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Abstract. The UMBC Hyper-Angular Rainbow Polarimeter (HARP2) will be onboard NASA’s Plankton, Aerosol, Cloud,
ocean Ecosystem (PACE) mission, scheduled for launch in January 2024. In this study we systematically evaluate the retriev-
ability and uncertainty of aerosol and ocean parameters from HARP2 multi-angle polarimeter (MAP) measurements. To reduce
the computational demand of MAP-based retrievals and maximize data processing throughput, we developed improved neural
network (NN) forward models for space-borne HARP2 measurements over a coupled atmosphere and ocean system within the
FastMAPOL retrieval algorithm. A-To this end, a cascading retrieval scheme is further-implemented in FastMAPOL, which
leverages a series of NN models of varying size, speed, and accuracy to optimize performance. Two sets of NN models are
used for reflectance and polarization, respectively. A full day of global synthetic HARP2 data was generated and used to test
various retrieval parameters including aerosol microphysical and optical properties, aerosol layer height, ocean surface wind
speed, and ocean chlorophyll-a concentration. To assess retrieval quality, pixel-wise retrieval uncertainties were derived from
the-Jacobians-of the-cost-funetion-error propagation and evaluated against the difference between the retrieval parameters and
truth based on a Monte Carlo errorpropagation-method. We found that the fine-mode aerosol properties can be retrieved well
from the HARP2 data, though the coarse-mode aerosol properties are more uncertain. Larger uncertainties are alse-associated
with a reduced number of available viewing angles, which typically occurs near the scan edge of the HARP2 instrument. Re-
sults of the performance assessment demonstrate that the algorithm is a viable approach for operational application to HARP2

data after PACE launch.
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1 Introduction

Satellite remote sensing has greatly enhanced our understanding of the Earth’s environment, including the characterization of
atmospheric aerosols and surface properties (Kaufman et al., 2002; Kokhanovsky et al., 2015; Kahn, 2015; Portner et al., In
Press.). Multi-angle polarimetric (MAP) remote sensing, pioneered by the Polarization and Directionality of the Earth’s Re-
flectances (POLDER) instrument on Advanced Earth Observing Satellites (ADEOS-I; 1996-1997 and ADEOS-II; 2002-2003)
and the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARA-
SOL; 2004-2013) mission (Tanré et al., 2011), has emerged as a promising approach for retrieving geophysical properties from
Earth observations (Mishchenko and Travis, 1997; Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012; Lacagnina et al.,
2017; Dubovik et al., 2019; Hasekamp et al., 2019b; Chen et al., 2022).

This trend is set to continue with the forthcoming launch of the National Aeronautics and Space Administration (NASA)’s
Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission in January 2024, featuring a hyperspectral scanning radiometer
named the Ocean Color Instrument (OCI) (Meister et al., 2022) and two MAPs with high polarimetric accuracy: the University
of Maryland, Baltimore County (UMBC) Hyper-Angular Rainbow Polarimeter (HARP2) (Martins et al., 2018; McBride et al.,
2023) and the Netherlands Institute for Space Research (SRON) Spectro-Polarimeter for Planetary EXploration one (SPEXone)
(Hasekamp et al., 2019a; Smit et al., 2019). The deployment of these instruments presents an unprecedented opportunity to
enhance our understanding and representation of atmospheric and surface conditions (Remer et al., 2019a, b; Frouin et al.,
2019), and bridge future MAP observations, such as the European Space Agency’s (ESA) Multi-viewing Multi-channel Multi-
polarisation Imager (3MI) on board the MetOp-SG satellites (Fougnie et al., 2018), and NASA’s Multi-Angle Imager for
Aerosols (MAIA) instrument (Diner et al., 2018).

Advanced simultaneous aerosol and surface property retrieval algorithms have been developed for MAP instruments (Chowd-
hary et al., 2005; Waquet et al., 2009; Hasekamp et al., 2011; Dubovik et al., 2011, 2014; Wang et al., 2014; Wu et al., 2015;
Xu et al., 2016; Fu and Hasekamp, 2018; Li et al., 2018; Stamnes et al., 2018; Gao et al., 2018; Li et al., 2019; Hasekamp et al.,
2019b; Chen et al., 2020; Fu et al., 2020; Puthukkudy et al., 2020; Gao et al., 2021a; Xu et al., 2021; Gao et al., 2023; Stamnes
etal., 2023). Most of these retrieval algorithms developed for MAP observations are based on iterative optimization approaches
that utilize vector radiative transfer (RT) forward models, capable to derive atmospheric and surface properties simultaneously.
Constrained by the speed of forward model calculations, MAP retrieval algorithms are often computationally expensive, which
limits their applicability for large-scale operational data production, and makes it difficult to conduct comprehensive uncer-
tainty analyses. To address the data processing challenge related to MAP instruments, Di Noia et al. (2015) developed a neural
network (NN) based retrieval algorithm that derives aerosol properties directly from groundSPEX (a ground-based version of
the SPEX instrument) and RSP (Research Scanning Polarimeter, Cairns et al. (1999)) measurements. These directly-inverted
properties were then used as initial values in a subsequent iterative optimization.

To further improve the processing efficiency and flexibility, NN-based forward models are sometimes introduced to re-
place the radiative transfer calculation partially or fully in the retrieval algorithms. For example, Fan et al. (2019) presented
represented the polarimetric reflectance for an open-ocean system using a NN and applied it to SPEXone data processing by
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coupling with a linearized radiative transfer atmosphere model (Hasekamp and Landgraf, 2005). PACE HARP2 data poses a
further challenge due to its large data volume, with a swath more than an order of magnitude wider than SPEXone’s. Gao et al.
(2021a) demonstrated that a NN-based model-forward model can be trained to represent the vector radiative transfer calcu-
lation on a fully coupled atmosphere and ocean system. To process HARP2 data efficiently, the FastMAPOL algorithm was
developed, powered by such NN-based radiative transfer forward model and validated using AirHARP field campaign mea-
surements (Gao et al., 2021a, b) and HARP2 synthetic data (Gao et al., 2021b, 2022)). To enable data synergy from multiple
PACE instruments, Stamnes et al. (2023) utilized NN-based forward models that combine spectral bands from both HARP2
and SPEXone in MAP retrievals. These recent developments build upon the successful application of NNs in non-polarimetric
remote sensing (Diego and Loyola, 2004; Schroeder et al., 2007; Fan et al., 2017; Chen et al., 2018; Nanda et al., 2019; Shi
et al., 2020; Ukkonen, 2022; Stegmann et al., 2022; Ibrahim et al., 2022), and achieve the high radiometric and polarimetric
accuracy of modern MAPs by using a larger number of hidden layers (e.g. three layers) and nodes (usually 200-1000).
Building from these studies, this work presents a refinement of the FastMAPOL retrieval algorithm suitable for global-scale
PACE HARP2 data processing. The NN forward model is further optimized based on a realistic training data set, including
expected orbital satellite geometries and employing highly accurate vector radiative transfer simulations. This allows us to test
the processing performance on global spaceborne data and illustrate the expected aerosol and ocean color retrieval performance
of HARP2. We introduce a novel measurement-uncertainty-aware NN training via modification of its cost function resulting
in a NN accuracy more consistent with the retrieval’s cost function. Additionally, we explore the trade-off between NN speed
and accuracy, training different sizes of NNs based on the new cost function, and further propose a cascading retrieval scheme

that leverages a series of NN models of varying size, speed, and accuracy. Initial retrievals are conducted using faster, smaller,

but less accurate NN models, with subsequent retrievals performed using larger, slower, but more accurate NN models.
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lations were generated using the most accurate NN forward modeland-the-input-parameters-derived-from-NASA-Modern-Era

90 . This effort is a part of the Day-in-the-Life (DITL) pre-launch data processing test organized by the PACE Science Data
Segment (SDS). Through the global-scale data analysis based on the cascading-NN scheme in FastMAPOL, we examine
the retrieval uncertainties for aerosol microphysical and optical properties in both fine and coarse mode-aerosolsmodes, as
well as ocean surface wind speed and ocean ehlerephyl-achlorophyll-a, with respect to the location, geometries, and dis-
tribution of geophysical properties. We have also included aerosol layer height (ALH) in the HARP2 retrieval products, as

95 encouraged by the sensitivity studies conducted on RSP (Wu et al., 2016) and the HARP instrument (Xu et al., 2021). The
quantification of aerosol uncertainty can inform-greatly enhance its applicability in radiative forcing(Jia-et-al52022}, air qual-
ity (Wang-and-Christopher;2003)-and climate studiesMishehenko-et-al52004). Consequently, this study offers a holistic dis-
cussion on the retrieval algorithm ;-the-data-products-obtained;-and-and the resultant data products with their associated uncer-
tainties for HARP2 in anticipation of the upcoming PACE mission.

100 This study presents the advancements made to the HARP2 aerosol and ocean retrieval algorithm for operational data
processing, including various improvements in the radiative transfer model with more realistic representation of space-borne

measurements, effective NN training methodology, flexible NN architectures, and cascading retrieval scheme with comprehensive
uncertainty assessment. The paper is organized in four sections, including a description of the retrieval algorithm and NN for-

ward model (See-Sect. 2), retrieval and uncertainty analysis on the global scale simulations (See-Sect. 3), and conclusion with

105 discussions (See-Sect. 4).

2 Improved FastMAPOL retrieval algorithm

This section provides an overview of the enhancements made to the FastMAPOI retrieval algorithm, with various improvements

in the radiative transfer model, NN training methodologies, and retrieval schemes with cascading NN models.
2.1 Simultaneous aerosol and ocean retrieval algorithm

110 HARP2 measures Stokes parameters L;, ()¢, and U; (where subscript t represent total measurement), at 60 viewing angles

at the 660 nm band, and at 10 viewing angles at the 440, 550, and 870 nm bands (Puthukkudy et al., 2020, McBride et al
2023). The total spectral measured reflectance (p;(\)) and DeEP(degree of linear polarization (DoLP or P;(\)) are used in

the retrieval inversion which are defined as

2L,
= , (1)
P HoFo
/()2 U2
15 P, = VO U L, 2)
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where Fj is the extraterrestrial solar irradiance, 1 is the cosine of the solar zenith angle, r is the Sun-Earth distance correction
factor in astronomical units. Note that circular polarization (Stokes parameter V;) is not measured by HARP instruments and
is often, but not always, negligible for atmospheric studies (Kawata, 1978; Gassé and Knobelspiesse, 2022).

To derive aerosol and ocean information, the retrieval algorithm minimizes the cost function x? which quantifies the differ-
ence between the measurement and the forward model simulation (Rodgers, 2000):

1 (1) — pl ()2 [P(3) — Pf (x;0))?
Z([p() Al | 1) P >]>,

N = o2(i) o2 (i

X (%) 3)
where p; and P; are meme corresponding quantities computed from the reural-networkforward
modelwith-the-forward model. The state vector x contains all retrieval parameters. The subscript ¢ stands for the index of the
measurements at different viewing angles and wavelengths; and N is the total number of measurements used in the retrieval.
The total uncertainties of the reflectance and DoLP used in the algorithm are denoted o, and op; both have contributions
from measurement uncertainties &0, and forward model uncertainties o . In this work, the estimated expected measure-
ment uncertainty for HARP2 of 3% on reflectance and 0.005 on DoLP are used (McBride et al., 2023). Note that the above
assumes independence of spectral or angular correlation between uncertainties; for a more complete treatment, Eq. 3 should
be represented in a matrix form using the error covariance matrix (Rodgers, 2000; Gao et al., 2023). Statistical methods such
as autocorrelation analysis have been used to estimate angular correlation strength from AirHARP field measurement and may
be applied to future HARP2 data (Gao et al., 2023) but at present the correlation strength is not well-known so the above
form (equivalent to a diagonal covariance matrix) is used. The retrieval is an iterative procedure to minimize the-cestfunction
using the subspace trust-region interior reflective optimization approach (Branch et al., 1999) by varying the state parameters
x. Fhe-In this work, the forward models are based on the NN discussed in the next sections and the Jacobian matrices, used to
determine the direction to update the state parameter, are computed based on automatic differentiation (Baydin et al., 2018) as
formulated for the NN forward model (Gao et al., 2021b) and implemented within the deep learning framework (Osawa et al.,
2019).

2.2 Coupled atmosphere and ocean radiative transfer model

The training data for the NN forward model is generated with a PACE-tailored vector radiative transfer model using the suc-
cessive orders of scattering method (Zhai et al., 2022) with numerical accuracy much better than that of the HARP instruments
(Gao et al., 2021a). An improved pseudo spherical shell (IPSS) correction is considered to improve the fidelity for larger solar
and viewing zenith angles (Zhai and Hu, 2022). Reflectance and DoLP are simulated at the PACE satellite altitude (676 km
above Earth’s surface); viewing and solar geometries are defined at the surface as shown in Fig. 1 based on the formulas derived

in Zhai and Hu (2022).
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Figure 1. Spherical shell frame of the earth system. The radiative transfer simulations are conducted according to the geometry defined at
the satellite with solar and viewing zenith angle 6 and ., , which are converted to the geometry at the Earth’s surface with solar and viewing

zenith angle defined as 0o and 6,,. Solar and viewing azimuthal angles also depend on the reference frame but are not shown in the figure.

The forward radiative transfer simulations are conducted assuming a coupled atmosphere and ocean system. The atmospheric
molecule distributions follow the US standard atmospheric constituent profile (Anderson et al., 1986). Absorption by oxygen,
water vapor, methane, and carbon dioxide, ozone and nitrogen dioxide are considered through line-by-line calculations and
integrated based on the double-k method (Duan et al., 2005; Zhai et al., 2022). The ozone density and surface pressure are
assumed in the range as defined in Table 1. Near the earth surface, an aerosol layer is considered with a vertical number density
distribution assumed as Gaussian function Wu-et-ak+2645)(Wu et al., 2015):

N (2 —2)?
oV2omr exp(= 202

where IV, is the total aerosol column number density. z. is defined as the aerosol layer height (ALH) in the range of 0.1 to 6 km

N(z) = ) @)

above surface. o is the standard deviation of the gaussian distribution which is fixed at 2 km. The aerosol size is represented by
the volume density of a combination of five lognormally-distributed “submodes” similar to previous studies using the MAPOL
(Gao et al., 2018) and FastMAPOL algorithm (Gao et al., 2021a). The mean radius r; and standard deviation ¢; are fixed
with values of 0.1, 0.1732, 0.3, 1.0, 2.9 ##=pum, and 0.35, 0.35, 0.35, 0.5, 0.5, respectively following the work by Dubovik
et al. (2011); Xu et al. (2016) and Fu et al. (2020). The first three submodes are used to represent the fine mode aerosol, while
the last two submodes are the coarse mode. Fine and coarse modes are assumed to have an independent complex refractive
index with no spectral variation within the HARP spectral range. Therefore, the aerosol model includes 10 parameters: five
volume densities (one for each submode); four independent parameters for the fine and coarse real and imaginary components
of refractive indices; and one for ALH. Polarimetric single scattering properties are modeled from these aerosol properties

using the Lorenz-Mie code on spherical particles developed by Mishchenko et al. (2002). Note that particle non-sphericity is
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important for realistic simulation of mineral dust aerosols (Dubovik et al., 2006) and will be incorporated in the next version
of NN forward model following the same approach presented in this study.

The optical model for the underlying water surface is summarized in Gao et al. (2019); briefly, it uses an open-ocean
model including contributions from seawater, colored dissolved organic matter, and phytoplankton, the latter two of which
are parameterized as a function of ehlorophytl-aconeentration(Chla:mg/m2chlorophyll-a concentration (Chl-a; mg m~3 ).
The sea water polarized scattering properties are derived from the measured normalized Mueller matrix (Voss and Fry, 1984;
Kokhanovsky, 2003). The ocean surface roughness is modeled by the isotropic Cox-Munk model with a scalar wind speed (Cox
and Munk, 1954). Whitecaps are considered following the parameterization by wind speed (Koepke, 1984). While not done
here, for future application to coastal waters where the open-ocean model is less valid, optimized NN models with sophisticated
bio-optical models with seven (Gao et al., 2018) to three (Hannadige et al., 2023) parameters can be developed.

In summary, a total of 17 parameters are used as input of the NN forward model as indicated in Table 1. These include
the 10 aerosol parameters, as well as wind speed, ozone column density, surface pressure and €htaChl-a, and three geometric

parameters: the solar zenith angle, viewing zenith angle, and relative azimuth angle.
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Table 1. Parameters used to represent the coupled atmosphere and ocean system in the radiative transfer simulation and NN Training. 6o
and 0, are the solar and viewing zenith angles. ¢, is the relative azimuth angle. V; denotes the five volume densities. AOD range from 0.01
to 0.5 is considered and used to constrain V. m, and m, are the real and imaginary parts of the refractive index. Additional parameters
include ozone column density (no3), aerosol layer height (z.), surface pressure (Ps), ocean surface wind speed (ws ), and ChlerophyHa
chlorophyll-a concentration (EktaChl-a). The minimum (min) and maximum (max) values determine the parameter ranges used to generate

NN training data, which are also the constraints in the retrieval algorithm.

Parameters  Unit Min Max
0o Degree 0 85
0, Degree 0 85
o Degree 0 180
no3 Dobson 150 450
My f (None) 1.3 1.7
My e (None) 1.3 1.7
my,f (None) 0 0.03
Mic (None) 0 0.03
Vi w2 pumium > 0 0.14
Va pm e —pum®um > 0 0.11
Vs pn e —pum®um 2 0 0.07
Vi prnpr——pum®um > 0 0.2
Vs prnpr——pum®um > 0 0.62
Ze kmkm 0.1 6.0
P mb 950 1050
ws mifss_ ' 05 15
EhtaChl-a  mgimimgm ® 0.01 10

2.3 NN training and performance analysis

The NN forward models (one set for reflectance and one set for BOEPDoLP) are trained following the procedures as sum-
marized in Gao et al. (2021a) based on the radiative transfer simulations discussed in the previous section according to the
parameter range as summarized in Table 1. This extends the previous work by including ALH and surface pressure as addi-
tional parameters, and the range of viewing geometries is also larger than the one used in the airborne measurement by taking
advantage of the newly developed IPSS correction (Zhai and Hu, 2022) and the reference frame defined at the Earth’s surface

(Fig. 1). A total of 10,000 cases of radiative transfer simulations with-randomty-generated-were generated with random values
of the input parameters (this set is augmented as described below). Nete-that-a-A uniform distribution of aerosol optical depth

(AOD) less—than-in the range between 0.01 and 0.5 is sampled;—which-is-alseused-te—compute-randomly sampled and used
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to specify volume densities following the sample strategy discussed in Gae-et-al+26049)Gao et al. (2021a). In this study, we

introduce two additional steps in the NN training to boost the NN performance:

. Measurement uncertainty-aware training

The NN forward models have been shown to achieve much higher accuracy than the HARP measurements using a
LeakyReLU activation function and three hidden layers (Gao et al., 2021a). However, at low wind speed, the sunglint
signal, i.e., the sunlight reflects from the ocean surface around the specular reflection direction, can be strongly peaked,
and this can dominate the mean square error (MSE) cost function used by Gao et al. (2021a) for optimization at the
expense of precision in other areas. To avoid this issue, the previous study removed simulations close to the direction
of specular reflection from the training dataset, but the lack of data in sunglint also affected retrieval results due-to
the-resulting reduced-number-of-angles-on wind speed and aerosol properties (Gao et al., 2021b). To enable sufficient
accuracy to predict the reflection inside and outside of sunglint, we introduce the training cost function that, analogously

to the retrieval cost function, normalizes the fitting residuals by the measurement uncertainty:
2 _ LZ [pe (1) = "N (x30)]? )
XNnp =N o2(i)
i P

7)) — NNX.,L' 2
X?VN,P _ ;]Z([Pt() Pt. ( ’)}> (6)

o (i)

where-where p; and P, indicate training data, and p¥ and P indicate the NN predictions. N in the denominator
is the batch size in the training (taken as 1024 here). The same total uncertainty of g, = 0.03p; and gp = 0.005 as

in Eq. 3 are used here. Therefore, y2 . Jepresents the percentage error of the NN predictions, which can effectivel

incorporate the sunglint signals without directly impacting by its large magnitude. Since a constant value of o p is used
3 a.p 1S equivalent to a scaled MSE cost function. Polarization signal is better constraint within 0 and 1 for all viewin

eometries and therefore its training performance less affected by the sunglint. This new cost function is a convenient
and meaningful extension to the conventional MSE cost function applied on a set of normalized training data especially

for reflectance (e.g. Aggarwal (2018); Fan et al. (2019); Gao et al. (2021a); Aryal et al. (2022); Stamnes et al. (2023)). We
found the NN training hyperparameters (such as learning rate, batch size, etc) reported by (Gae-et-al;2021a)-generally
Gao et al. (2021a) still work well for the new cost function. The resulting training process is aware of the measurement

uncertainty and therefore optimizes in a way more relevant to the retrieval’s operation.

. Training data augmentation

Generating training data from forward radiative transfer simulations is usually computationally expensive, which limits
the NN training performance. However, one RT simulation can be used to generate an arbitrary number of viewing
angles and increase the effective training data size, which may improve NN accuracy. This concept is equivalent to data
augmentation in machine learning (Shorten and Khoshgoftaar, 2019). Gao et al. (2021a) explored it by sampling 100 sets

of random viewing angles from every RT simulation. In this study, we provide a more systematic analysis of such data
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augmentation by sampling random sets with 100, 400 and 1000 angles, corresponding to total data sizes of 1 million, 4

million, 10 million points respectively from the 10,000 RT simulations.

The NNs’ training performance is summarized in Fig, 2 for the feed-forward NN architecture with 17 inputs and 4 outputs
and various hidden layer sizes (from two layers each with 64 nodes and 128 nodes, to three layers each with 128, 256, or 512
nodes). To simplify the notation, we represent the hidden layer structure in a polynomial form, e.g. 128% in Fig, 2 represents
three hidden layers each with 128 nodes. The-costfunctions-are-as-in-Egs5,6-We use 70% of the simulated data for training
(to minimize the training cost function) and the remaining 30% for validation (to monitor the training process). Fig. 2 shows
that, with increasing NN hidden layer number and size, both-training-cost-functions-the cost functions for both training and
validation data decrease, while validation cost eventually becomes larger than training cost. That suggests overfitting for the
case of 1 million samples and NN size 1283. Introducing more training data from 4 to 10 million and NN size until 5123 further
reduces the cost functions to convergence. More training data are generally able to reduce the difference between the training
and validation cost function as compared in Fig. 2. Using 10 million total data, the reflectance NN performance stays stable
with a small training cost function value of 0.01, which suggests the typical fitting residual between the NN and the simulation
is about v/0.01 = 0.1 times of the measurement uncertainty, i.e., 0.1x3% = 0.3%.

For DoLP, the NN training is more difficult because the DoLP uncertainty for HARP2 is often much smaller (0.005) than the
(3%) reflectance uncertainty. Fig. 2 shows that generally a larger NN size is needed for POEP-DoLP to achieve a similar cost
function value to reflectance. Using 10 million data and 5123 NN size, the cost function is about 0.04 which suggests the NN
accuracy is 1/0.04 = 0.2 times of the measurement uncertainty, with a value of 0.2 x 0.005 = 0.001. Similar accuracy for NN
reflectance requires a size of 256°. A NN cost function value of 1 would indicate NN accuracy comparable to the measurement
uncertainty, which would be achieved with a NN size of 642-G4? for reflectance and 1282-128? for DoLP.

Therefore, for the best performance of applying NN in joint retrieval algorithms, we implemented a two-level cascade
scheme in FastMAPOL in which two rounds of retrievals are processed. In the first round, the NN size of 642 for reflectance
and NN size 1282 for DoLP are used to efficiently find a rough solution. Then in the second (final) round the NN size 2562 for
reflectance and 5123 for DoLP are used to further fine tune the state vector. Note that each retrieval include multiple iterations
with an order of 10, and involves the use of automatic differentiation to compute Jacobian matrix analytically (Gao et al.,

2021b). Cascading more levels could further improve the performance, but we found two cascaded levels are sufficient for this

study. Fe-By comparing the retrieval results with one and two cascading levels, we found the retrieval uncertainties are similar

to each given the same high accuracy NN are used at the last level of retrievals. Therefore the cascading algorithm will increase
retrieval speed without impact retrieval accuracy. To fully test the cascade system as discussed in the next section, we used the

best accuracy NN with the largest size of 5123 to generate a set of synthetic data simulations and performed retrieval with the
cascade retrieval schemein-Seetion3-.

To further evaluate the NN uncertainty, we generated an additional independent 1000 sets of radiative transfer simulations
with realistic HARP geometries as formulated in Gao et al. (2021b) and calculate MAE and RMSE comparing these simulations
to the NN predictions. Nete-We found that MAE is more robust to the impacts of outliers, similar to the discussion on the

retrieval uncertainties (Gao et al., 2022). Based on this analysis, discussed in Appendix 1, NN uncertainties are estimated to

10
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be 0.5% for NN size of 5123, and 0.002 for POEP-DoLP using 5123, both similar to but slightly larger than estimation from

the training cost function. This further confirms that the new training cost function, considering measurement uncertainty,

provides an intuitive way to measure the NN optimization. Note that to ensure the high accuracy of the NN models, the RT

simulations with a numerical accuracy much higher than the measurement and NN models are used to generate the training data

as discussed in Gao et al. (2021a). For the application to real field measurements, the uncertainties including the NN models

RT simulations and the measurement uncertainties need to be considered.
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Figure 2. Training cost functions for reflectance (top) and BPOEP-DoLP (bottom) as a function of NN size. The background color indicates
the number of training data used: 1 million (blue), 4 million (green), or 10 million (red). The horizontal axis indicates the size of hidden

layers, as described in the text, for example 64 indicates two hidden layers with 64 nodes at each layer. All the NN models shown here have

17 inputs and 4 outputs.

3 Retrieval analysis on synthetic global over-ocean HARP2 measurements

To evaluate the retrieval performance in terms of both speed and uncertainty in a realistic and representative way, we generated
a day of synthetic over-ocean HARP2 measurement along PACE satellite orbits. Random errors based on estimated calibrated
uncertainties are added to both the simulated reflectance and DoLP measurements. The retrieval uncertainties are evaluated

through error propagation and then validated by comparing the truth and retrieval results based on the Monte Carlo approach

11
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(Gao et al., 2022). The viewing and solar geometries are based on realistic satellite orbits. This analysis is useful to understand

the retrieval capability of HARP2 data before PACE’s launch.
3.1 Synthetic HARP2 L1C radiative transfer simulation

The Level 1C file format is used to represent multi-angle measurements where different viewing directions are co-registered
on the common spatial location to produce multi-angle measurement for each pixel (Lang et al., 2019). For the PACE mission,
a set of common spatial grids are defined within the L1C format for its-all three instruments: OCI, SPEXone and HARP2. The
grids are based on the swath-based Spacecraft Oblique Cylindrical Equal Area (SOCEA) projection (Snyder, 1987) and doc-
umented in the PACE L1C document (Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, 2020). The HARP2 data
processing will be performed by the PACE Science Data Segment (SDS) following the launch and instrument commissioning.
The prelaunch testing of the data processing has been organized around a Day-in-the-Life (DITL) that has been chosen to be
March 21, 2622:-2022 (spring equinox), to ensure good day light coverage over the majority of world’s ocean. The simulated
PACE orbit for the DITL has been used to generate the sensor and solar geometry for the instrument data simulations to support
the data processing tests by the SDS. The HARP2 simulations and processing results described in the following sections are
based on the DITL.

The PACE LIC files are segmented in 5 min granules for daytime portions of the orbit, yielding a total of 165 granules in 15
orbits as shown in Fig. 3. The equatorial crossing time is at 1:00 pm with the satellite ascending northward. The nadir swath
width is 1633 km which grows to a maximum swath width of 2380 km around 46-6-40° along track viewing zenith angle. The
bin size is 5.2 km. The range of viewing zenith angle can vary from approximately —60° to 60°, with data collected across a
time span of 6 min during which the solar zenith angle can vary up to 1.5°. Exact per-view solar geometries were used when
generating the synthetic HARP2 data, which is important to reduce impacts from the measurement geometries due to satellite

motions (Hioki et al., 2021).
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Figure 3. Global over-ocean simulation of HARP2 measurements at 550 nm for both reflectance (left) and DoLP (right) with a total of 15
orbits on the day of March 21, 2022. A total of 90 viewing angles at four HARP2 bands are generated with three viewing angles in the

along-track direction shown in the plots.

In the simulation, the surface pressure, ozone column density, surface wind speed, and speciated aerosol mass concentration
vertical profiles are sampled from the NASA GMAO MERRA? data (Gelaro et al., 2017; Randles et al., 2017; Buchard et al.,
2017) along the satellite orbit to best represent the natural global scale variability in the atmospheric state. Total column
effective aerosol microphysical properties (column size and refractive index) were derived from the MERRA?2 simulations of
speciated aerosol mass concentration vertical profile by taking a volume weighted average over the size bins and species in the
MERRAZ2? dataset. The aerosol size bins used in MERRA?2 are different from the aerosol sub-modes used in the NN forward
model. We have adjusted the volume density and refractive indices of the five aerosol sub-modes (see Table 1) to best match the
aerosol representation in MERRA2. Hygroscopic growth of aerosol size is considered based on the relative humidity profile
in the MERRA? data (Castellanos et al., 2019). The total AOD in MERRA?2 data is used to derive the total volume density
and ensure that the same AOD will be produced based on the column effective aerosol size, refractive index, and volume

density. The monthly average €hta-Chl-a derived from MODIS ocean color products are used as input to the radiative transfer
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simulation. Note that there are some small data gaps, most visible in the tropical Atlantic Ocean, due to the gaps in this €hla
Chl-a product from heavy aerosol, cloud, or other data quality flags. However, as they are small the retrieval performance
analysis should not be significantly impacted. A complete set of ancillary data files are generated and can be accessible from
PACE data webpage as shown in the Data Availability section.

The NN forward model with the maximum accuracy (512%) is used to generate the simulated L1C data for a total of 10
million pixels each with 90 total viewing angles; examples for the HARP2 550 nm band with along-track viewing angles of
—43.6°, 0.8° and 39.5° are shown in Fig, 3. The newly improved NN forward model can accurately represent the sunglint
region clearly recognizable from large reflectance magnitude at large viewing angles showing at northern (a) and southern
hemisphere (c), as well as near equator (b) when looking near the nadir with a smaller reflectance magnitude. At larger viewing
angles, prominent polarized signals are also shown in both the northern (d) and southern hemisphere (f). DoLP generally
increases with the viewing angle, until approaching the maximum value of 1 at the Brewster angle around 53° at the air-
water interface. The backscattering direction usually shows a minimum polarization magnitude, such as near the equator when
looking near nadir (Fig. 3e).

Two cascaded NN forward models for reflectance and DoLP respectively are used to conduct retrievals in the FastMAPOL
algorithm as discussed in Sect. 2. The histogram of the cost function values for the first and final retrievals are shown in Fig. 4.
The first retrieval, whose NNs have comparable uncertainty to the measurement uncertainty, produces a most probable retrieval
cost function around 2.0. After using the more accurate NN with a much smaller uncertainty, the final retrieval cost functions
are mostly close to 1.0. The average total time taken for a retrieval with this two-layer cascade is 6-+4-0.1 seconds as shown in
Fig. 4 (b), compared to 0.2 seconds for a retrieval using only the higher-accuracy NN (not shown), corresponding to roughly a

50% speedup.
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Figure 4. (a) Histogram of the cost function values (XQ) for the first retrieval using smaller neural network (blue) and the final retrieval using

the larger neural network (red) as summarized in See-Sect. 2. A histogram of processing time for the two-stage process is shown in (b).

14



315

320

325

330

3.2 Retrieval results

Initially, we conducted a retrieval analysis on a subset of data by including all the parameters as shown in Table 1 except the
three geometric variables. The retrieval uncertainties for the ozone density and surface pressure are large with a MAE of 53
DU and 24 mb and RMSE value of 69 DU and 32 mb, respectively. As a result, instead of retrieving these two parameters, we
choose to use the value directly from MERRA?2 and retrieve only aerosol and ocean properties (which also results in slightly
increased accuracy) when applying FastMAPOL to the L1C simulated data. As well as the directly retrieved quantities (Table
1), the aerosol optical depth (AOD) and single scattering albedo (SSA) for both the fine and coarse modes, were computed
from retrieved aerosol volume densities and refractive indices using corresponding NN trained similarly to the reflectance and
DoLP but with a much smaller size of two hidden layer each with 64 nodes (Gao et al., 2021a). Total AOD is obtained as the
summation of the fine and coarse mode AODs. Effective radius and variance are also calculated from the components’ sizes
and retrieved volumes.

Fig. 5 shows the global map of the retrieved AOD and ALH as well as the corresponding truth values and the retrieval
uncertainties based on error propagation. The retrieval value and truth values are very similar to each other as shown in Fig. 5
(a) and (b) for AOD. Larger uncertainties are mostly associated with the edge of the orbit where fewer than five viewing angles
per band (or total 20-30 angles) are available (see also analysis in Hasekamp and Landgraf (2007); Wu et al. (2015); Xu et al.
(2017); Gao et al. (2021b)). For real PACE data, the adaptive data screening method will be used to automatically remove the
angles impacted by cirrus cloud and anomalies, and therefore, the uncertainties will depend on the number of available angles
associated with the location and size of those clouds (Gao et al., 2021b). Fig. Se and 5d show that the aerosol layer height
(ALH) error has a stronger dependency on the AOD with performance generally better (and uncertainties smaller) where AOD

is larger.
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Figure 5. The retrieval results, truth, and uncertainties for AOD at 550 nm (a, b, ¢) and ALH (d, e, f).

Data density showing the correlation and difference between retrieval and truth are shown for AOD, ALH, fine mode volume
fraction (fvf), wind speed, and €hta-in-FigChl-a in Fig. 6. The retrievals perform well with the RMSE for AOD, ALH, fvf, wind
speed and log,,(€htaChl-a) of 0.011, 0.9 km, 0.06, 1.4 #s—-m s~ and 0.19, respectively. Similar to Fig. 6, Fig. 7 shows the
comparison between the retrieval results with truth for the fine mode AOD at 550nm, real part refractive index, single scattering
albedo, effective radius and variance. The difference between retrieval and truth seems to strongly depend on the fine mode
aerosol loading as shown in the second row of Fig, 7. However, the retrieval becomes more challenging for the coarse mode as

shown in Fig. 8, due to the much lower coarse AOD in general.
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Figure 6. The comparisons of the retrieved and truth values for total AOD (550 nm), ALH, fine mode volume fraction (fvf) wind speed,
and €htaChl-a. The top row shows heat maps (including MAE and RMSE) while the bottom row shows the error of the corresponding

upper panel parameters as a function of the total AOD at 550 nm. The color indicate the data density estimated by a kernel density method

(Silverman, 1986).

(@) aopgssonm)  (b) 0] (© SSA() (d) ross () () (eg 5 vt

041 1501 ’ 0251 e 10
= 031 1.45 09
_; P 0.20 1 0.8
£ 0.2 ; 1401 e - 3
F ) “ MAE=0.007 : MAE=0.034 081 MAE=0.065: 51

011 RMSE=0.011 . - RMSE=0.032 - RMSE=0.054 : 06

7 y=1.011x+0.005 1354 ¥y=0279x40.980 - y=0475x+0:419 :
0.0 . e 010 e
0.0 02 04 135 140 145 150 038 0.9 10 010 015 020 025 04
Truth Truth Truth Truth
=
g 0.25 e
ET: 0. 0.1 - 02
=0 0.0 0.00 001
H
‘E 0. —0.14 011
3 . . ; . . 0251, . . 0.1, . . 02517 . .
0.0 02 04 0.0 02 04 0.0 02 04 0.0 02 04 0.0 02 0.4
AOD(£;550nm) AOD(£,550nm) AOD(£;550nm) AOD(£,550nm) AOD(£,550nm)

Figure 7. As Fig, 6, except for fine mode AOD, refractive index (m..), SSA, effective radius (rss) and variance(veyy) and bottom row as a

function of fine mode AOD.
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Figure 8. As Fig. 7, except for coarse mode properties instead of fine mode.

3.2.1 Uncertainty analysis

To understand the quality of the retrieval products, “theoretical retrieval uncertainties” are evaluated from error propagation
method which maps the measurement uncertainties to the retrieval domain based on the Jacobian ef-thecenverged-retrieval
cost-funetion-with converged retrieval parameters (Rodgers, 2000) and accelerated using NN automatic differentiation (Gao
et al., 2021b). This uncertainty can be evaluated at every pixel and therefore provide a flexible metric to evaluate retrieval
quality. Examples of AOD and ALH uncertainties are shown in Fig. 6 (c) and (f). However, the real retrieval quality also
depends on how well the retrieval converges, which can be eventually evaluated based on the difference between the retrieval
results and the truth as shown in Figs 6-8. To verify that the theoretical retrieval uncertainty represents actual retrieval results,
we employ the Monte Carlo Error propagation (MCEP) method, which generates random samples of errors based on the
theoretical uncertainties. The-Then, the histogram of the random errors for a large volume of dataset can be compared with the
distribution of the real error (difference between retrieval and truth) so that we can assess the difference and similarity of error
distribution derived from the two methods (Gao et al., 2022).

We further group all the pixels according to their AOD values in steps of 0.01-Based-, based on the retrieval results shown
in Figs 6-8. Mean absolute error (MAE) are used to evaluate both the average theoretical and real uncertainties with results

summarized in Fig9:

—. 9. Fig. 9(al) shows that both the theoretical
(red lines) and the true (blue lines) absolute uncertainties of AOD increase from 0.002-0.004 to 0.015 as AOD increases
from 0.01 to 0.45, which also corresponds to the reduction of relative uncertainty from 20%-40% to 5%. The results agree

with the analysis on AitHARP-and-synthetic HARP2 measurement with a uniform distribution of AOD (Gae-et-al52621a;b)-
Gao et al., 2021b, 2022). Points with AOD>0.45 are excluded because there are a small number of pixels in this range so that
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a few outliers could affect the statistics significantly. The high quality AOD may be useful for climate studies which usually
require a goal uncertainty less than 0.02 (Mishchenko et al., 2004; Kahn, 2015; GCO, 2022).

Uncertainties of ALH decrease from 1 km to 0.5 km within the range of AOD for both theoretical and real uncertainty.
The retrieval uncertainty is larger than the results from the RSP instrument using a spectral range of 410-1590 nm, where the
MAE between the true the retrieval values is less than 250 m (Wu-et-al;-2046):-(Wu et al., 2016), probably as HARP2’s shortest
wavelength is 440 nm and it has a larger polarimetric uncertainty of 0.005 comparing with RSP (0.002). However, the ALH
can be still useful for radiative forcing studies (e.g., Jia et al. (2022)) and air quality investigations (e.g., Wang and Christopher
(2003)).

Due the wide angular range and the inclusion of sunglint signals in the NN forward model, the real wind speed accuracy are
found much higher (-1 m /ss ') comparing to previous studies of 2-3 m #s-althoush-the smallertheoretical uncertaintiess |
improvement. The €hla-Chl-a uncertainties are evaluated as the MAE of the log; ,(€htaChl-a) uncertainty as recommended by
Seegers et al (2018):

N
1
MAE(log) = 10Y whereY = N Z_; [logqo(R;) —logqo(T3)| @)

where R; and 7T; denote the retrieval and truth values. This “multiplicative error” is a relative, dimensionless metric and takes
values of 1 or more, where 1 indicates no error, 1.5 indicates a 50% error, and so on. Fig. 9 el shows that €hla-Chl-a can be
retrieved accurately with a ratio mostly less than 2.0, which suggests potential of the MAP data for the evaluation of ocean
properties. However, this would become challenging when the ocean water optical properties are more complex (Gao et al.,
2019). Larger differences between the theoretical and real uncertainties are found mostly at AOD >0.2, as the ocean signal

becomes increasingly obscured by the aerosols.
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Figure 9. Comparison of theoretical (red) and real retrieval uncertainties (blue) as a function of AOD for AOD, SSA, real part of refractive
index (m.), effective radius (reys) and variance (veyy), wind speed, and €htaChl-a. AOD, fine mode AOD, and coarse mode AOD values
are used at the x-axis from 0.01 to 0.45 with a step of 0.01.

For the fine mode, theoretical and real uncertainties are compared in Fig. 9 (a2-e2). Fine mode AOD seems to perform
similarly to total AOD. The theoretical uncertainties agree with the real uncertainties when fine mode AOD is larger than 0.1
but underestimate real uncertainties when AOD is lower. This may indicate smaller sensitivity and larger instability due to the
impacts of local minima in cost function. However, the theoretical uncertainty seems to capture the real uncertainty well for
effective radius and variance across the range of fine mode AOD.

For the coarse mode, as the range of the coarse mode imaginary refractive index in MERRA?2 is limited (mostly < 0.001,
probably due to the dominance of sea salt or other coarse soluble aerosols), we limited the retrieval of this parameter to a
similar range. The large spread of retrieved SSA in Fig. 8 (c) suggests the lack of sensitivity on the retrieval of coarse mode
imaginary refractive index. The uncertainties are captured well by the theoretical uncertainties by Fig. 9(c3). After launch,
sensitivity studies will be required to better prescribe the coarse mode imaginary refractive index. From the current synthetic
data analysis, the real uncertainties are much larger than the theoretical uncertainties for coarse mode properties. Low sensitivity
is expected due to the low aerosol loading and lack of longer-wavelength shortwave infrared (SWIR) bands and therefore the
challenges to converge to the global minimum of the cost function. The real uncertainties on coarse AOD are much larger
than the fine mode uncertainties with a value up to 0.03, although the theoretical uncertainty for coarse mode AOD is smaller

(0.002-0.005) than the fine mode AOD uncertainty (0.005-0.015), possibly due to the stronger constraint on the coarse mode
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absorption. For PACE data, a future synergy with the SWIR bands from OCI may be used to improve the coarse mode retrieval
quality (Hasekamp et al 2019). However, the impact of the coarse mode aerosols in the application of atmospheric correction

400 may be less severe due to its small overall value and weak spectral variation.

4 Discussion and conclusions

405 modelstratnedforthe-illustrated the advancements made to the FastMAPOI retrieval algorithm, including various improvements
in the radiative transfer model, NN training methodology, NN architecture, and retrieval scheme:

— Radiative transfer model: We improved the radiative transfer model which are used to generate the training data for space-

borne HARP2-measurements—The-computational-challengesin-processing MAP-data-are-further redueced-by-applying—

410

~measurement by
including spherical shell correction, realistic solar and viewing geometries, additional input parameters such as surface
ressure and aerosol layer height.

415

— Training methodology: The NN models are trained by incorporating the measurement uncertainty model in the trainin
cost function which better represent sunglint signals and help improve the NN relevance to the retrieval’s operation.

— NN architecture: Flexible NN models with various number of hidden layers and number of nodes are investigated, which
achieve different speeds and accuracies.

420 — Retrieval scheme: Two levels of NN models with increasing sizes and accuracies are used in a cascading retrieval scheme
to achieve high retrieval efficiency and performance.

With the improved NN models and retrieval schemes, we also systematically investigate the retrievability of aerosol and

ocean parameters and their uncertainty. The retrieval uncertainties are analyzed based on the FastMAPOL retrievals on the
synthetic datasets, including the aerosol optical properties such as AOD and SSA, and microphysical properties including

425 aerosol size, refractive index, and height with more realistic statistics of the parameter values and viewing and solar geometries.
For example, the overall uncertainties for AOD and wind speed are 0.01 and 1.4 ms—!. The retrieval uncertainties at the pixel
level are shown to depend on the number of available viewing angles and the aerosol loading. Fine mode aerosol properties,

such as aerosol refractive index, generally show smaller retrieval uncertainties, and better agreement between error propagation
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uncertainties and real uncertainties from simulated retrievals. Coarse mode aerosol retrieval uncertainties are larger and not
fully captured by error propagations. Furthermere;we-We also demonstrated, HARP2 measurements eontain-sensitivity-can be

used to derive aerosol layer height with an uncertainty of 0.5 to Hem-1.0 km depending on the aerosol loading.

which had expedited the processing of the AirHARP data from one hour per pixel using on-the-fly radiative transfer forward
model simulations to around 0.3 second per pixel (Gao et al., 2021a, b). In this study, the processing speed of the HARP2
synthetic data is further improved to about 0.2 second per pixel by optimizing the numerical code. It is further reduced to 0.1 s
using a single CPU core by applying a cascaded approach in FastMAPOL, With the newest development the speed to process
computing and running all granules parallelly. This illustrates that global-scale MAP data processing is feasible.
Furthermore, additional ocean properties can be derived from the MAP measurements and retrieval results. For example, NN
models based on the retrieved aerosol and ocean parameters have been used to obtain water-leaving signals through the atmo-
spheric and BRDF corrections on altHHARP-angles;bothrepresented-by NINAGae-et-al262+a)-Thereal or synthetic AirHARP
and HARP2 measurements (Gao et al., 2021a, 2022). Similarly, the retrieved aerosol properties may-can be used to assist the

hyperspectral atmospheric correction en

ar; 5 d

water-leaving signals-The results-will be-provided-in-afuture study-as demonstrated using SPEX data as a PACE OCI proxy.
(Gao et al., 2019; Hannadige et al., 2021). NN methods can be also used to predict the polarimetric reflectance associated with
complex water optical properties (Mukherjee et al., 2020), instantaneous photosynthetically available radiation models within
ocean bodies (Aryal et al., 2022), and derive in-water optical properties from top of atmosphere MAP measurements for PACE
(Agagliate et al,, 2023).

Based-Therefore, based on the improved NN forward models, this study provided an efficient space-borne MAP data process-

ing algorithm, and discussed the data product and their associated uncertainties analyzed from a global scale synthetic HARP2

dataset. For the future application to the real satellite data after PACE launch, it would be important to ensure the forward
model is appropriate for the measurements by conducting input data quality control and data screening (Gao et al., 2021b

. Further evaluations on the measurement uncertainty model can be conducted by comparing with fitting residual statistics
Gao et al., 2023). The algorithm and uncertainty analysis provide a viable way to process global HARP2 data, and improve

our capability to observe, understand, and protect our environment.

Appendix A: Evaluation of NN forward model uncertainty

As discussed in See-Sect. 2, to evaluate the NN uncertainty interpedently, we use an additional 1000 set of simulation to with

realistic HARP geometries formulated by Gao et al. (2021b). To further evaluate the accuracy of the NN, both mean average
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error (MAE) and root mean square error (RMSE) are computed for both reflectance and DoLP as shown in Fig. Al and Table

Al. As discussed in Gao et al. (2022), MAE is more robust than RMSE to outliers. We estimate the NN uncertainties using

MAE as oy = 7/2 X M AE, which is equivalent by assuming the error following a Gaussian distribution (Gao et al., 2022).

Note that the RMSE is slightly larger than o . The estimated errors are similar to the results obtained in Gao et al. (2021a),

where 20k training data each sampled with 100 angles are used. Here, we decreased the training data set to 10k, but sampled

each case at 1000 angles. Note that in this study, we have included the angles with sunglint, which includes many more cases

in the uncertainty evaluations. To further improve the accuracy, we need increase both the NN size and training data volume. a

balance of training data volume, NN speed (smaller size), NN accuracy (larger size, larger training data volume) are discussed

in See-Sect. 2. NN accuracy are estimated with a value of 0.5% for NN size of 5123, and a value of 0.002 for POEP-DoLP

using 5123, both are slightly larger than estimation from the training cost function but in a similar scale as discussed in See

Sect. 2. The estimated NN uncertainties can be included in the total uncertainty model in the retrieval cost function as discussed

by Gao et al. (2021a).
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Figure A1l. Comparison between the radiative transfer simulation and NN prediction, left panel: reflectance (p); right panel: DoLP (P). The

scatter plots are shown in the top panel, the absolute different in the middle panel, and the percentage difference in the bottom panel. For

each plot, the data points for the 550, 660 and 870nm bands are shifted upward by constant offsets consecutively as indicated by the solid

cyan lines.
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Table A1. Comparisons of the uncertainties for reflectance (p) and DoLP (P) for both measurement and forward model including calibration
uncertainty (o.q1), the radiative transfer simulation uncertainty (o r7), and the NN uncertainty (o n). The percentage values listed in the

table indicate the percentage uncertainties.)

Quantities Uncertainties 440nm 550nm 670nm 870nm
Pt Ocal 3% 3% 3% 3%
ORT 0.00012 (0.08%)  0.00005 (0.07%) 0.00010 (0.2%) 0.00015 (0.4%)
RMSEn N 0.0012(0.52%) 0.0011(1.22%) 0.0014(1.79%)  0.0014(0.90%)
MAEnN N~ 0.0005(0.28%) 0.0004(0.38%) 0.0004(0.47%)  0.0004(0.58%)
ONN 0.0007(0.35%) 0.0005(0.47%) 0.0005(0.59%)  0.0005(0.72%)
P, Ocal 0.005 0.005 0.005 0.005
ORT 0.0002 0.0002 0.0005 0.0007
RMSEn N 0.0021 0.0020 0.0023 0.0028
MAEnN N~ 0.0011 0.0013 0.0015 0.0019
ONN 0.0014 0.0016 0.0018 0.0023
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