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Abstract. Groundwater level (GWL) forecasting with machine learning has been widely studied due to its generally accurate

results and little input data requirements. Furthermore, machine learning models for this purpose are set up and trained in a

short time when compared to the effort required for process-based numerical models. Despite the high performance of mod-

els obtained at specific locations, applying the same model architecture to multiple sites across a regional area might lead to

contrasting accuracies. Likely causalities of this discrepancy in model performance have been barely examined in previous5

studies. Here, we investigate the link between model performance and the effects of geospatial site and time series features.

Using precipitation (P) and temperature (T) as predictors, we model groundwater levels at approximately 500 observation

wells in Lower Saxony, Germany, applying a 1-D convolutional neural network (CNN) with a fixed architecture and hyper-

parameters tuned for each time series individually. The GWL observations range from 21 to 71 years, leading to a variable

test and training dataset time range. The performances are evaluated against relevant geospatial characteristics (e.g. landcover,10

distance to water works, and leaf area index) and time series features (e.g. autocorrelation, flat spots, and number of peaks)

using Pearson correlation coefficients. We found that model performance is negatively influenced at sites near waterworks and

densely vegetated areas. Longer subsequences of GWL measurements above or below the mean negatively impact the metrics

and might be associated with anthropogenic influence or wetter and drier periods. Besides, complex GWL time series exhibit

better metrics, possibly due to a closer link with precipitation dynamics. As deep learning models are known to be black-box15

models missing the physical processes understanding, our work shows new insights into the degree of affectation that external

physical factors have on the input-output relation of a GWL forecasting model.

keywords: Groundwater levels, deep learning, forecast

1 Introduction

Global water use increases, aggravated by climate change in current water-stressed areas and generating future stress in re-20

gions of abundant supply (UNESCO, 2022). Under these situations, groundwater is seen as a solution to ensure water supply,

accounting for approximately 25% of the global freshwater (UNESCO, 2022). In fact, aquifers might report a seasonal and

multi-year buffer capacity, but when deficits in groundwater storage are observed, they may last much longer due to the mem-

ory effect (UNESCO, 2020). Investigating groundwater level (GWL) changes constitutes a way to estimate groundwater stress
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in the near and long term since only slight GWL declines are needed to significantly affect groundwater discharges to streams25

(de Graaf et al., 2019). This allows identifying, among others, over-exploitation based on depletion trends (Daliakopoulos et al.,

2005), increasing the knowledge about water availability for drinking water supply and agricultural irrigation (Takafuji et al.,

2019), and delineating potential soil subsidence zones due to extremely low groundwater levels in connection with droughts

and water abstraction (Xu et al., 2008).

Physical and numerical approaches have been widely used as the primary tool to study GWL (Goderniaux et al., 2015).30

However, achieving a desired model calibration/validation requires extensive physical knowledge of the study area and large

volumes of data related to the aquifer properties, geology, and topography, among others. In the last two decades, many

publications have shown that data-driven models are simpler and faster to develop and provide more accurate results than

physical or numerical models under certain conditions (Tao et al., 2022; Malik and Bhagwat, 2021; Ahmadi et al., 2022). Data-

driven models using machine learning (ML) techniques such as artificial neural networks (ANNs) have proven their suitability35

for GWL forecasting (Wunsch et al., 2022) and the ability to capture the non-linearity of the aquifer’s dynamics, although

at the expense of having a physical understanding of the process. In particular, ANNs are suitable for solving groundwater-

related problems on a regional scale due to their low dependency on field data accessibility. Many ANN approaches have been

successfully implemented, and recent developments in the field of deep learning (DL) promise a significant improvement of

already existing prediction approaches. High overall performances have been obtained through ANNs techniques including40

feed-forward neural network (FFNN) (Roshni et al., 2020), long short-term memory (LSTM) (Wunsch et al., 2021), and

convolutional neural networks (CNNs) models (Mohanty et al., 2015;Ahmadi et al., 2022 ;Wunsch et al., 2022). Besides DL

techniques, shallow recurrent networks such as non-linear auto-regressive networks with exogenous input (NARX) are proven

to be useful for modeling a wide variety of dynamic systems (Wunsch et al., 2018). In terms of accuracy and calculation speed,

the CNN models outperform the LSTM. NARX models performed, on average, better than CNN. However, the last one has45

been shown to be faster with only a slightly lower accuracy (Wunsch et al., 2020).

Most studies have successfully applied these techniques for GWL forecasting using only meteorological variables as inputs.

Up to date, the research focuses on a comparative analysis among different AI techniques, resulting in slight differences among

models’ performance (Wunsch et al., 2021) or in improving the model’s accuracy by modifying its architecture (Gong et

al., 2016). In many cases, disregarding site geospatial characteristics can reduce model accuracy or credibility, owing to the50

different responses depending on the aquifer characteristics (Kløve et al., 2013), unsaturated zone conditions, and groundwater

contributing area (Rust et al., 2018). Therefore, it is still known that to achieve more accurate results in areas influenced by

natural and anthropogenic factors; river water level and human impact factors such as pumping rates should be considered as

inputs (Lee et al., 2019).

Since regional studies frequently lack supplementary information beyond meteorological data, this study explores the link55

between model performance (using only precipitation (P) and temperature (T) as inputs) vs. site-specific and time series features

that might help to understand the input-output relation of a GWL DL model. Although many types of ANN structures have been

developed for GWL forecasting, a 1-D CNN (LeCun et al., 2015) is applied here to evaluate the model performance due to their

flexibility, calculation speed, and reliability. The model is trained, validated, and tuned individually in 505 wells distributed
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throughout the state of Lower Saxony, Germany. The research considers the relevant and available geospatial features and time60

series features. New insights are provided about the complexity of controlling factors on the groundwater dynamics.

2 Study area and materials

2.1 Study area

The study area is located in the Lower Saxony (LS), Germany (Fig 1), where groundwater accounts for 86% of the public water

supply (LSN, 2016). The groundwater bodies in this area comprise a great extension of highly productive porous aquifers and,65

in less proportion, fractured hard rock, and karst aquifers (LSN, 2016). The landscape is mainly dominated by the lowlands

in the northern and central regions, whereas the south is predominantly hilly and mountainous. Land use corresponds mainly

to farming (∼ 47%) and pasture (∼ 15%), concentrated in the western and northern regions (NMUEK, 2015). The maritime

influence in the coastal region affects the precipitation distribution, decreasing from the West (approx. 750mm/yr) to the East

(<600 mm/yr). In contrast, the annual precipitation exceeds 1500 mm in the south (NMUEK, 2015).70

From a broad perspective, the northern German Plain is covered up to the edge of the low mountain range by glacial deposits

of varying thicknesses (LBEG, 2016), constituting a great proportion of LS. Hard rock areas in the southern highlands are

formed by sandstones and limestones (BGR, 2019). Highly heterogeneous geological structures exist among these two groups,

leading to groundwater availability at different depths with varying yields, especially in karst aquifers (LBEG, 2016). The

primary pressures on the quantitative status of groundwater bodies arise from its long-term abstraction, mainly for drinking75

water, irrigation, mining or construction activities, and long-term hydraulic measures for groundwater remediation (NMUEK,

2015).

2.2 Data

GWL observations and meteorological information are available throughout the state of LS. Table 1 shows the data overview.

The GWL is in monthly resolution with a variable time range, and historical records of meteorological variables are available in80

a daily resolution of 5 x 5 km. The GWL time series consists of 505 wells unevenly distributed, with more information available

in the central region of the study area (Fig. 2). Besides the irregular spatial distribution, the time range of the groundwater

records is highly variable (between 1950 and 2021), and considerable data gaps exist depending on the well.

Table 1. Data availability overview.

Data
Temporal

resolution

Spatial

resolution
Time range Source

Groundwater level observations Monthly - Variable (1950 : 2021)
The Lower Saxony State Office for

Mining, Energy and Geology (LBEG)

Precipitation and temperature Daily 5 x 5 km 1951 : 2015 (Rauthe et al., 2013; Frick et al., 2014)

3

https://doi.org/10.5194/egusphere-2023-1836
Preprint. Discussion started: 13 September 2023
c© Author(s) 2023. CC BY 4.0 License.

hoegemar
Highlight
I suggest to write Lower Saxony instead of abbreviating it. Using GWL as only abbreviation helps readability.

hoegemar
Highlight
see above



Figure 1. Hydrogeological areas of Lower Saxony. 1:500K (LBEG, 2016) . The hydrological bodies towards the north correspond to porous

aquifers (Nord- und mitteldeutsches Mittelpleistozän, Niederungen im nord- un mitteldeutschen Lockergesteinsgebiet, Nordseemarchsen and

Nordseeinseln und Watten). The south consists of fractured and karst aquifers (Mitteldeutscher Buntsandstein, Mitteldeutsches Grundgebirge,

Münsteländer Kreidebecken, Nordwestdeutsches Bergland, Sandmünsterland and Subherzyne Senke)

The uneven spatial distribution of the wells results in fewer data available in those areas with fractured aquifers (Fig. 3.a),

limiting the interpretation in terms of different hydrogeological units. Almost half of the wells are located in sandy-gravel85

material (Fig. 3.b), associated with high hydraulic conductivity and stronger variations of GWL. The other half is in finer

materials but still with a high sand portion. Regarding geomorphology, the predominant category is low relief with a high to

moderate soil moisture index (SMI), followed by sink areas with a high SMI (Fig. 3.c). Most wells are in non-irrigated arable

lands and pastures (Fig. 3.d). Overall, the study area characteristics associated with each well are relatively homogeneous

regarding hydrogeology, geomorphology, and land use. Most wells are located below 100 m.a.s.l. (northern area), and higher90

elevations relate to wells in the southern mountainous regions. According to the filter depth, most analyzed wells relate to

shallow aquifers.
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Figure 2. Location of the 505 wells with GWL time series observations used in the study. Maximum gap length and time range of the GWL

time series.

Figure 3. Bar plots showing (a) aquifer type, (b) aquifer material, (c) geomorphology, and (d) land cover (CORINE Land Cover) associated

with the studied wells.

The historical records of meteorological information in Germany are available as an observational dataset (HYRAS dataset,

Rauthe et al. (2013), Frick et al. (2014)). This corresponds to gridded hydrometeorological information based on a compilation

of variables across Germany and adjacent river basins (Razafimaharo et al., 2020). The dataset consists of daily precipitation95

(interpolated according to Rauthe et al. (2013)) and temperature from 1951-2015. The German Weather Service (DWD) adapted
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and improved the raster data based on more than 1300 stations and with a direct station-grid comparison, making the data highly

reliable (Razafimaharo et al., 2020). The daily dataset is provided free of charge for academic and non-commercial purposes

by the DWD.

3 Methods100

Figure 4 presents the methodological flow chart. the first stage consists of pre-processing the available information, jointly

with exploratory data analysis and data mining. The procedure starts with the GWL observations involving the filtering, data

imputation, and jump detection steps. Simultaneously, the meteorological variables are extracted per well location and re-

sampled to monthly resolution. As a result, there is an input dataset per well relating GWL, P and T. In the second stage, a

CNN model is implemented, validated, optimized, and tuned through a Bayesian process. The following step is the performance105

evaluation and interpretability, relating geospatial and time series features with the performance metrics. The final discussion

intends to link the results from the input data analysis, interpretability, and forecasting steps. To achieve the objectives, several

Python libraries are used: Pandas (Reback, 2020), Numpy (Van Der Walt et al., 2011), Scipy (Virtanen et al., 2020), Matplotlib

(Hunter, 2007), Geopandas (Jordahl et al., 2020), and Tensorflow (Abadi et al., 2015) as the most relevant throughout the

process. Additional specific libraries are later mentioned at each methodological step.110

Figure 4. Methodological flow chart.

3.1 Preprocessing

The initial available GWL information consists of 962 wells, but a selection is done to exclude wells under strong anthropogenic

influences such as pumping, favoring the dependency between the climatic input variables and the groundwater observations.

After applying this criterion, a total of 745 wells remain. A second selection removes time series with gap lengths above three

months (2 consecutive missing values), obtaining 505 wells, 241 as a complete series, 254 with two months as the maximum115

gap, and 10 with three months gap. To provide the CNN model with continuous time series, we performed a data imputation

process through a Multiple Linear Regression (if enough dynamically similar wells based on the Euclidean Distance) and
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the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP). Additionally, jumps (sudden changes in the time series)

are present at some wells and might be associated with measurement instruments or other technical problems (Post and von

Asmuth, 2013; Retike et al., 2022). We removed these anomalies by finding the highest slope in the cumulative sum. Finally,120

to extract the meteorological information, an average of 3 x 3 pixels is used to reduce uncertainty related to the grid cell size

following the suggestion of Linke (2017).

3.2 Modelling

The 1d-CNN structure is implemented based on Wunsch et al. (2022), where inputs are split into sequences of a defined value

given by the sequence length. The sequences of input data pass through a 1D convolutional layer, where a window of a fixed125

kernel convolves through the data. The maximum of each convolution is extracted to generate the max pooling layer. A Monte

Carlo dropout of 50% is made to avoid model overfitting. This is followed by a flattened layer and a fully connected dense

layer that uses a rectified linear unit (RELU) as the activation function.

The CNN model is applied to each GWL time series, and, consequently, the phases of training, validation, optimization, and

hyperparameter tuning are also carried out per well. The available groundwater data before 2012 is split between the training130

(80%), validation (10%), and hyperparameter tuning (10%) dataset, and the time-series after 2012 is used as the test set. Each

subset differs depending on the time range of GWL observations (ranging from 21 to 71 years). Therefore, the input features,

time range, and specific model parameters make the model a unique representation of the GWL in a particular location. An

Adam optimizer is applied with 100 training epochs, an initial learning rate of 0.001, and the early stopping of 15 patience.

In this case, the loss is minimized with the mean squared error (MSE) through each epoch for the validation process. The135

hyperparameter tuning is done with a Bayesian optimization to maximize the sum of the squared Pearson (R2) (eq. 1) and

the Nash-Sutcliffe efficiency (NSE) (eq.2) coefficients, measuring the deviation of observed (obs) from predicted (pred) GWL

over a total of n observations. The hyperparameters correspond to: kernel size (fixed as 3), sequence length (1-12 months),

number of filters (1-256), dense size (1-256), and batch size (1-256). Owing to the dataset’s monthly resolution, the sequence

length boundaries are set between 1 and 12 months, a time range that can include significant variabilities in the sub-sequences.140

R2 =




∑n
i=1(Y

obs
i −Y

obs
)(Y pred

i −Y
pred

)√∑n
i=1(Y

obs
i −Y

obs
)2(Y pred

i −Y
pred

)2




2

(1)

NSE = 1−
∑n

i=1(Y
obs
i −Y pred

i )2∑n
i=1(Y

obs
i −Y mean

i )2
(2)

3.3 Performance evaluation

The model performance is influenced to a significant or minor degree by natural and anthropogenic factors, such as the dis-

tance to waterworks or watercourses, the type of land cover, and the geomorphology. Besides, the intrinsic patterns present145

in the observation time series might reveal external affectations on the GWL model. Table 2 describes the geospatial features
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considered. Among them, the distance to the waterworks is expected to modify groundwater flow and, consequently, the GWL

nearby in the surrounding wells. In this case, it is assumed that the date extracted from Open Street Map (OSM, 2022) includes

a significant proportion of all waterworks in the study area. Still, direct influences are unknown due to the lack of pumping

rates information. Regarding categorical variables, the proportion of 1 km buffer surrounding the well is taken for the most150

relevant categories. The Python packages of Tsfeatures (Yang and Hyndman, 2020) and Tsfresh (Christ et al., 2018) are used

to extract multiple GWL time series features automatically. A selection is made among the long list of features according to

their correlation coefficient in relation to the metrics and the added value to the analysis. An overview of the selected features

is given in Table 3, and for a detailed description, please refer to the package manual. Sample and approximate entropy, Fourier

entropy, Lempel Ziv complexity, and the number of peaks are features to estimate the time series complexity.155

To evaluate the impact of external factors on the model performance, the geospatial and time series features are extracted

per well and correlated with the accuracy metrics (R2, NSE, and BIAS) through the Pearson correlation coefficient. An R2

and NSE value closer to 1 mean a higher similarity between modeled and observed GWL, whereas the closest the BIAS is to

zero, the more similar are simulations to the results, negative BIAS refers to a model with underestimation. To enhance the

robustness of the correlations, we took the mean correlation coefficient after bootstrap sampling with 100 re-sampling datasets.160

Only statistically significant correlations within a 90% confidence interval are reported. The main objective is to notice positive

or negative effects on the model performance.

Table 2. Overview of geospatial features considered for the performance evaluation.

Feature Description Source

Distance to water works Distance to water supply systems up to 10 km OSM (2022)

Distance up to 25 km from the coastline Distance to Lower Saxony coastline OSM (2022)

CORINE land cover
Proportion in 1 km buffer of the most relevant categories: (Non-irrigated

arable land, pastures, coniferous forest, Discontinuous urban fabric)
Copernicus (2022)

Geomorphology
Proportion in 1km buffer of the most relevant categories: (Low Relief

/medium-high SMI, sink areas/low-high SMI, moderate relief/low SMI)
BGR (2006)

Leaf area index (LAI)
Proportion in 1 km buffer: monthly average of green leaf area per unit of

the ground surface.
Pistocchi (2015)

Slope Average slope in 1 km buffer BKG (2021)

Drainage density Drainage density in 1 km buffer BKG (2021)

Topographic wetness index (TWI) Average TWI in 1 km buffer
Beven and Kirkby (1979);

BKG (2021)
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Table 3. Overview of time series features considered for the performance evaluation.

Feature Description Python Library

Autocorrelation Computed with a lag of 6 months.

Partial autocorrelation Autocorrelation without effects of external variables.

Seasonal autocorrelation Autocorrelation without the seasonality.

Stability Variance of the means through overlapping windows.

Seasonal strength and trend Seasonal and trend decomposition using Loess.

Flat spots
The maximum number of consecutive observations within

equal-sized intervals.

Tsfeatures

(Yang and Hyndman, 2020)

Longest strike below the mean The length of the longest consecutive subsequence smaller than the mean.

Longest strike above the mean The length of the longest consecutive subsequence bigger than the mean.

Series length Number of observations in the time series

Sample and approximate entropy Regularity of the time series based on the existence of patterns.

Fourier entropy
Measure of time series complexity based on its frequency

spectrum variation.

Lempel Ziv complexity Number of entries needed to encode the time series.

Number of peaks
Number of values bigger than their n neighbors in a

fixed-sized subsequence.

Tsfresh

(Christ et al., 2021)

4 Results

4.1 Modelling

The performance per well is presented in Figure 5, together with the histogram. According to our results, a total of 212 wells165

show R2 and NSE above 0.7 and 0.6, respectively (Fig. 5), which we would consider an acceptable model quality (Moriasi

et al., 2015). Lower performance is seen mainly in the south, related to the fractured aquifers, where both metrics (R2 and

NSE) are below 0.5. The highest positive and negative Bias also occurs in those hydrogeological areas. These wells correspond

to the shortest data length. Most of the best-performed models are found in the wells in the central region of the study area,

where the density of wells is higher. Contrarily, near the coast, some models exhibit low performance regarding R2 and NSE,170

but Bias is in between ± 0.2.

After a visual comparison of most of the CNN models and GWL observations, an overall good agreement is visible between

the simulated GWL and the observations. Figure 6 shows examples where the optimized model performs well and where the

model does not correctly reproduces GWL variability. As observed, the model sometimes underestimates and overestimates

the peaks and lows. However, steep peaks are mainly underestimated. In most cases, local variations out of the main seasonal175

behavior are ignored. Occasionally, in poorly performing models, the pattern of the GWL observations has been generally

learned but with a strong Bias. The well-performed cases show how the CNN model can represent low peaks for some wells.
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Figure 5. Spatial distribution of model performance metrics (R2, NSE and Bias) per well and their respective histogram.
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Figure 6. Examples of the optimized model with (a) high performance and (b) low performance.

4.2 Performance assessment

The correlation coefficients between the geospatial and time series features and the model performance are shown in Figure 7.

Only significant correlations with a confidence interval of 90% are displayed. Although correlation coefficients are statistically180
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significant, they do not exceed 0.62. One of the highest correlations is the distance to the waterworks, corresponding to 0.43

(R2) and 0.29 (NSE). The R2 increases as the distance to the coastline does, whereas the Bias reduces. The proportion of the

most common landcover type in the study area (non-irrigated arable land) relates positively to model performance. Conversely,

wells with a significant surrounding area of forest or high LAI display lower metrics values. Sink and low relief areas with

medium to high SMI negatively impact performance. Hilly regions evidence lower accuracy, while areas with a high drainage185

density or topographic wetness index evidence a better fit to the simulated GWL.

Stronger correlations, mainly negative, are found for the time series features. Overall, autocorrelation reduces model perfor-

mance, which might not be the case when using antecedent GWL as an additional input feature. Similarly, higher time series

stability (higher mean variance over overlapping windows), seasonal trend, and strength reduce the model performance. In-190

creasing flat spots and long strikes above or below the mean are negatively correlated, mainly concerning the NSE metric. The

positive correlations are mainly associated with the complexity measures such as sample and approximate entropy, Lempel Ziv

complexity, and the number of peaks. The time series length positively correlates with R2 but does not correlate with NSE.
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Figure 7. Pearson correlation coefficients between the geospatial features, GWL time series features, and the model performance. Significant

correlations are displayed with a confidence level of 90%. Blank spaces correspond to non-significant correlations. Correlations with the

distance to waterworks are done with 90 wells located in the 10 km buffer and with 50 wells located up to 25 km for the distance to the

coastline.
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5 Discussion

The analyzed wells are located in a relatively homogeneous area in terms of hydrogeology, associated with a major proportion195

of porous material and shallow aquifers, improving the model’s capacity to express GWL only in terms of meteorological

inputs (Kløve et al., 2013). There are a few wells in the fractured and karst aquifers, but those are frequently associated with

greater depths (Wunsch et al., 2022). A more diverse distribution is seen regarding the land cover and geomorphology. The

difference in land use associated with each well implies a complex system that interacts with climate variability and affects the

groundwater resources (Kløve et al., 2013;Treidel et al., 2011).200

The primary source of uncertainty in the current analysis lies in the inability to separate the effects of each external feature

affecting observations (especially the geospatial features), which will greatly depend on the aquifer size (Kløve et al., 2013),

amount of information available, and their reliability. Furthermore, since the magnitude of fluctuations of GWL varies greatly

from season to season (Taylor and Alley, 2001), groundwater dynamics are better observed at a weekly or even daily temporal

resolution instead of the monthly time step. In addition, owing to the fact that the vast majority of the wells we used in the205

current analysis are located in porous aquifers, our results are mainly representative of these conditions.

The GWL behaves following the interaction between climate, topography, hydrogeology, and land use, among others (Ear-

man and Dettinger, 2011). Estimating GWL solely with meteorological variables brings uncertainty, especially in areas with

more significant human impact. Additionally, there are uncertainties related to the model realizations, which in this case, are

solved by using several random initialization seeds. The uncertainties related to the model precision are reduced when using210

only the best-performed optimized models. Regarding the geospatial relations with the model performance, there are uncer-

tainties based on the variable scale and the definition of influential ratio (assumed as 1 km for the geomorphology and land use,

10 km for the waterworks) and with the reliability of the primary information.

5.1 Modelling

Overall, the CNN model was able to simulate, to a significant extent, the GWL changes for more than 200 wells with good over-215

all performance (R2> 0.7 and NSE > 0.6). Thus, the remaining wells account for at least one metric with a non-acceptable per-

formance, and in those cases, further hydrological or anthropogenic factors might influence the GWL behavior. The Bayesian

optimization currently maximizes the sum of R2 and NSE, occasionally causing contrasting values for both metrics at specific

wells. Thus, constraining both values to define model performance guarantees adequate results, even when individual accuracy

is lower than acceptable criteria (Gong et al., 2016). Different combinations of metrics can also be explored against model220

improvements. As explained, Bayesian optimization is used to tune the hyperparameters (external parameters that can not be

learned from the data). However, additional tuning strategies such as Genetic Algorithm and Grid Search have shown better

results (Alibrahim and Ludwig, 2021). Therefore, modifying the optimization strategy and following the standard approach of

changing the network architecture can enhance the results. Other networks, such as LSTM or FFNN, can potentially increase

the learning process. However, in the current study, understanding the influence of geospatial and temporal features related to225

the GWL has priority over network architecture.
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Generalizing the model inputs for all wells throughout the state influences the scores, especially at sites where GWL is not

only driven by P and T. Even with a low performance, sometimes the model can learn the GWL variations but incorporates

a Bias. When both metrics used for the optimization are high, the model is seen to fit the observations adequately. A low

performance occurs mainly when a notorious anthropogenic or non-periodic signal is observed in the time series. Every model230

that could not correctly learn from meteorological inputs might be treated independently. Specific external forcings influencing

GWL variability might be studied, and particular cases should be re-trained with the additional influencing variables.

5.2 Performance evaluation

The weak correlations between the geospatial features and the model performance can be related to the regional scale of

the analysis and to the multiple drivers controlling the GWL at a specific location. Factors such as the spatial resolution of235

the geospatial features or the large numbers of observation pairs could also reduce the correlation coefficients (Armstrong,

2019). For instance, skewed probability distribution in the filter depth, which in most wells is below 50 m, excludes deeper

aquifers from the analysis and can hinder the relation. Even though we found a directly proportional relationship between

model performance and distance to waterworks, the correlation might be weaker due to non-reported abstractions. However,

it is inferred that wells outside the influence area of the waterworks are more prone to be represented only by meteorological240

variables. Contrarily, wells located in the influence area of the waterworks system should include variables such as abstraction

rates to keep the learning process stable (Lee et al., 2019)

The land cover can influence the recharge and the GWL dynamics. When the surface is sealed, the aquifer recharge decreases,

and the GWL diminishes. In the same way, groundwater recharge is significantly reduced through evapotranspiration wherever

dense vegetation is present, such as in a native forest (Lerner and Harris, 2009). In this case, most wells are located in non-245

irrigated arable land, which consists of rainfed crops, meaning a more direct response of GWL to meteorological variables

is feasible. Indeed, as seen in Figure 7, the correlation is positive when the surrounding area of the well relates to a high

proportion of non-irrigated arable land. Contrarily, model performance reduces as LAI increases. LAI indicates the vegetation

canopy, and therefore it governs the interception of precipitation, largely controlling the partitioning of infiltrated water into

evapotranspiration and percolation (Reichenau et al., 2016). Thus, the interception process can hamper a direct response of250

GWL to precipitation (Pan et al., 2011), then affecting model performance. Regarding geomorphology, areas of accumulation

(sink areas) with low to medium SMI positively affect the performance but negatively when the SMI is high. Sites with higher

relief and SMI present lower performance. According to Rajaveni et al. (2017), geomorphological features referring to the

accumulation process (pediment and valley fill) have a good groundwater potential and are, therefore, more prone to react to

meteorological inputs. Accumulation areas are also represented by risen drainage density and TWI because these areas are255

feasible to respond quicker to meteorological inputs. We also expected the model’s fitness to decrease as the slope increases

since steeper areas account for higher runoff, reducing precipitation dynamics’ influence on GWL observations.

As the geospatial characteristics surrounding the groundwater well influence observations, investigating the intrinsic time

series patterns reveals external affectations on the model performance. We found that the learning process reduces as long

consecutive subsequences above or below the mean occur. Direct human influences such as managed aquifer recharge can keep260
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the GWL above the average and modify its response to meteorological variables. The opposite happens when pumping occurs,

and the aquifer levels drop for a more or less continuous period. In both situations, the anthropogenic effects on GWL reduce the

performance. Natural climate variability might also result in a similar effect, negatively affecting performance. For instance, if

wetter or drier periods occur during testing but not in the training phase, the model is unlikely to learn the consequent patterns.

Additionally, the time series complexity measures (sample and approximate entropy, Lempel Ziv complexity, and the number265

of peaks) evidence a directly proportional relationship with model performance, meaning that the more complex the GWL time

series is, the better fit simulations with observations. Complex GWL time series might reflect a good response to precipitation.

Previous studies have shown little or no correlation between the time series length and the model performance (Wunsch et al.,

2020). However, at least observations over decades are required to cover groundwater dynamics due to climate variability (Tay-

lor and Alley, 2001), especially when considering a monthly temporal resolution. In this sense, the model can incorporate more270

information into the learning process, and model performance might increase with longer time series. However, conclusions

about this relation should be further studied.

6 Conclusions

Fluctuations in the GWL observations are influenced by a combination of natural and anthropogenic factors, challenging the

modeling of groundwater systems. An alternative to high data-required physical and numerical models is DL techniques. Many275

DL models have been applied to GWL modeling, but the main concern about using these models remains lack of physical

understanding. Owing to the complex system between climate, GWL, and external drivers, model performance can be directly

or indirectly affected outside of what the model can explain, limited by the input features. Our study brings insights into how

model performance is affected by geospatial features and intrinsic time series characteristics. We selected a 1d-CNN model

to simulate monthly GWL time series per well in northern Germany, using P and T as inputs. We found low performances in280

wells nearby waterworks, an expected result as GWL are modified by pumping rates. An increased LAI or forest land cover

leads to lower performance by hindering the P and T relation with the GWL. Complex time series show a better performance,

possibly linked to a closer relationship between GWL and P patterns. More extended continuous GWL measurements above

or below the mean negatively impact the metrics and can be associated with artificial recharge, pumping imposed in the time

series, or natural events such as wetter and drier seasons. Even though only P and T are used as model inputs, the performances285

obtained are considered acceptable (R2 > 0.7 and NSE > 0.6) for more than 200 wells.

As the study covers are regional area, local variabilities in climate and human-water interactions might occur. Therefore,

model performance should be evaluated at locations with greater data availability to strengthen the current research. Moreover,

correlations might vary depending on the model architecture selected or the temporal resolution of GWL observations. For

instance, daily resolution can better include groundwater dynamics showing stronger correlations. Our results encourage the290

joint analysis of physical-related characteristics and DL GWL modeling as an essential path to improve the reliability of

data-driven models.
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