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Abstract. Groundwater level (GWL) forecasting with machine learning has been widely studied due to its generally accu-

rate results and little input data requirements. Furthermore, machine learning models for this purpose are
:::
can

:::
be set up and

trained in a short time when
::::::
quickly

:
compared to the effort required for process-based numerical models. Despite the high

performance of models obtained
::::
high

::::::::::
performance

:
at specific locations, applying the same model architecture to multiple sites

across a regional area might lead to contrasting accuracies. Likely causalities of
:::
can

::::
lead

::
to

:::::::
varying

:::::::::
accuracies.

::::
The

:::::::
reasons5

:::::
behind

:
this discrepancy in model performance have been barely

::::::
scarcely

:
examined in previous studies. Here, we investigate the

link
::::::
explore

:::
the

::::::::::
relationship between model performance and the effects of geospatial site

::::::::
geospatial

:
and time series features

::
of

:::
the

::::
sites. Using precipitation (P) and temperature (T) as predictors, we model

:::::::
monthly

:
groundwater levels at approximately

500 observation wells in Lower Saxony, Germany, applying a 1-D convolutional neural network (CNN) with a fixed architec-

ture and hyperparameters tuned for each time series individually. The GWL observations range from 21 to 71 years, leading10

to a
:::::::
resulting

::
in variable test and training dataset time range

:::::
ranges. The performances are evaluated against relevant

:::::::
selected

geospatial characteristics (e.g. landcover, distance to waterworks, and leaf area index) and time series features (e.g. autocorrela-

tion, flat spots, and number of peaks) using Pearson correlation coefficients. We found
::::::
Results

::::::
indicate

:
that model performance

is negatively influenced at sites near waterworks and densely vegetated areas. Longer subsequences of GWL measurements

above or below the mean negatively impact the metrics
:::::
model

:::::::
accuracy. Besides, GWL time series containing more irregular15

patterns and with a higher number of peaks exhibit better metrics
::::
might

::::
lead

::
to

::::::
higher

::::::
model

:::::::::::
performances, possibly due to a

closer link with precipitation dynamics. As deep learning models are known to be black-box models missing the understanding

of physical processes, our work shows
::::::
provides

:
new insights into the degree of affectation that external physical factors have

on the
::::
how

::::::::
geospatial

::::
and

::::
time

:::::
series

:::::::
features

:::
link

::
to
:::
the

:
input-output relation

:::::::::
relationship

:
of a GWL forecasting model.

keywords: Groundwater levels, deep learning,
::::::::
1D-CNN,

:::::::
features, forecast20

1 Introduction
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Global water use increases, aggravated by climate change in current water-stressed areas and generating future stress in regions

of abundant supply (UNESCO, 2022). Under these situations, groundwater is seen as a solution to ensure water supply,

accounting for approximately 25% of the global freshwater (UNESCO, 2022). In fact, aquifers might report a seasonal and

multi-year buffer capacity, but when deficits in groundwater storage are observed, they may last much longer due to the25

memory effect (UNESCO, 2020). Moreover, only slight groundwater level (GWL) declines are needed to significantly affect

groundwater discharges to streams (de Graaf et al., 2019). Consequently, approaches based on groundwater observation sites

::::::::::::
Understanding

:::
the

::::::::
dynamics

::
of

:::::::::::
groundwater

:::::
levels

::::
over

::::
time

::::
has

::::::
gained

::::::
greater

:::::::::
importance

:::
in

:::::
recent

:::::
years

::
as

::
a

:::
key

::::
tool

:::
for

::::::::::
groundwater

:::::::::::
management.

::::
This

::::::::::
importance

:
is
::::::
driven

::
by

:::
the

::::
link

:::::::
between

::::::::::
groundwater

:::::::::
discharges

::
to

:::::::
streams,

::::::
where

::::
even

:::::
slight

:::::::
declines

:::
can

:::::::::::
significantly

:::::
affect

:::
the

:::::::::::
environment,

::
as

::::::::::
highlighted

:::
by

::::::::::::::::::
de Graaf et al. (2019).

:::::::
Various

::::::::
modeling

::::::::::
approaches are30

valuable for estimating groundwater stress in the near
::::
levels

::
in

:::::
both

:::
the

::::
short

:
and long term. This allows identifying

:::::
These

:::::::::
approaches

:::::
allow

:::
for

:::
the

:::::::::::
identification

::
of

:
over-exploitation based on depletion trends (Daliakopoulos et al., 2005), increasing

the knowledge about
:::::::
enhance

:::
our

:::::::::
knowledge

::
of

:
water availability for drinking water supply and agricultural irrigation (Taka-

fuji et al., 2019), and delineating
::::
help

::::::::
delineate potential soil subsidence zones due to extremely low groundwater levels

in connection
:::::::::
associated with droughts and water abstraction (Xu et al., 2008).

::::::::::
Furthermore,

::::::::::::
understanding

:::::
these

::::::::
dynamics

::
is35

:::::
crucial

:::
for

:::::::::
sustainable

:::::::::::
groundwater

:::::::::::
management

::
in

::
the

::::
face

::
of

:::::::
climate

::::::
change

:::
and

:::::::::
increasing

::::
water

::::::::
demands

:::::::::::::::
(Famiglietti, 2014

:
).
:

Physical and numerical approaches have been widely used as the primary tool to study GWL (Goderniaux et al., 2015).

However, achieving a desired model calibration/validation requires extensive physical knowledge of the study area and large

volumes of data related to the aquifer properties, geology, and topography, among others. In the last two decades, many40

publications have shown that data-driven models are simpler and faster to develop and provide more accurate results than

physical or numerical models under certain conditions (Tao et al., 2022; Malik and Bhagwat, 2021; Ahmadi et al., 2022). Data-

driven models using machine learning (ML) techniques such as artificial neural networks (ANNs) have proven their suitability

for GWL forecasting (Wunsch et al., 2022) and the ability to capture the non-linearity of the aquifer’s dynamics, although at the

expense of having a physical understanding of the process. Many studies address the former challenge by applying explainable45

AI methods such as SHAP to elucidate the input-output non-linear dynamics (Chakraborty et al., 2021; Zhang et al., 2023;

Liu et al., 2022). In particular, ANN are suitable for solving groundwater-related problems on a regional scale due to their low

dependency on field data accessibility. Many ANN approaches have been successfully implemented, and recent developments

in the field of deep learning (DL) promise a significant improvement of already existing prediction approaches. High overall

performances have been obtained through ANNs techniques including feed-forward neural network (FFNN) (Roshni et al.,50

2020), long short-term memory (LSTM) (Wunsch et al., 2021), and convolutional neural networks (CNN) models (Mohanty

et al., 2015;Ahmadi et al., 2022 ;Wunsch et al., 2022). Besides DL techniques, shallow recurrent networks such as non-linear

auto-regressive networks with exogenous input (NARX) are proven to be useful for modelling a wide variety of dynamic

systems (Guzman et al., 2017; Zanotti et al., 2019; Fabio et al., 2022). Regarding accuracy and calculation speed, the CNN

models outperform the LSTM. NARX models performed, on average, better than CNN (Wunsch et al., 2021), mainly because55

NARX models capture temporal dependencies on groundwater. However, the CNN model has been shown to be faster with only
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a slightly lower accuracy (Wunsch et al., 2020).
:::::::::::::::
Wunsch et al., 2021

::
).

::::
Most

:::::::::::
groundwater

::::::::
modeling

:::
has

::::::::::
traditionally

:::::::::
employed

::
the

:::::::::
previously

::::::::
described

::::::::::
approaches

::
as

:::::::::::
single-station

:::::::
models.

::::::::
However,

:::::
recent

::::::
studies

:::::::::::::::::::
(Heudorfer et al., 2024

:
)
::::
have

:::::::::
introduced

:
a
:::::
global

::::::
model

:::::::::::
incorporating

:::::::
multiple

:::::::
stations

:::
and

:::::
static

::::::::
features.

::::::
Despite

::::
this

:::::::::::
advancement,

:::
the

:::::::::::
performance

:::::::::::
improvement

::
is

::::::
modest

::::::::
compared

::
to

:::
the

:::::::
progress

::::
seen

:::
in

::::::
surface

:::::
water

::::::::
modeling

:::::::::::::::::
(Kratzert et al., 2024

:
).
:

60

Most studies have successfully applied these techniques for GWL forecasting using meteorological variables as inputs. Up

to date, the research focuses on a comparative analysis among different AI techniques, resulting in slight differences among

models’ performance (Wunsch et al., 2021) or in improving the model’s accuracy by modifying its architecture (Gong et

al., 2016). In many cases, disregarding site geospatial characteristics can reduce model accuracy or credibility, owing to the

different responses depending on the aquifer characteristics (Kløve et al., 2013), unsaturated zone conditions, and groundwater65

contributing area (Rust et al., 2018). Therefore, it is known that in order to achieve more accurate results in areas influenced

by natural and anthropogenic factors, river water level and human impact factors such as pumping rates should be considered

as inputs (Lee et al., 2019). For instance, Gholizadeh et al. (2023) applied an LSTM model including static input features

(e.g. hydraulic conductivity and soil depth) as an attempt to model ungauged locations, the authors attribute the satisfactory

model performance to such inputs.
::::::::
However,

::
as

::::::::::
highlighted

:::
by

::::::::::::::::::
Tarasova et al. (2024),

::::
the

::::
lack

::
of

:::::::::
agreement

:::
on

:::::::::
evaluating70

::::::::::
hydrological

:::::::::
catchment

:::::::::
descriptors

:::::::
hinders

:::::::::
consensus

::
on

:::::
what

::
is

:::::::::
considered

::
as

:::::::
relevant

:::::::::
geospatial

:::::::
features,

::
in
:::::::::

particular
:::
for

:::::::::
subsurface

:::::::::::::
characterization.

:

Since regional studies frequently lack supplementary information beyond meteorological data, this study explores the link

between model performance (using only precipitation (P) and temperature (T) as inputs) vs. site-specific and time series features

that might help to understand the input-output relation of a GWL DL model. Although many types of ANN structures have been75

developed for GWL forecasting, a 1-D CNN (LeCun et al., 2015) is applied here to evaluate the model performance due to their

flexibility, calculation speed, and reliability. The model is trained, validated, and tuned individually in 505 wells distributed

throughout the state of Lower Saxony, Germany. The research considers the relevant and available geospatial features
::::::::
geospatial

and time series features
::::
based

:::
on

::::
their

::::::::::
availability

::::
and

:::::::
potential

::::::
impact

:::
on

:::::::::::
groundwater

::::::
records. New insights are provided

about the complexity of controlling factors on the groundwater dynamics.80

2 Study area and materials

2.1 Study area

The study area is located in Lower Saxony, Germany (Fig 1), where groundwater accounts for 86% of the public water supply

(LSN, 2016). The groundwater bodies in this area comprise a great extension of highly productive porous aquifers and, in

less proportion, fractured hard rock, and karst aquifers (LSN, 2016). The landscape is mainly dominated by the lowlands in85

the northern and central regions, whereas the south is predominantly hilly and mountainous. Land use corresponds mainly

to farming (∼ 47%) and pasture (∼ 15%), concentrated in the western and northern regions (NMUEK, 2015). The maritime

influence in the coastal region affects the precipitation distribution, decreasing from the West (approx. 750mm/yr) to the East

(<600 mm/yr). In contrast, the annual precipitation exceeds 1500 mm in the south (NMUEK, 2015).
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Figure 1. Hydrogeological areas of Lower Saxony. 1:500,000 (modified from LBEG (2016)) . The hydrological bodies towards the north

correspond to porous aquifers (Nord- und mitteldeutsches Mittelpleistozän
:::::::::::
(North-Central

:::::
Middle

::::::::::
Pleistocene) , Niederungen im nord- un

mitteldeutschen Lockergesteinsgebiet
:::::::::::
(North-Central

:::::::
lowlands

::
in

:::::::::::
unconsolidated

:::::
rock), Nordseemarchsen and Nordseeinseln und Watten

:::::
(North

:::::
Frisian

:::::::
Wadden

:::
sea,

:::::
marsh

:::::
islands

:::
and

:::::::
halligen)

:
). The south consists of fractured and karst aquifers (Mitteldeutscher Buntsandstein

::::::
(Central

:::::
Bunter

::::::::
sandstone), Mitteldeutsches Grundgebirge

::::::
(Central

::::::::
crystalline

:::::::
basement), Münsteländer Kreidebecken

::::::::::
(Münsterland

:::::
Chalk

:::::
Basin), Nordwestdeutsches Bergland

::::::::
(Northwest

:::::::
Uplands), Sandmünsterland

:::::
(Sand

::::::::::
Münsterland)

:
and Subherzyne Senke

:::::::::::
(Subhercynian

:::::
Trough)

:
)

From a broad perspective, the northern German Plain is covered up to the edge of the low mountain range by glacial90

deposits of varying thicknesses (LBEG, 2016), constituting a great proportion of Lower Saxony. Hard rock areas in the southern

highlands are formed by sandstones and limestones (BGR, 2019a). Highly heterogeneous geological structures exist among

these two groups, leading to groundwater availability at different depths with varying yields, especially in karst aquifers (LBEG,

2016). The primary pressures on the quantitative status of groundwater bodies arise from its long-term abstraction, mainly for

drinking water, irrigation, mining or construction activities, and long-term hydraulic measures for groundwater remediation95

(NMUEK, 2015).
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2.2 Data

GWL observations and meteorological information are available throughout the state of Lower Saxony. Table 1 shows the data

overview. The GWL is in monthly resolution with a variable time range, and historical records of meteorological variables

are available in a daily resolution of 5 x 5 km. The GWL time series consists of 505 wells that are unevenly distributed, with100

more information available in the central region of the study area. Besides the irregular spatial distribution, there are data gaps

depending on the well (Fig. 2.a), and the time range of the groundwater records varies between 21 and 71 (Fig. 2.b) years from

1950 to 2021, resulting in differences in start-end dates of time series .
::::
(Fig.

::::
A1).

Table 1. Data availability overview.

Data
Temporal

resolution

Spatial

resolution
Time range Source

Groundwater level observations Monthly - Variable (1950 : 2021)
The Lower Saxony State Office for

Mining, Energy and Geology (LBEG)

Precipitation and temperature Daily 5 x 5 km 1951 : 2015 (Rauthe et al., 2013; Frick et al., 2014)

As observed in Fig. 3.a, less data is available for fractured aquifers, limiting the interpretation in terms of different hydro-

geological units. This uneven spatial distribution of the wells reflects the differences in hydraulic properties between porous105

and fractured aquifers. In the latter, water primarily flows through conduits and cavities, creating a more complex system that

could increase the construction and maintenance costs of wells, reducing their number in the area. Almost half of the wells

are located in sandy-gravel material (Fig. 3.b), associated with high hydraulic conductivity and stronger variations of GWL.

The other half is in finer materials but still with a high sand portion. Regarding geomorphology, the predominant category is

low relief with a high to moderate soil moisture index (SMI), followed by sink areas with a high SMI (Fig. 3.c).
:::
The

:::::
SMI110

::::
serve

::
to

::::::::
measure

::::
how

:::
wet

::
or

::::
dry

:::
the

:::
soil

::
is
::
at

::::
any

:::::
given

::::
time

:::::
based

:::
on

:::
the

::::::::
minimum

::::
and

::::::::
maximum

::::::::
moisture

:::::
levels

::::
that

:::
the

:::
soil

:::
can

::::
hold

:::::::::::::::
(Hunt et al., 2009

:
).
:
Most wells are in non-irrigated arable lands and pastures (Fig. 3.d). Overall, the study area

characteristics associated with each well are relatively homogeneous regarding hydrogeology, geomorphology, and land use.

Most wells are located below 100 m.a.s.l. (northern area), and higher elevations relate to wells in the southern mountainous

regions. According to the filter depth, most analyzed wells relate to shallow aquifers (Fig A2).115

The historical records of meteorological information in Germany are available as an observational dataset (HYRAS dataset,

Rauthe et al. (2013), Frick et al. (2014)). This corresponds to gridded hydrometeorological information based on a compilation

of variables across Germany and adjacent river basins (Razafimaharo et al., 2020). The dataset consists of daily precipitation

(interpolated according to Rauthe et al. (2013)) and temperature from 1951 to 2015. The German Weather Service (DWD)

adapted and improved the raster data based on more than 1300 stations and with a direct station-grid comparison, making the120

data highly reliable (Razafimaharo et al., 2020). The daily dataset is provided free of charge for academic and non-commercial

purposes (DWD, n.d.).
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Figure 2. Location of the 505 wells with GWL time series observations used in the study. a. Maximum gap length and b. Time range of the

GWL time series. Author-generated map.

Figure 3. Bar
:::
The

:::
bar plots showing

::::
show

:::
the

:::::::::
distribution

::
of

:::
well

:::::::::::
characteristics

::
in
:::

the
:::::
study

::::
area: a. Aquifer type, b. Aquifer material

::::::::::
(BGR, 2019b), c. Geomorphology (SMI: soil moisture index)

:::::::::
(BGR, 2006), and d. land cover (CORINE Land Cover

::::::::::::::
(Copernicus, 2018

)associated with the studied wells.
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3 Methods

Figure 4 presents the methodological flow chart. the first stage consists of pre-processing the available information, jointly with

exploratory data analysis and data mining. The procedure starts with the GWL observations involving the filtering, data impu-125

tation, and jump detection steps. Simultaneously, the meteorological variables are extracted per well location and re-sampled

::::
from

:::::
daily to monthly resolution. As a result, there is an input dataset per well relating GWL, P and T. In the second stage,

a CNN model is implemented, validated, optimized, and tuned through a Bayesian optimization process
:::::::::::::::
(Snoek et al., 2012

:
;
:::::::::::::::::::::
Fernando Nogueira, 2014). The latter corresponds to an optimization method based on bayesian inference and Gaussian

process to maximize the sum of performance metrics, in this case NSE and R2. The following step is the performance130

evaluation and interpretability, relating geospatial and time series features with the performance metrics (Snoek et al., 2012

; Fernando Nogueira, 2014) . To achieve the objectives, several Python libraries are used: Pandas
:::
2.0 (Reback, 2020), Numpy

::::
1.23 (Van Der Walt et al., 2011), Scipy (Virtanen et al., 2020), Matplotlib (Hunter, 2007), Geopandas

:::
0.14

:
(Jordahl et al.,

2020), and Tensorflow
::
2.7

:
(Abadi et al., 2015) as the most relevant throughout the process. Additional specific libraries are

later mentioned at each methodological step.135

Figure 4. Methodological flow chart.

3.1 Preprocessing

The initially available GWL information consists of 962 wells, but a selection is made
:
.
::
A

:::::::::::
pre-selection

::::
was

::::
done

::::::
based

::
on

:::
the

::::::::::::
categorization

:::::::::
performed

:::
by

::::::::::::::::::::::::
Wriedt and NLWKN (2020),

::::::
which

:::::::::
considered

:::
the

:::::::::
agreement

::::::::
between

:::::::::
theoretical

::::
and

:::::::
observed

:::::::::::
hydrographs,

:::
as

::::
well

::
as

:::::
visual

::::::::::
indications

::
of

::::::::::::
anthropogenic

:::::::::
influences.

:::::
This

::::::
process

::::::
aimed to exclude wells under

strong anthropogenic influences,
:

such as pumping, favouring
:
to

:::::
better

:::::::
capture

:
the dependency between the meteorological140

input features and observed groundwater levels. After applying this filter, a total of 745 wells remain. A second selection

removes time series with gap lengths above two consecutive missing values, obtaining 505 wells, 241 (48%) as a complete

series, 254 (50%) with one missing value, and 10 (2%) with two missing values. To provide the CNN model with continuous

time series, we performed a data imputation process through a
::::
data

:::::::::
imputation

:::::
using Multiple Linear Regression

:::::
(MLR). This
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method is only applied
::::::
applied

::::
only when the wells exhibit similar behaviour

:::::::
behavior

:
in their time series, as measured by the145

:::::::::
determined

::
by

:
Euclidean distance. otherwise,

::::
Wells

::::
with

:::
the

:::::::
smallest

:::::::::
Euclidean

::::::::
distances

::::::
(below

::::::::
percentile

:::::
10th)

:::
are

:::::::
selected

::
for

::::::
MLR,

:::::::
ensuring

::
a
::::::
model

:::
R2

:::::
score

:::::
above

::::
0.7.

::
If

:::
the

:::::
score

::
is

:::
not

::::
met,

:
we use the Piecewise Cubic Hermite Interpolating

Polynomial (PCHIP) for gap filling
:::::::::::::::::
(Virtanen et al., 2020

:
;
:::::::::::::::::::::
Fritsch and Butland, 1984

:
). Overall, the time series have less than

5% gap-filled values. Additionally, jumps (sudden changes in the time series) are identified at 28 wells and might be associated

with measurement instruments or other technical problems (Post and von Asmuth, 2013; Retike et al., 2022). We identified150

the observations displaying these anomalies by finding the highest slope in the cumulative sum and removing the time series

before 1990 for those wells. This is because we are aware of changes due to measurement devices around this time. Finally,

to extract the meteorological information, an average of 3 x 3 pixels is used to reduce uncertainty related to the grid cell size

following the suggestion of Linke (2017).

3.2 Modelling155

The 1D-CNN structure is implemented based on Wunsch et al. (2022), where inputs are split
:
.
::::
This

::::
type

:::
of

:::::::
network

::::
was

:::::::::
specifically

::::::::
designed

::
to
:::::::

process
::::
and

:::::::
analyze

:::::::::
sequential

::::
data,

:::::::::
capturing

::::
local

::::::::
patterns

:::
and

::::::::
temporal

::::::::::::
dependencies

:::::::
through

:::::::::::
convolutional

::::::
layers.

::
In

::::
this

:::::::::::::
implementation,

:::
the

:::::
input

::::
data

::
is

::::::
scaled

:::::::
between

::
-1

::::
and

:
1
::
to
::::::::

enhance
:::
the

:::::::
learning

:::::::
process.

::::
The

:::::
inputs

:::
are

::::::
divided

:
into sequences of a defined value given by the sequence length. The sequences of input data

:::::
length.

::::::
These

::::::::
sequences

:
pass through a 1D convolutional layer, where a window of a fixed kernel

::::
fixed

::::::
kernel

:::::::
window convolves through the160

data. The maximum of each convolution
::::
value

:::::
from

::::
each

::::::::::
convolution

::::::::
operation is extracted to generate

::::
form

:
the max pooling

layer. A ,
::::::::
reducing

::::::::::::
dimensionality

:::
and

:::::::::::
highlighting

:::
the

::::
most

:::::::::
significant

:::::::
features.

:::
To

::::::
prevent

:::::::::
overfitting,

:
a
:
Monte Carlo dropout

of 50% is made to avoid model overfitting. This is followed by
:::::::
applied.

:::::::::
Following

::::
this, a flattened layer and a

:::::::
converts

:::
the

:::::
pooled

:::::::
features

::::
into

::
a

::::::::::::::
one-dimensional

:::::
array,

:::::
which

::
is

::::
then

:::::::::
processed

::
by

::
a fully connected dense layer that uses a

:::::
using

:::
the

rectified linear unit (RELU
::::
ReLU) as the activation function.165

The CNN model is applied to each GWL time series, and consequently,
:::::::::::
encompassing

:
the phases of training, validation,

optimization, and hyperparameter tuning are also carried out per well. The available groundwater data before
::::
prior

::
to

:
2012

is split between the training (80%), validation (10%), and hyperparameter tuning (10%) dataset, and the time series after

2012 is used
:::::
while

:::
the

:::::::::
2012-2015

::::::
period

::::::
serves as the test set. Each subset differs depending on the time range of GWL

observations(ranging ,
::::::
which

::::
vary

:
from 21 to 71 years).Therefore

:::::
.Thus, the input features, time range, and specific model170

parameters make the model
:::::
create

:
a unique representation of the GWL in a particular

::
for

::::
each

:
location. An Adam optimizer is

applied with 100 training epochs, an initial learning rate of 0.001, and the early stopping of 15 patience. In this case, the loss

is minimized with the mean squared error (MSE) through each epoch for the validation process. The hyperparameter tuning is

done with a Bayesian optimization (
::::::::::::::
Snoek et al., 2012

:
; Fernando Nogueira, 2014) to maximize the sum of the squared Pearson

(R2) and the Nash-Sutcliffe efficiency (NSE) coefficients, measuring the deviation of observed from predicted GWL over a175

total of observations. The hyperparameters correspond to: kernel size (fixed as 3), sequence length (1-12 months), number

of filters (1-256), dense size (1-256), and batch size (1-256). Owing to the dataset’s monthly resolution, the sequence length

boundaries are set between 1 and 12 months, a time range that can include significant variabilities in the sub-sequences.
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3.3 Performance evaluation

The model performance can be significantly or slightly affected, depending on the well location, by natural and anthropogenic180

factors, such as the distance to waterworks or watercourses, the type of land cover, and the geomorphology. Besides, the intrin-

sic patterns present in the observation time series might reveal external affectations on the GWL model. Table 2 describes the

geospatial features considered.
::::
The

:::::::
selection

::::
was

:::::
made

:::::
based

:::
on

::::
data

:::::::::
availability

::::
and

::::
their

:::::::
potential

::::::
impact

:::
on

:::::::::::
groundwater

::::::
records.

:
We also performed the analysis with further geospatial features, such as distance to the surface water bodies, but no

statistically significant correlation with model performance was found, and therefore, the results are not shown here. Among185

the reported ones, the distance to the waterworks is expected to modify groundwater flow and, consequently, the GWL nearby

in the surrounding wells. Here, we assume that Open Street Map (OSM, 2022) includes a significant proportion of all wa-

terworks in the study area, but a comprehensive dataset including the locations of all waterworks or information regarding

pumping rates is still missing. Regarding categorical variables, the proportion of a 1 km radius around the well is taken for the

most relevant categories
::
as

:
it
::::
has

::::
been

:::::
shown

::
to

:::::::::
adequately

::::::::
represent

:::
the

::::::::::
contributing

::::
area

::
of

:
a
::::::::::
monitoring

::::
site,

::::::::
especially

:::::
when190

::::::
detailed

::::::::::
information

:::::
about

:::::::::::
groundwater

:::::::::
conditions

::
is

:::::::
lacking

:::::::::::::::
(Knoll et al., 2019

:
). The Python packages of Tsfeatures (Yang

and Hyndman, 2020) and Tsfresh (Christ et al., 2018) are used to extract multiple GWL time series features automatically. A

selection is made from the long list of features (available in each package) according to their
::::::
Pearson

:
correlation coefficient

in relation to the metrics and
:::::
model

::::::::::
performance

:::::::
metrics

:::
(R2

::::
and

:::::
NSE)

:::
and

:
the added value to the analysis .

:::::::::::::
(interpretability

::
in

:::
the

::::::
context

::
of

:::::::::::
groundwater

:::::
level).

:::
We

:::
are

:::::
aware

::::
that

:::::::
Pearson

::::::::::
correlations

::::::
provide

:::::
linear

::::::::::::
relationships,

::
so

:::
we

:::
also

:::::::::
computed195

::::::::
Spearman

::::
rank

:::::::::
correlation

::::::::::
coefficients.

:::::::::
However,

::::
since

:::::::::
Spearman

::::
rank

:::
did

:::
not

::::
yield

::::::
higher

::::::::::
correlations,

:::
we

:::::
chose

::
to

::::::::
continue

::::
using

::::::::
Pearson. Table 3 shows an overview of the selected time series features, description, range of values and guidelines of

their occurrence on the GWL time series (for a detailed description of the estimation procedure, please refer to the package

manual). We incorporated the Fourier power spectral density at a period of 1 year to measure the influence of annual climate

seasonality on the GWL. Higher values indicate a greater annual seasonality. High autocorrelation values indicate patterns con-200

stantly repeating in the time series. High stability values imply that GWL remains within a consistent range without significant

variations or trends. The more flat spots, the more relatively constant values over extended periods. Approximate entropy and

number of peaks measure the complexity of the time series. A high value of the former indicates that the GWL time series

contains multiple irregular patterns, making it harder to predict. A higher number of peaks indicates multiple local maximums,

implying stronger fluctuations in GWL observations.205

To evaluate the impact of external factors on the model performance, the geospatial and time series features are extracted

per well and correlated with the accuracy metrics (R2, NSE, and bias) through the Pearson correlation coefficient. An R2 and

NSE value closer to 1 mean a higher similarity between modelled and observed GWL, whereas the closer the bias is to zero,

the more similar are simulations to the observed data; negative bias refers to a model with underestimation. To enhance the

robustness of the correlations, we took the mean correlation coefficient after bootstrap sampling with 100 re-sampling datasets.210

Only statistically significant correlations
:::
We

:::::
report

:::::
only

::::
those

::::::::::
correlations

::::
that

::::::::::
demonstrate

:::::::::
statistical

::::::::::
significance,

::::::::
ensuring
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:::
they

::::
fall within a 90% confidence interval are reported

::
to

::::::::
guarantee

:::
the

:::::::::
reliability

::
of

:::
our

::::::::
findings. The main objective is to

notice positive or negative effects on the model performance.

4 Results

4.1 Modelling215

The performance per well is presented in Figure 5. According to our results, a total of 212 wells show R2 and NSE values above

0.7 and 0.6, respectively (Fig. 5), which we would consider an acceptable model fit (Moriasi et al., 2015). Lower performance

is seen mainly in the south, related to the fractured aquifers, where both metrics (R2 and NSE) are below 0.5. The highest

positive and negative bias also occurs in those hydrogeological areas. These wells correspond to the shortest data length. Most

of the best-performed models are found for the wells in the central region of the study area, where the density of wells is higher.220

Contrarily, some models exhibit low performance near the coast regarding R2 and NSE, with a bias is between ± 0.2.

After a visual comparison of
:::::::
visually

:::::::::
comparing most of the CNN models and

::::
with

:
GWL observations, an overall good

agreement is visible
:
a
::::::
degree

::
of
::::::::::

agreement
:::
can

:::
be

:::::
noted

:
between the simulated GWL and the observations.

:::
and

::::::::
observed

:::::
GWL

::::
(Fig.

::::
A5).

:
Figure 6 shows examples where the optimized model performs well and where the model does not correctly

reproduce GWL variability. As observed, the model sometimes underestimates and overestimates the peaks and lows. However,225

steep peaks are mainly underestimated. In most cases, local variations from the main seasonal behaviour
::
on

:::
the

::::
time

:::::
series are

ignored. Occasionally, in poorly performing models, the pattern of the GWL observations has been generally learned but with

a strong bias (around 10% of the wells show a bias above 0.13). The well-performed cases show how the CNN model can

represent low peaks for some wells.
:::::::::::
Additionally,

:::::
model

:::::::::
overfitting

::
is

::::
low,

::
as

::::
seen

::
in
::::::
Figure

::::
A3,

:::::
along

::::
with

:::
the

::::::
effects

::
of

:::
the

::::::
lengths

::
of

:::
the

:::::::
training,

:::::::::
validation,

:::
and

::::::
testing

:::::::
periods,

::
as

::::::
shown

:::
by

:::::
Figure

:::
A4

:
230
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Figure 5. Spatial distribution of model performance metrics (R2, NSE and Bias) per well and their respective histogram. Author-generated

map.
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Figure 6. Examples of the optimized
:::::::::
observations,

:::::
CNN modelwith

:
,
:::
and

::::::
baseline

:::::
model (

:::::::
sinusoidal

::::
curve

::::
plus

:::::::::
precipitation

:::::
trend)

:::
for

::::
cases

:
of
::

(a) high performance and (b) low performance.
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4.2 Performance assessment

The correlation coefficients between the geospatial, and time series features and the model performance are shown in Figure 7.

Only significant correlations with a confidence interval level of 90%
:::::::::
confidence

::::::
interval

:
are displayed. Although

:::
the correlation

coefficients are statistically significant, they do not exceed 0.62.
::::
0.53

:::
for

::::
time

:::::
series

::::::::
features.

::::::::::
Correlations

:::
for

:::
the

:::::::::
geospatial

::::::
features

:::
are

:::::::
weaker,

:::::::
serving

::
in

::::
both

:::::
cases

:::::
more

:::
as

::
an

:::::::::
indication

:::::
rather

::::
than

:::::::::
providing

:::::
strong

:::::::::
evidence. One of the highest235

correlations is the distance to the waterworks, corresponding to 0.43 (R2) and 0.29 (NSE). The
::::::::
Although

::::
there

::
is
:::

no
:::::
clear

:::::
spatial

::::::
pattern

::::::::
followed

:::
by R2 increases as the distance to the coastlinedoes, whereas the bias reduces

:::
and

:::::
NSE,

:::
the

:::::::
Pearson

:::::::::
correlation

:::::::
suggests

:::
that

::::::
model

:::::::::::
performance

:::::::
improves

::::
with

:::::::::
increasing

:::::::
distance

:::::
from

:::
the

:::::::
coastline. The proportion of the most

common landcover type in the study area (non-irrigated arable land) relates positively to
::::::
suggests

::
a
:::::::
positive

::::::::::
relationship

::::
with

model performance. Conversely, wells with a significant surrounding area
:::::::::
surrounded

::
by

:::::::::
significant

:::::
areas of forest or high LAI240

display
::::
tend

::
to

:::::
show lower correlations. Sink and low relief areas with medium to high SMI

::::
may negatively impact perfor-

mance. Hilly regions evidence
:::::
might

:::::::
indicate lower accuracy, while areas with a high drainage density or a

:::::
high topographic

wetness index evidence a higher
::::::
suggest

:::::
better

:
model performance.

Stronger correlations, mainly negative, are found for the
:::::::::
Regarding time series features. Overall, we found that autocorrelation245

reduces ,
:::::::::::::
autocorrelation

::::
may

::::::
reduce model performance. This might not be the case when using antecedent GWL as an ad-

ditional input featurewhen GWL will show ,
::::::
where

:::::
GWL

::::::
shows the highest influence on model output (Chakraborty et al.,

2021), better explaining the current state based on the past one if the time series is highly autocorrelated. Similarly, higher

time series stability (higher mean variance over
::::::
variance

:::
of

::
the

::::::
means

:::::::
through overlapping windows) reduces the

::::
may

::::::
reduce

model performance. Increasing flat spots and long strikes above or below the mean are negatively correlated, mainly concerning250

:::::::::
particularly

::::
with

:
the NSE metric. The positive

::::::
Positive

:
correlations are mainly associated with the complexity measures such

as approximate entropy and the number of peaks. The time series length positively correlates with R2 but does not correlate

with NSE. Stronger
::::::
Higher values of the Fourier power spectral density at one year (

::::::::
indicating stronger annual seasonality on

::
in the observed GWL) result in a higher model performance.
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Figure 7. Pearson correlation coefficients between the geospatial features, GWL time series features, and the model performance. Significant

correlations are displayed with a confidence level of 90%. Blank spaces correspond to non-significant correlations. Correlations with the

distance to waterworks are done with 90 wells located in the 10 km buffer and with 50 wells located up to 25 km for the distance to the

coastline.

5 Discussion255

The analyzed wells are located in a relatively homogeneous area in terms of hydrogeology, associated with a major proportion

of porous material and shallow aquifers, improving the model’s capacity to express GWL only in terms of meteorological

inputs (Kløve et al., 2013). There are a few wells in the fractured and karst aquifers, but those are frequently associated with

greater depths (Wunsch et al., 2022). A more diverse distribution of wells is observed regarding land cover and geomorphology,

resulting in distinct interactions between climate, land use, and groundwater (Kløve et al., 2013;Treidel et al., 2011), potentially260

influencing the model performance.

The primary source of uncertainty in the current analysis lies in
:
is
:

the inability to separate the effects of each external

features affecting observations(especially the geospatial features), which will greatly depend
::::::
feature

:::::::
affecting

::::::::::::
observations,

:::::::::
particularly

:::::::::
geospatial

::::::::
features.

::::
This

::::::::::
uncertainty

::
is

::::::
highly

:::::::::
dependent

:
on the aquifer size (Kløve et al., 2013), amount

:::
the

::::::
amount

::
of

::::::::
available

::::::::::
information,

::::
and

::
its

:::::::::
reliability.

:::::::::::
Furthermore,

::::
time

:::::::::
resolution

::::
may

::::::::
introduce

:::::::::
additional

:::::::::
uncertainty,

:::
as

:::
the265

::::::::
magnitude

:
of information available , and their reliability. To better interpret the non-linear behaviour between groundwater and
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its influencing factors, some studies applied explainable AI techniques (Chakraborty et al., 2021; Zhang et al., 2023). However,

this implies including all the analyzed features as inputs on the model, most of which correspond to static data (as regionally

accessible information) that might not add value to the sequential model. Furthermore, since the magnitude of fluctuations

of GWL varies greatly
:::::
GWL

:::::::::
fluctuations

::::::
varies

::::::::::
significantly

:
from season to season (Taylor and Alley, 2001), depending on270

the aquifer properties, groundwater dynamicsare better observed at a weekly or even daily temporal resolution instead of the

monthly time step. In addition, owing to the fact that the .
::::::
Certain

:::::::
patterns

::
in

:::::::::::
groundwater

::::::::
dynamics,

:::::::::
especially

::
in

::::
karst

:::::::
aquifers

::
or

::::
those

::::
with

::::::
strong

::::::::
secondary

::::::::
porosity,

::::::
become

:::::
more

::::::
evident

::
at

::::::
weekly

::
or

:::::
daily

::::
time

::::
steps.

::::::::::::
Consequently,

:::
the

:::
use

::
of

::
a

:::::::
monthly

::::::::
resolution

::
in

:::
our

:::::
study

::::
may

:::
not

::::
fully

::::::
capture

:::::
these

::::::::
dynamics.

:::::::::::
Additionally,

:::::::
because

:::
the vast majority of the wells we used in the

current
::::
used

::
in

:::
this

:
analysis are located in porous aquifers, our results are mainly

::::::::
primarily representative of these conditions.275

The GWL behaves following the interaction between climate, topography, hydrogeology, and land use, among others (Ear-

man and Dettinger, 2011). Estimating GWL solely with meteorological variables brings uncertainty, especially in areas with

more significant human impact. Additionally, there are uncertainties related to the model realizations, which, in this case, are

solved by using several random initialization seeds. As a result, the model precision is generally high, and we only use the best-

performed optimized models. Regarding the geospatial relations with the model performance, there are uncertainties based on280

the variable scale and the definition of influential radius (assumed as 1 km for the geomorphology and land use, 10 km for the

waterworks) and with the reliability of the primary information.

5.1 Modelling

Overall, the CNN model was able to simulate, to a significant extent, the GWL changes for more than 200 wells with good over-

all performance (R2> 0.7 and NSE > 0.6). Thus, the remaining wells account for at least one metric with a non-acceptable per-285

formance, and in those cases, further hydrological or anthropogenic factors might influence the GWL behaviour. The Bayesian

optimization currently maximizes the sum of R2 and NSE, occasionally causing contrasting values for both metrics at specific

wells. Thus, constraining both values to define model performance guarantees adequate results, even when individual accuracy

is lower than acceptable criteria (Gong et al., 2016). Different combinations of metrics can also be explored against model im-

provements. As explained, Bayesian inference and Gaussian process (
::::::::::::::
Snoek et al., 2012

:
; Fernando Nogueira, 2014) are used290

to tune the hyperparameters (external parameters that can not be learned from the data). However, additional tuning strategies

such as Genetic Algorithm and Grid Search have shown better results (Alibrahim and Ludwig, 2021). Therefore, modifying

the optimization strategy and following the standard approach of changing the
:::::::
adjusting

:::
the

:
network architecture can enhance

the results. Other
:::::::::
Alternative networks, such as LSTM or FFNN, can potentially increase

:::
may

::::::
further

:::::::
improve

:
the learning

process. However, in the current study, understanding the influence of geospatial and temporal features related to the GWL has295

priority over
::
this

::::::
study,

:::
our

::::::
priority

::
is

::
to

:::::::::
understand

:::
the

::::
link

:::::::
between

:::::
GWL

::::
and

::::::::
geospatial

::::
and

::::
time

:::::
series

:::::::
features

:::::
rather

::::
than

:::::::
focusing

::
on

::::::::::
optimizing

::
the

:
network architecture.

Generalizing the model inputs for all wells throughout the state influences the scores, especially at sites where GWL is not

only driven by P and T. Even with a low performance, sometimes the model can learn the GWL variations but incorporates

a bias. Around 10% of the wells show strong bias (>0.3), meaning the model has little or no intersections with observations.300

15



Differences in spatial resolution between the input data (gridded P and T) and the GWL observations can cause this bias at

some stations. When both metrics used for the optimization (R2 and NSE) are high, the model is seen to fit the observations

adequately. At certain times, the model misses the small spikes on the observations. However, a model that adequately rep-

resents the lower and higher periods due to dry or wet years holds higher relevance for groundwater management. A low

performance occurs mainly when a notorious
::::
Even

::::::
though

:::
the

:::::::
received

::::::
dataset

::::::::
excluded

::::::
highly

::::::::
impacted

::::::::::::
anthropogenic

::::
time305

:::::
series,

::::
low

::::::::::
performance

::
is
::::::::
primarily

::::::::
observed

:::::
when

:
a
:::::::::
significant

:
anthropogenic or non-periodic signal is observed

::::::
present in

the time series. Every model that could not correctly
::::::
Models

:::
that

:::
do

:::
not

:::::::::
accurately

:
learn from meteorological inputs might

be treated independently. Specific external forcings influencing GWL variability might be studied, and particular cases should

be re-trained with the additional influencing variables.
::::::
Lastly,

:::::
while

:::::
model

:::::::::
overfitting

:::::::
appears

::
to

:::
be

:::::
small

::::
(Fig.

::::
A3),

:::
the

::::
low

::::::::::
performance

:::
on

:::
the

:::
test

::::
data

::::
may

:::
still

::
be

:::::::::
attributed

::
to

::::::::
overfitting

::
at
:::::
some

:::::::
stations.

:
310

5.2 Performance evaluation

The weak correlations between the geospatial features and the model performance can be related to the regional scale of the

analysis and to the multiple drivers controlling the GWL at a specific location. Factors such as the spatial resolution of the

geospatial features or the large numbers of observation pairs could also reduce the correlation coefficients (Armstrong, 2019).

For instance, skewed probability distribution in the filter depth, which is below 50 m in most wells, excludes deeper aquifers315

from the analysis and can hinder the relation. Even though we found
::::::
reported

:
a directly proportional relationship between

model performance and distance to waterworks, the correlation might be weaker due to non-reported abstractions. However,

it is inferred that wells outside the influence area of the waterworks are more prone to be represented only by meteorological

variables. Contrarily, wells located in the influence area of the waterworks system should include variables such as abstraction

rates to keep the learning process stable (Lee et al., 2019)320

The land cover can influence the recharge and the GWL dynamics. When the surface is sealed, the aquifer recharge decreases,

and the GWL diminishes. In the same way, groundwater recharge is significantly reduced through evapotranspiration wherever

dense vegetation is present, such as in a native forest (Lerner and Harris, 2009). In this case, most wells are located in non-

irrigated arable land, which consists of rainfed crops, meaning a more direct response of GWL to meteorological variables

is feasible. Indeed, as seen
::::
This

:::::::
supports

:::
the

:::::::
positive

:::::::::
correlation

:::::::::
suggested in Figure 7 , the correlation is positive when the325

surrounding area of the well relates to a high proportion of
:::::::
between

::::::
model

::::::::::
performance

::::
and

:::::
wells

::::::
located

:::
in non-irrigated

arable land. Contrarily, model performance reduces as LAI increases. LAI indicates the vegetation canopy, and therefore, it

governs the interception of precipitation, largely controlling the partitioning of infiltrated water into evapotranspiration and

percolation (Reichenau et al., 2016). Thus, the interception process can hamper a direct response of GWL to precipitation (Pan

et al., 2011), then affecting model performance. Regarding geomorphology, areas of accumulation (sink areas) with low to330

medium SMI positively affect the performance but negatively when the SMI is high. Sites with higher relief and SMI present

lower performance. According to Rajaveni et al. (2017), geomorphological features referring to the accumulation process

(pediment and valley fill) have a good groundwater potential and are, therefore, more prone to react to meteorological inputs.

Accumulation areas are also represented by risen drainage density and TWI because these areas are feasible to respond quicker
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to meteorological inputs. We also expected the model’s fitness to decrease as the slope increases since steeper areas account335

for higher runoff, reducing precipitation dynamics’ influence on GWL observations.

As the geospatial characteristics surrounding the groundwater well influence observations, investigating the patterns encoun-

tered in the time series by extracting selected features can provide insights into model performance affectations. For instance,

the recurrent presence of flat spots on the observations, seen as relatively constant values over extended periods, reduces model

performance. This might indicate an aquifer that is less responsive to changes in climate
::::::
climate

::::::::
variability, which is often the340

case with large aquifers (Kløve et al., 2013). We can apply a similar argument to the reduction of performance when there is

an increase in time series stability. This means the GWL remains within a specific range of values without significant varia-

tions. Thus, even if there are upward or downward trends
::::::
changes

:
in precipitation, the observations of GWL do not exhibit

similar patterns. Consequently, the proposed model using only P and T would fail to reproduce the GWL patterns adequately.

We found that the learning process reduces as long consecutive subsequences above or below the mean occur. Direct human345

influences such as managed aquifer recharge can keep the GWL above the average and modify its response to meteorological

variables. The opposite happens when groundwater abstractions exceed recharge, and the aquifer levels drop for a more or less

continuous period (Wendt et al., 2020). In both situations, the anthropogenic effects on GWL reduce the performance. Natural

climate variability might also result in a similar effect, negatively affecting performance. For instance, if wetter or drier periods

occur during testing but not in the training phase, the model is unlikely to learn the consequent patterns. Additionally, the time350

series complexity measures (approximate entropy and the number of peaks) indicate a directly proportional relationship with

model performance, meaning that the more complex the GWL time series is (more irregular patterns), the better fit simulations

with observations. Complex GWL time series might reflect a good response to precipitation.

Previous studies have shown little or no correlation between the time series length and the model performance (Wunsch et al., 2020

::::::::::::::::
Wunsch et al., 2021). However, at least observations over decades are required to cover groundwater dynamics due to climate355

variability (Taylor and Alley, 2001), especially when considering a monthly temporal resolution. In this sense, the model

can incorporate more information into the learning process, and model performance might increase with longer time series.

However, conclusions about this relation should be further studied.

6 Conclusions

Fluctuations in the GWL observations are influenced by a combination of natural and anthropogenic factors, challenging the360

modelling of groundwater systems. An alternative to high data-required physical and numerical models is DL techniques. Many

DL models have been applied to GWL modelling, but the main concern about using these models remains a lack of physical

understanding. Owing to the complex system between climate, GWL, and external drivers, model performance can be directly

or indirectly affected outside of what the model can explain, limited by the input features. Our study brings insights into how

model performance is affected by geospatial features and intrinsic time series characteristics. We selected a 1d-CNN model365

to simulate monthly GWL time series per well in northern Germany, using P and T as inputs. We found
:::
Our

::::::
results

:::::::
indicate

low performances in wells near waterworks, an expected result as GWL are modified by pumping rates. An increased LAI or
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forest land cover leads
:::::
might

::::
lead to lower performance by hindering the P and T relation with the GWL. Complex time series

show
::::
relate

:::
to a better performance, possibly linked to a closer relationship between GWL and P patterns. More extended

continuous GWL measurements above or below the mean negatively impact the metrics and can be associated with artificial370

recharge, pumping imposed in the time series, or natural events such as wetter and drier seasons. Even though only P and T

are used as model inputs, the performances obtained are considered acceptable (R2 > 0.7 and NSE > 0.6) for more than 200

wells.
:::::::::::
Nonetheless,

:::::::::::
incorporating

:::::::::
explainable

:::
AI

:::::::::
techniques

::
in

:::::
future

:::::::
studies

:
is
::::::::::::
recommended

::
to

:::::::
enhance

:::
the

::::::::::::
interpretation

::
of

::
the

:::::::::
non-linear

:::::::::
behaviour

:::::::
between

::::::::::
groundwater

::::
and

::
its

::::::::::
influencing

::::::
factors.

:

As the study covers regional areas, local variabilities in climate and human-water interactions might occur. Therefore, model375

performance should be evaluated at locations with greater data availability to strengthen the current research. Moreover, corre-

lations might vary depending on the model architecture selected or the temporal resolution of GWL observations. For instance,

daily resolution can better include groundwater dynamics showing stronger correlations. Our results encourage the joint anal-

ysis of physical-related characteristics and DL GWL modelling as an essential path to improve the reliability of data-driven

models.380

Code availability. The code required to reproduce our results is available on Zenodo (Gomez, 2024)

Data availability. The raw, filtered, and gap-filled groundwater levels dataset along with the input meteorological forcings dataset are avail-

able on Zenodo (Gomez, 2024)
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Figure A1.
:::
Time
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range

::
of

::::
GWL

::::::::::
observations.
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The
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:
to
::::::
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::::
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Figure A2. Filter depth (meters below ground level) and elevation in meters above sea level of all the wells in the study area.

Competing interests. No competing interests are present

19



Figure A3.
:::::::
Difference

::
in

:::::
model

::::::::::
performance

::::::
(RMSE)

:::::::
between

:::::::
validation

:::
and

::::::
testing

::::::
periods.

Figure A4.
::::
Model

::::::::::
performance

::::::
(RMSE)

::::::::
difference

:::::::
between

:::::::
validation

:::
and

:::::
testing

::::::
period

::
for

::
3,

:
4
:::
and

::
5

::::
years

::
of

:::::
testing

::::::
ranges.
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Figure A5.
:::::::
Scatterplot

::
of
::::::::
simulated

::
vs

:::::::
observed

:::::
values

::
for

:::
the

:::
505

::::
wells

:::
for

:::
the

:::
test

:::::
period.
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Table 2. Overview of geospatial features considered for the performance evaluation.

Feature Description Source

Distance to waterworks Distance

to water

supply

systems

up to 10

km

OSM (2022)

Distance up to
:
to
:::
the

:::::::
coastline

:::::
within 25 km from the coastline

::
km Distance

to Lower

Saxony

coastline

OSM (2022)

CORINE land cover Proportion

in a 1 km

radius of

the most

relevant

cate-

gories:

(Non-

irrigated

arable

land,

pastures,

conifer-

ous forest,

Discon-

tinuous

urban

fabric)

::::::::::::::
Copernicus (2018);

:
Copernicus (2022)

Geomorphology Proportion

in 1 km

radius of

the most

relevant

cate-

gories:

(Low

Relief/medium-

high

SMI, sink

areas/low-

high SMI,

moderate

relief/low

SMI)

BGR2006GMK1000R2.0empty citation
:::::::::
BGR (2006)

Leaf area index (LAI) Proportion

in 1 km

radius:

monthly

average of

green leaf

area per

unit of the

ground

surface.

Pistocchi (2015)

Slope Average

slope in 1

km radius

BKG (2021)

Drainage density Drainage

density

in 1 km

radius

BKG (2021)

Topographic wetness index (TWI) Average

TWI in 1

km buffer

::::
radius

:

Beven and Kirkby (1979); BKG (2021)
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Table 3. Overview of time series features considered for the performance evaluation.

Feature Description Range of values Implications for the GWL

Autocorrelation Degree of similarity between a time se-

ries and a lagged version of itself. Here

we used a lag of 6 time steps (6 months)

-1 – 1 Temporal dependence and persistent

patterns throughout the records

Stability Variance of the means through overlap-

ping windows
:
of

::
10

:::::
values

:

0 – ∞ GWL remains within a certain range of

values without substantial variations or

trends

Flat spots The maximum number of consecutive

observations within equal-sized inter-

vals

0 – TSL GWL relatively constant over an ex-

tended period

Longest strike below the mean The length of the longest consecutive

subsequence lower than the mean

0 – TSL Sustained period of GWL consistently

lower than the mean

Longest strike above the mean The length of the longest consecutive

subsequence higher than the mean

0 – TSL Sustained period of GWL consistently

higher than the mean

Series length Number of observations in the time se-

ries

TSL NA

Approximate entropy Regularity of the time series based on

the existence of patterns

0 – +∞ Observations exhibit more irregular and

unpredictable patterns

Number of peaks Number of values bigger than their 2

neighbours in a 5-values subsequence

0 – (TSL-2) Potential proxy for how directly the

GWL reacts to forcings such as precip-

itation events. Higher values can indi-

cate good hydraulic connection to the

surface

Fourier power spectral density Value of the power spectrum of the

Fast Fourier transform at a frequency of

1/year

0 – +∞ Higher values indicate a strong

influence of annual climate periodicity

on GWL .
:::::
annual

:::::::::
periodicity

::
in

:::::
GWL

::::::::
variability,

:::::
which

:::
may

::
be

::::::::
influenced

:::
by

:::::
annual

::::::
climatic

:::::
factors

:

*TSL- time series length

28


