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Abstract. The UMBC Hyper-Angular Rainbow Polarimeter (HARP2) will be onboard NASA’s Plankton, Aerosol, Cloud,

ocean Ecosystem (PACE) mission, scheduled for launch in January 2024. In this study we systematically evaluate the retriev-

ability and uncertainty of aerosol and ocean parameters from HARP2 multi-angle polarimeter (MAP) measurements. To reduce

the computational demand of MAP-based retrievals and maximize data processing throughput, we developed improved neural

network (NN) forward models for space-borne HARP2 measurements over a coupled atmosphere and ocean system within the5

FastMAPOL retrieval algorithm. A
::
To

::::
this

::::
end,

:
a
:
cascading retrieval scheme is further implemented in FastMAPOL, which

leverages a series of NN models of varying size, speed, and accuracy to optimize performance.
::::
Two

:::
sets

:::
of

:::
NN

:::::::
models

:::
are

::::
used

:::
for

:::::::::
reflectance

:::
and

:::::::::::
polarization,

::::::::::
respectively.

:
A full day of global synthetic HARP2 data was generated and used to test

various retrieval parameters including aerosol microphysical and optical properties, aerosol layer height, ocean surface wind

speed, and ocean chlorophyll-a concentration. To assess retrieval quality, pixel-wise retrieval uncertainties were derived from10

the Jacobians of the cost function
::::
error

::::::::::
propagation

:
and evaluated against the difference between the retrieval parameters and

truth based on a Monte Carlo error propagation method. We found that the fine-mode aerosol properties can be retrieved well

from the HARP2 data, though the coarse-mode aerosol properties are more uncertain. Larger uncertainties are also associated

with a reduced number of available viewing angles, which typically occurs near the scan edge of the HARP2 instrument. Re-

sults of the performance assessment demonstrate that the algorithm is a viable approach for operational application to HARP215

data after PACE launch.
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1 Introduction

Satellite remote sensing has greatly enhanced our understanding of the Earth’s environment, including the characterization of

atmospheric aerosols and surface properties (Kaufman et al., 2002; Kokhanovsky et al., 2015; Kahn, 2015; Pörtner et al., In

Press.). Multi-angle polarimetric (MAP) remote sensing, pioneered by the Polarization and Directionality of the Earth’s Re-20

flectances (POLDER) instrument on Advanced Earth Observing Satellites (ADEOS-I; 1996–1997 and ADEOS-II; 2002–2003)

and the Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARA-

SOL; 2004–2013) mission (Tanré et al., 2011), has emerged as a promising approach for retrieving geophysical properties from

Earth observations (Mishchenko and Travis, 1997; Hasekamp and Landgraf, 2007; Knobelspiesse et al., 2012; Lacagnina et al.,

2017; Dubovik et al., 2019; Hasekamp et al., 2019b; Chen et al., 2022).25

This trend is set to continue with the forthcoming launch of the National Aeronautics and Space Administration (NASA)’s

Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission in January 2024, featuring a hyperspectral scanning radiometer

named the Ocean Color Instrument (OCI) (Meister et al., 2022) and two MAPs with high polarimetric accuracy: the University

of Maryland, Baltimore County (UMBC) Hyper-Angular Rainbow Polarimeter (HARP2) (Martins et al., 2018; McBride et al.,

2023) and the Netherlands Institute for Space Research (SRON) Spectro-Polarimeter for Planetary EXploration one (SPEXone)30

(Hasekamp et al., 2019a; Smit et al., 2019). The deployment of these instruments presents an unprecedented opportunity to

enhance our understanding and representation of atmospheric and surface conditions (Remer et al., 2019a, b; Frouin et al.,

2019), and bridge future MAP observations, such as the European Space Agency’s (ESA) Multi-viewing Multi-channel Multi-

polarisation Imager (3MI) on board the MetOp-SG satellites (Fougnie et al., 2018), and NASA’s Multi-Angle Imager for

Aerosols (MAIA) instrument (Diner et al., 2018).35

Advanced simultaneous aerosol and surface property retrieval algorithms have been developed for MAP instruments (Chowd-

hary et al., 2005; Waquet et al., 2009; Hasekamp et al., 2011; Dubovik et al., 2011, 2014; Wang et al., 2014; Wu et al., 2015;

Xu et al., 2016; Fu and Hasekamp, 2018; Li et al., 2018; Stamnes et al., 2018; Gao et al., 2018; Li et al., 2019; Hasekamp et al.,

2019b; Chen et al., 2020; Fu et al., 2020; Puthukkudy et al., 2020; Gao et al., 2021a; Xu et al., 2021; Gao et al., 2023; Stamnes

et al., 2023). Most of these retrieval algorithms developed for MAP observations are based on iterative optimization approaches40

that utilize vector radiative transfer (RT) forward models, capable to derive atmospheric and surface properties simultaneously.

Constrained by the speed of forward model calculations, MAP retrieval algorithms are often computationally expensive, which

limits their applicability for large-scale operational data production, and makes it difficult to conduct comprehensive uncer-

tainty analyses. To address the data processing challenge related to MAP instruments, Di Noia et al. (2015) developed a neural

network (NN) based retrieval algorithm that derives aerosol properties directly from groundSPEX (a ground-based version of45

the SPEX instrument) and RSP (Research Scanning Polarimeter, Cairns et al. (1999)
:
)
:
measurements. These directly-inverted

properties were then used as initial values in a subsequent iterative optimization.

To further improve the processing efficiency and flexibility, NN-based forward models are sometimes introduced to re-

place the radiative transfer calculation partially or fully in the retrieval algorithms. For example, Fan et al. (2019) presented

:::::::::
represented

:
the polarimetric reflectance for an open-ocean system using a NN and applied it to SPEXone data processing by50

2



coupling with a linearized radiative transfer atmosphere model (Hasekamp and Landgraf, 2005). PACE HARP2 data poses a

further challenge due to its large data volume, with a swath more than an order of magnitude wider than SPEXone’s. Gao et al.

(2021a) demonstrated that a NN-based model forward model can be trained to represent the vector radiative transfer calcu-

lation on a fully coupled atmosphere and ocean system. To process HARP2 data efficiently, the FastMAPOL algorithm was

developed, powered by such NN-based radiative transfer forward model and validated using AirHARP field campaign mea-55

surements (Gao et al., 2021a, b) and HARP2 synthetic data (Gao et al., 2021b, 2022)).
:::
To

:::::
enable

::::
data

:::::::
synergy

::::
from

::::::::
multiple

:::::
PACE

::::::::::
instruments,

:
Stamnes et al. (2023) utilized NN-based forward models that combine spectral bands from both HARP2

and SPEXone in MAP retrievals. These recent developments build upon the successful application of NNs in non-polarimetric

remote sensing (Diego and Loyola, 2004; Schroeder et al., 2007; Fan et al., 2017; Chen et al., 2018; Nanda et al., 2019; Shi

et al., 2020; Ukkonen, 2022; Stegmann et al., 2022; Ibrahim et al., 2022), and achieve the high radiometric and polarimetric60

accuracy of modern MAPs by using a larger number of hidden layers (e.g. three layers) and nodes (usually 200-1000).

Building from these studies, this work presents a refinement of the FastMAPOL retrieval algorithm suitable for global-scale

PACE HARP2 data processing. The NN forward model is further optimized based on a realistic training data set, including

expected orbital satellite geometries and employing highly accurate vector radiative transfer simulations. This allows us to test

the processing performance on global spaceborne data and illustrate the expected aerosol and ocean color retrieval performance65

of HARP2. We introduce a novel measurement-uncertainty-aware NN training via modification of its cost function resulting

in a NN accuracy more consistent with the retrieval’s cost function. Additionally, we explore the trade-off between NN speed

and accuracy, training different sizes of NNs based on the new cost function, and further propose a cascading retrieval scheme

that leverages a series of NN models of varying size, speed, and accuracy. Initial retrievals are conducted using faster, smaller,

but less accurate NN models, with subsequent retrievals performed using larger, slower, but more accurate NN models.70

Based on this efficient retrieval algorithm which conduct simultaneous aerosol and ocean properties retrievals, a comprehensive

set of aerosol properties are retrieved from simulated spaceborne HARP2 observations, including aerosol microphysical

properties such as complex refractive index and size, thus extending the results obtained previously for AirHARP to realistic

spaceborne measurements (Gao et al., 2021a). To improve understanding of aerosol vertical profile, we include aerosol layer

height (ALH) as one of the HARP2 retrieval products, as encouraged by the sensitivity studies conducted on RSP (Wu et al., 2016)75

and the HARP instrument (Xu et al., 2021). Additional aerosol optical properties, such as aerosol optical depth (AOD) and

single scattering albedo (SSA), can be derived from aerosol microphysical properties also through neural networks(Gao et al., 2021a)

. These results provide a set of high quality aerosol products that will extend global polarimetric data records previously

obtained from POLDER/PARASOL (Hasekamp et al., 2011; Dubovik et al., 2011, 2014; Li et al., 2019; Hasekamp et al., 2019b; Chen et al., 2020)

.80

Meanwhile, the ocean properties can be derived from MAP retrieval results or measurements. Our previous work includes

NN models to conduct atmospheric and bidirectional reflectance distribution function (BRDF) corrections and derive water

leaving signals (Gao et al 2021a, 2021b) and their uncertainties (Gao et al., 2022, 2023). Mukherjee et al. (2020) utilized a

NN to predict the polarimetric reflectance associated with complex water optical properties. Aryal et al. (2022) used NNs to
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derive instantaneous photosynthetically available radiation models within ocean bodies. Agagliate et al. (2023) applied a NN85

approach to estimate in-water optical properties from top of atmosphere MAP measurements for PACE.

To analyze the retrieval
::::::::::
performance

::::
and uncertainties of these products, global over-ocean HARP2 radiative transfer simu-

lations were generated using the
:::
most

::::::::
accurate NN forward modeland the input parameters derived from NASA Modern-Era

Retrospective analysis for Research and Applications, Version 2 (MERRA2) reanalysis data (Gelaro et al., 2017; Randles et al., 2017; Buchard et al., 2017)

. This effort is a part of the Day-in-the-Life (DITL) pre-launch data processing test organized by the PACE Science Data90

Segment (SDS). Through the global-scale data analysis based on the cascading-NN scheme in FastMAPOL, we examine

::
the

:
retrieval uncertainties for

::::::
aerosol

::::::::::::
microphysical

::::
and

::::::
optical

:::::::::
properties

::
in

:
both fine and coarse mode aerosols

:::::
modes, as

well as ocean surface wind speed and ocean chlorophyll a
:::::::::::
chlorophyll-a, with respect to

:::
the location, geometries, and dis-

tribution of geophysical properties.
:::
We

::::
have

::::
also

::::::::
included

::::::
aerosol

:::::
layer

::::::
height

::::::
(ALH)

::
in

:::
the

:::::::
HARP2

:::::::
retrieval

::::::::
products,

:::
as

:::::::::
encouraged

:::
by

:::
the

:::::::::
sensitivity

::::::
studies

:::::::::
conducted

:::
on

::::
RSP

:::::::::::::::
(Wu et al., 2016)

:::
and

:::
the

::::::
HARP

:::::::::
instrument

::::::::::::::
(Xu et al., 2021)

:
.
:
The95

quantification of aerosol uncertainty can inform
:::::
greatly

:::::::
enhance

:
its applicability in radiative forcing(Jia et al., 2022), air qual-

ity (Wang and Christopher, 2003) and climate studies(Mishchenko et al., 2004). Consequently, this study offers a holistic dis-

cussion on the retrieval algorithm , the data products obtained, and
:::
and

:::
the

:::::::
resultant

::::
data

:::::::
products

::::
with

:
their associated uncer-

tainties for HARP2 in anticipation of the upcoming PACE mission.

::::
This

:::::
study

:::::::
presents

:::
the

:::::::::::::
advancements

:::::
made

::
to

:::
the

::::::::
HARP2

::::::
aerosol

::::
and

:::::
ocean

::::::::
retrieval

:::::::::
algorithm

:::
for

::::::::::
operational

::::
data100

:::::::::
processing,

::::::::
including

:::::::
various

::::::::::::
improvements

::
in

:::
the

:::::::
radiative

:::::::
transfer

::::::
model

::::
with

::::
more

:::::::
realistic

::::::::::::
representation

::
of
:::::::::::

space-borne

::::::::::::
measurements,

:::::::
effective

:::
NN

:::::::
training

:::::::::::
methodology,

:::::::
flexible

:::
NN

:::::::::::
architectures,

:::
and

:::::::::
cascading

:::::::
retrieval

::::::
scheme

::::
with

::::::::::::
comprehensive

:::::::::
uncertainty

::::::::::
assessment. The paper is organized in four sections, including a description of the retrieval algorithm and NN for-

ward model (Sec
::::
Sect.

:
2), retrieval and uncertainty analysis on the global scale simulations (Sec

::::
Sect.

:
3), and conclusion with

discussions (Sec
::::
Sect. 4).105

2 Improved FastMAPOL retrieval algorithm

This section provides an overview of the enhancements made to the FastMAPOl retrieval algorithm, with various improvements

in the radiative transfer model, NN training methodologies, and retrieval schemes with cascading NN models.

2.1 Simultaneous aerosol and ocean retrieval algorithm

HARP2 measures Stokes parameters Lt, Qt, and Ut (where subscript t represent total measurement), at 60 viewing angles110

at the 660 nm band, and at 10 viewing angles at the 440, 550, and 870 nm bands (Puthukkudy et al., 2020, McBride et al

2023). The total spectral measured reflectance (ρt(λ)) and DoLP (
:::::
degree

:::
of

:::::
linear

::::::::::
polarization

::::::
(DoLP

::
or

:
Pt(λ)) are used in

the retrieval inversion which are defined as

ρt =
πr2Lt

µ0F0
, (1)

Pt =

√
Q2

t +U2
t

Lt
, (2)115
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where F0 is the extraterrestrial solar irradiance, µ0 is the cosine of the solar zenith angle, r is the Sun-Earth distance correction

factor in astronomical units. Note that circular polarization (Stokes parameter Vt) is not measured by HARP instruments and

is often, but not always, negligible for atmospheric studies (Kawata, 1978; Gassó and Knobelspiesse, 2022).

To derive aerosol and ocean information, the retrieval algorithm minimizes the cost function χ2 which quantifies the differ-

ence between the measurement and the forward model simulation (Rodgers, 2000):120

χ2 (x) =
1

N

∑
i

(
[ρt(i)− ρft (x; i)]

2

σ2
ρ(i)

+
[Pt(i)−P f

t (x; i)]
2

σ2
P (i)

)
, (3)

where ρt and Pt are
::::::::::::
measurements

:::
and

:::
ρft :::

and
:::
P f
t :::

are the corresponding quantities computed from the neural network forward

modelwith the
::::::
forward

::::::
model.

::::
The

:
state vector x contains all retrieval parameters. The subscript i stands for the index of the

measurements at different viewing angles and wavelengths; and N is the total number of measurements used in the retrieval.

The total uncertainties of the reflectance and DoLP used in the algorithm are denoted σρ and σP ; both have contributions125

from measurement uncertainties σm
:::
σm and forward model uncertainties σf . In this work, the estimated expected measure-

ment uncertainty for HARP2 of 3% on reflectance and 0.005 on DoLP are used
::::::::::::::::::
(McBride et al., 2023). Note that the above

assumes independence of spectral or angular correlation between uncertainties; for a more complete treatment, Eq. 3 should

be represented in a matrix form
::::
using

:::
the

:::::
error

:::::::::
covariance

::::::
matrix (Rodgers, 2000; Gao et al., 2023). Statistical methods such

as autocorrelation analysis have been used to estimate angular correlation strength from AirHARP field measurement and may130

be applied to future HARP2 data (Gao et al., 2023) but at present the correlation strength is not well-known so the above

form (equivalent to a diagonal covariance matrix) is used. The retrieval is an iterative procedure to minimize the cost function

using the subspace trust-region interior reflective optimization approach (Branch et al., 1999) by varying the state parameters

x. The
:
In
::::
this

:::::
work,

:::
the forward models are based on the NN discussed in the next sections and the Jacobian matrices, used to

determine the direction to update the state parameter, are computed based on automatic differentiation (Baydin et al., 2018) as135

formulated for the NN forward model (Gao et al., 2021b) and implemented within the deep learning framework (Osawa et al.,

2019).

2.2 Coupled atmosphere and ocean radiative transfer model

The training data for the NN forward model is generated with a PACE-tailored vector radiative transfer model using the suc-

cessive orders of scattering method (Zhai et al., 2022) with numerical accuracy much better than that of the HARP instruments140

(Gao et al., 2021a). An improved pseudo spherical shell (IPSS) correction is considered to improve the fidelity for larger solar

and viewing zenith angles (Zhai and Hu, 2022). Reflectance and DoLP are simulated at the PACE satellite altitude (676 km

above Earth’s surface); viewing and solar geometries are defined at the surface as shown in Fig. 1 based on the formulas derived

in Zhai and Hu (2022).
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Figure 1. Spherical shell frame of the earth system. The radiative transfer simulations are conducted according to the geometry defined at

the satellite with solar and viewing zenith angle θ′0 and θ′v , which are converted to the geometry at the Earth’s surface with solar and viewing

zenith angle defined as θ0 and θv . Solar and viewing azimuthal angles also depend on the reference frame but
::
are

:
not shown in the figure.

The forward radiative transfer simulations are conducted assuming a coupled atmosphere and ocean system. The atmospheric145

molecule distributions follow the US standard atmospheric constituent profile (Anderson et al., 1986). Absorption by oxygen,

water vapor, methane, and carbon dioxide, ozone and nitrogen dioxide are considered through line-by-line calculations and

integrated based on the double-k method (Duan et al., 2005; Zhai et al., 2022). The ozone density and surface pressure are

assumed in the range as defined in Table 1. Near the earth surface, an aerosol layer is considered with a vertical number density

distribution assumed as Gaussian function Wu et al. (2015)
::::::::::::::
(Wu et al., 2015):150

N(z) =
Nt

σ
√
2π

exp(− (z− zc)
2

2σ2
) (4)

where Nt is the total aerosol column number density. zc is defined as the aerosol layer height (ALH) in the range of 0.1 to 6 km

above surface. σ is the standard deviation of the gaussian distribution which is fixed at 2 km. The aerosol size is represented by

the volume density of a combination of five lognormally-distributed “submodes” similar to previous studies using the MAPOL

(Gao et al., 2018) and FastMAPOL algorithm (Gao et al., 2021a). The mean radius ri and standard deviation σi are fixed155

with values of 0.1, 0.1732, 0.3, 1.0, 2.9 µm
:::
µm, and 0.35, 0.35, 0.35, 0.5, 0.5,

:
respectively following the work by Dubovik

et al. (2011); Xu et al. (2016) and Fu et al. (2020). The first three submodes are used to represent the fine mode aerosol, while

the last two submodes are the coarse mode. Fine and coarse modes are assumed to have an independent complex refractive

index with no spectral variation within the HARP spectral range.
:
Therefore, the aerosol model includes 10 parameters: five

volume densities (one for each submode); four independent parameters for the fine and coarse real and imaginary components160

of refractive indices; and one for ALH. Polarimetric single scattering properties are modeled from these
::::::
aerosol

:::::::::
properties

using the Lorenz-Mie code on spherical particles developed by Mishchenko et al. (2002). Note that particle non-sphericity is
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important for realistic simulation of mineral dust aerosols (Dubovik et al., 2006) and will be incorporated in the next version

of NN forward model following the same approach presented in this study.

The optical model for the underlying water surface is summarized in Gao et al. (2019); briefly, it uses an open-ocean165

model including contributions from seawater, colored dissolved organic matter, and phytoplankton, the latter two of which

are parameterized as a function of chlorophyll a concentration (Chla; mg/m3
:::::::::::
chlorophyll-a

:::::::::::
concentration

:::::::
(Chl-a;

:::
mg

::::
m−3

:
).

The sea water polarized scattering properties are derived from the measured normalized Mueller matrix (Voss and Fry, 1984;

Kokhanovsky, 2003). The ocean surface roughness is modeled by the isotropic Cox-Munk model with a scalar wind speed (Cox

and Munk, 1954). Whitecaps are considered following the parameterization by wind speed (Koepke, 1984). While not done170

here, for future application to coastal waters where the open-ocean model is less valid, optimized NN models with sophisticated

bio-optical models with seven (Gao et al., 2018) to three (Hannadige et al., 2023) parameters can be developed.

In summary, a total of 17 parameters are used as input of the NN forward model as indicated in Table 1. These include

the 10 aerosol parameters, as well as wind speed, ozone column density, surface pressure and Chla
:::::
Chl-a, and three geometric

parameters: the solar zenith angle, viewing zenith angle, and relative azimuth angle.175

7



Table 1. Parameters used to represent the coupled atmosphere and ocean system in the radiative transfer simulation and NN Training. θ0

and θv are the solar and viewing zenith angles. ϕv is the relative azimuth angle. Vi denotes the five volume densities. AOD range from 0.01

to 0.5 is considered and used to constrain Vi. mr and mi are the real and imaginary parts of the refractive index. Additional parameters

include ozone column density (nO3), aerosol layer height (zc), surface pressure (Ps), ocean surface wind speed (ws ), and Chlorophylla

::::::::::
chlorophyll-a concentration (Chla

::::
Chl-a). The minimum (min) and maximum (max) values determine the parameter ranges used to generate

NN training data, which are also the constraints in the retrieval algorithm.

Parameters Unit Min Max

θ0 Degree 0 85

θv Degree 0 85

ϕv Degree 0 180

nO3 Dobson 150 450

mr,f (None) 1.3 1.7

mr,c (None) 1.3 1.7

mi,f (None) 0 0.03

mi,c (None) 0. 0.03

V1 µm3µm−2
::::::::
µm3µm−2

:
0 0.14

V2 µm3µm−2
::::::::
µm3µm−2

:
0 0.11

V3 µm3µm−2
::::::::
µm3µm−2

:
0 0.07

V4 µm3µm−2
::::::::
µm3µm−2

:
0 0.2

V5 µm3µm−2
::::::::
µm3µm−2

:
0 0.62

zc km
:::
km 0.1 6.0

Ps mb 950 1050

ws m /s
:::
s−1 0.5 15

Chla
::::
Chl-a mg/m3

::
mg

::::
m−3 0.01 10

2.3 NN training and performance analysis

The NN forward models (one set for reflectance and one set for DOLP
:::::
DoLP) are trained following the procedures as sum-

marized in Gao et al. (2021a) based on the radiative transfer simulations discussed in the previous section according to the

parameter range as summarized in Table 1. This extends the previous work by including ALH and surface pressure as addi-

tional parameters, and the range of viewing geometries is also larger than the one used in the airborne measurement by taking180

advantage of the newly developed IPSS correction (Zhai and Hu, 2022) and the reference frame defined at the Earth’s surface

(Fig
:
. 1). A total of 10,000 cases of radiative transfer simulations with randomly-generated

::::
were

:::::::::
generated

::::
with

::::::
random

:
values

of the input parameters (this set is augmented as described below). Note that a
::
A uniform distribution of aerosol optical depth

(AOD) less than
::
in

:::
the

:::::
range

:::::::
between

::::
0.01

::::
and 0.5 is sampled, which is also used to compute

::::::::
randomly

:::::::
sampled

:::
and

:::::
used

8



::
to

::::::
specify

:
volume densities following the sample strategy discussed in Gao et al. (2019)

::::::::::::::
Gao et al. (2021a). In this study, we185

introduce two additional steps in the NN training to boost the NN performance:

1. Measurement uncertainty-aware training

The NN forward models have been shown to achieve much higher accuracy than the HARP measurements using a

LeakyReLU activation function and three hidden layers (Gao et al., 2021a). However, at low wind speed, the sunglint

signal,
::::
i.e.,

:::
the

:::::::
sunlight

::::::
reflects

::::
from

:::
the

::::::
ocean

::::::
surface

::::::
around

:::
the

:::::::
specular

::::::::
reflection

::::::::
direction,

:
can be strongly peaked,190

and this can dominate the mean square error (MSE) cost function used by Gao et al. (2021a) for optimization at the

expense of precision in other areas. To avoid this issue, the previous study removed simulations close to the direction

of specular reflection from the training dataset, but the lack of data in sunglint also affected retrieval results due to

the resulting reduced number of angles
::
on

:::::
wind

:::::
speed

::::
and

::::::
aerosol

:::::::::
properties (Gao et al., 2021b). To enable sufficient

accuracy to predict the reflection inside and outside of sunglint, we introduce the training cost function that, analogously195

to the retrieval cost function, normalizes the fitting residuals by the measurement uncertainty:

χ2
NN,ρ =

1

N

∑
i

(
[ρt(i)− ρNN

t (x; i)]2

σ2
ρ(i)

)
(5)

χ2
NN,P =

1

N

∑
i

(
[Pt(i)−PNN

t (x; i)]2

σ2
P (i)

)
(6)

where
::::
where

:::
ρt :::

and
:::
Pt:::::::

indicate
:::::::
training

::::
data,

::::
and

::::
ρNN
t ::::

and
:::::
PNN
t :::::::

indicate
:::
the

:::
NN

::::::::::
predictions.

:
N

::
in

:::
the

:::::::::::
denominator

is the batch size in the training (taken as 1024 here).
:::
The

:::::
same

::::
total

::::::::::
uncertainty

::
of

:::::::::::
σρ = 0.03ρt :::

and
::::::::::
σP = 0.005

:::
as200

::
in

:::
Eq.

::
3

:::
are

::::
used

::::
here.

:::::::::
Therefore,

::::::
χ2
NN,ρ:::::::::

represents
:::
the

:::::::::
percentage

:::::
error

::
of

:::
the

::::
NN

::::::::::
predictions,

:::::
which

::::
can

:::::::::
effectively

:::::::::
incorporate

:::
the

:::::::
sunglint

::::::
signals

:::::::
without

::::::
directly

:::::::::
impacting

::
by

:::
its

::::
large

::::::::::
magnitude.

:::::
Since

:
a
:::::::
constant

:::::
value

::
of

:::
σP::

is
:::::
used,

::::::
χ2
NN,P ::

is
::::::::
equivalent

::
to

::
a
:::::
scaled

:::::
MSE

:::
cost

::::::::
function.

::::::::::
Polarization

:::::
signal

::
is
:::::
better

:::::::::
constraint

:::::
within

::
0

:::
and

::
1

::
for

:::
all

:::::::
viewing

:::::::::
geometries

:::
and

::::::::
therefore

:::
its

::::::
training

:::::::::::
performance

::::
less

:::::::
affected

::
by

:::
the

::::::::
sunglint. This new cost function is a convenient

and meaningful extension to the conventional MSE cost function applied on a set of normalized training data
::::::::
especially205

::
for

:::::::::
reflectance

:
(e.g. Aggarwal (2018); Fan et al. (2019); Gao et al. (2021a); Aryal et al. (2022); Stamnes et al. (2023)). We

found the NN training hyperparameters (such as learning rate, batch size, etc) reported by (Gao et al., 2021a) generally

:::::::::::::::
Gao et al. (2021a) still work well for the new cost function. The resulting training process is aware of the measurement

uncertainty and therefore optimizes in a way more relevant to the retrieval’s operation.

2. Training data augmentation210

Generating training data from forward radiative transfer simulations is usually computationally expensive, which limits

the NN training performance. However, one RT simulation can be used to generate an arbitrary number of viewing

angles and increase the effective training data size, which may improve NN accuracy. This concept is equivalent to data

augmentation in machine learning (Shorten and Khoshgoftaar, 2019). Gao et al. (2021a) explored it by sampling 100 sets

of random viewing angles from every RT simulation. In this study, we provide a more systematic analysis of such data215
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augmentation by sampling random sets with 100, 400 and 1000 angles, corresponding to total data sizes of 1 million, 4

million, 10 million points respectively from the 10,000 RT simulations.

The NNs’ training performance is summarized in Fig.
:
2 for the feed-forward NN architecture with 17 inputs and 4 outputs

and various hidden layer sizes (from two layers each with 64 nodes and 128 nodes, to three layers each with 128, 256, or 512

nodes). To simplify the notation, we represent the hidden layer structure in a polynomial form, e.g. 1283 in Fig.
:

2 represents220

three hidden layers each with 128 nodes. The cost functions are as in Eqs 5, 6. We use 70% of the simulated data for training

(to minimize the training cost function) and the remaining 30% for validation (to monitor the training process). Fig
:
. 2 shows

that, with increasing NN hidden layer number and size, both training cost functions
::
the

::::
cost

::::::::
functions

:::
for

::::
both

:::::::
training

::::
and

::::::::
validation

::::
data decrease, while validation cost eventually becomes larger than training cost. That suggests overfitting for the

case of 1 million samples and NN size 1283. Introducing more training data from 4 to 10 million and NN size until 5123 further225

reduces the cost functions to convergence. More training data are generally able to reduce the difference between the training

and validation cost function as compared in Fig.
:
2. Using 10 million total data, the reflectance NN performance stays stable

with a small training cost function value of 0.01, which suggests the typical fitting residual between the NN and the simulation

is about
√
0.01 = 0.1 times of the measurement uncertainty, i.e., 0.1x3% = 0.3%.

For DoLP, the NN training is more difficult because the DoLP uncertainty for HARP2 is often much smaller (0.005) than the230

(3%) reflectance uncertainty. Fig
:
. 2 shows that generally a larger NN size is needed for DOLP

:::::
DoLP to achieve a similar cost

function value to reflectance. Using 10 million data and 5123 NN size, the cost function is about 0.04 which suggests the NN

accuracy is
√
0.04 = 0.2 times of the measurement uncertainty, with a value of 0.2× 0.005 = 0.001. Similar accuracy for NN

reflectance requires a size of 2563. A NN cost function value of 1 would indicate NN accuracy comparable to the measurement

uncertainty, which would be achieved with a NN size of 642
:::
642 for reflectance and 1282

::::
1282 for DoLP.235

Therefore, for the best performance of applying NN in joint retrieval algorithms, we implemented a two-level cascade

scheme in FastMAPOL in which two rounds of retrievals are processed. In the first round, the NN size of 642 for reflectance

and NN size 1282 for DoLP are used to efficiently find a rough solution. Then in the second (final) round the NN size 2563 for

reflectance and 5123 for DoLP are used to further fine tune the state vector. Note that each retrieval include multiple iterations

with an order of 10, and involves the use of automatic differentiation to compute Jacobian matrix analytically (Gao et al.,240

2021b). Cascading more levels could further improve the performance, but we found two cascaded levels are sufficient for this

study. To
::
By

:::::::::
comparing

:::
the

:::::::
retrieval

::::::
results

::::
with

:::
one

::::
and

:::
two

::::::::
cascading

::::::
levels,

:::
we

:::::
found

:::
the

:::::::
retrieval

:::::::::::
uncertainties

:::
are

::::::
similar

::
to

::::
each

::::
given

:::
the

:::::
same

::::
high

:::::::
accuracy

::::
NN

:::
are

::::
used

::
at

:::
the

:::
last

::::
level

::
of

::::::::
retrievals.

:::::::::
Therefore

:::
the

::::::::
cascading

::::::::
algorithm

::::
will

:::::::
increase

:::::::
retrieval

:::::
speed

::::::
without

::::::
impact

:::::::
retrieval

::::::::
accuracy.

:::
To

::::
fully test the cascade system

::
as

::::::::
discussed

::
in

:::
the

::::
next

::::::
section, we used the

best accuracy NN with the largest size of 5123 to generate a set of synthetic data simulations and performed retrieval with the245

cascade retrieval schemein Section 3.
:
.

To further evaluate the NN uncertainty, we generated an additional independent 1000 sets of radiative transfer simulations

with realistic HARP geometries as formulated in Gao et al. (2021b) and calculate MAE and RMSE comparing these simulations

to the NN predictions. Note
::
We

:::::
found

::::
that

:
MAE is more robust to the impacts of outliers, similar to the discussion on the

retrieval uncertainties (Gao et al., 2022). Based on this analysis, discussed in Appendix 1, NN uncertainties are estimated to250
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be 0.5% for NN size of 5123, and 0.002 for DOLP
::::
DoLP

:
using 5123, both similar to but slightly larger than estimation from

the training cost function. This further confirms that the new training cost function, considering measurement uncertainty,

provides an intuitive way to measure the NN optimization.
::::
Note

::::
that

::
to

::::::
ensure

:::
the

::::
high

::::::::
accuracy

::
of

:::
the

::::
NN

:::::::
models,

:::
the

:::
RT

:::::::::
simulations

::::
with

:
a
:::::::::
numerical

:::::::
accuracy

:::::
much

::::::
higher

::::
than

:::
the

:::::::::::
measurement

:::
and

:::
NN

::::::
models

:::
are

::::
used

::
to

:::::::
generate

:::
the

:::::::
training

::::
data

::
as

::::::::
discussed

::
in

:::::::::::::::
Gao et al. (2021a)

:
.
:::
For

:::
the

:::::::::
application

::
to
::::
real

::::
field

:::::::::::::
measurements,

:::
the

::::::::::
uncertainties

::::::::
including

:::
the

::::
NN

:::::::
models,255

::
RT

::::::::::
simulations

::::
and

::
the

::::::::::::
measurement

::::::::::
uncertainties

:::::
need

::
to

::
be

::::::::::
considered.

Figure 2. Training cost functions for reflectance (top) and DOLP
::::
DoLP

:
(bottom) as a function of NN size. The background color indicates

the number of training data used: 1 million (blue), 4 million (green), or 10 million (red). The horizontal axis indicates the size of hidden

layers, as described in the text, for example 642 indicates two hidden layers with 64 nodes at each layer.
::
All

:::
the

:::
NN

:::::
models

:::::
shown

::::
here

::::
have

::
17

:::::
inputs

:::
and

:
4
::::::
outputs.

:

3 Retrieval analysis on synthetic global over-ocean HARP2 measurements

To evaluate the retrieval performance in terms of both speed and uncertainty in a realistic and representative way, we generated

a day of synthetic over-ocean HARP2 measurement along PACE satellite orbits. Random errors based on estimated calibrated

uncertainties are added to both the
::::::::
simulated reflectance and DoLP measurements. The retrieval uncertainties are evaluated260

through error propagation and then validated by comparing the truth and retrieval results based on the Monte Carlo approach
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(Gao et al., 2022). The viewing and solar geometries are based on realistic satellite orbits. This analysis is useful to understand

the retrieval capability of HARP2 data before PACE’s launch.

3.1 Synthetic HARP2 L1C radiative transfer simulation

The Level 1C file format is used to represent multi-angle measurements where different viewing directions are co-registered265

on the common spatial location to produce multi-angle measurement for each pixel (Lang et al., 2019). For the PACE mission,

a set of common spatial grids are defined within the L1C format for its
::
all three instruments: OCI, SPEXone and HARP2. The

grids are based on the swath-based Spacecraft Oblique Cylindrical Equal Area (SOCEA) projection (Snyder, 1987) and doc-

umented in the PACE L1C document (Plankton, Aerosol, Cloud, ocean Ecosystem (PACE) mission, 2020). The HARP2 data

processing will be performed by the PACE Science Data Segment (SDS) following the launch and instrument commissioning.270

The prelaunch testing of the data processing has been organized around a Day-in-the-Life (DITL) that has been chosen to be

March 21, 2022.
::::
2022

::::::
(spring

::::::::
equinox),

::
to

::::::
ensure

:::::
good

:::
day

::::
light

::::::::
coverage

::::
over

:::
the

:::::::
majority

:::
of

::::::
world’s

::::::
ocean. The simulated

PACE orbit for the DITL has been used to generate the sensor and solar geometry for the instrument data simulations to support

the data processing tests by the SDS. The HARP2 simulations and processing results described in the following sections are

based on the DITL.275

The PACE L1C files are segmented in 5 min granules for daytime portions of the orbit, yielding a total of 165 granules in 15

orbits as shown in Fig. 3. The equatorial crossing time is at 1:00 pm with the satellite ascending northward. The nadir swath

width is 1633 km which grows to a maximum swath width of 2380 km around 40 o
:::
40◦

:
along track viewing zenith angle. The

bin size is 5.2 km. The range of viewing zenith angle can vary from approximately −60◦ to 60◦, with data collected across a

time span of 6 min during which the solar zenith angle can vary up to 1.5◦. Exact per-view solar geometries were used when280

generating the synthetic HARP2 data, which is important to reduce impacts from the measurement geometries due to satellite

motions (Hioki et al., 2021).
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Figure 3. Global over-ocean simulation of HARP2 measurements at 550 nm for both reflectance (left) and DoLP (right) with a total of 15

orbits on the day of March 21, 2022. A total of 90 viewing angles at four HARP2 bands are generated with three viewing angles in the

along-track direction shown in the plots.

In the simulation, the surface pressure, ozone column density, surface wind speed, and speciated aerosol mass concentration

vertical profiles are sampled from the NASA GMAO MERRA2 data (Gelaro et al., 2017; Randles et al., 2017; Buchard et al.,

2017) along the satellite orbit to best represent the natural global scale variability in the atmospheric state. Total column285

effective aerosol microphysical properties (column size and refractive index) were derived from the MERRA2 simulations of

speciated aerosol mass concentration vertical profile by taking a volume weighted average over the size bins and species in the

MERRA2 dataset. The aerosol size bins used in MERRA2 are different from the aerosol sub-modes used in the NN forward

model. We have adjusted the volume density and refractive indices of the five aerosol sub-modes (see Table 1) to best match the

aerosol representation in MERRA2. Hygroscopic growth of aerosol size is considered based on the relative humidity profile290

in the MERRA2 data (Castellanos et al., 2019). The total AOD in MERRA2 data is used to derive the total volume density

and ensure that the same AOD will be produced based on the column effective aerosol size, refractive index, and volume

density. The monthly average Chla
:::::
Chl-a derived from MODIS ocean color products are used as input to the radiative transfer
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simulation. Note that there are some small data gaps, most visible in the tropical Atlantic Ocean, due to the gaps in this Chla

::::
Chl-a

:
product from heavy aerosol, cloud, or other data quality flags. However, as they are small the retrieval performance295

analysis should not be significantly impacted. A complete set of ancillary data files are generated and can be accessible from

PACE data webpage as shown in the Data Availability section.

The NN forward model with the maximum accuracy (5123) is used to generate the simulated L1C data for a total of 10

million pixels each with 90 total viewing angles; examples for the HARP2 550 nm band with along-track viewing angles of

−43.6◦, 0.8◦ and 39.5◦ are shown in Fig.
:
3. The newly improved NN forward model can accurately represent the sunglint300

region clearly recognizable from large reflectance magnitude at large viewing angles showing at northern (a) and southern

hemisphere (c), as well as near equator (b) when looking near the nadir with a smaller reflectance magnitude. At larger viewing

angles, prominent polarized signals are also shown in both the northern (d) and southern hemisphere (f). DoLP generally

increases with the viewing angle, until approaching the maximum value of 1 at the Brewster angle around 53◦ at the air-

water interface. The backscattering direction usually shows a minimum polarization magnitude, such as near the equator when305

looking near nadir (Fig
:
. 3e).

Two cascaded NN forward models for reflectance and DoLP respectively are used to conduct retrievals in the FastMAPOL

algorithm as discussed in Sect. 2. The histogram of the cost function values for the first and final retrievals are shown in Fig
:
. 4.

The first retrieval, whose NNs have comparable uncertainty to the measurement uncertainty, produces a most probable retrieval

cost function around 2.0. After using the more accurate NN with a much smaller uncertainty, the final retrieval cost functions310

are mostly close to 1.0. The average total time taken for a retrieval with this two-layer cascade is 0.11
::
0.1

:
seconds as shown in

Fig.
:
4 (b), compared to 0.2 seconds for a retrieval using only the higher-accuracy NN (not shown), corresponding to roughly a

50% speedup.

Figure 4. (a) Histogram of the cost function values (χ2) for the first retrieval using smaller neural network (blue) and the final retrieval using

the larger neural network (red) as summarized in Sec
:::
Sect.

:
2. A histogram of processing time for the two-stage process is shown in (b).
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3.2 Retrieval results

Initially, we conducted a retrieval analysis on a subset of data by including all the parameters as shown in Table 1 except the315

three geometric variables. The retrieval uncertainties for the ozone density and surface pressure are large with a MAE of 53

DU and 24 mb and RMSE value of 69 DU and 32 mb,
:
respectively. As a result, instead of retrieving these two parameters, we

choose to use the value directly from MERRA2 and retrieve only aerosol and ocean properties (which also results in slightly

increased accuracy) when applying FastMAPOL to the L1C simulated data. As well as the directly retrieved quantities (Table

1), the aerosol optical depth (AOD) and single scattering albedo (SSA) for both the fine and coarse modes, were computed320

from retrieved aerosol volume densities and refractive indices using corresponding NNs trained similarly to the reflectance and

DoLP but with a much smaller size of two hidden layer each with 64 nodes (Gao et al., 2021a). Total AOD is obtained as the

summation of the fine and coarse mode AODs. Effective radius and variance are also calculated from the components’ sizes

and retrieved volumes.

Fig. 5 shows the global map of the retrieved AOD and ALH as well as the corresponding truth values and the retrieval325

uncertainties based on error propagation. The retrieval value and truth values are very similar to each other as shown in Fig.
:
5

(a) and (b) for AOD. Larger uncertainties are mostly associated with the edge of the orbit where fewer than five viewing angles

per band (or total 20-30 angles) are available (see also analysis in Hasekamp and Landgraf (2007); Wu et al. (2015); Xu et al.

(2017); Gao et al. (2021b)
:
). For real PACE data, the adaptive data screening method will be used to automatically remove the

angles impacted by cirrus cloud and anomalies, and therefore, the uncertainties will depend on the number of available angles330

associated with the location and size of those clouds (Gao et al., 2021b). Fig. 5e and 5d show that the aerosol layer height

(ALH) error has a stronger dependency on the AOD with performance generally better (and uncertainties smaller) where AOD

is larger.
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Figure 5. The retrieval results, truth, and uncertainties for AOD at 550 nm (a, b, c) and ALH (d, e, f).

Data density showing the correlation and difference between retrieval and truth are shown for AOD, ALH, fine mode volume

fraction (fvf), wind speed, and Chla in Fig
:::::
Chl-a

::
in

:::
Fig.

:
6. The retrievals perform well with the RMSE for AOD, ALH, fvf, wind335

speed and log10(Chla
:::::
Chl-a) of 0.011, 0.9 km, 0.06, 1.4 ms−1

:
m

::::
s−1 and 0.19

:
, respectively. Similar to Fig.

:
6, Fig

:
. 7 shows the

comparison between the retrieval results with truth for the fine mode AOD at 550nm, real part refractive index, single scattering

albedo, effective radius and variance. The difference between retrieval and truth seems to strongly depend on the fine mode

aerosol loading as shown in the second row of Fig.
:
7. However, the retrieval becomes more challenging for the coarse mode as

shown in Fig
:
. 8, due to the much lower coarse AOD in general.340
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Figure 6. The comparisons of the retrieved and truth values for total AOD (550 nm), ALH, fine mode volume fraction (fvf) wind speed,

and Chla
::::
Chl-a. The top row shows heat maps (including MAE and RMSE) while the bottom row shows the error of the corresponding

upper panel parameters as a function of the total AOD at 550 nm. The color indicate the data density estimated by a kernel density method

(Silverman, 1986).

Figure 7. As Fig
:
. 6, except for fine mode AOD, refractive index (mr), SSA, effective radius (reff ) and variance(veff ) and bottom row as a

function of fine mode AOD.
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Figure 8. As Fig
:
. 7, except for coarse mode properties instead of fine mode.

3.2.1 Uncertainty analysis

To understand the quality of the retrieval products, “theoretical retrieval uncertainties” are evaluated from error propagation

method which maps the measurement uncertainties to the retrieval domain based on the Jacobian of the converged retrieval

cost function
::::
with

:::::::::
converged

:::::::
retrieval

:::::::::
parameters

:
(Rodgers, 2000) and accelerated using NN automatic differentiation (Gao

et al., 2021b). This uncertainty can be evaluated at every pixel and therefore provide a flexible metric to evaluate retrieval345

quality. Examples of AOD and ALH uncertainties are shown in Fig.
:

6 (c) and (f). However, the real retrieval quality also

depends on how well the retrieval converges, which can be eventually evaluated based on the difference between the retrieval

results and the truth as shown in Figs 6-8. To verify
:::
that the theoretical retrieval uncertainty represents actual retrieval results,

we employ the Monte Carlo Error propagation (MCEP) method, which generates random samples of errors based on the

theoretical uncertainties. The
::::
Then,

:::
the

:
histogram of the random errors for a large volume of dataset can be compared with the350

distribution of the real error (difference between retrieval and truth) so that we can assess the difference and similarity of error

distribution derived from the two methods (Gao et al., 2022).

We further group all the pixels according to their AOD values in steps of 0.01. Based
:
,
:::::
based on the retrieval results shown

in Figs 6-8. Mean absolute error (MAE) are used to evaluate both the average theoretical and real uncertainties with results

summarized in Fig9. As AOD increases from 0.01 to 0.45, the uncertainty of AOD increases from 0.002-0.004 to 0.015,355

corresponding to a relative reduction of uncertainty from 20%-40% to 5%. The results agree with the analysis on AirHARP

and HARP2 measurements of Gao et al. (2021a, b). Points with AOD>0.45 are excluded because there are a small number of

pixels in this range so that a few outliers could affect the statistics significantly. .
::
9.

:
Fig. 9(a1) shows that both the theoretical

(red lines) and the true (blue lines) absolute uncertainties of AOD increase from 0.002-0.004 to 0.015 as AOD increases

from 0.01 to 0.45, which also corresponds to the reduction of relative uncertainty from 20%-40% to 5%. The results agree360

with the analysis on AirHARP and
::::::::
synthetic HARP2 measurement with a uniform distribution of AOD (Gao et al., 2021a, b).

::::::::::::::::::::
(Gao et al., 2021b, 2022)

:
.
:::::
Points

::::
with

:::::::::
AOD>0.45

:::
are

::::::::
excluded

:::::::
because

::::
there

:::
are

::
a
:::::
small

::::::
number

::
of

::::::
pixels

::
in

:::
this

:::::
range

::
so

::::
that
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:
a
:::
few

:::::::
outliers

:::::
could

:::::
affect

:::
the

::::::::
statistics

:::::::::::
significantly. The high quality AOD may be useful for climate studies which usually

require a goal uncertainty less than 0.02 (Mishchenko et al., 2004; Kahn, 2015; GCO, 2022).

Uncertainties of ALH decrease from 1 km to 0.5 km within the range of AOD for both theoretical and real uncertainty.365

The retrieval uncertainty is larger than the results from the RSP instrument using a spectral range of 410-1590 nm, where the

MAE between the true the retrieval values is less than 250 m (Wu et al, 2016),
::::::::::::::
(Wu et al., 2016),

:
probably as HARP2’s shortest

wavelength is 440 nm and it has a larger polarimetric uncertainty of 0.005 comparing with RSP (0.002). However, the ALH

can be still useful for radiative forcing studies (e.g., Jia et al. (2022)) and air quality investigations (e.g., Wang and Christopher

(2003)).370

Due the wide angular range and the inclusion of sunglint signals in the NN forward model, the
:::
real wind speed accuracy are

found much higher ( 1 m /s
:::
s−1) comparing to previous studies of 2-3 m /s, although the smaller theoretical uncertainties

:::
s−1

::::::::::::::
(Gao et al., 2022)

:
.
:::
The

:::::::::
theoretical

::::::::::
uncertainty

:::
has

:
a
:::::::
smaller

:::::
value

::::::
around

:::
0.5

::
m

:::
s−1

::::::
,which

:
suggest further room for retrieval

improvement. The Chla
:::::
Chl-a uncertainties are evaluated as the MAE of the log10(Chla

::::
Chl-a) uncertainty as recommended by

Seegers et al (2018):375

MAE(log) = 10Y where Y =
1

N

N∑
i=1

| log10(Ri)− log10(Ti)| (7)

where Ri and Ti denote the retrieval and truth values. This “multiplicative error” is a relative, dimensionless metric and takes

values of 1 or more, where 1 indicates no error, 1.5 indicates a 50% error, and so on. Fig.
:
9 e1 shows that Chla

:::::
Chl-a can be

retrieved accurately with a ratio mostly less than 2.0, which suggests potential of the MAP data for the evaluation of ocean

properties. However, this would become challenging when the ocean water optical properties are more complex (Gao et al.,380

2019). Larger differences between the theoretical and real uncertainties are found mostly at AOD >0.2, as the ocean signal

becomes increasingly obscured by the aerosols.
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Figure 9. Comparison of theoretical (red) and real retrieval uncertainties (blue) as a function of AOD for AOD, SSA, real part of refractive

index (mr), effective radius (reff ) and variance (veff ), wind speed, and Chla
::::
Chl-a. AOD, fine mode AOD, and coarse mode AOD values

are used at the x-axis from 0.01 to 0.45 with a step of 0.01.

For the fine mode, theoretical and real uncertainties are compared in Fig
:
. 9 (a2-e2). Fine mode AOD seems to perform

similarly to total AOD. The theoretical uncertainties agree with the real uncertainties when fine mode AOD is larger than 0.1

but underestimate real uncertainties when AOD is lower. This may indicate smaller sensitivity and larger instability due to the385

impacts of local minima in cost function. However, the theoretical uncertainty seems to capture the real uncertainty well for

effective radius and variance across the range of fine mode AOD.

For the coarse mode, as the range of the coarse mode imaginary refractive index in MERRA2 is limited (mostly < 0.001,

probably due to the dominance of sea salt or other coarse soluble aerosols), we limited the retrieval of this parameter to a

similar range. The large spread of retrieved SSA in Fig.
:
8 (c) suggests the lack of sensitivity on the retrieval of coarse mode390

imaginary refractive index. The uncertainties are captured well by the theoretical uncertainties by Fig
:
.
:
9(c3). After launch,

sensitivity studies will be required to better prescribe the coarse mode imaginary refractive index. From the current synthetic

data analysis, the real uncertainties are much larger than the theoretical uncertainties for coarse mode properties.
:
Low sensitivity

is expected due to the low aerosol loading and lack of longer-wavelength shortwave infrared (SWIR) bands and therefore the

challenges to converge to the global minimum of the cost function. The real uncertainties on coarse AOD are much larger395

than the fine mode uncertainties with a value up to 0.03, although the theoretical uncertainty for coarse mode AOD is smaller

(0.002-0.005) than the fine mode AOD uncertainty (0.005-0.015), possibly due to the stronger constraint on the coarse mode
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absorption. For PACE data, a future synergy with the SWIR bands from OCI may be used to improve the coarse mode retrieval

quality (Hasekamp et al 2019). However, the impact of the coarse mode aerosols in the application of atmospheric correction

may be less severe due to its small overall value and weak spectral variation.400

4 Discussion and conclusions

In this study we illustrate improvements to the radiative transfer behind and computational practicality of the FastMAPOL

retrieval algorithm tailored to the HARP2 sensor. We also systematically investigate the retrievability of aerosol and ocean

parameters and their uncertainty. The retrieval algorithm was greatly improved by incorporating high performance NN forward

models trained for the
::::::::
illustrated

::
the

::::::::::::
advancements

:::::
made

::
to

:::
the

::::::::::
FastMAPOl

:::::::
retrieval

::::::::
algorithm,

::::::::
including

::::::
various

::::::::::::
improvements405

::
in

:::
the

::::::::
radiative

:::::::
transfer

::::::
model,

:::
NN

:::::::
training

:::::::::::
methodology,

:::
NN

:::::::::::
architecture,

:::
and

:::::::
retrieval

:::::::
scheme:

:

–
::::::::
Radiative

::::::
transfer

::::::
model:

:::
We

::::::::
improved

:::
the

:::::::
radiative

:::::::
transfer

:::::
model

:::::
which

:::
are

::::
used

::
to

:::::::
generate

:::
the

:::::::
training

::::
data

::
for

:
space-

borne HARP2 measurements. The computational challenges in processing MAP data are further reduced by applying a

cascaded approach in FastMAPOL in a two-step retrievalwith a processing time of 0.11 s using a single AMD EPYC

processor. The speed to process a single PACE L1C 5 min granules with roughly 400× 400 pixels can be finished410

within 5 hours in a single CPU core. This illustrates that global-scale MAP data processing is feasible.
::::::::::
measurement

:::
by

::::::::
including

:::::::
spherical

:::::
shell

:::::::::
correction,

:::::::
realistic

::::
solar

::::
and

:::::::
viewing

:::::::::
geometries,

:::::::::
additional

:::::
input

:::::::::
parameters

::::
such

::
as

:::::::
surface

:::::::
pressure

:::
and

::::::
aerosol

:::::
layer

::::::
height.

A full day of the global synthetic HARP2 data were generated based on the newly improved neural network forward

model. The synthetic dataset was fed to FastMAPOL to analyze the retrieval uncertainties for the415

–
:::::::
Training

:::::::::::
methodology:

::::
The

::::
NN

::::::
models

:::
are

::::::
trained

::
by

::::::::::::
incorporating

:::
the

:::::::::::
measurement

:::::::::
uncertainty

::::::
model

::
in

:::
the

:::::::
training

:::
cost

:::::::
function

::::::
which

:::::
better

::::::::
represent

:::::::
sunglint

::::::
signals

:::
and

::::
help

:::::::
improve

:::
the

:::
NN

::::::::
relevance

:::
to

::
the

:::::::::
retrieval’s

::::::::
operation.

:

–
:::
NN

::::::::::
architecture:

:::::::
Flexible

::::
NN

::::::
models

::::
with

::::::
various

:::::::
number

::
of

::::::
hidden

:::::
layers

:::
and

:::::::
number

::
of

:::::
nodes

:::
are

::::::::::
investigated,

::::::
which

::::::
achieve

:::::::
different

::::::
speeds

::::
and

:::::::::
accuracies.

–
:::::::
Retrieval

:::::::
scheme:

::::
Two

:::::
levels

::
of

::::
NN

::::::
models

::::
with

::::::::
increasing

:::::
sizes

:::
and

:::::::::
accuracies

:::
are

::::
used

::
in

:
a
::::::::
cascading

:::::::
retrieval

:::::::
scheme420

::
to

::::::
achieve

::::
high

:::::::
retrieval

:::::::::
efficiency

:::
and

:::::::::::
performance.

:

::::
With

:::
the

::::::::
improved

::::
NN

::::::
models

::::
and

:::::::
retrieval

::::::::
schemes,

:::
we

::::
also

::::::::::::
systematically

:::::::::
investigate

:::
the

:::::::::::
retrievability

:::
of

::::::
aerosol

::::
and

:::::
ocean

:::::::::
parameters

::::
and

::::
their

::::::::::
uncertainty.

::::
The

:::::::
retrieval

:::::::::::
uncertainties

:::
are

::::::::
analyzed

:::::
based

:::
on

:::
the

:::::::::::
FastMAPOL

::::::::
retrievals

:::
on

:::
the

:::::::
synthetic

::::::::
datasets,

::::::::
including

:::
the

:
aerosol optical properties such as AOD and SSA, and microphysical properties including

aerosol size, refractive index, and height with more realistic statistics of the parameter values and viewing and solar geometries.425

:::
For

::::::::
example,

::
the

::::::
overall

:::::::::::
uncertainties

:::
for

:::::
AOD

:::
and

:::::
wind

:::::
speed

:::
are

::::
0.01

:::
and

:::
1.4

::::::
ms−1. The retrieval uncertainties

:
at
:::
the

:::::
pixel

::::
level are shown to depend on the number of available viewing angles and the aerosol loading. Fine mode aerosol properties

:
,

::::
such

::
as

::::::
aerosol

::::::::
refractive

:::::
index,

:
generally show smaller retrieval uncertainties, and better agreement between error propagation

21



uncertainties and real uncertainties from simulated retrievals. Coarse mode aerosol retrieval uncertainties are larger and not

fully captured by error propagations. Furthermore, we
:::
We

:
also demonstrated, HARP2 measurements contain sensitivity

::
can

:::
be430

::::
used to derive aerosol layer height with an uncertainty of 0.5 to 1km

:::
1.0

:::
km depending on the aerosol loading.

Based on retrieval results, water-leaving signals can be derived
::::::::
Regarding

:::
the

:::::::
retrieval

::::::
speed,

::
in

:
a
::::::::

previous
::::::
version

:::
of

:::
the

::::::::::
FastMAPOL

::::::::
algorithm

:::
we

::::::::
employed

::::
NN

::::::
forward

:::::::
models

:::
with

:::::::::
analytical

:::::::
Jacobian

:::::::::
evaluation

:::::
based

::
on

::::::::
automatic

::::::::::::
differentiation,

:::::
which

:::
had

:::::::::
expedited

:::
the

:::::::::
processing

::
of

:::
the

:::::::::
AirHARP

::::
data

::::
from

:::
one

:::::
hour

:::
per

::::
pixel

:::::
using

:::::::::
on-the-fly

:::::::
radiative

:::::::
transfer

:::::::
forward

:::::
model

::::::::::
simulations

::
to

::::::
around

::::
0.3

::::::
second

:::
per

:::::
pixel

::::::::::::::::::
(Gao et al., 2021a, b).

::
In

::::
this

:::::
study,

::::
the

:::::::::
processing

:::::
speed

:::
of

:::
the

:::::::
HARP2435

:::::::
synthetic

::::
data

::
is

::::::
further

::::::::
improved

::
to

:::::
about

:::
0.2

::::::
second

:::
per

::::
pixel

:::
by

:::::::::
optimizing

:::
the

::::::::
numerical

:::::
code.

::
It

::
is

::::::
further

::::::
reduced

::
to
:::
0.1

::
s

::::
using

::
a
:::::
single

::::
CPU

::::
core

:::
by

:::::::
applying

::
a
::::::::
cascaded

:::::::
approach

:::
in

:::::::::::
FastMAPOL.

::::
With

:::
the

::::::
newest

:::::::::::
development

:::
the

:::::
speed

::
to

:::::::
process

:
a
:::::
single

::::::
PACE

::::
L1C

::
5

:::
min

::::::::
granules

::::
with

:::
an

::::
order

:::
of

:::
400

::
x
::::
400

:::::
pixels

:::
can

:::
be

:::::::
finished

::::::
within

:
5
:::::

hours
:::

in
:
a
::::::
single

::::
CPU

:::::
core.

::
As

:::::::
already

:::::::::::
demonstrated

::
in

:::
our

:::::::
system,

:::
the

:::::
whole

:::
day

:::
of

:::::::
synthetic

::::
data

:::::
were

::::::::
processed

::::::
within

:
5
:::::
hours

:::
by

:::::::
utilizing

:::::::::
distributed

:::::::::
computing

:::
and

:::::::
running

::
all

:::::::
granules

:::::::::
parallelly.

::::
This

::::::::
illustrates

::::
that

::::::::::
global-scale

:::::
MAP

::::
data

:::::::::
processing

:
is
::::::::
feasible.440

::::::::::
Furthermore,

:::::::::
additional

:::::
ocean

::::::::
properties

::::
can

::
be

::::::
derived

:::::
from

::
the

:::::
MAP

::::::::::::
measurements

:::
and

:::::::
retrieval

:::::::
results.

:::
For

:::::::
example,

::::
NN

::::::
models based on the

:::::::
retrieved

::::::
aerosol

::::
and

:::::
ocean

:::::::::
parameters

::::
have

:::::
been

::::
used

::
to

:::::
obtain

::::::::::::
water-leaving

::::::
signals

:::::::
through

:::
the atmo-

spheric and BRDF corrections on all HARP angles, both represented by NN (Gao et al., 2021a). The
:::
real

::
or

:::::::
synthetic

:::::::::
AirHARP

:::
and

:::::::
HARP2

::::::::::::
measurements

::::::::::::::::::::
(Gao et al., 2021a, 2022)

:
.
::::::::
Similarly,

:::
the

:
retrieved aerosol properties may

:::
can

:
be used to assist the

hyperspectral atmospheric correction on PACE OCI (Gao et al., 2019; Hannadige et al., 2021). Furthermore, multi-angle data445

screening can be applied to mitigate impacts from cirrus cloud and other anomalies (Gao et al., 2021b), and derive multi-angle

water leaving signals. The results will be provided in a future study.
::
as

:::::::::::
demonstrated

:::::
using

::::::
SPEX

:::
data

:::
as

:
a
::::::
PACE

::::
OCI

:::::
proxy

:::::::::::::::::::::::::::::::::
(Gao et al., 2019; Hannadige et al., 2021)

:
.
:::
NN

:::::::
methods

::::
can

::
be

::::
also

::::
used

::
to

::::::
predict

:::
the

::::::::::
polarimetric

:::::::::
reflectance

:::::::::
associated

::::
with

:::::::
complex

:::::
water

::::::
optical

::::::::
properties

::::::::::::::::::::
(Mukherjee et al., 2020)

:
,
:::::::::::
instantaneous

:::::::::::::::
photosynthetically

::::::::
available

::::::::
radiation

::::::
models

::::::
within

:::::
ocean

:::::
bodies

::::::::::::::::
(Aryal et al., 2022)

:
,
:::
and

:::::
derive

:::::::
in-water

::::::
optical

:::::::::
properties

::::
from

:::
top

::
of

::::::::::
atmosphere

:::::
MAP

::::::::::::
measurements

::
for

::::::
PACE450

::::::::::::::::::
(Agagliate et al., 2023)

:
.

Based
:::::::::
Therefore,

:::::
based on the improved NN forward models, this study provided an efficient space-borne MAP data process-

ing algorithm, and discussed the data product and their associated uncertainties analyzed from a global scale synthetic HARP2

dataset.
::
For

::::
the

:::::
future

::::::::::
application

::
to

:::
the

::::
real

:::::::
satellite

::::
data

::::
after

:::::
PACE

:::::::
launch,

::
it

:::::
would

:::
be

::::::::
important

:::
to

::::::
ensure

:::
the

:::::::
forward

:::::
model

::
is

::::::::::
appropriate

:::
for

:::
the

::::::::::::
measurements

:::
by

:::::::::
conducting

:::::
input

::::
data

:::::::
quality

::::::
control

::::
and

::::
data

::::::::
screening

::::::::::::::::
(Gao et al., 2021b)455

:
.
::::::
Further

::::::::::
evaluations

:::
on

:::
the

:::::::::::
measurement

::::::::::
uncertainty

:::::
model

::::
can

::
be

:::::::::
conducted

:::
by

:::::::::
comparing

:::::
with

:::::
fitting

:::::::
residual

::::::::
statistics

::::::::::::::
(Gao et al., 2023)

:
. The algorithm and uncertainty analysis provide a viable way to process global HARP2 data, and improve

our capability to observe, understand, and protect our environment.

Appendix A: Evaluation of NN forward model uncertainty

As discussed in Sec
::::
Sect.

:
2, to evaluate the NN uncertainty interpedently, we use an additional 1000 set of simulation to with460

realistic HARP geometries formulated by Gao et al. (2021b). To further evaluate the accuracy of the NN, both mean average

22



error (MAE) and root mean square error (RMSE) are computed for both reflectance and DoLP as shown in Fig.
:
A1 and Table

A1. As discussed in Gao et al. (2022), MAE is more robust than RMSE to outliers. We estimate the NN uncertainties using

MAE as σNN = π/2×MAE, which is equivalent by assuming the error following a Gaussian distribution (Gao et al., 2022).

Note that the RMSE is slightly larger than σNN . The estimated errors are similar to the results obtained in Gao et al. (2021a),465

where 20k training data each sampled with 100 angles are used. Here, we decreased the training data set to 10k, but sampled

each case at 1000 angles. Note that in this study, we have included the angles with sunglint, which includes many more cases

in the uncertainty evaluations. To further improve the accuracy, we need increase both the NN size and training data volume. a

balance of training data volume, NN speed (smaller size), NN accuracy (larger size, larger training data volume) are discussed

in Sec
::::
Sect. 2. NN accuracy are estimated with a value of 0.5% for NN size of 5123, and a value of 0.002 for DOLP

:::::
DoLP470

using 5123, both are slightly larger than estimation from the training cost function but in a similar scale as discussed in Sec

::::
Sect. 2. The estimated NN uncertainties can be included in the total uncertainty model in the retrieval cost function as discussed

by Gao et al. (2021a).

Figure A1. Comparison between the radiative transfer simulation and NN prediction, left panel: reflectance (ρ); right panel: DoLP (P ). The

scatter plots are shown in the top panel, the absolute different in the middle panel, and the percentage difference in the bottom panel. For

each plot, the data points for the 550, 660 and 870nm bands are shifted upward by constant offsets consecutively as indicated by the solid

cyan lines.
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Table A1. Comparisons of the uncertainties for reflectance (ρ) and DoLP (P) for both measurement and forward model including calibration

uncertainty (σcal), the radiative transfer simulation uncertainty (σRT ), and the NN uncertainty (σNN ). The percentage values listed in the

table indicate the percentage uncertainties.)

Quantities Uncertainties 440nm 550nm 670nm 870nm

ρt σcal 3% 3% 3% 3%

σRT 0.00012 (0.08%) 0.00005 (0.07%) 0.00010 (0.2%) 0.00015 (0.4%)

RMSENN 0.0012(0.52%) 0.0011(1.22%) 0.0014(1.79%) 0.0014(0.90%)

MAENN 0.0005(0.28%) 0.0004(0.38%) 0.0004(0.47%) 0.0004(0.58%)

σNN 0.0007(0.35%) 0.0005(0.47%) 0.0005(0.59%) 0.0005(0.72%)

Pt σcal 0.005 0.005 0.005 0.005

σRT 0.0002 0.0002 0.0005 0.0007

RMSENN 0.0021 0.0020 0.0023 0.0028

MAENN 0.0011 0.0013 0.0015 0.0019

σNN 0.0014 0.0016 0.0018 0.0023
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