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Abstract. Satellite-derived spatiotemporal patterns of nitrogen oxide (NOx) emissions can improve accuracy of emission 

inventories to better support air quality and climate research and policy studies. In this study, we develop a new method by 

coupling the chemical transport Model-Independent SATellite-derived Emission estimation Algorithm for Mixed-sources 

(MISATEAM) with a divergence method to map high-resolution NOx emissions across US cities using TROPOspheric 

Monitoring Instrument (TROPOMI) tropospheric nitrogen dioxide (NO2) retrievals. The accuracy of the coupled method is 20 

validated through application to synthetic NO2 observations from the NASA-Unified Weather Research and Forecasting (NU-

WRF) model, with a horizontal spatial resolution of 4 km × 4 km for 33 large and mid-size US cities. Validation reveals 

excellent agreement between inferred and NU-WRF-provided emission magnitudes (R = 0.99, Normalized Mean Bias, NMB 

= -0.01) and a consistent spatial pattern when comparing emissions for individual grid cells (R = 0.88 ± 0.06). We then develop 

a TROPOMI-based database reporting annual emissions for 39 US cities at a horizontal spatial resolution of 0.05°×0.05° from 25 

2018 to 2021. This database demonstrates a strong correlation (R = 0.90) with the national emission inventory (NEI) but 

reveals some bias (NMB = -0.24). There are noticeable differences in the spatial patterns of emissions in some cities, which 

suggests potential misallocation of emissions and/or missing sources in bottom-up emission inventories. 

1 Introduction 

Nitrogen oxides (NOx), including nitrogen dioxide (NO2) and nitric oxide (NO), play a vital role as trace gases in the 30 

atmosphere. They substantially contribute to the formation of secondary aerosols and tropospheric ozone (Seinfeld and Pandis, 
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2006), which in turn impact climate and human health. The primary source of NOx emissions is fossil fuel combustion from 

mobile and industrial sources, often concentrated in urban areas (Crippa et al., 2018). Traditionally, NOx emissions are 

compiled using "bottom-up" methods that rely on total fuel usage and average emission factors. However, determining urban 

emissions is challenging due to the difficulty of obtaining comprehensive data on operating conditions of emitters and their 35 

rapidly changing emission factors (Liu et al., 2016b) at the city level (Butler et al., 2008). Spatial distribution of emissions is 

commonly estimated by applying proxies, such as road network maps and/or population density maps, to allocate total 

emissions onto a grid. This process may introduce significant biases due to spatial mismatches between emission locations and 

spatial proxies (Woodard et al., 2014; Hogue et al., 2016).  

Tropospheric NO2 vertical column densities (VCDs) retrieved from satellite observations offer valuable insights into the 40 

magnitude and location of global NOx emissions (Martin et al., 2003; Lamsal et al., 2011). Techniques leveraging Chemical 

Transport Models (CTMs) have been developed to relate NO2 VCDs to NOx emissions. For example, the extended (Ding et 

al., 2017) and ensemble (Miyazaki et al., 2017) Kalman filter, the four-dimensional variational (4D-Var) method (Henze et 

al., 2007, 2009), and the hybrid mass balance/4D-Var (Qu et al., 2019). 

Alternative methods, which are independent of CTMs, have also been proposed to characterize NOx plumes from major sources 45 

(e.g., Beirle et al., 2011; Liu et al., 2016a; Laughner and Cohen, 2019). Early studies employed one dimensional (1D) empirical 

plume dispersion functions to fit NO2 VCDs surrounding isolated sources. Liu et al. (2016a, 2022) refined these functions to 

accommodate the description of NO2 plumes from sources in polluted background. The derived fitting parameters yield the 

magnitude of NOx emissions for point sources, such as power plants (de Foy et al., 2014), and cities, by assuming these sources 

as equivalent point sources (Lu et al., 2015; Liu et al., 2017; Goldberg et al., 2019). A recent study (Beirle et al., 2019) 50 

introduced a two-dimensional (2D) divergence approach, enabling the identification of finer details in NOx distributions and 

thus facilitating the detection of smaller sources. Subsequent studies have further refined this approach to enhance divergence 

calculation (de Foy and Schauer, 2022) and to optimize its performance over mountainous regions (Sun, 2022). Current 

applications of this divergence method primarily focus on inferring emissions from point sources, e.g., power plants in South 

Asia (de Foy and Schauer, 2022), oil and gas production areas in the United States (Dix et al., 2022), and a global catalog of 55 

point sources (Beirle et al., 2021, 2023). However, the robustness of applying the approach for area sources such as cities has 

seldom been investigated. 

The main goal of this study is to map NOx emissions across major cities in the US based on the TROPOspheric Monitoring 

Instrument (TROPOMI; Veefkind et al., 2012) retrievals of NO2 VCDs (Ialongo et al., 2020). We will couple the 1D (Liu et 

al., 2022) and 2D (Beirle et al., 2019) CTM-independent approaches to infer gridded NOx emissions. Due to the absence of 60 

established "true emissions" to serve as a standard for comparison, gauging the precision of the coupled method becomes 

challenging. We will employ synthetic NO2 observations, generated by a model simulation, to appraise the accuracy of the 

approach. Section 2 offers a summary of the satellite data used to map urban NOx emissions, and the synthetic NO2 observations 

used for validation. In Section 3.1, we assess the coupled approach by juxtaposing the emissions inferred from synthetic NO2 

observations with the true emissions used by the model for generating the synthetic observations. In Section 3.2, we compare 65 
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the emissions derived from satellite data with the National Emission Inventory (NEI) developed by the United States 

Environmental Protection Agency (US EPA) to shed light on the uncertainties of both and bottom-up emissions. Section 3.3 

summarizes the uncertainties of the method and the TROPOMI-derived emissions. We discuss the robustness of the derived 

emissions and outline the plan work in Section 4.  

2 Data and Methods 70 

2.1 TROPOMI NO2 dataset 

TROPOMI is a UV-VIS-NIR-SWIR nadir-viewing imaging spectrometer (Veefkind et al., 2012) on board the Sentinel 5 

Precursor (S5P) satellite that was launched in 2017. It has a ground pixel size as small as 3.5´5.5 km2 at nadir. It provides 

daily global coverage with a local equator crossing time of approximately 13:30 h. The instrument’s radiance and irradiance 

measurements are utilized to obtain slant NO2 columns using the Differential Optical Absorption Spectroscopy (DOAS) 75 

algorithm (Platt and Stutz, 2008). The slant columns are subsequently differentiated into stratospheric and tropospheric parts, 

with the tropospheric slant columns being further converted to vertical columns based on air mass factors.  

We selected TROPOMI NO2 retrieved by NASA Goddard Space Flight Center (GSFC) in this study due to its utility in 

investigating emission trends. The official NO2 product available at the commencement of this study switched the processor 

version in December 2020, which introduced a discontinuity in the time series (van Geffen et al., 2022). The GSFC product 80 

(Lamsal et al., 2022) utilizes slant columns from the official product to retrieve a full time series of tropospheric NO2 VCDs 

from spring to autumn months of 2018 to 2021 based on the algorithm developed for the Ozone Monitoring Instrument (OMI) 

Aura NO2 standard product version 4.0 (Lamsal et al., 2021). TROPOMI NO2 data has been reported to have an overall low 

bias (Judd et al., 2020; Tack et al., 2021; Verhoelst et al., 2021; Wang et al., 2020), which will be propagated into emissions 

inferred from TROPOMI NO2.  85 

We further aggregate TROPOM’s individual measurements at spatial resolution of 0.05°´0.05° by averaging the original pixels 

weighted by the fraction of the overlapping surface area. Only high-quality pixels with a quality assurance value (qa_value) 

above 0.75 are considered for averaging. Following the approach of earlier research (e.g., Liu et al., 2017), our analysis is 

confined to the data from May through September. This decision is made to omit winter data, characterized by longer NOx 

lifetimes, which in turn lead to greater uncertainties to the method. 90 

2.2 Emission mapping algorithm 

We couple our 1D CTM-Independent SATellite-derived Emission estimation Algorithm for Mixed-sources (MISATEAM; 

Liu et al., 2022) with the 2D divergency method of Beirle et al. (2019). The coupled algorithm (hereafter referred as 2D 

MISATEAM for simplicity) is capable of mapping NOx emissions over urban areas. For data from May to September each 

https://doi.org/10.5194/egusphere-2023-1842
Preprint. Discussion started: 20 September 2023
c© Author(s) 2023. CC BY 4.0 License.



4 
 

year, we sum the divergence of the NOx flux D with the NOx sink S to infer NOx emissions E based on the continuity equation 95 

for steady state following: 

𝐸 = 𝐷 + 𝑆             (1) 

𝐷 = 𝑅!"!:!"" × ∇ ∙ �⃗� = 𝑅!"!:!"" × ∇ ∙ �⃗�(Ω − 𝑏)         (2) 

𝑆 = 𝑅!"!:!"" × (Ω − 𝑏)/𝜏,           (3) 

Where �⃗� is the NOx flux. It is calculated from the horizontal fluxes of NO2 VCDs W . 𝑅!"!:!"" is the ratio of NOx to NO2 100 

columns. Following previous studies (Beirle et al., 2019), we use an 𝑅!"!:!""value of 1.32 to represent “typical urban 

conditions and noontime sun” (Seinfeld and Pandis, 2006). We interpolate the Goddard Earth Observing System Forward 

Processing for Instrument Teams (GEOS FP-IT) reanalysis wind vectors (Lucchesi, 2015) to the TROPOMI overpass time 

and average layers from surface to 1000 m altitude to derive �⃗� used in Eq. (2). Since the NOx sinks are dominated by the 

chemical loss through the reaction of NO2 with OH at TROPOMI’s local overpass time (13:30 local time), it can be 105 

characterized by a first order effective NOx lifetime τ. Consequently, it bears a proportionate relationship to the NO2 VCD 

itself in Eq. (3). Note that we subtract the NO2 background b from W  in the calculation of the divergences and the sinks, 

because we aim to remove the natural and non-local contributions from the total emissions in order to infer urban emissions. 

For each city, we infer b and τ by applying 1D MISATEAM (Liu et al., 2022) to NO2 VCDs averaged from May through 

September, 2018–2021, assuming b and τ are constant over years. Additional technical details for deriving b and τ are given 110 

in Fig. S1 and Text S1 of the Supplement. 

The city of New York serves as a case study to showcase our approach. With its substantial size and numerous point and area 

sources, this city is an ideal illustration of the capability of 2D MISATEAM to map emissions from various sources. Figure 

1a–c illustrate maps of the derived sink S, the divergence D, and the resulting NOx emissions E, respectively. The divergence 

of the NOx flux (Fig. 1b) presents enhancement throughout the urban area due to emissions from traffic and industrial sources. 115 

The divergence is negative outside the urban areas, because the change of the NOx flux is dominated by chemical loss here. 

The addition of sinks (Fig. 1a) compensates for such negative divergences, resulting in the emission pattern E (Fig. 1c). Two 

point sources emissions on Long Island stand out: Glenwood Landing power station (labelled as power plant PP) and John F. 

Kennedy (JFK) airport, respectively. 

We apply 2D MISATEAM to US cities with populations exceeding 200,000, a categorization that corresponds to medium to 120 

large urban areas as designated in Organization for Economic Co-operation and Development (OECD) countries. Adjacent 

cities, those situated within 50 km of the most populous city in an urban conglomeration, are treated as a single city cluster. 

Cities producing significantly weaker NO2 signals than the surroundings are excluded (see criteria in Text S2 of Supplement). 

The specified criteria yield a combined count of 52 cities and urban conglomerations (refer to Table S1) that are suitable for 

the application of 2D MISATEAM. We obtained valid results from 39 of these cities shown in Fig. S2.  Cities with invalid 125 

results are associated with large fitting errors (see Text S2 of the Supplement). 
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2.3 National Emission Inventory (NEI) 

We compare emissions derived in this study with those of the bottom-up NEI 2019 processed by George Mason University 

(Ma and Tong, 2022). NEI is a comprehensive estimate of emissions of criteria air pollutants and their precursors from point, 

mobile and area sources, which has been widely used to support urban air quality model simulations. The large point sources 130 

in NEI are compiled based on direct stack emissions measurements by continuous emissions monitoring systems (CEMS). For 

non-point sources, the gridded data is generated using spatial proxies such as roadway-level traffic data for distributing 

aggregate emissions to grid cells. Figure 1d displays a map of NEI estimates ENEI at a spatial resolution of 12 km for 2019. 

NEI has been reported to be biased high by 30-70% in the early years of the 2010s (Choi and Souri, 2015; Dickerson et al., 

2019). For example, NEI NOx estimates for 2011 were potentially overestimated by 51–70% over the Baltimore-Washington 135 

region (Anderson et al., 2014), 30–60% in the Southeastern US (Travis et al., 2016), and 30–60% over urban areas of Texas 

(Souri et al., 2016). NEI NOx emissions for mobile sources alone were reported to be biased high by 28% (McDonald et al., 

2018). We use the lower bound of the reported bias (30%) as the uncertainty for NEI emissions in this study. The spatial 

distribution of our estimated emissions E (Fig. 1c) is generally in good agreement with that of NEI emissions (Fig. 1d), with a 

correlation coefficient of 0.71. More comparisons between these two inventories will be discussed in Section 3.2. 140 

2.4 NU-WRF simulations 

We use a regional modeling system, the NASA-Unified Weather Research and Forecasting (NU-WRF; Tao et al., 2013; Peters-

Lidard et al., 2015), to provide synthetic tropospheric NO2 VCDs Ω!$%&'( and wind fields 𝑣!$%&'(444444444444444444⃗  over the continental US. 

The domain of the simulation is illustrated in Fig. 2 of Liu et al. (2022). We perform the 2016 NU-WRF simulation at a high 

horizontal spatial resolution of 4 km × 4 km, comparable to the TROPOMI footprint. The meteorological and chemical initial 145 

conditions and their lateral boundaries are obtained from NASA’s Modern Era Retrospective-Analysis for Research and 

Applications version 2 (MERRA-2; Gelaro et al., 2017) and the Community Atmosphere Model with chemistry (CAM-chem; 

Lamarque et al., 2012), respectively. Additional model set-up information, including the chemical mechanism, aerosol module, 

and emissions are detailed in Tao et al. (2020) and Liu et al. (2022). We integrate simulated NO2 concentrations from the 

surface to the tropopause to provide Ω!$%&'(. We average wind fields used by NU-WRF from the surface to an altitude of 150 

1000 m to compute 𝑣!$%&'(444444444444444444⃗ .  

We apply 2D MISATEAM to the synthetic NO2 VCDs Ω!$%&'( and wind fields 𝑣!$%&'(444444444444444444⃗  to map NOx emissions ENU-WRF for 

cities in Table S1. We derive valid results for 33 cities (see Text S2 of Supplement). We have valid results for a smaller number 

of cities compared to results derived from TROPOMI data, as cities at the edge of the NU-WRF domain, such as Seattle and 

San Francisco, are omitted. Since the model output partially lacks the data for their inflow/outflow plumes, it fails to satisfy 155 

the requirement for the application of 2D MISATEAM. We further compare ENU-WRF with “true emissions” directly given by 

the model 𝐸!$%&'()  (hereafter referred to as “given emissions”), which are used to drive NU-WRF simulations, to assess the 

accuracy of 2D MISATEAM. 
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2.5 Performance evaluation 

We sum up NOx emissions from each grid cell within the city’s domain to provide a total emission for an individual city. The 160 

city domain is defined as 70 km × 70 km around city center for most cities, which is large enough to include all urban areas. 

We use a larger domain of 100 km × 100 km for New York, Chicago, Los Angeles and Houston due to their larger expanse. 

The model performance metrics of the Normalized Mean Bias (NMB) and the Root Mean Squared Error (RMSE) for the 

evaluation are defined as 

𝑁𝑀𝐵 = ∑ (,-./#%,-./#
$)%

#&'
∑ ,-./#

$%
#&'

            (5) 165 

and 

𝑅𝑀𝑆𝐸 = 8∑ (𝑬𝒎𝒊𝒔𝒊%𝑬𝒎𝒊𝒔𝒊
$)𝟐𝒏

𝒊&𝟏
𝒏

,          (6) 

respectively, where i denotes an individual city, while n refers to the total count of cities utilized for the evaluation. Emis 

denotes the total emission from the MISATEAM-derived datasets (i.e., E or ENU-WRF), and Emis’ denotes the total emission 

from benchmark emission datasets (i.e., ENEI or 𝐸!$%&'() ). We also assess the intracity spatial correlation Rintracity by calculating 170 

the correlation coefficient of emissions at grid level over the city domain between E and ENEI or between ENU-WRF and 𝐸!$%&'() . 

3 Results and discussions 

3.1 Validation using NU-WRF simulations 

We compare MISATEAM-derived NOx emissions ENU-WRF with given emissions 𝐸!$%&'()   to validate 2D MISATEAM. The 

validation indicates the uncertainty of MISATEAM assuming a best-case scenario with perfect knowledge of the winds and 175 

errorless satellite NO2 retrievals. Figure 2 compares the total emissions from the two datasets for the 33 cities (Table S1). The 

correlation coefficient is 0.99, which indicates an excellent agreement between the two datasets. The overall bias computed 

over all valid cities is generally low (NMB = -0.01) and the RMSE is also low (0.21 kg s-1).  

We assess 2D MISATEAM’s performance to infer the spatial distribution of emissions. Figure 3 displays the emission maps 

around the city of Jacksonville, Florida. ENU-WRF (Fig 3c) and 𝐸!$%&'()  (Fig. 3d) show a high intracity spatial correlation 180 

Rintracity of 0.92. This good consistency is substantially better than the comparison of 𝐸!$%&'()   with the tropospheric NO2 VCD 

Ω!$%&'( (Fig. 3a; Rintracity = 0.75), which is often considered to be a reasonable spatial proxy of emissions locations. We 

further compare the correlation with the comparison of 𝐸!$%&'()  with Ω!$%&'( under calm wind conditions (Fig. 3b). We 

use the threshold of 2 m s-1 as the criterion for calm wind, allowing for the attainment of an adequate sample size. This threshold 

reduces the error associated with transport by increasing Rintracity from 0.75 (Fig. 3a) to 0.80 (Fig. 3b). However, this correlation 185 

is still smaller than that between ENU-WRF and 𝐸!$%&'() , suggesting that 2D MISATEAM is successful in allocating emissions 
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by accounting for NOx transport. Similar enhanced correlations are observed for all 33 cities. Figure 2 illustrates Rintracity of 

ENU-WRF and 𝐸!$%&'()  for individual cities (0.88 ± 0.06, mean ± standard deviation). These correlations are larger than the 

comparison of Ω!$%&'( (0.78 ± 0.09) or Ω!$%&'( under calm wind conditions (0.80 ± 0.08) against 𝐸!$%&'() .  

3.2 TROPOMI-based NOx emissions 190 

We compare TROPOMI-based NOx emissions E with NEI estimates ENEI for 2019 in Fig. 4. The total emission estimates for 

individual cities in the two datasets generally agree well with each other, with a correlation R of 0.90. This level of correlation 

is comparable to the validation using NU-WRF simulations. The relative difference of the total emission between E and ENEI 

is within the uncertainty range of E (47%; see Section 3.3) for 31 out of 39 cities. The comparison for all cities shows a bias 

with NMB of -0.24. The bias is likely associated with uncertainties in the TROPOMI NO2 retrievals, which have been reported 195 

to be biased low by 23% on average (van Geffen et al., 2022). The bias may also arise from the uncertainties in NEI, which 

has been reported to be biased high by over 30% (Section 2.3). 

The comparison of intracity spatial distribution of emissions Rintracity shows more disparity in Fig. 4. We upscale E to the same 

spatial resolution of ENEI to calculate their Rintracity (Fig. S3). Rintracity between E and ENEI is 0.57 ± 0.16, which is smaller than 

that between ENU-WRF and 𝐸!$%&'()  in the evaluation using model data (0.88 ± 0.06; Fig. 2). The generally smaller values of 200 

Rintracity are likely caused by the uncertainties of both TROPOMI-based and NEI emissions. Compared to ENU-WRF inferred from 

perfect NO2 columns and wind fields, the uncertainties of TROPOMI NO2 retrievals (25%; van Geffen et al., 2022) and GEOS 

FP-IT wind reanalysis (30%; Liu et al., 2022) are propagated into the uncertainties of TROPOMI-based emissions E. More 

details about the uncertainties are discussed in Section 3.3. Uncertainties in ENEI also contribute to the disagreement. NEI uses 

spatial-distribution proxies, such as maps of population densities or road networks, to allocate country-level emissions from 205 

non-point sources onto a grid. This procedure may be associated with biases due to either a spatial mismatch between the 

locations of emissions and spatial proxies or incorrect emission magnitudes. Some hotspots shown in E are missing from ENEI 

(Fig. 1), indicating missing sources or misallocation of sources. 

Figure 5 presents the trends of derived NOx emissions across US cities from 2018 to 2021. A significant dip in emissions was 

observed in 2020, primarily attributed to the diminished NOx emissions in response to COVID-related lockdown policies (e.g., 210 

Liu et al., 2020). The 2020 emissions saw an average reduction of approximately 25% from 2019, in agreement with the 

findings of other studies (Goldberg et al., 2020; Miyazaki et al., 2021). Emissions in 2021 experienced a rebound compared to 

those in 2020; however, they are still lower than the pre-pandemic levels. The slopes of the linear regression lines in Fig. 5 

decrease from 0.91 in 2019 to 0.85 in 2021. This can be attributed to the long-term trend of decreasing emissions in the US, 

primarily driven by the downturn trend in vehicular NOx emissions (McDonald et al., 2018). 215 

3.3 Uncertainty analysis 

We follow the method proposed by Liu et al. (2022) to evaluate the uncertainties associated with the derived results. We 

attribute an uncertainty of 20% to the inferred emissions, based on the relative differences between ENU-WRF and 𝐸!$%&'()  for 
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all 33 cities using the NU-WRF synthetic data (2 ± 24%). Since the differences are less than 20% for most cities (73%), this 

estimate may be conservative. 220 

Instead of using data spanning multiple years (2018-2021), we apply 1D MISATEAM to annual data to investigate the 

uncertainty introduced by presuming a consistent NOx lifetime over several years. Using the data from May to September, 

valid NOx lifetimes were determined for 14 cities for individual years ranging from 2018 to 2021. The ratio of the standard 

deviation of the fitted τ for these individual years to the average τ, as derived from data from 2018 to 2021, stands at 16%. This 

indicates an uncertainty of 16% in relation to the assumption of a constant NOx lifetime.  225 

We identify additional uncertainties that may arise when implementing 2D MISATEAM to TROPOMI and GEOS-IT data as 

opposed to synthetic data, as follows: 

• The uncertainty of TROPOMI NO2 observations carries over into the uncertainty of the inferred emissions. We 

consider an overall uncertainty of 25% for TROPOMI tropospheric NO2 VCDs, following the recommendation from 

a recent validation using ground-based measurements (van Geffen et al., 2022). The uncertainty originates from 230 

various factors, including the spectral fitting process during the retrieval, the separation of stratospheric and 

tropospheric columns, and the tropospheric air mass factor (AMF). The potential bias arising from the separation of 

stratospheric and tropospheric columns is eliminated by the employment of the background terms b and bcalm within 

the model functions of MISATEAM. Since the random uncertainty of the tropospheric NO2 observations could be 

suppressed due to the consideration of long-term means, this estimate may be conservative. 235 

• The presence of clouds is an additional source of uncertainties. We exclude TROPOMI NO2 data with cloud radiance 

fraction of 0.5 or greater in our analysis. This exclusion may lead to a bias in the NO2 VCD averages, a consequence 

of eliminating data with changing NOx lifetime and NOx/NO2 ratio during cloudy conditions (Geddes et al., 2012). 

We attribute an uncertainty of 10% to cloud selection criteria based on an assessment carried out at urban locations 

(Geddes et al., 2012). More sensitivity analysis regarding the impact of clouds has been discussed by Liu et al. (2022). 240 

• The precision of wind fields plays an important role in determining the total uncertainty, as it limits the model 

functions’ ability to describe NO2 transport. We estimate the corresponding uncertainties to be 30% based on an 

assessment of reanalysis wind products using sounding measurements (refer to Table S3 in Liu et al., 2016a). 

We define the overall uncertainty of the inferred emissions as the root of the quadratic sum of the above-mentioned 

uncertainties, which are assumed to be independent. We thus calculate that the total uncertainty of MISATEAM-derived NOx 245 

emissions for a mid-size US city is 47%. 

4 Conclusions 

In this study, we developed a new method by coupling the 1D CTM-independent methodology (Liu et al. 2022), MISATEAM, 

with the 2D divergence approach (Beirle et al., 2019) to generate maps of NOx emissions across US cities, using TROPOMI 

NO2 observations. This coupled method, 2D MISATEAM, is suitable for sources within polluted backgrounds. Our initial 250 
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application of the approach used synthetic NU-WRF-generated tropospheric NO2 VCDs over the continental US to evaluate 

the method. The evaluation yielded robust agreement with the NU-WRF given values, presenting a high correlation coefficient 

(R = 0.99) and a minimal bias (NMB = -0.01).  

Subsequently, we applied 2D MISATEAM to TROPOMI NO2 retrievals across the US cities from 2018 to 2021. We estimated 

NOx emissions for 39 US cities. Our resulting total city emissions estimates align strongly with NEI (R = 0.90), albeit with a 255 

moderate bias (NMB = -0.24). Our derived emissions delineate differences in spatial patterns across certain cities, implying 

potential inaccuracies in emission allocation and/or missing sources in NEI. Our current estimates suggest that uncertainties 

in NOx emissions arising from 2D MISATEAM method itself are approximately 20% for a large and mid-size US city. 

Additional uncertainties stem primarily from errors in the reanalysis wind dataset as well as the TROPOMI NO2 retrieval, 

increasing the overall uncertainties of resulting emissions to about 47%. 260 

In our future research, we plan to extend the application of 2D MISATEAM to observations from geostationary satellites to 

estimate diurnal variations in urban emissions. Geostationary sensors include the Korean Geostationary Environmental 

Monitoring Spectrometer (GEMS; Kim et al., 2012), NASA’s Tropospheric Emissions: Monitoring of Pollution (TEMPO; 

Chance et al., 2012), and ESA’s Sentinel-4 (Ingmann et al., 2012). These instruments possess spatial resolutions similar to 

TROPOMI and the validation of NU-WRF simulation (4 km) utilized in this study. For applications based on geostationary 265 

satellites with local observation time extending beyond the early afternoon time frame of TROPOMI in this study, further 

exploration into the impact of the diurnal cycle of NOx lifetime will be necessary. 

In the next phase of our work, we will strive to harmonize bottom-up and satellite-derived urban emissions estimates to produce 

a fused emission inventory (Liu et al., 2018). This will enable the provision of timely NOx emissions estimates that will be of 

value to both air quality and climate modelling communities. 270 
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Figure 1: NOx budget inferred from TROPOMI NO2 observations around New York City from May through September, 2019. (a) 450 
sinks S, (b) divergence D, (c) derived NOx emissions E=S+D, (d) NEI NOx emissions ENEI. The locations of Glenwood Landing power 
station, JFK airport, and the city center of Newark are labeled as PP, JFK, and Newark, respectively. Wind barbs at TROPOMI 
overpass time from May to September of 2019 are averaged and shown in (b). Wind speed is given in the units of knots, which is a 
nautical miles per hour (1.9 km per hour). Each short and long barb represents 5 knots (9.3 km/h) and 10 knots (18.5 km/h), 
respectively. 455 

 
Figure 2: Scatterplot of the derived NOx total emissions for the investigated cities based on the NO2 tropospheric VCDs simulated 
by NU-WRF (y axis) as compared to the given emissions used to drive the NU-WRF simulation (x axis). NOx emissions from all grid 
cells within the domain of 70 km × 70 km around city center are summed up to derive the total emission for most cities; a 
100 km × 100 km domain is used for New York, Chicago, Los Angeles and Houston. Error bars show the standard error of the 460 
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derived emissions for all wind directions with derived NOx lifetime τ. Standard error is defined as standard deviation divided by 
√𝒏, with n being the number of wind directions with derived NOx lifetime τ. The intracity spatial correlation Rintracity between the 
derived and given emissions for individual cities are color coded. The dashed line represents the 1:1 line. Statistics are provided in 
the inset table.  

 465 
Figure 3: Improved spatial correlation of derived and given NOx emissions compared to that of derived NOx emissions and NO2 
columns. (a) Mean NU-WRF tropospheric NO2 VCDs 𝛀𝑵𝑼#𝑾𝑹𝑭; (b) Mean NU-WRF tropospheric NO2 VCDs under calm wind 
conditions only; (c) Mean NOx emission rates ENU-WRF derived from (a); (d) Mean NOx emission rates used to drive the NU-WRF 
simulation 𝑬𝑵𝑼#𝑾𝑹𝑭' . Hourly mean data at 14:00 LT are averaged from May through September 2016. The city of Jacksonville, 
Florida is in the centre of the domain shown. 470 

 
Figure 4: Similar to Figure 2, but for the comparison between the derived NOx total emissions based on TROPOMI tropospheric 
NO2 VCDs (y axis) with NEI total emissions (x axis) for 2019. Error bars show the uncertainties of NEI (30%) and fitted (47%) 
emissions.  
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Figure 5: Comparison of TROPOMI-derived NOx emission estimates for (a) 2019, (b) 2020, (c) 2021 with those for 2018. The dashed 
line represents the 1:1 line. The slope of the least-squares linear regression line is provided in the figure. 
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