Supplement of

A regional modelling study of halogen chemistry within a volcanic plume of Mt Etna's Christmas 2018 eruption

Herizo Narivelo et al.

Correspondence: Paul Hamer (paul.hamer@nilu.no)

1 Figures

Figure S1. Time evolution of BrO loss rates in [molec.cm $^{-2}$.s $^{-1}$] without the photolysis of BrO and the BrO + BrO \rightarrow Br + Br + O₂ reaction, from 24 December at 12:00 to 31 December 2018 at 00:00 UTC in the near volcano plume.

Figure S2. Time evolution of Br production rates in [molec.cm $^{-2}$.s $^{-1}$] without the photolysis of BrO and the BrO + BrO \rightarrow Br + Br + O₂ reaction, from 24 December at 12:00 to 31 December 2018 at 00:00 UTC in the near volcano plume.

Figure S3. Time evolution of : (a) BrO column concentration in [molec.cm⁻²], (b) production rates and (c) loss rates for BrO both in [molec.cm⁻².s⁻¹] from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S4. Time evolution of BrO loss rates in [molec.cm $^{-2}$.s $^{-1}$] without the photolysis of BrO and the BrO + BrO \rightarrow Br + Br + O $_2$ reaction from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S5. Time evolution of : (a) BrO column concentration in [molec.cm⁻²], (b) production rates and (c) loss rates for BrO both in [molec.cm⁻².s⁻¹] from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S6. Time evolution of BrO loss rates in [molec.cm $^{-2}$.s $^{-1}$] without the photolysis of BrO and the BrO + BrO \rightarrow Br + Br + O₂ reaction, from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S7. Time evolution of : (a) Br column concentration in [molec.cm⁻²], (b) production rates and (c) loss rates for Br both in [molec.cm⁻².s⁻¹] from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S8. Time evolution of Br production rates in [molec.cm $^{-2}$.s $^{-1}$] without the photolysis of BrO and the BrO + BrO \rightarrow Br + Br + O $_2$ reaction, from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S9. Time evolution of : (a) Br column concentration in [molec.cm⁻²], (b) production rates and (c) loss rates for Br both in [molec.cm⁻².s⁻¹] from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S10. Time evolution of Br production rates in [molec.cm $^{-2}$.s $^{-1}$], without the photolysis of BrO and the BrO + BrO \rightarrow Br + Br + O $_2$ reaction from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S11. Time evolution of : (a) Br_2 column concentration in [molec.cm⁻²], (b) production rates and (c) loss rates for Br_2 both in [molec.cm⁻².s⁻¹] from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S12. Time evolution of : (a) Br_2 column concentration in [molec.cm⁻²], (b) production rates and (c) loss rates for Br_2 both in [molec.cm⁻².s⁻¹] from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S13. Time evolution of : (a) BrCl column concentration in [molec.cm⁻²], (b) production rates and (c) loss rates for BrCl both in [molec.cm⁻².s⁻¹] from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S14. Time evolution of : (a) BrCl column concentration in [molec.cm⁻²], (b) production rates and (c) loss rates for BrCl both in [molec.cm⁻².s⁻¹] from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S15. Time evolution of : (a) HOBr column concentration in [molec.cm $^{-2}$], (b) production rates and (c) loss rates for HOBr both in [molec.cm $^{-2}$.s $^{-1}$] from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S16. Time evolution of : (a) HOBr column concentration in [molec.cm $^{-2}$], (b) production rates and (c) loss rates for HOBr both in [molec.cm $^{-2}$.s $^{-1}$] from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S17. Time evolution of : (a) HBr column concentration in [molec.cm $^{-2}$], (b) production rates and (c) loss rates for HBr both in [molec.cm $^{-2}$.s $^{-1}$] from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S18. Time evolution of : (a) HBr column concentration in [molec.cm $^{-2}$], (b) production rates and (c) loss rates for HBr both in [molec.cm $^{-2}$.s $^{-1}$] from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S19. Time evolution of : (a) BrONO₂ column concentration in [molec.cm $^{-2}$], (b) production rates and (c) loss rates for BrONO₂ both in [molec.cm $^{-2}$.s $^{-1}$] from 24 December at 14:00 to 31 December 2018 at 00:00 UTC in the young plume.

Figure S20. Time evolution of : (a) BrONO₂ column concentration in [molec.cm $^{-2}$], (b) production rates and (c) loss rates for BrONO₂ both in [molec.cm $^{-2}$.s $^{-1}$] from 24 December at 20:00 to 31 December 2018 at 00:00 UTC in the aged plume.

Figure S21. Time evolution of the total burden of the NO_2 within plume in [molec] from 24 December at 12:00 to 31 December 2018 at 00:00 UTC in the near volcano domain.