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Abstract. Groundwater level (GWL) forecasting with machine learning has been widely studied due to its generally accurate

results and little input data requirements. Furthermore, machine learning models for this purpose can be set up and trained

quickly compared to the effort required for process-based numerical models. Despite high performance at specific locations,

applying the same model architecture to multiple sites across a regional area can lead to varying accuracies. The reasons behind

this discrepancy in model performance have been scarcely examined in previous studies. Here, we explore the relationship5

between model performance and the geospatial and time series features of the sites. Using precipitation (P) and temperature

(T) as predictors, we model monthly groundwater levels at approximately 500 observation wells in Lower Saxony, Germany,

applying a 1-D convolutional neural network (CNN) with a fixed architecture and hyperparameters tuned for each time series

individually. The GWL observations range from 21 to 71 years, resulting in variable test and training dataset time ranges. The

performances are evaluated against selected geospatial characteristics (e.g. landcover, distance to waterworks, and leaf area10

index) and time series features (e.g. autocorrelation, flat spots, and number of peaks) using Pearson correlation coefficients.

Results indicate that model performance is negatively influenced at sites near waterworks and densely vegetated areas. Longer

subsequences of GWL measurements above or below the mean negatively impact the model accuracy. Besides, GWL time

series containing more irregular patterns and with a higher number of peaks might lead to higher model performances, possibly

due to a closer link with precipitation dynamics. As deep learning models are known to be black-box models missing the15

understanding of physical processes, our work provides new insights into how geospatial and time series features link to the

input-output relationship of a GWL forecasting model.
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1 Introduction

Understanding the dynamics of groundwater levels over time has gained greater importance in recent years as a key tool20

for groundwater management. This importance is driven by the link between groundwater discharges to streams, where even

slight declines can significantly affect the environment, as highlighted by de Graaf et al. (2019). Various modeling approaches

are valuable for estimating groundwater levels in both the short and long term. These approaches allow for the identification

of over-exploitation based on depletion trends (Daliakopoulos et al., 2005), enhance our knowledge of water availability for
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drinking water supply and agricultural irrigation (Takafuji et al., 2019), and help delineate potential soil subsidence zones due to25

extremely low groundwater levels associated with droughts and water abstraction (Xu et al., 2008). Furthermore, understanding

these dynamics is crucial for sustainable groundwater management in the face of climate change and increasing water demands

(Famiglietti, 2014).

Physical and numerical approaches have been widely used as the primary tool to study GWL (Goderniaux et al., 2015).

However, achieving a desired model calibration/validation requires extensive physical knowledge of the study area and large30

volumes of data related to the aquifer properties, geology, and topography, among others. In the last two decades, many

publications have shown that data-driven models are simpler and faster to develop and provide more accurate results than

physical or numerical models under certain conditions (Tao et al., 2022; Malik and Bhagwat, 2021; Ahmadi et al., 2022). Data-

driven models using machine learning (ML) techniques such as artificial neural networks (ANNs) have proven their suitability

for GWL forecasting (Wunsch et al., 2022) and the ability to capture the non-linearity of the aquifer’s dynamics, although at the35

expense of having a physical understanding of the process. Many studies address the former challenge by applying explainable

AI methods such as SHAP to elucidate the input-output non-linear dynamics (Chakraborty et al., 2021; Zhang et al., 2023;

Liu et al., 2022). In particular, ANN are suitable for solving groundwater-related problems on a regional scale due to their low

dependency on field data accessibility. Many ANN approaches have been successfully implemented, and recent developments

in the field of deep learning (DL) promise a significant improvement of already existing prediction approaches. High overall40

performances have been obtained through ANNs techniques including feed-forward neural network (FFNN) (Roshni et al.,

2020), long short-term memory (LSTM) (Wunsch et al., 2021), and convolutional neural networks (CNN) models (Mohanty

et al., 2015;Ahmadi et al., 2022 ;Wunsch et al., 2022). Besides DL techniques, shallow recurrent networks such as non-linear

auto-regressive networks with exogenous input (NARX) are proven to be useful for modelling a wide variety of dynamic

systems (Guzman et al., 2017; Zanotti et al., 2019; Fabio et al., 2022). Regarding accuracy and calculation speed, the CNN45

models outperform the LSTM. NARX models performed, on average, better than CNN (Wunsch et al., 2021), mainly because

NARX models capture temporal dependencies on groundwater. However, the CNN model has been shown to be faster with

only a slightly lower accuracy (Wunsch et al., 2021). Most groundwater modeling has traditionally employed the previously

described approaches as single-station models. However, recent studies (Heudorfer et al., 2024) have introduced a global

model incorporating multiple stations and static features. Despite this advancement, the performance improvement is modest50

compared to the progress seen in surface water modeling (Kratzert et al., 2024).

Most studies have successfully applied these techniques for GWL forecasting using meteorological variables as inputs. Up

to date, the research focuses on a comparative analysis among different AI techniques, resulting in slight differences among

models’ performance (Wunsch et al., 2021) or in improving the model’s accuracy by modifying its architecture (Gong et

al., 2016). In many cases, disregarding site geospatial characteristics can reduce model accuracy or credibility, owing to the55

different responses depending on the aquifer characteristics (Kløve et al., 2013), unsaturated zone conditions, and groundwater

contributing area (Rust et al., 2018). Therefore, it is known that in order to achieve more accurate results in areas influenced

by natural and anthropogenic factors, river water level and human impact factors such as pumping rates should be considered

as inputs (Lee et al., 2019). For instance, Gholizadeh et al. (2023) applied an LSTM model including static input features

2



(e.g. hydraulic conductivity and soil depth) as an attempt to model ungauged locations, the authors attribute the satisfactory60

model performance to such inputs. However, as highlighted by Tarasova et al. (2024), the lack of agreement on evaluating

hydrological catchment descriptors hinders consensus on what is considered as relevant geospatial features, in particular for

subsurface characterization.

Since regional studies frequently lack supplementary information beyond meteorological data, this study explores the link

between model performance (using only precipitation (P) and temperature (T) as inputs) vs. site-specific and time series65

features that might help to understand the input-output relation of a GWL DL model. Although many types of ANN structures

have been developed for GWL forecasting, a 1-D CNN (LeCun et al., 2015) is applied here to evaluate the model performance

due to their flexibility, calculation speed, and reliability. The model is trained, validated, and tuned individually in 505 wells

distributed throughout the state of Lower Saxony, Germany. The research considers geospatial and time series features based on

their availability and potential impact on groundwater records. New insights are provided about the complexity of controlling70

factors on the groundwater dynamics.

2 Study area and materials

2.1 Study area

The study area is located in Lower Saxony, Germany (Fig 1), where groundwater accounts for 86% of the public water supply

(LSN, 2016). The groundwater bodies in this area comprise a great extension of highly productive porous aquifers and, in75

less proportion, fractured hard rock, and karst aquifers (LSN, 2016). The landscape is mainly dominated by the lowlands in

the northern and central regions, whereas the south is predominantly hilly and mountainous. Land use corresponds mainly

to farming (∼ 47%) and pasture (∼ 15%), concentrated in the western and northern regions (NMUEK, 2015). The maritime

influence in the coastal region affects the precipitation distribution, decreasing from the West (approx. 750mm/yr) to the East

(<600 mm/yr). In contrast, the annual precipitation exceeds 1500 mm in the south (NMUEK, 2015).80

From a broad perspective, the northern German Plain is covered up to the edge of the low mountain range by glacial

deposits of varying thicknesses (LBEG, 2016), constituting a great proportion of Lower Saxony. Hard rock areas in the southern

highlands are formed by sandstones and limestones (BGR, 2019a). Highly heterogeneous geological structures exist among

these two groups, leading to groundwater availability at different depths with varying yields, especially in karst aquifers (LBEG,

2016). The primary pressures on the quantitative status of groundwater bodies arise from its long-term abstraction, mainly for85

drinking water, irrigation, mining or construction activities, and long-term hydraulic measures for groundwater remediation

(NMUEK, 2015).

2.2 Data

GWL observations and meteorological information are available throughout the state of Lower Saxony. Table 1 shows the data

overview. The GWL is in monthly resolution with a variable time range, and historical records of meteorological variables90

3



Figure 1. Hydrogeological areas of Lower Saxony. 1:500,000 (modified from LBEG (2016)) . The hydrological bodies towards the north

correspond to porous aquifers (Nord- und mitteldeutsches Mittelpleistozän (North-Central Middle Pleistocene) , Niederungen im nord- un

mitteldeutschen Lockergesteinsgebiet (North-Central lowlands in unconsolidated rock), Nordseemarchsen and Nordseeinseln und Watten

(North Frisian Wadden sea, marsh islands and halligen)). The south consists of fractured and karst aquifers (Mitteldeutscher Buntsandstein

(Central Bunter sandstone), Mitteldeutsches Grundgebirge (Central crystalline basement), Münsteländer Kreidebecken (Münsterland Chalk

Basin), Nordwestdeutsches Bergland (Northwest Uplands), Sandmünsterland (Sand Münsterland) and Subherzyne Senke (Subhercynian

Trough) )

are available in a daily resolution of 5 x 5 km. The GWL time series consists of 505 wells that are unevenly distributed, with

more information available in the central region of the study area. Besides the irregular spatial distribution, there are data gaps

depending on the well (Fig. 2.a), and the time range of the groundwater records varies between 21 and 71 (Fig. 2.b) years from

1950 to 2021, resulting in differences in start-end dates of time series (Fig. A1).

As observed in Fig. 3.a, less data is available for fractured aquifers, limiting the interpretation in terms of different hydro-95

geological units. This uneven spatial distribution of the wells reflects the differences in hydraulic properties between porous

and fractured aquifers. In the latter, water primarily flows through conduits and cavities, creating a more complex system that
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Table 1. Data availability overview.

Data
Temporal

resolution

Spatial

resolution
Time range Source

Groundwater level observations Monthly - Variable (1950 : 2021)
The Lower Saxony State Office for

Mining, Energy and Geology (LBEG)

Precipitation and temperature Daily 5 x 5 km 1951 : 2015 (Rauthe et al., 2013; Frick et al., 2014)

could increase the construction and maintenance costs of wells, reducing their number in the area. Almost half of the wells

are located in sandy-gravel material (Fig. 3.b), associated with high hydraulic conductivity and stronger variations of GWL.

The other half is in finer materials but still with a high sand portion. Regarding geomorphology, the predominant category is100

low relief with a high to moderate soil moisture index (SMI), followed by sink areas with a high SMI (Fig. 3.c). The SMI

serve to measure how wet or dry the soil is at any given time based on the minimum and maximum moisture levels that the

soil can hold (Hunt et al., 2009). Most wells are in non-irrigated arable lands and pastures (Fig. 3.d). Overall, the study area

characteristics associated with each well are relatively homogeneous regarding hydrogeology, geomorphology, and land use.

Most wells are located below 100 m.a.s.l. (northern area), and higher elevations relate to wells in the southern mountainous105

regions. According to the filter depth, most analyzed wells relate to shallow aquifers (Fig A2).

Figure 2. Location of the 505 wells with GWL time series observations used in the study. a. Maximum gap length and b. Time range of the

GWL time series. Author-generated map.

The historical records of meteorological information in Germany are available as an observational dataset (HYRAS dataset,

Rauthe et al. (2013), Frick et al. (2014)). This corresponds to gridded hydrometeorological information based on a compilation

of variables across Germany and adjacent river basins (Razafimaharo et al., 2020). The dataset consists of daily precipitation
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Figure 3. The bar plots show the distribution of well characteristics in the study area: a. Aquifer type, b. Aquifer material (BGR, 2019b), c.

Geomorphology (SMI: soil moisture index) (BGR, 2006), and d. CORINE Land Cover (Copernicus, 2018).

(interpolated according to Rauthe et al. (2013)) and temperature from 1951 to 2015. The German Weather Service (DWD)110

adapted and improved the raster data based on more than 1300 stations and with a direct station-grid comparison, making the

data highly reliable (Razafimaharo et al., 2020). The daily dataset is provided free of charge for academic and non-commercial

purposes (DWD, n.d.).

3 Methods

Figure 4 presents the methodological flow chart. the first stage consists of pre-processing the available information, jointly115

with exploratory data analysis and data mining. The procedure starts with the GWL observations involving the filtering, data

imputation, and jump detection steps. Simultaneously, the meteorological variables are extracted per well location and re-

sampled from daily to monthly resolution. As a result, there is an input dataset per well relating GWL, P and T. In the second

stage, a CNN model is implemented, validated, optimized, and tuned through a Bayesian optimization process (Snoek et al.,

2012; Fernando Nogueira, 2014). The latter corresponds to an optimization method based on bayesian inference and Gaussian120

process to maximize the sum of performance metrics, in this case NSE and R2. The following step is the performance evaluation

and interpretability, relating geospatial and time series features with the performance metrics . To achieve the objectives, several

Python libraries are used: Pandas 2.0 (Reback, 2020), Numpy 1.23 (Van Der Walt et al., 2011), Scipy (Virtanen et al., 2020),

Matplotlib (Hunter, 2007), Geopandas 0.14 (Jordahl et al., 2020), and Tensorflow 2.7 (Abadi et al., 2015) as the most relevant

throughout the process. Additional specific libraries are later mentioned at each methodological step.125
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Figure 4. Methodological flow chart.

3.1 Preprocessing

The initially available GWL information consists of 962 wells. A pre-selection was done based on the categorization performed

by Wriedt and NLWKN (2020), which considered the agreement between theoretical and observed hydrographs, as well as

visual indications of anthropogenic influences. This process aimed to exclude wells under strong anthropogenic influences,

such as pumping, to better capture the dependency between meteorological input features and observed groundwater levels.130

After applying this filter, a total of 745 wells remain. A second selection removes time series with gap lengths above two

consecutive missing values, obtaining 505 wells, 241 (48%) as a complete series, 254 (50%) with one missing value, and

10 (2%) with two missing values. To provide the CNN model with continuous time series, we performed data imputation

using Multiple Linear Regression (MLR). This method is applied only when the wells exhibit similar behavior in their time

series, as determined by Euclidean distance. Wells with the smallest Euclidean distances (below percentile 10th) are selected135

for MLR, ensuring a model R2 score above 0.7. If the score is not met, we use the Piecewise Cubic Hermite Interpolating

Polynomial (PCHIP) for gap filling (Virtanen et al., 2020; Fritsch and Butland, 1984). Overall, the time series have less than

5% gap-filled values. Additionally, jumps (sudden changes in the time series) are identified at 28 wells and might be associated

with measurement instruments or other technical problems (Post and von Asmuth, 2013; Retike et al., 2022). We identified

the observations displaying these anomalies by finding the highest slope in the cumulative sum and removing the time series140

before 1990 for those wells. This is because we are aware of changes due to measurement devices around this time. Finally,

to extract the meteorological information, an average of 3 x 3 pixels is used to reduce uncertainty related to the grid cell size

following the suggestion of Linke (2017).

3.2 Modelling

The 1D-CNN structure is implemented based on Wunsch et al. (2022). This type of network was specifically designed to145

process and analyze sequential data, capturing local patterns and temporal dependencies through convolutional layers. In this

implementation, the input data is scaled between -1 and 1 to enhance the learning process. The inputs are divided into sequences
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of a defined length. These sequences pass through a 1D convolutional layer, where a fixed kernel window convolves through the

data. The maximum value from each convolution operation is extracted to form the max pooling layer, reducing dimensionality

and highlighting the most significant features. To prevent overfitting, a Monte Carlo dropout of 50% is applied. Following this,150

a flattened layer converts the pooled features into a one-dimensional array, which is then processed by a fully connected dense

layer using the rectified linear unit (ReLU) as the activation function.

The CNN model is applied to each GWL time series, encompassing the phases of training, validation, optimization, and

hyperparameter tuning are also carried out per well. The available groundwater data prior to 2012 is split between the training

(80%), validation (10%), and hyperparameter tuning (10%) dataset, while the 2012-2015 period serves as the test set. Each155

subset differs depending on the time range of GWL observations, which vary from 21 to 71 years.Thus, the input features,

time range, and specific model parameters create a unique representation of the GWL for each location. An Adam optimizer is

applied with 100 training epochs, an initial learning rate of 0.001, and the early stopping of 15 patience. In this case, the loss

is minimized with the mean squared error (MSE) through each epoch for the validation process. The hyperparameter tuning is

done with a Bayesian optimization (Snoek et al., 2012; Fernando Nogueira, 2014) to maximize the sum of the squared Pearson160

(R2) and the Nash-Sutcliffe efficiency (NSE) coefficients, measuring the deviation of observed from predicted GWL over a

total of observations. The hyperparameters correspond to: kernel size (fixed as 3), sequence length (1-12 months), number

of filters (1-256), dense size (1-256), and batch size (1-256). Owing to the dataset’s monthly resolution, the sequence length

boundaries are set between 1 and 12 months, a time range that can include significant variabilities in the sub-sequences.

3.3 Performance evaluation165

The model performance can be significantly or slightly affected, depending on the well location, by natural and anthropogenic

factors, such as the distance to waterworks or watercourses, the type of land cover, and the geomorphology. Besides, the

intrinsic patterns present in the observation time series might reveal external affectations on the GWL model. Table 2 describes

the geospatial features considered. The selection was made based on data availability and their potential impact on groundwater

records. We also performed the analysis with further geospatial features, such as distance to the surface water bodies, but no170

statistically significant correlation with model performance was found, and therefore, the results are not shown here. Among the

reported ones, the distance to the waterworks is expected to modify groundwater flow and, consequently, the GWL nearby in

the surrounding wells. Here, we assume that Open Street Map (OSM, 2022) includes a significant proportion of all waterworks

in the study area, but a comprehensive dataset including the locations of all waterworks or information regarding pumping rates

is still missing. Regarding categorical variables, the proportion of a 1 km radius around the well is taken as it has been shown175

to adequately represent the contributing area of a monitoring site, especially when detailed information about groundwater

conditions is lacking (Knoll et al., 2019). The Python packages of Tsfeatures (Yang and Hyndman, 2020) and Tsfresh (Christ

et al., 2018) are used to extract multiple GWL time series features automatically. A selection is made from the long list of

features (available in each package) according to their Pearson correlation coefficient in relation to the model performance

metrics (R2 and NSE) and the added value to the analysis (interpretability in the context of groundwater level). We are aware180

that Pearson correlations provide linear relationships, so we also computed Spearman rank correlation coefficients. However,
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since Spearman rank did not yield higher correlations, we chose to continue using Pearson. Table 3 shows an overview of

the selected time series features, description, range of values and guidelines of their occurrence on the GWL time series (for

a detailed description of the estimation procedure, please refer to the package manual). We incorporated the Fourier power

spectral density at a period of 1 year to measure the influence of annual climate seasonality on the GWL. Higher values185

indicate a greater annual seasonality. High autocorrelation values indicate patterns constantly repeating in the time series. High

stability values imply that GWL remains within a consistent range without significant variations or trends. The more flat spots,

the more relatively constant values over extended periods. Approximate entropy and number of peaks measure the complexity

of the time series. A high value of the former indicates that the GWL time series contains multiple irregular patterns, making

it harder to predict. A higher number of peaks indicates multiple local maximums, implying stronger fluctuations in GWL190

observations.

Table 2. Overview of geospatial features considered for the performance evaluation.

Feature Description Source

Distance to waterworks Distance to water supply systems up to 10 km OSM (2022)

Distance to the coastline within 25 km Distance to Lower Saxony coastline OSM (2022)

CORINE land cover Proportion in a 1 km radius of the most relevant cate-

gories: (Non-irrigated arable land, pastures, coniferous

forest, Discontinuous urban fabric)

Copernicus (2018); Copernicus (2022)

Geomorphology Proportion in 1 km radius of the most relevant cate-

gories: (Low Relief/medium-high SMI, sink areas/low-

high SMI, moderate relief/low SMI)

BGR (2006)

Leaf area index (LAI) Proportion in 1 km radius: monthly average of green

leaf area per unit of the ground surface.

Pistocchi (2015)

Slope Average slope in 1 km radius BKG (2021)

Drainage density Drainage density in 1 km radius BKG (2021)

Topographic wetness index (TWI) Average TWI in 1 km radius Beven and Kirkby (1979); BKG (2021)

To evaluate the impact of external factors on the model performance, the geospatial and time series features are extracted

per well and correlated with the accuracy metrics (R2, NSE, and bias) through the Pearson correlation coefficient. An R2 and

NSE value closer to 1 mean a higher similarity between modelled and observed GWL, whereas the closer the bias is to zero,

the more similar are simulations to the observed data; negative bias refers to a model with underestimation. To enhance the195

robustness of the correlations, we took the mean correlation coefficient after bootstrap sampling with 100 re-sampling datasets.

We report only those correlations that demonstrate statistical significance, ensuring they fall within a 90% confidence interval to

guarantee the reliability of our findings. The main objective is to notice positive or negative effects on the model performance.
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Table 3. Overview of time series features considered for the performance evaluation.

Feature Description Range of values Implications for the GWL

Autocorrelation Degree of similarity between a time se-

ries and a lagged version of itself. Here

we used a lag of 6 time steps (6 months)

-1 – 1 Temporal dependence and persistent

patterns throughout the records

Stability Variance of the means through overlap-

ping windows of 10 values

0 – ∞ GWL remains within a certain range of

values without substantial variations or

trends

Flat spots The maximum number of consecutive

observations within equal-sized inter-

vals

0 – TSL GWL relatively constant over an ex-

tended period

Longest strike below the mean The length of the longest consecutive

subsequence lower than the mean

0 – TSL Sustained period of GWL consistently

lower than the mean

Longest strike above the mean The length of the longest consecutive

subsequence higher than the mean

0 – TSL Sustained period of GWL consistently

higher than the mean

Series length Number of observations in the time se-

ries

TSL NA

Approximate entropy Regularity of the time series based on

the existence of patterns

0 – +∞ Observations exhibit more irregular and

unpredictable patterns

Number of peaks Number of values bigger than their 2

neighbours in a 5-values subsequence

0 – (TSL-2) Potential proxy for how directly the

GWL reacts to forcings such as precip-

itation events. Higher values can indi-

cate good hydraulic connection to the

surface

Fourier power spectral density Value of the power spectrum of the

Fast Fourier transform at a frequency of

1/year

0 – +∞ Higher values indicate a strong annual

periodicity in GWL variability, which

may be influenced by annual climatic

factors

*TSL- time series length

4 Results

4.1 Modelling200

The performance per well is presented in Figure 5. According to our results, a total of 212 wells show R2 and NSE values above

0.7 and 0.6, respectively (Fig. 5), which we would consider an acceptable model fit (Moriasi et al., 2015). Lower performance

is seen mainly in the south, related to the fractured aquifers, where both metrics (R2 and NSE) are below 0.5. The highest
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positive and negative bias also occurs in those hydrogeological areas. These wells correspond to the shortest data length. Most

of the best-performed models are found for the wells in the central region of the study area. Contrarily, some models exhibit205

low performance near the coast regarding R2 and NSE, with a bias is between ± 0.2.

After visually comparing most of the CNN models with GWL observations, a degree of agreement can be noted between the

simulated and observed GWL (Fig. A5). Figure 6 shows examples where the optimized model performs well and where the

model does not correctly reproduce GWL variability. As observed, the model sometimes underestimates and overestimates the

peaks and lows. However, steep peaks are mainly underestimated. In most cases, local variations on the time series are ignored.210

Occasionally, in poorly performing models, the pattern of the GWL observations has been generally learned but with a strong

bias (around 10% of the wells show a bias above 0.13). The well-performed cases show how the CNN model can represent low

peaks for some wells. Additionally, model overfitting is low, as seen in Figure A3, along with the effects of the lengths of the

training, validation, and testing periods, as shown by Figure A4
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Figure 5. Spatial distribution of model performance metrics (R2, NSE and Bias) per well and their respective histogram. Author-generated

map.
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Figure 6. Examples of the observations, CNN model, and baseline model (sinusoidal curve plus precipitation trend) for cases of (a) high

performance and (b) low performance.
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4.2 Performance assessment215

The correlation coefficients between the geospatial, and time series features and the model performance are shown in Figure 7.

Only significant correlations with 90% confidence interval are displayed. Although the correlation coefficients are statistically

significant, they do not exceed 0.53 for time series features. Correlations for the geospatial features are weaker, serving in

both cases more as an indication rather than providing strong evidence. One of the highest correlations is the distance to the

waterworks, corresponding to 0.43 (R2) and 0.29 (NSE). Although there is no clear spatial pattern followed by R2 and NSE,220

the Pearson correlation suggests that model performance improves with increasing distance from the coastline. The proportion

of the most common landcover type in the study area (non-irrigated arable land) suggests a positive relationship with model

performance. Conversely, wells surrounded by significant areas of forest or high LAI tend to show lower correlations. Sink and

low relief areas with medium to high SMI may negatively impact performance. Hilly regions might indicate lower accuracy,

while areas with high drainage density or a high topographic wetness index suggest better model performance.225

Regarding time series features, autocorrelation may reduce model performance. This might not be the case when using

antecedent GWL as an additional input feature, where GWL shows the highest influence on model output (Chakraborty et al.,

2021), better explaining the current state based on the past one if the time series is highly autocorrelated. Similarly, higher time

series stability (higher variance of the means through overlapping windows) may reduce model performance. Increasing flat230

spots and long strikes above or below the mean are negatively correlated, particularly with the NSE metric. Positive correlations

are mainly associated with complexity measures such as approximate entropy and the number of peaks. The time series length

positively correlates with R2 but does not correlate with NSE. Higher values of the Fourier power spectral density at one year

(indicating stronger annual seasonality in the observed GWL) result in higher model performance.
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Figure 7. Pearson correlation coefficients between the geospatial features, GWL time series features, and the model performance. Significant

correlations are displayed with a confidence level of 90%. Blank spaces correspond to non-significant correlations. Correlations with the

distance to waterworks are done with 90 wells located in the 10 km buffer and with 50 wells located up to 25 km for the distance to the

coastline.

5 Discussion235

The analyzed wells are located in a relatively homogeneous area in terms of hydrogeology, associated with a major proportion

of porous material and shallow aquifers, improving the model’s capacity to express GWL only in terms of meteorological

inputs (Kløve et al., 2013). There are a few wells in the fractured and karst aquifers, but those are frequently associated with

greater depths (Wunsch et al., 2022). A more diverse distribution of wells is observed regarding land cover and geomorphology,

resulting in distinct interactions between climate, land use, and groundwater (Kløve et al., 2013;Treidel et al., 2011), potentially240

influencing the model performance.

The primary source of uncertainty in the current analysis is the inability to separate the effects of each external feature

affecting observations, particularly geospatial features. This uncertainty is highly dependent on the aquifer size (Kløve et

al., 2013), the amount of available information, and its reliability. Furthermore, time resolution may introduce additional

uncertainty, as the magnitude of GWL fluctuations varies significantly from season to season (Taylor and Alley, 2001). Certain245

patterns in groundwater dynamics, especially in karst aquifers or those with strong secondary porosity, become more evident
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at weekly or daily time steps. Consequently, the use of a monthly resolution in our study may not fully capture these dynamics.

Additionally, because the vast majority of the wells used in this analysis are located in porous aquifers, our results are primarily

representative of these conditions.

The GWL behaves following the interaction between climate, topography, hydrogeology, and land use, among others (Ear-250

man and Dettinger, 2011). Estimating GWL solely with meteorological variables brings uncertainty, especially in areas with

more significant human impact. Additionally, there are uncertainties related to the model realizations, which, in this case, are

solved by using several random initialization seeds. As a result, the model precision is generally high, and we only use the best-

performed optimized models. Regarding the geospatial relations with the model performance, there are uncertainties based on

the variable scale and the definition of influential radius (assumed as 1 km for the geomorphology and land use, 10 km for the255

waterworks) and with the reliability of the primary information.

5.1 Modelling

Overall, the CNN model was able to simulate, to a significant extent, the GWL changes for more than 200 wells with good over-

all performance (R2> 0.7 and NSE > 0.6). Thus, the remaining wells account for at least one metric with a non-acceptable per-

formance, and in those cases, further hydrological or anthropogenic factors might influence the GWL behaviour. The Bayesian260

optimization currently maximizes the sum of R2 and NSE, occasionally causing contrasting values for both metrics at specific

wells. Thus, constraining both values to define model performance guarantees adequate results, even when individual accuracy

is lower than acceptable criteria (Gong et al., 2016). Different combinations of metrics can also be explored against model im-

provements. As explained, Bayesian inference and Gaussian process (Snoek et al., 2012; Fernando Nogueira, 2014) are used

to tune the hyperparameters (external parameters that can not be learned from the data). However, additional tuning strategies265

such as Genetic Algorithm and Grid Search have shown better results (Alibrahim and Ludwig, 2021). Therefore, modifying the

optimization strategy and adjusting the network architecture can enhance the results. Alternative networks, such as LSTM or

FFNN, may further improve the learning process. However, in this study, our priority is to understand the link between GWL

and geospatial and time series features rather than focusing on optimizing the network architecture.

Generalizing the model inputs for all wells throughout the state influences the scores, especially at sites where GWL is not270

only driven by P and T. Even with a low performance, sometimes the model can learn the GWL variations but incorporates

a bias. Around 10% of the wells show strong bias (>0.3), meaning the model has little or no intersections with observations.

Differences in spatial resolution between the input data (gridded P and T) and the GWL observations can cause this bias at

some stations. When both metrics used for the optimization (R2 and NSE) are high, the model is seen to fit the observations ad-

equately. At certain times, the model misses the small spikes on the observations. However, a model that adequately represents275

the lower and higher periods due to dry or wet years holds higher relevance for groundwater management. Even though the re-

ceived dataset excluded highly impacted anthropogenic time series, low performance is primarily observed when a significant

anthropogenic or non-periodic signal is present in the time series. Models that do not accurately learn from meteorological

inputs might be treated independently. Specific external forcings influencing GWL variability might be studied, and particular
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cases should be re-trained with the additional influencing variables. Lastly, while model overfitting appears to be small (Fig.280

A3), the low performance on the test data may still be attributed to overfitting at some stations.

5.2 Performance evaluation

The weak correlations between the geospatial features and the model performance can be related to the regional scale of

the analysis and to the multiple drivers controlling the GWL at a specific location. Factors such as the spatial resolution of

the geospatial features or the large numbers of observation pairs could also reduce the correlation coefficients (Armstrong,285

2019). For instance, skewed probability distribution in the filter depth, which is below 50 m in most wells, excludes deeper

aquifers from the analysis and can hinder the relation. Even though we reported a directly proportional relationship between

model performance and distance to waterworks, the correlation might be weaker due to non-reported abstractions. However,

it is inferred that wells outside the influence area of the waterworks are more prone to be represented only by meteorological

variables. Contrarily, wells located in the influence area of the waterworks system should include variables such as abstraction290

rates to keep the learning process stable (Lee et al., 2019)

The land cover can influence the recharge and the GWL dynamics. When the surface is sealed, the aquifer recharge de-

creases, and the GWL diminishes. In the same way, groundwater recharge is significantly reduced through evapotranspiration

wherever dense vegetation is present, such as in a native forest (Lerner and Harris, 2009). In this case, most wells are located

in non-irrigated arable land, which consists of rainfed crops, meaning a more direct response of GWL to meteorological vari-295

ables is feasible. This supports the positive correlation suggested in Figure 7 between model performance and wells located

in non-irrigated arable land. Contrarily, model performance reduces as LAI increases. LAI indicates the vegetation canopy,

and therefore, it governs the interception of precipitation, largely controlling the partitioning of infiltrated water into evapo-

transpiration and percolation (Reichenau et al., 2016). Thus, the interception process can hamper a direct response of GWL

to precipitation (Pan et al., 2011), then affecting model performance. Regarding geomorphology, areas of accumulation (sink300

areas) with low to medium SMI positively affect the performance but negatively when the SMI is high. Sites with higher

relief and SMI present lower performance. According to Rajaveni et al. (2017), geomorphological features referring to the

accumulation process (pediment and valley fill) have a good groundwater potential and are, therefore, more prone to react to

meteorological inputs. Accumulation areas are also represented by risen drainage density and TWI because these areas are

feasible to respond quicker to meteorological inputs. We also expected the model’s fitness to decrease as the slope increases305

since steeper areas account for higher runoff, reducing precipitation dynamics’ influence on GWL observations.

As the geospatial characteristics surrounding the groundwater well influence observations, investigating the patterns encoun-

tered in the time series by extracting selected features can provide insights into model performance affectations. For instance,

the recurrent presence of flat spots on the observations, seen as relatively constant values over extended periods, reduces model

performance. This might indicate an aquifer that is less responsive to climate variability, which is often the case with large310

aquifers (Kløve et al., 2013). We can apply a similar argument to the reduction of performance when there is an increase in

time series stability. This means the GWL remains within a specific range of values without significant variations. Thus, even

if there are upward or downward changes in precipitation, the observations of GWL do not exhibit similar patterns. Conse-
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quently, the proposed model using only P and T would fail to reproduce the GWL patterns adequately. We found that the

learning process reduces as long consecutive subsequences above or below the mean occur. Direct human influences such as315

managed aquifer recharge can keep the GWL above the average and modify its response to meteorological variables. The

opposite happens when groundwater abstractions exceed recharge, and the aquifer levels drop for a more or less continuous

period (Wendt et al., 2020). In both situations, the anthropogenic effects on GWL reduce the performance. Natural climate

variability might also result in a similar effect, negatively affecting performance. For instance, if wetter or drier periods occur

during testing but not in the training phase, the model is unlikely to learn the consequent patterns. Additionally, the time series320

complexity measures (approximate entropy and the number of peaks) indicate a directly proportional relationship with model

performance, meaning that the more complex the GWL time series is (more irregular patterns), the better fit simulations with

observations. Complex GWL time series might reflect a good response to precipitation.

Previous studies have shown little or no correlation between the time series length and the model performance (Wunsch et al.,

2021). However, at least observations over decades are required to cover groundwater dynamics due to climate variability (Tay-325

lor and Alley, 2001), especially when considering a monthly temporal resolution. In this sense, the model can incorporate more

information into the learning process, and model performance might increase with longer time series. However, conclusions

about this relation should be further studied.

6 Conclusions

Fluctuations in the GWL observations are influenced by a combination of natural and anthropogenic factors, challenging the330

modelling of groundwater systems. An alternative to high data-required physical and numerical models is DL techniques.

Many DL models have been applied to GWL modelling, but the main concern about using these models remains a lack of

physical understanding. Owing to the complex system between climate, GWL, and external drivers, model performance can

be directly or indirectly affected outside of what the model can explain, limited by the input features. Our study brings insights

into how model performance is affected by geospatial features and intrinsic time series characteristics. We selected a 1d-CNN335

model to simulate monthly GWL time series per well in northern Germany, using P and T as inputs. Our results indicate

low performances in wells near waterworks, an expected result as GWL are modified by pumping rates. An increased LAI

or forest land cover might lead to lower performance by hindering the P and T relation with the GWL. Complex time series

relate to a better performance, possibly linked to a closer relationship between GWL and P patterns. More extended continuous

GWL measurements above or below the mean negatively impact the metrics and can be associated with artificial recharge,340

pumping imposed in the time series, or natural events such as wetter and drier seasons. Even though only P and T are used

as model inputs, the performances obtained are considered acceptable (R2 > 0.7 and NSE > 0.6) for more than 200 wells.

Nonetheless, incorporating explainable AI techniques in future studies is recommended to enhance the interpretation of the

non-linear behaviour between groundwater and its influencing factors.

As the study covers regional areas, local variabilities in climate and human-water interactions might occur. Therefore, model345

performance should be evaluated at locations with greater data availability to strengthen the current research. Moreover, corre-
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lations might vary depending on the model architecture selected or the temporal resolution of GWL observations. For instance,

daily resolution can better include groundwater dynamics showing stronger correlations. Our results encourage the joint anal-

ysis of physical-related characteristics and DL GWL modelling as an essential path to improve the reliability of data-driven

models.350

Code availability. The code required to reproduce our results is available on Zenodo (Gomez, 2024)

Data availability. The raw, filtered, and gap-filled groundwater levels dataset along with the input meteorological forcings dataset are avail-

able on Zenodo (Gomez, 2024)

Appendix A: A

Figure A1. Time range of GWL observations. The blank spaces correspond to missing data.
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Figure A2. Filter depth (meters below ground level) and elevation in meters above sea level of all the wells in the study area.

Figure A3. Difference in model performance (RMSE) between validation and testing periods.
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review, and editing.
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Figure A4. Model performance (RMSE) difference between validation and testing period for 3, 4 and 5 years of testing ranges.

Figure A5. Scatterplot of simulated vs observed values for the 505 wells for the test period.

21



Acknowledgements. This work was supported by the Erasmus Mundus scholarship following the Joint master’s degree Program on Ground-

water and Global Change – Impacts and Adaptation, and the FOSTER program of Technische Universität Dresden.

The Article Processing Charge (APC) was funded by the joint publication funds of the TU Dresden, including Carl Gustav Carus Faculty360

of Medicine, and the SLUB Dresden as well as the Open Access Publication Funding of the DFG.

We acknowledge the use of AI tools for assisting in the improvement of readability throughout the text and in enhancing certain portions

of the code.

Competing interests. No competing interests are present

References365

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., & Davis, A. (2015). TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems. https://doi.org/10.5281/zenodo.4724125

Ahmadi, A., Olyaei, M., Heydari, Z., Emami, M., Zeynolabedin, A., Ghomlaghi, A., Daccache, A., Fogg, G. E., & Sadegh, M. (2022).

Groundwater Level Modeling with Machine Learning : A Systematic Review and Meta-Analysis, 1–22.

Alibrahim, H., & Ludwig, S. A. (2021). Hyperparameter Optimization: Comparing Genetic Algorithm against Grid Search and Bayesian370

Optimization. 2021 IEEE Congress on Evolutionary Computation, CEC 2021 - Proceedings. https://doi.org/10.1109/CEC45853.

2021.9504761

Armstrong, R. A. (2019). Should Pearson’s correlation coefficient be avoided? Ophthalmic and Physiological Optics, 39(5), 316–327. https:

//doi.org/10.1111/opo.12636

Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology. Hydrological Sciences375

Bulletin, 24(1), 43–69. https://doi.org/10.1080/02626667909491834

BGR. (2006). Geomorphographische Einheiten von Deutschland. https://geoportal.bgr.de/mapapps/resources/apps/geoportal/index.html?

lang=de#/datasets/portal/60ab5e4e-9493-44b0-9cae-d9ce603de742

BGR. (2019a). Geologische Übersichtskarte der Bundesrepublik Deutschland 1:250.000 (GÜK250). https://produktcenter.bgr.de/terraCatalog/

DetailResult.do?fileIdentifier=0f2e1b5b-fc02-4491-a12b-2178473f5c84380

BGR. (2019b). Hydrogeologische Übersichtskarte 1:250.000 von Deutschland (HÜK250). https://geoportal.bgr.de/mapapps/resources/apps/

geoportal/index.html?lang=de#/datasets/portal/61ac4628-6b62-48c6-89b8-46270819f0d6

BKG. (2021). Digitales Geländemodell Gitterweite 1000 m (DGM1000). https://gdz.bkg.bund.de/index.php/default/digitale- geodaten/

digitale-gelandemodelle/digitales-gelandemodell-gitterweite-1000-m-dgm1000.html
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