general, the a-value constrained PMF runs showed better agreement with the PMFref compared to the 

unconstrained PMF run (Figure S5a). The change in Q/Qexp values was evaluated to determine the optimum a values (Figure 

S5b). Larger Q/Qexp values were observed in the a-value constrained runs, compared with the unconstrained PMF run. As the 215 

a values decreased from 1 to 0, the Q/Qexp increased, reflecting a decrease in the freedom of the source profiles. The change 

in Q/Qexp exhibited a “U” shape, with higher values observed for small (0-0.2) and large a values (0.9-1), indicating larger 

changes in the PMF results with varying a values. A threshold a value of 0.3 was initially selected, after which the change in 

Q/Qexp became considerably smaller.  

Figure 3 presents a comparison of the relative difference in PM2.5 source contributions for individual primary source factors 220 

obtained from the a-value constrained runs and the unconstrained PMF run, in relation to the PMFref results. Different factors 

showed different response to the change in the a values. For vehicle exhaust, industrial emissions, and coal combustion, much 

smaller differences (0-15%) were observed with small a values (<0.5). However, as the a values increased, the differences 

became more substantial (10-60%), highlighting the importance of constraining the source profiles for these factors. In the 

case of dust and biomass burning, larger differences were observed (22-44% and 10-21%, respectively) when the a values 225 

exceeded 0.1. Therefore, smaller a values were suggested for the two sources, which was in accordance with the fact that their 

source profiles were less affected by lockdown restrictions compared to other primary sources. After initial test, an a value of 

0.1 was selected for biomass burning and dust, while an a value of 0.3 remained for other primary factors. These chosen a 

values (0.1 and 0.3) align with previous studies that utilized ACSM datasets, where a values between 0-0.4 were adopted 

(Canonaco et al., 2021). With this set of optimized a values, the relative differences in the apportioned PM2.5 source 230 

contributions compared to those apportioned by PMFref were as follows for the five primary factors: vehicle exhaust (-1%), 

industrial emission (-11%), coal combustion (5%), dust (-14%), and biomass burning (-5%). In comparison, the unconstrained 

PMF produced notably poorer results for vehicle exhaust (35%) and biomass burning (-17%).  
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Figure 3. Relative differences in PM2.5 contribution between different a-value constrained runs and the unconstrained PMF run, 235 
compared to the reference result, for (a) vehicle exhaust, coal combustion, and industrial emission, and (b) biomass burning and 
dust. The “adjusted a” indicated the final a values adopted, i.e., a=0.3 for vehicle exhaust, coal combustion, and industrial emissions, 
and a=0.1 for biomass burning and dust.  

We additionally conducted a sensitivity test on the reference profiles by manually generating a set of new reference profiles 

that deviated from the original profiles by a relative standard deviation ranging from 10% to 70%. The details are shown in 240 

Text S3. As the deviation increased, the apportioned source contributions exhibited greater relative differences compared to 

PMFref for the primary factors (Figure S6). These findings indicate that utilizing source profiles derived from PMFref is an 

effective approach for establishing appropriate constraints, resulting in a closer approximation to the true source profiles at the 

site.
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3.3 Short-term rolling PMF runs combined with a-value approach 245 

We next tested whether the short-term PMF strategy works on more dataset with potential change of pollutions. The rolling 

PMF runs (denoted as PMFroll) were conducted using the remaining dataset, maintaining a fixed window length of 18 d. The 

window increment was set at 1 d, following the practice in previous studies (Canonaco et al., 2021; Chen et al., 2021, 2022; 

Song et al., 2021). A total of 19 PMFroll runs were performed (Table S1). The first two PMFroll runs utilized input data collected 

before the CNY (30 Dec. 2019-23 Jan. 2020) and resolved nine factors. Subsequently, the 3rd to 19th PMFroll runs employed 250 

input data spanning the CNY (1 Jan.-9 Feb. 2020) and resolved ten factors, including an additional factor attributed to firework 

emissions. The 3rd PMFroll run (input data of 1-24 Jan. 2020), a transitional PMF run from 9 to 10 factor, was excluded due to 

the limited availability of data points influenced by firework emissions (Nfirework_data=2, representing the number of data points 

under the influence of firework emissions). Furthermore, the apportioned results from this run displayed significant 

discrepancies compared with the rest of the PMFroll runs. Consequently, 18 out of the 19 PMFroll runs were selected for further 255 

analysis.  

Figure 4 shows the time series of the PM2.5 source contributions from individual PMFroll runs and the average contributions. 

Comparable results were observed across the PMFroll runs for all primary source factors, indicating the effectiveness of the a-

value approach to reproduce the primary source contributions during the short-term PMF runs. To illustrate this point, we also 

performed unconstrained rolling PMF runs (i.e., without the a-value approach), which showed much larger run-to-run 260 

variability for the primary source factors, especially vehicle exhaust and coal combustion (Text S4 and Figure S7). These 

findings underscore the advantage of employing source profile constraints to achieve reproducible source apportionment 

results when performing the PMF analysis over a short-term measurement period. The four secondary source factors were not 

subject to constraints and displayed varying levels of run-to-run variability. Secondary nitrate exhibited minimal variability 

among the runs, while secondary sulfate showed larger variations. Both SOA factors demonstrated even greater variations, 265 

particularly the SOA_I factor. However, the SOA_II factor exhibited relatively smaller variations in the later sampling period 

data.  

The final solution was obtained by averaging the PM2.5 source contributions from all PMFroll runs, which were then compared 

with the reference result obtained from PMFref (Figure 5). The primary source factors (i.e., vehicle exhaust, industrial emission, 

coal combustion, and dust) exhibited a strong agreement between the PMFroll and PMFref results (slope>0.93). A slight 270 

underestimation was observed for biomass burning, with a slope of 0.90. In contrast, the sporadic source of firework emissions 

showed consistently lower estimations by PMFroll (slope 0.81), which may reflect higher source contributions by PMFref. This 

result highlights the unique advantage of the short-term source apportionment in accurately apportioning the sporadic sources 

(Song et al., 2021). Among the four secondary sources, secondary nitrate showed good agreement with the reference result 

(slope of 1.0 and Pearson correlation coefficient-Rp of 1.0). Secondary sulfate exhibited a good correlation with the PMFref 275 

(slope=1.2 and Rp=0.92), although the PMFroll runs apportioned higher contributions, especially for the later sampling period 

during the lockdown. SOA_I showed a weaker correlation with the reference result (Rp=0.77), and the slope varied with time 
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(Figure 5). On the other hand, SOA_II displayed good agreement between PMFroll and PMFref, but larger uncertainties were 

associated with the apportioned results due to large run-to-run variabilities observed in the source contributions, especially 

during the middle sampling period (Figure 4). Notably, the sum of the four secondary sources showed good agreement with 280 

the PMFref, both with (slope=1.0 and Rp=1.0) and without a-value constraints (slope=0.95 and Rp=0.99). This observation may 

be attributed to the intrinsic temporal variations differing between primary and secondary sources. 

 

Figure 4. Time series of factor contributions to PM2.5 for individual PMFroll runs and the average source contributions. The 
individual PMFroll run is shown in light red line and the average PMFroll result is shown in dark red line. 285 
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Figure 5. Comparison of the PM2.5 source contributions obtained from average PMFroll runs with the reference result in PMFref for 
individual source factors and the sum of the four secondary sources. 

3.4 Source profile variability 

The temporal variation of source profiles is the fundamental reason why short-term source apportionment is necessary to 290 

achieve accurate source apportionment during episodic events. Figure 6 presents the average factor profiles of the ten resolved 

source factors throughout the entire field campaign, alongside the reference profiles from PMFref. The error bars represent one 

standard deviation of profile variability across the PMFroll runs throughout the entire measurement period. This variability 

encompasses both time-dependent variations in the factor profiles and uncertainties associated with the PMF analysis. All 

primary factors showed comparable source profiles between PMFroll and PMFref. However, the four secondary source factors 295 

derived from PMFroll showed higher variabilities in their profiles and larger differences compared to the PMFref. In particular, 

the secondary nitrate and sulfate factors from PMFroll showed higher loadings of organic tracers and elemental species in their 

profiles compared to PMFref. The SOA_I factor showed a higher proportion of inorganic ions, whereas the SOA_II factor 

showed lower loadings of the inorganic ions.  

We calculated the relative difference between the source profiles obtained from PMFroll with PMFref to evaluate their disparities 300 

(Figure 7). The relative difference for each PMFroll run was calculated as the average value of the relative difference for all 

D
ate
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input species. The results indicated that the primary sources showed relatively small differences among individual PMFroll 

runs. For example, the relative difference for vehicle exhaust varied from 17% to 33%. Across the five primary factors, the 

average relative difference ranged from 8% for dust and biomass burning to 26% for vehicle exhaust. In contrast, the secondary 

sources inherently displayed more variability than the primary sources, leading to challenges and larger uncertainties in 305 

apportioning individual secondary sources. Significant variabilities were observed in the source profiles of the secondary 

sources. Among them, secondary sulfate showed slightly smaller relative difference, with an average value of 42% (range 26-

60%). Secondary nitrate, SOA_I and SOA_II showed large variations, with an average relative difference of 173%, 162%, and 

75%, respectively. In the case of secondary nitrate factor, although the apportioned PM2.5 contributions from individual source 

factors were comparable to the reference result, the resolved source profiles exhibited high time-dependent variabilities. We 310 

hypothesize this may be attributed to the sensitivity of nitrate formation to the reduction of NOx and VOC precursors during 

the lockdown restriction (Yang et al., 2022). Previous laboratory studies indicated that reducing anthropogenic pollutants such 

as SO2 and NOx can also reduce the biogenic SOA formation via anthropogenic–biogenic interactions (Zhang et al., 2019; Xu 

et al., 2015). This, to some extent, explains the high variabilities in source profiles of the two SOA factors. Additionally, the 

high variabilities may also arise from the uncertainties in the PMF analysis due to the limited data points available from the 315 

short-term time span (Wang et al., 2018). Therefore, in future studies, alternative approaches are needed to independently 

assess the contribution of secondary sources. Also, we recommend deploying higher time resolution measurement of the 

organic tracers. This will help ensure accurate source apportionment results for individual secondary sources, especially within 

the confines of a short-term time span. 

 320 
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Figure 6. Comparison of the source profiles (% of factor total) derived from the short-term rolling PMF runs (PMFroll) and the 
reference profiles from PMFref. Error bars represent one standard deviation of profile variability across the PMFroll runs.  

 

Figure 7. The relative difference in the resolved source profiles among the individual rolling PMF runs. The relative difference for 
individual rolling PMF run (empty circles) was calculated as the average value of the relative difference for all input species.  Solid 325 
squares represent the average value from all rolling PMF runs. 

4 Conclusions 

In this study, we presented a short-term PMF strategy utilizing bihourly PM chemical speciation data including the molecular 

and elemental tracers. Initially, the PMFref using the campaign-wide measurement data were performed by EPA PMF software 

to get an overview of the emission sources and obtain the reference profiles of the primary sources. Then, the short-term PMF 330 

analysis was performed using an 18-day window length combined with the a-value approach in SoFi software. The reference 

profiles derived from the campaign-wide data were employed as constraints to reduce the rotational ambiguity in the short-

term PMF results. The training data with the a-value constraints for an 18-day window indicated a smaller "a value" for 

biomass burning and dust sources. This suggests that the profiles of these sources remain relatively constant and exhibit less 

variability throughout the campaign period. The constrained PMF results exhibited improved agreement with the reference 335 

results compared to the base run without any constraints. The rolling PMF analysis with optimized a-value constraints 

demonstrated good agreement between the regular primary sources and the reference result, underscoring the efficacy of source 

profile constraints in short-term PMF runs. However, the sporadic source of firework emissions exhibited overestimation in 

the long-term source apportionment results. Furthermore, noticeable differences were observed between the rolling PMF and 

PMFref for individual secondary sources, particularly the SOA factors. Nevertheless, the overall contribution of the total 340 

secondary sources showed good agreement. Future endeavors should target to improve the modelling of individual secondary 

factors by either using alternative approaches or deploying higher time resolution measurement of organic tracers. 

The findings of this study highlight the applicability of the short-term PMF analysis with source profile constraints for source 

apportionment of PM2.5. This suggests the potential for future work to achieve rapid source apportionment by utilizing a library 

of source profiles derived from existing measurement data. By advancing the window frame to incorporate new measurement 345 
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data (e.g., one day data), short-term PMF analysis can provide source contributions for the most recent observations. This 

approach significantly reduces the time lag associated with receptor modelling source apportionment techniques. Such 

advancements hold important policy implications, as they enable prompt response during pollution episodes, eliminating the 

need to wait for the accumulation of sufficient data for conducting PMF analysis. 

Data availability. Bihourly organic markers and other PM chemical speciation data presented in this study can be 350 
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